
pytest-inline: An Inline Testing Tool for Python

Yu Liu1, Zachary Thurston2, Alan Han2, Pengyu Nie1, Milos Gligoric1, Owolabi Legunsen2

yuki.liu@utexas.edu, {zwt3, ayh9}@cornell.edu, {pynie, gligoric}@utexas.edu, legunsen@cornell.edu
1 UT Austin, USA 2 Cornell University, USA

Abstract—We present pytest-inline, the first inline testing
framework for Python. We recently proposed inline tests to make
it easier to test individual program statements. But, there is no
framework-level support for developers to write inline tests in
Python. To fill this gap, we design and implement pytest-inline as
a plugin for pytest, the most popular Python testing framework.
Using pytest-inline, a developer can write an inline test by assign-
ing test inputs to variables in a target statement and specifying
the expected test output. Then, pytest-inline runs each inline test
and fails if the target statement’s output does not match the
expected output. In this paper, we describe our design of pytest-
inline, the testing features that it provides, and the intended use
cases. Our evaluation on inline tests that we wrote for 80 target
statements from 31 open-source Python projects shows that using
pytest-inline incurs negligible overhead, at 0.012x. pytest-inline
is integrated into the pytest-dev organization, and a video demo
is at https://www.youtube.com/watch?v=pZgiAxR_uJg.

Index Terms—inline tests, software testing, Python, pytest

I. INTRODUCTION

Software testing is the main way of checking code quality,

but there is a gap in today’s testing frameworks: they do

not support testing individual statements. That is, the unit

tests [5], integration tests [20], and system tests [28] supported

by current frameworks can be too coarse-grained or ill-suited

for developer testing needs that exist at the statement level.

Yet, developers may want to test statements because:

1) Single-statement bugs occur frequently [12], but unit tests

often do not catch single-statement bugs [14].

2) Some statements are hard to understand or error prone,

e.g., regular expressions (regexes) [19], bit manipula-

tion [1], string manipulation [6], or collection handling [8].

3) Statements can contain complex logic, e.g., Python one-

liners [18] or Java streams [10].

4) The statement that developers want to check, i.e., the target

statement, may be buried deeply in complicated logic that

is hard to check with unit tests.

Without framework-level support for testing statements, de-

velopers use ad hoc approaches, like (1) “printf debugging”—

printing values of variables to the console to gain visibil-

ity [21], or (2) using websites or in-IDE pop-ups to test

regexes [27]. These approaches are not ideal: developers

wastefully add and then remove print statements, and lose

mental focus and productivity to copy code to and from

websites and pop-ups. Also, developers cannot easily reuse

the outcomes of these approaches. Lastly, if a target statement

is in privately accessible code, some developers violate core

software engineering principles to enable unit testing.

We proposed inline tests to meet developer needs for testing

statements [17]. An inline test is a statement that allows

providing arbitrary inputs and test oracles for checking the

immediately preceding statement that is not an inline test.

Inline tests can bring the power of unit tests to the statement

level, but they should not replace unit tests or debuggers [17].

We present pytest-inline, the first inline testing framework

for Python. Using pytest-inline, developers can assign test

inputs to variables in a target statement and use a provided

API to write oracles that specify the expected outputs. Also,

pytest-inline runs inline tests in an isolated context and does

not require interpreting the whole project. To ease installation,

usage, and adoption, we develop pytest-inline as a plugin for

pytest [22], the most popular Python testing framework.

We build pytest-inline by extending the prototype in our

original paper [17]. The original prototype supports three

kinds of test oracles, setting test display names, parameterized

tests, disabling tests, grouping tests by tags, and repeated

tests. In pytest-inline, we implement more features inspired

by JUnit [11] (a mature Java testing framework) that apply

to inline tests: 1) five other kinds of test oracles; 2) timeout;

3) specifying test order; 4) running inline tests in parallel; and

5) specifying assumptions. pytest-inline has been integrated as

an officially-supported pytest plugin [25].

