
JATTACK: Java JIT Testing

using Template Programs

Zhiqiang Zang, Fu-Yao Yu, Nathan Wiatrek, Milos Gligoric, and August Shi

zhiqiang.zang@utexas.edu, fu.yao.yu@utexas.edu, nwiatrek@utexas.edu, gligoric@utexas.edu, august@utexas.edu

The University of Texas at Austin

Austin, TX, USA

Abstract—We present JATTACK, a framework that enables
compiler testing using templates. JATTACK allows compiler
developers to write a template program that describes a set of
concrete programs to be used to test compilers. Such a template-
based approach leverages developers’ intuition on testing com-
pilers, by allowing developers to write a template program in
the host programming language (Java), which contains a basic
program structure while provides an opportunity to express
variants of specific language constructs in holes. Each hole,
written in a domain-specific language embedded in the host
language, is used to construct an extended abstract syntax tree
(eAST), which defines the search space of a language construct,
e.g., a set of numbers, expressions, statements, etc. JATTACK

executes the template program to fill every hole by randomly
choosing a number, expression, or statement within the search
space defined by the hole, and it generates concrete programs
with all holes filled. We used JATTACK to test Java just-in-time
(JIT) compilers, and we have found seven critical bugs in Oracle
JDK JIT compiler. Oracle developers confirmed and fixed all
seven bugs, five of which were previously unknown, including
two CVEs (Common Vulnerabilities and Exposures). JATTACK

blends developers’ intuition via templates with random testing
to detect bugs in compilers. The demo video for JATTACK can
be found at https://www.youtube.com/watch?v=meCFPxucqk4.

Index Terms—Testing, test generation, program generation,
compiler, templates

I. INTRODUCTION

Compilers are the cornerstone of software development, and

their correctness is vital. Compiler developers have written

thousands of tests, i.e., programs in the compiler’s target

programming language, to check correctness of compilers [1].

Such hand-written tests nicely capture developers’ intuition of

what programs are more likely to trigger corner cases, but it

is time-consuming to write a large number of tests. On the

other hand, automated techniques [2]–[4] can generate a large

number of programs used as test inputs to compilers, but they

do not incorporate compiler developers’ domain knowledge

and insights into the testing process.

We present JATTACK [5], which blends developers’ insights

with automated testing. Using JATTACK, a developer writes

a template program (template for short) that is similar to

the tests they already write for compilers, but they express

variants of the test using the template. (Figure 1 shows an

example template, which is discussed in detail in Section II.)

The goal of writing a template is similar to parameterized

unit testing [6], where developers hand-write tests but use

parameters to provide their insights for deeper exploration.

JATTACK allows developers to specify exactly how to generate

variants of a test.

Every template contains holes that JATTACK will fill.

Each hole is written in a domain-specific language (DSL)

embedded in the host programming language (Java). Using

the DSL, developers can specify exactly how they want the

hole to be filled. JATTACK constructs an extended abstract

syntax tree (eAST) from the hole, which bounds the search

space for the hole. The DSL is implemented with a set of

APIs in JATTACK, e.g., relation(intVal(), intVal(), GT,

LT).eval() defines a hole that represents a logical relation

connecting two integer literals (each taking value between

Integer.MIN_VALUE and Integer.MAX_VALUE) using either >

(GT) or < (LT) operators. This hole evaluates to a boolean.

JATTACK repeatedly executes the given template to fill each

hole and as a result generates a concrete program. During

execution, when it reaches a hole for the first time, JATTACK

randomly chooses a number or expression available within

the search space defined by the hole to fill the hole in the

remaining execution. Next, since we focus on testing Java

JIT compilers, every generated program from the template is

executed a large number of times (so that JIT compilation is

triggered [7]) using different JIT compilers, detecting bugs via

differential testing [8].

