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Abstract. The goal of attribute manipulation is to control specified at-
tribute(s) in given images. Prior work approaches this problem by learn-
ing disentangled representations for each attribute that enables it to
manipulate the encoded source attributes to the target attributes. How-
ever, encoded attributes are often correlated with relevant image content.
Thus, the source attribute information can often be hidden in the disen-
tangled features, leading to unwanted image editing effects. In this pa-
per, we propose an Attribute Information Removal and Reconstruction
(AIRR) network that prevents such information hiding by learning how
to remove the attribute information entirely, creating attribute excluded
features, and then learns to directly inject the desired attributes in a
reconstructed image. We evaluate our approach on four diverse datasets
with a variety of attributes including DeepFashion Synthesis, DeepFash-
ion Fine-grained Attribute, CelebA and CelebA-HQ, where our model
improves attribute manipulation accuracy and top-k retrieval rate by
10% on average over prior work. A user study also reports that AIRR

manipulated images are preferred over prior work in up to 76% of cases’.

1 Introduction

Attribute manipulation translates images based on desired attributes, which has
applications to face editing [26,32,31], image retrieval [27,12,34], and image syn-
thesis [3,16], among others. In these tasks, the goal is to be able to control a
specified attribute without affecting other information in the source image. While
Generative Adversarial Networks (GANs) have achieved impressive performance
on attribute manipulation, a major challenge is that the generator tends to take
a shortcut by utilizing the preserved source attribute information instead of the
target attribute for manipulation [13,29,18], thus causing improper image edit-
ing effects in manipulated images. Prior work has tried to address this by adding
random noise during the reconstruction [4,30] or learning disentangled attribute
representations which are used to manipulate the images [26,33]. However, low-
magnitude random noise is not targeted to the source attribute, which could be
intentionally ignored by the model or inadvertently suppress key source features.
On the other hand, even with a disentangled image representation, the correla-
tion between attributes and relevant image content could cause source attribute

! Code and models are available at https://github.com/Nannanl.i999/AIRR
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(a) Framework of previous methods [3,12,34,35,11]. Dashed arrows mean two different
ways of obtaining the reconstructed image

Manipulation Input: Sleevelss —

[ .
Disentanglement Loss 3 Manipulated Output
T Sleeveless
a t £ —>  Decoder —*
‘ ——  Encoder —» Attribute | Attribute —
Remover Excluded a
Features —_— —»  Decoder —> ¢

Long
. Sleeve Reconstructed Output
|

i
Reconstruction Input: Long Sleeve

(b) Pipeline of the proposed method

Fig.1: In (a), the generator like those used by [11,3,12,34,35] incorrectly utilizes
the hidden source attribute information instead of the target attribute sleeveless
for image manipulation. As a result, the manipulated image still contains the
source attribute long sleeve, causing improper image editing effects. To avoid
this issue, the proposed method in (b) erases the source attribute information
in the encoded features through an attribute remover with a disentanglement
loss, conditioning the manipulated output only on the input target attribute
sleeveless and the attribute excluded features

information to be hidden in the rest of the image features. For example, attribute
formal in a dress is often correlated with the dress’s long length.

To address these issues, we propose a supervised Attribute Information Re-
moval and Reconstruction (AIRR) model that learns an attribute excluded rep-
resentation and reconstructs the image with desired attributes. The key challenge
is in identifying the preserved source attribute information and decorrelating it
from the image representation [15,31,26,33]. Prior research on feature disentan-
glement either doesn’t consider the decorrelation [15,31,35], or has limitations
on the number of attributes it can decorrelate in a forward pass [26,33], unlike
our approach which can disentangle any number of attributes. In addition, as
illustrated in Figure la, these methods often rely on the full image information
for both manipulation and reconstruction. As mentioned earlier, this can lead to
information hiding in the manipulated image. In contrast, as shown in Figure 1b,
we use our remover to erase attribute information to obtain attribute excluded
features, which are then used to directly generate both the reconstructed and
manipulated images. Since this should eliminate the information that could po-
tentially be hidden in the disentangled representation, we avoid the information
hiding issues in prior work.
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One challenge in our approach is our reliance on being able to identify and re-
move attribute information in real images. For example, although the color white
appears in the background of the input images in Figure 1, a good attribute clas-
sifier would predict that the clothing item is gray and not white. This means that
the background information could mislead the attribute recognition. To address
this issue, we segment the object of interest (e.g., using [19,36]) to split the
image encoder into two branches for the object of interest and the background,
respectively. This helps AIRR to concentrate the manipulation on the object of
interest without influencing the background information.