We evaluate pytest-inline on 87 inline tests that we wrote for

80 target statements in 31 open-source Python projects [17].

We find that inline tests’ runtime overhead is negligible, at

0.012x of unit testing time. Our user study on the original

prototype showed that all nine participants find inline tests

easy to write and say that most inline tests are beneficial. Our

pytest-inline tool will enable further research on inline testing.

We make pytest-inline publicly available via the pytest-dev

organization: https://github.com/pytest-dev/pytest-inline.

II. EXAMPLE

Fig. 1 shows an inline test for code that we simplify from

google-research/bert [3]. Line 5 checks if the variable, name,

matches a regex for a pattern that ends in a colon and at

least one digit. Directly checking the regex is not easy without

1 def get_assignment_map_from_checkpoint(tvars, init_c):

2 ...

3 for var in tvars:

4 name = var.name

5 m = re.match("^(.*):\\d+$", name)

6 itest().given(name, "a:0").check_eq(m, "a")

7 if m is not None:

8 name = m.group(1)

9 ...

Fig. 1: Example Python code with an inline test in blue.

TABLE II: Results of standalone experiments. Dup = dupli-

cation count, #IT= total no. of inline tests, TIT[s]= total inline

tests run time, tIT[s]= average run time per inline test.

Dup #IT TIT[s] tIT[s]

x1 87 8.21 0.094
x10 870 8.84 0.010
x100 8,700 15.21 0.002
x1000 87,000 120.17 0.001

TABLE III: Results of integrated experiments. Dup = duplica-

tion times, #UT= total no. of unit tests, #IT= total no. of inline

tests, TUT [s]= total time to run unit tests, TITE [s]= total time

to run unit tests with inline tests enabled, OITE= overhead of

running unit tests with inline tests enabled, TITD[s]= total time

to run unit tests with inline tests disabled, OITD= overhead of

running unit tests with inline tests disabled.

Dup #UT #IT TUT [s] TITE [s] OITE TITD[s] OITD

x1 160,111 27 599.09 606.19 0.012 601.22 0.004
x10 160,111 270 603.29 607.20 0.006 601.94 -0.002
x100 160,112 2,700 593.93 638.02 0.074 630.42 0.061
x1000 160,113 27,000 649.53 689.50 0.062 640.93 -0.013

environment specified by each project. To do so, we run inline

tests and unit tests four times. The first run is for warm-up,

and we average the times for the last three runs. Among 31

Python projects in our original paper, we choose the ten whose

unit testing environment we can successfully configure with

Python 3.7 or greater (as required by pytest): bokeh/bokeh,

RaRe-Technologies/gensim, geekcomputers/Python,

joke2k/faker, mitmproxy/mitmproxy, numpy/numpy,

pandas-dev/pandas, psf/black, pypa/pipenv, and

scrapy/scrapy. Table III shows the results. There, OITE

is the overhead when inline tests are enabled and run with

unit tests. Without duplication, the overhead per inline

test is negligible, at 0.012x. The overhead is similar with

duplication. For example, when duplicating inline tests 1000

times, which brings the number of inline tests close to that

of unit tests, the overhead is 0.062x.

On user perceptions. The user study that we performed using

the original Python prototype [17] showed that participants

found inline testing easy to use and beneficial. Now that we

released pytest-inline, and have it integrated as an official

pytest plugin for developers and researchers to use, we will

be able to continuously obtain user feedback. For example,

based on the feedback from pytest developers, we renamed

the constructor from Here to itest, which is more pythonic.

VI. CONCLUSION AND FUTURE WORK

We presented pytest-inline for writing inline tests in Python.