We wrote 84 templates focusing on different Java language

features and learning from existing tests for Java JIT com-

pilers. As part of our evaluation on how well JATTACK can

be used for automated compiler testing, we also automatically

extracted 5,419 templates from 77 open-source Java projects

in a wide variety of domains involving different Java language

features. Using these templates, JATTACK detected seven bugs

in the Oracle JDK JIT compiler. Oracle developers confirmed

and fixed all seven bugs, five of which were previously

unknown including two CVEs (Common Vulnerabilities and

Exposures) that they acknowledged.

JATTACK is open source and publicly available on GitHub

at https://github.com/EngineeringSoftware/jattack.

II. EXAMPLE

Figure 1a shows a template program we wrote using JAT-

TACK. Note that every template is a valid program, which

means it can be type-checked, compiled and executed the same

as any other Java program. This template involves different

1

1 import static jattack.Boom.*;

2 public class T {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arr1 = { s1++, s2, intVal().eval() ❶,

8 intVal().eval() ❷, intVal().eval() ❸ };

9 for (int i = 0; i < arr1.length; ++i)

10 if (logic(relation(intId(), intId(), LE),

11 relation(intId(), intId(), LE),

12 AND, OR).eval() ❹)

13 arr1[i] &= arithmetic(intId(), intId(),

14 ADD, MUL).eval() ❺;

15 return 0; } }

(a) An example of a template.

1 import static jattack.Boom.*;

2 public class TGen {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arr1 = { s1++, s2, 45350238 ❶,

8 681339300 ❷, 125652422 ❸ };

9 for (int i = 0; i < arr1.length; ++i)

10 if (arr1[3] <= s2 || s2 <= arr1[2] ❹)

11 arr1[i] &= arr1[1] * s1 ❺;

12 return 0; } }

(b) An example of a generated program.

Fig. 1: An example of a template and a program generated

from the template.

Java language features, e.g., arrays, for loops, static variables,

etc., to exercise Java JIT optimizations.

There are five holes in the template, three between lines 7

and 8, one between lines 10 and 12, and one between line 13

and 14. Each hole represents a place that JATTACK should

fill in with a concrete number or expression. The first three

holes (lines 7-8), defined by the intVal call, should be

filled with integer literals between Integer.MIN_VALUE and

Integer.MAX_VALUE. The next hole (lines 10-12) is defined

by a logical relation expression (logic call) connecting two

relational expressions using either && (AND argument) or || (OR

argument). Each relational expression connects two available

integer variables (intId call) at this point, which can be s1, s2,

i or any element of arr1. The last hole (lines 13-14) represents

an arithmetic expression that adds (ADD argument) or multiplies

(MUL argument) two available integer variables.

JATTACK generates programs from the given template in

an execution-based model. Namely, JATTACK fills holes by

executing the template. (The execution-based model provides

unique advantages over static generation [5].) Every template

has to define an entry method, annotated with @Entry (line 5),

which is the starting point of execution. When JATTACK

reaches an unfilled hole during execution for the first time,

it randomly picks a valid expression within the search space

defined by the hole, to fill the hole. When all reachable holes

are filled, JATTACK outputs a concrete program with holes

replaced by corresponding expressions as a generated program.

Then, JATTACK repeats the entire generation procedure to gen-

erate the next program up to the specified maximum number

of programs. Figure 1b shows one of the generated programs;

each circled number corresponds to the same number in the

template shown in Figure 1a.

Finally, for every generated program, the same entry method

is executed a large number of times using different JIT

compilers, and results from different compilers are collected

for differential testing [8]. Note that Java JIT compilers opti-

mize code sections that are frequently executed, so repeated

execution of the entry method is necessary to trigger JIT com-

piler optimizations. The repeated execution of the generated

program shown in Figure 1b exposed a bug which crashed

the JVM due to an incorrect optimization for if nodes in the

Oracle JDK JIT compiler.

III. TECHNIQUE AND IMPLEMENTATION

In this section, we describe design and implementation

of JATTACK’s DSL in Java, and the workflow of the entire

JATTACK framework [5].