Our main contributions are:

— We propose the Attribute Information Removal and Reconstruction method
(AIRR), a controllable disentangled attribute manipulation framework that
produces high quality images. The key insight in AIRR is the attribute in-
formation removal and reconstruction module that produces an attribute
excluded representation, eliminating sources of information hiding that de-
grades performance in prior work.

— Extensive experiments across DeepFashion Synthesis [21], DeepFashion Fine-
grained Attribute [21], CelebA [22] and CelebA-HQ [17] report that AIRR
improves the attribute manipulation accuracy and top-k retrieval rate by
10% on average over the state-of-the-art. Moreover, we show that AIRR
can effectively control attribute strength as well as efficiently manipulating
multiple attributes in a single forward pass.

— A user study further validates the effectiveness of our approach, where our
methods are shown to produce high quality images that more accurately
achieve the target attribute manipulation by up to 76% over prior work.

2 Related Work

Early research in attribute manipulation [7,11] combined the target attribute
label directly with the image or image features, and decoded them into manip-
ulated output. However, the decoder could incorrectly use the preserved source
attribute information for image manipulation. Thus, more recent work (includ-
ing this paper), has focused on learning disentangled attribute representations,
which we will discuss in more detailed below.

Unsupervised disentanglement. Several studies explored disentanglement
in the latent space of GANs in an unsupervised manner [25,23,9,28,32]. These
methods aim to manipulate the attributes on synthetic data, where the image
content is randomly generated. In [9], the authors found that the principle com-
ponents of features on pretrained GANSs represent high-level semantic concepts.
In [32], the authors introduced channel-wise disentanglement of StyleGAN [14].
Shoshan et al. [28] utilized contrastive learning to disentangle the latent space,
achieving explicit control over synthetic facial images. However, without man-
ual examinations on the feature space, it’s difficult to locate the exact attribute
representation that we want to manipulate, especially for attributes with high-
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level semantics. Thus, in our work we focus on cases where attributes we wish
to manipulate are known, enabling us to directly target our feature learning.

Supervised disentanglement. Supervised disentanglement methods edit real
images based on attribute annotations. Prior work on this task can be cate-
gorized in two types: spatial disentanglement and feature disentanglement. In
methods that focus on spatial disentanglement [15,31], attributes are located
spatially and thus disentangled in the feature map. These methods can find
attribute-specific features by an attention map, whereas attribute-relevant in-
formation is implicitly kept and thus influences the image manipulation. On the
other hand, feature disentanglement identifies certain features corresponding to
the manipulated attribute. [35] presents a method that learns a linear transfor-
mation function that maps StyleGAN’s latent code. Although StyleGAN'’s latent
space is disentangled [1], without orthogonal constraints, such linear combina-~
tion could result in correlation between different image attributes and content.
To address this, Yang et al. [33] learned attribute relevant and irrelevant fea-
tures, but each manipulated attribute requires training its own model, which is
computationally costly. Instead, Shen et al. [26] manipulated attributes with a
conditional subspace projection via Support Vector Machines (SVM), whereas
the manipulation accuracy depends on the capability of SVM and each forward
pass can control only a single attribute. In contrast, our proposed approach can
manipulate multiple source attributes in a single forward pass by utilizing the
injected attribute embedding.

Attribute manipulation in fashion. Apart from the above mentioned meth-
ods that are mainly applied to facial attribute editing, attribute manipulation
in fashion images has also gained a lot of attention. Recent work on this topic
mainly aim to improve the image retrieval accuracy for item recommendation.
For example, researches have leveraged spatial information when manipulating
attributes [3,2], learned a dictionary of attribute transformations [27], or used
the attribute probability distribution as an disentangled representation for image
retrieval[12]. Kwon et al. [16] predicted changes to an item’s shape as a result
of changing an attribute, enabling them to make more significant alterations
to the clothing in images. However, many of these methods also suffered from
issues with disentangling attributes, often due to misinformation hiding, which
our work minimizes.

3 Attribute Information Removal and Reconstruction

Given image I and its attributes A = {aj,ag,...,an}, where a; denotes the
1th attribute, we aim to manipulate any number of attributes in A. To achieve
this goal, the generator first takes a real image as input, and uses our attribute
remover to decorrelate the image attributes from the image features. The result-
ing attribute excluded representation is then combined with the target attribute
embeddings to produce the manipulated output I,,qp. In the following, we intro-
duce the four components of our model: image encoder (Section 3.1), attribute
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Fig.2: AIRR framework. In the AIRR generator, a given image is parsed into
an object of interest I,; and background I, through an offline parser [19,36]. I.;
and I, are encoded in separate branches (Sec. 3.1). In the I; branch, the source
attribute information in the encoded features are erased by an attribute remover
using a disentanglement loss (Sec. 3.2). Subsequently, the source attributes in A
and the target attributes in A are embedded into the attribute excluded features
for image reconstruction and image manipulation, respectively (Sec. 3.3)

remover (Section 3.2), decoder (Section 3.3), and learning objectives (Section
3.4). Figure 2 shows an overview of our approach.