We implemented pytest-inline as a pytest plugin, and it

has been integrated into pytest-dev [24] as an official and

community-maintained plugin. Our performance evaluation of

pytest-inline showed that the cost of running inline tests is

negligible, and our original prototype helped find two accepted

bugs. In the future, we will add more features to pytest-inline

based on user feedback, and use it to advance research on

inline testing. pytest-inline could also be integrated with other

pytest plugins such as pytest-mock to perform inline testing

of statements that require data from files, databases, etc.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Darko Marinov, August Shi,

Aditya Thimmaiah, Zhiqiang Zang, Jiyang Zhang and the

anonymous reviewers for their feedback on this work. This

work was partially supported by a Google Faculty Research

Award and the US National Science Foundation under Grant

Nos. 1652517, 2019277, 2045596, 2107291, 2217696.

REFERENCES

[1] S. Bae, “Bit manipulation,” in JavaScript Data Structures and Algo-

rithms, 2019, pp. 339–349.
[2] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,

“DeFlaker: Automatically detecting flaky tests,” in ICSE, 2018, pp. 433–
444.

[3] “Bert,” https://github.com/google-research/bert.
[4] “Conda,” https://docs.conda.io/projects/conda/en/stable.
[5] E. Daka and G. Fraser, “A survey on unit testing practices and problems,”

in ISSRE, 2014, pp. 201–211.
[6] A. Eghbali and M. Pradel, “No strings attached: An empirical study of

string-related software bugs,” in ASE, 2020, pp. 956–967.
[7] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test

selection with dynamic file dependencies,” in ISSTA, 2015, pp. 211–
222.

[8] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study
of flaky tests in Python,” in ICST, 2021, pp. 148–158.

[9] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression
test selection opportunities in a very large open-source ecosystem,” in
ISSRE, 2018, pp. 112–122.

[10] “Java stream api,” https://docs.oracle.com/javase/8/docs/api/java/util/
stream/Stream.html.

[11] “Junit5,” https://junit.org/junit5/.
[12] A. V. Kamienski, L. Palechor, C.-P. Bezemer, and A. Hindle, “PySStuBs:

Characterizing single-statement bugs in popular open-source python
projects,” in MSR, 2021, pp. 520–524.

[13] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
framework for detecting and partially classifying flaky tests,” in ICST,
2019, pp. 312–322.

[14] J. Latendresse, R. Abdalkareem, D. E. Costa, and E. Shihab, “How
effective is continuous integration in indicating single-statement bugs?”
in MSR, 2021, pp. 500–504.

[15] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in FSE, 2016, pp. 583–594.

[16] O. Legunsen, A. Shi, and D. Marinov, “STARTS: STAtic regression test
selection,” in ASE Demo, 2017, pp. 949–954.

[17] Y. Liu, P. Nie, O. Legunsen, and M. Gligoric, “Inline tests,” in ASE,
2022, pp. 1–13.

[18] C. Mayer, Python One-Liners: Write Concise, Eloquent Python Like a

Professional. No Starch Press, 2020.
[19] L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant, “Regexes

are hard: Decision-making, difficulties, and risks in programming regular
expressions,” in ASE, 2019, pp. 415–426.

[20] A. Orso, “Integration testing of object-oriented software,” p. 119, 1998.
[21] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld, “Studying

the advancement in debugging practice of professional software devel-
opers,” SQJ, vol. 25, no. 1, pp. 83–110, 2017.

[22] “Pytest,” https://docs.pytest.org/en/7.2.x.
[23] “Pytest-xdist,” https://github.com/pytest-dev/pytest-xdist.
[24] “pytest-dev,” https://github.com/pytest-dev.
[25] “pytest-inline,” https://pypi.org/project/pytest-inline.
[26] “Python ast library,” https://github.com/python/cpython/blob/main/Lib/

ast.py.
[27] “RegEx101,” https://regex101.com.
[28] W. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, “End-to-end

integration testing design,” in COMPSAC, 2001, pp. 166–171.
[29] J. Zhang, Y. Liu, M. Gligoric, O. Legunsen, and A. Shi, “Comparing and

combining analysis-based and learning-based regression test selection,”
in AST, 2022, pp. 17–28.

	Introduction
	Example
	The pytest-inline Framework
	API
	Features
	Implementation

	Installation and Usage
	Evaluation
	Conclusion and Future Work
	References