A. Design and Implementation of DSL

We design the DSL of JATTACK so that (1) developers

decide where to place a hole and define the search space

for the hole, and (2) developers do not need to learn a new

programming language or change the compiler or runtime

of the host programming language (Java). We first briefly

describe the syntax and semantics of the DSL. The new

concept we introduced on top of Java is the hole. A hole

can represent any number, expression, or statement, and the

hole obeys the same grammar rules as the language construct

it represents. When a hole is evaluated, it generates a concrete

number, expression or statement, which is randomly chosen

from all possible candidates in the search space defined by

the hole, and the hole computes the result of the chosen

candidate. Any subsequent calls to the same hole during the

same run will always use the same candidate, because a hole

could be evaluated more than once, i.e., in a loop. However,

the actual result computed from the same hole could change

at subsequent calls, since even the same candidate could be

evaluated to different values at different times, i.e., an integer

variable as an iteration counter in a loop.

To support the concept of holes and to integrate it into Java

without changing the Java language itself, we introduce a set of

API methods that construct holes. Every API method returns

an eAST with a specific type that corresponds to a hole to

be filled, e.g., the intVal(int min, int max) method, which

represents a hole to be filled with an int number, creates an

IntVal node that evaluates to any integer between min and max.

The eAST contains a range of candidates to fill the hole. As

an example, consider the logical expression hole in Figure 1a

(line 10-12), which returns a root node of an eAST, illustrated

in Figure 2. Candidates for the hole are obtained by recursively

obtaining candidates for nodes in subtrees and combining

them together. RelExp nodes combine candidates for integer

2

variables and connect them with the specified operators (LE),

and the LogExp node again combines the candidates returned

LogExp

RelExp

IntId IntId

RelExp

IntId IntId

&&, ||

<= <=

Fig. 2: eAST corresponding to

logic hole from Figure 1a.

from RelExp nodes with

the specified operators

AND or OR, as the final

candidates. For our Java

implementation, creat-

ing an eAST does not

necessarily mean filling

the hole; only after call-

ing the eval method

does a candidate get

randomly generated to fill the hole. Once generated, the

candidate is memoized and subsequent calls to the same hole

will always compute the result using the candidate rather than

re-fill the hole.

B. Generation and JIT-Testing

The workflow of JATTACK framework can be divided into

two phases: generation and JIT-testing. In the generation

phase, JATTACK executes the given template to generate the

desired number of concrete programs. Next, in the JIT-testing

phase, JATTACK runs those generated programs over different

JIT compilers and detect bugs through differential testing [8].

Figure 3 shows a high level overview of the two phases.

Generation. Given a template T , JATTACK first captures the

initial global state of the template and finds the entry method

in the template. Next, JATTACK repeatedly executes the entry

method until it fills all the holes in the template or it reaches

the given maximum iterations N , whichever comes first. Then,

JATTACK replaces every hole with the corresponding concrete

generated code and outputs a concrete generated program.

This concludes the generation of one program. Next, JATTACK

resets the state of the template to be the same as the captured

initial global state and repeats all the previous steps to generate

more programs until it generates the specified number of

programs (M).

JIT-Testing. For each generated program from the given

template, JATTACK runs the program through executing the

entry method a large number of times (N) (so as to trigger JIT

compilation). JATTACK hashes the return value from the entry

method every time, and the final global state of the generated

program after all the iterations, into a final checksum value.

JATTACK repeats the execution on different JIT compilers and

compares the checksum values. Any difference between the

checksum values indicates a bug within some JIT compiler.

Also, JATTACK reports a bug if the execution crashes on any

JIT compiler.

IV. TOOL INSTALLATION AND USAGE

A. Installation

The first step is to clone the JATTACK repository and to

check out the tag for the demo.

$ git clone https://github.com/EngineeringSoftware/jattack

$ cd jattack

$ git checkout icse23-demo

JATTACK requires at least JDK 11 and a Python 3.8

environment with pip package installer [9]. We assume the

dependencies are available on the system. To install JATTACK:

$./tool/install.sh

This command calls a bash script to build Java jars, install

required Python packages, and create an executable. If the

command completes normally, an executable file jattack will

appear in tool directory, i.e, ./tool/jattack.

B. Usage

After installation, users can interact with JATTACK through

the executable file ./tool/jattack, e.g.,

$./tool/jattack -h

We provide a sample template ./T.java in the repository.

To run JATTACK with the template, users need to provide JAT-

TACK with at least two required arguments: (1) --clz, the fully

qualified class name of the given template, and (2) --n_gen,

the total number of generated programs, and several optional

arguments (with default values if not provided), e.g., --seed

(the random seed used during generation), --java_envs (the

Java environments to be differentially tested, each including

the path to Java home and a list of Java options), etc. (See

more arguments in a help message via -h.)

$./tool/jattack --clz T --n_gen 3 --seed 42 \

--java_envs "[\

[.downloads/jdk-11.0.8+10,[-XX:TieredStopAtLevel=4]],\

[.downloads/jdk-11.0.8+10,[-XX:TieredStopAtLevel=1]]]"

This command generates 3 programs from the provided

template T.java and uses these generated programs to

test specified Java JIT compilers, i.e., level 4 and level

1 [10] of JIT compilers from the JDK installed at

.downloads/jdk-11.0.8+10. Figure 4 shows a screenshot of

running the command. As a result, the first generated program

crashes level 4 of the JIT compiler and reports a JIT bug.

JATTACK creates a hidden directory .jattack to save the

generated programs and outputs (i.e., checksum values) of the

programs’ execution.

V. EVALUATION

We wrote 84 templates focusing on different Java language

features, e.g., arrays, loops, conditions, etc., and learning from

existing tests for Java JIT compilers. We let JATTACK generate

1,000 programs for each template. Using these templates we

found two bugs in the Oracle JDK JIT compiler. We also

evaluated the efficiency of JATTACK at generating programs

and executing those generated programs, using 23 of these

hand-written templates. It took around 20 minutes to generate

all 23,000 programs, and the total execution time across all

generated programs is around two hours on level 4 and around

two and a half hours on level 1.

We also used JATTACK for automated compiler testing via

extracted templates from a large number of existing Java

programs and compared its effectiveness with an existing

automated compiler testing tool, Java* Fuzzer [2], which is

a fuzzer tool that has been successful at detecting bugs in the

3

REFERENCES

[1] Oracle Corporation and/or its affiliates. (2022) Regression test harness
for the JDK: jtreg. https://openjdk.java.net/jtreg.

[2] Azul Systems, Inc. (2018) Azulsystems/JavaFuzzer: Java* Fuzzer for
Android*. https://github.com/AzulSystems/JavaFuzzer.

[3] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in Programming Language

Design and Implementation. ACM, 2016, pp. 85–99.

[4] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang, and L. Zhang,
“History-driven test program synthesis for JVM testing,” in International

Conference on Software Engineering. ACM, 2022, pp. 1133–1144.

[5] Z. Zang, N. Wiatrek, M. Gligoric, and A. Shi, “Compiler testing using
template Java programs,” in International Conference on Automated

Software Engineering, 2022, pp. 23:1–23:13.

[6] N. Tillmann and W. Schulte, “Parameterized unit tests,” in Joint Meeting

of the European Software Engineering Conference and the Symposium

on the Foundations of Software Engineering. ACM, 2005, pp. 253–262.

[7] J. Aycock, “A brief history of just-in-time,” ACM Computing Surveys,
vol. 35, no. 2, pp. 97–113, 2003.

[8] W. M. McKeeman, “Differential testing for software,” Digital Technical

Journal, vol. 10, no. 1, pp. 100–107, 1998.

[9] Python Software Foundation. (2022) pip . pypi. https://pypi.org/project/
pip/.

[10] Oracle Corporation and/or its affiliates. (2022) jdk-updates/jdk11u:
405102e26a62 src/hotspot/share/runtime/tieredthresholdpolicy.hpp.
https://hg.openjdk.java.net/jdk-updates/jdk11u/file/405102e26a62/src/
hotspot/share/runtime/tieredThresholdPolicy.hpp.

[11] ——. (2021) The Java HotSpot performance engine architecture. https:
//www.oracle.com/java/technologies/whitepaper.html.

[12] The MITRE Corporation. (2022) CVE - CVE-2020-14792. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14792.

[13] ——. (2022) CVE - CVE-2022-21305. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2022-21305.

[14] Oracle. (2022) Oracle critical patch update advisory - October 2020.
https://www.oracle.com/security-alerts/cpuoct2020.html.

[15] ——. (2022) Oracle critical patch update advisory - January 2022.
https://www.oracle.com/security-alerts/cpujan2022.html.

[16] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Computing Surveys, vol. 53, no. 1,
pp. 4:1–4:36, 2020.

[17] Y. Tang, Z. Ren, W. Kong, and H. Jiang, “Compiler testing: a systematic
literature analysis,” Frontiers of Computer Science, vol. 14, no. 1, p.
1:20, 2020.

[18] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Programming Language Design and Implemen-

tation. ACM, 2011, pp. 283–294.

[19] T. Yoshikawa, K. Shimura, and T. Ozawa, “Random program generator
for Java JIT compiler test system,” in International Conference on

Quality Software. IEEE, 2003, pp. 20–23.

[20] V. Livinskii, D. Babokin, and J. Regehr, “Random testing for C and
C++ compilers with YARPGen,” in International Conference on Object-

Oriented Programming, Systems, Languages, and Applications. ACM,
2020, pp. 196:1–196:25.

[21] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in International

Conference on Software Engineering. ACM, 2016, pp. 180–190.

[22] Y. Chen, T. Su, and Z. Su, “Deep differential testing of JVM implemen-
tations,” in International Conference on Software Engineering. IEEE,
2019, pp. 1257–1268.

[23] Code Intelligence GmbH. (2021) CodeIntelligenceTesting/-
jazzer: Coverage-guided, in-process fuzzing for the JVM.
https://github.com/CodeIntelligenceTesting/jazzer.

[24] S. Chaliasos, T. Sotiropoulos, D. Spinellis, A. Gervais, B. Livshits,
and D. Mitropoulos, “Finding typing compiler bugs,” in Programming

Language Design and Implementation. ACM, 2022, pp. 183–198.

[25] L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz,
“JIT-picking: Differential fuzzing of JavaScript engines,” in Conference

on Computer and Communications Security. ACM, 2022, pp. 351–364.

[26] J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “FuzzJIT: Oracle-
enhanced fuzzing for JavaScript engine JIT compiler,” in USENIX

Security Symposium. USENIX, 2023, p. to appear.

[27] A. Solar-Lezama, “Program sketching,” International Journal on Soft-

ware Tools for Technology Transfer, vol. 15, no. 5–6, pp. 475–495, 2013.

[28] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for rigorous
compiler testing,” in Programming Language Design and Implementa-

tion. ACM, 2017, pp. 347–361.

[29] J. Hua and S. Khurshid, “EdSketch: Execution-driven sketching for
Java,” in International SPIN Symposium on Model Checking of Software.
ACM, 2017, pp. 162–171.

[30] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen, “CodeHint:
Dynamic and interactive synthesis of code snippets,” in International

Conference on Software Engineering. ACM, 2014, pp. 653–663.

5

	Introduction
	Example
	Technique and Implementation
	Design and Implementation of DSL
	Generation and JIT-Testing

	Tool Installation and Usage
	Installation
	Usage

	Evaluation
	Related Work
	Conclusion
	References