3.1 Image Encoder

To concentrate the manipulation on the object that we want to manipulate, the
image encoder in AIRR is split into two branches for the object of interest I
and the background Ip4, respectively. Prior work often achieves the segmenta-
tion of I; by learning an attention map [15,3,2], while we found empirically that
using an offline parser [19,36] is more accurate in segmenting instances. This
segmentation is especially helpful for images with multiple objects, e.g., an im-
age of a fashion model wearing top, leggings and boots. As shown in Figure 2,
after obtaining I; and Ip4, the image encoder encodes I into Ej(Iy) in the
first branch, and I, into E2(Iy,) in the second branch. Later on, AIRR only
manipulates F4 (1) without influencing the background information Ea(Ip,).

3.2 Attribute Remover

While prior work directly used the image features F1(I.) to generate the im-
age [11,3,12,34,35], in AIRR, image features FE;(I) from our base encoder
are fed into an attribute remover to learn an attribute-excluded representation
R(E1(1.)). The attribute remover is an n-layer convolutional block that is used
to decorrelate the source attribute information from the image representation.
A design requirement for the attribute remover is that it does not have skip
connections since we aim to erase the attribute information from the encoded
features, whereas skip connections would preserve this information.
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To disentangle all the source attribute information from FEj (1), we would
need an attribute classifier to first identify these attributes. This can be achieved
by Maximum Likelihood Estimation (MLE):

La(Ei(la)) = — Z

where p.(a;|F1(Iy)) is the probability distribution of aj, and y; is the corre-
sponding one-hot attribute label. We use one residual block as the attribute
classifier to predict p.(+).

After identifying the source attributes, we can then eliminate the attribute
information in R(E; (1)) by minimizing their mutual information. Alternatively,
it’s easier to minimize the upper bound of this mutual information, which is the
maximum log probability in the attribute class distribution added by a constant
¢ (See the Supplementary for proof of this upper bound):

o Vi Togpe(asl B (1) (1)

MI(a;, R(E1(Ia1))) < ¢+ maxa, log pe (i R(Ex (1)) (2)

Intuitively, minimizing this upper bound gives a uniform distribution over
the attributes, meaning that the uncertainty for a specific attribute is maxi-
mized. Therefore, the generated features would have little knowledge of what
the original attributes are. This loss function is thus defined as a margin loss:

Li(R(E:1(Ia))) = Z max{maxa, log p.(ai| R(E1 (1)) — log Lm}, (3)

a |a |

where |a;| is the number of attribute values in a;, and ¢ indicates the proximity
to a uniform distribution, which is set to 0.01 in our experiments as we found
it performed well. We refer to Ly(R(E1(Iy))) as a Mutual Information Mini-
mization (MIM) loss. Note that our attribute classifier and remover are trained
end-to-end with our other generator and decoder components.

3.3 Decoder

After the attribute remover, a new learned attribute representation is integrated
with the disentangled features R(FE1(I.;)) to generate the output image. Assum-
ing a scale embedding vector 3, and a bias embedding vector v, for attribute
a;, the original image I thus can be reconstructed by combining R(El(ICl)),
E>(Ipg) and the attribute embeddings, i.e.,

Lree = G(concat[z

where G is the decoder. Similarly, given target attributes of our desired output
A, R(E1 (Icl)) produces the manipulated image Ipnqp by

Bar R(E1(I) +7a, Bo(T)] ), (4)

a;€EA

Imap = G(Concat[zaﬁefk /Ba_i : R(El(Icl)) + PYEU EQ(Ibg)]> (5)
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In contrast to some prior work [3,7,15], where the attribute embedding vector
and the encoded features are combined by concatenation, we multiply these two
features such that linear interpolation between different attribute embeddings
can better control the strength of these attributes in the output [8,33]. Further
discussion can be found in Section 4.5.

3.4 Learning Objectives

Disentanglement loss. The disentanglement loss combines the MLE loss in
Eq. (1) and the MIM loss in Eq. (3) as

Li=Lq(Ei(Is)) + La(R(E1(Ia))) (6)

By first identifying the source attributes in E; (1) and then minimizing the at-
tribute information in R(F;(I.)), this disentanglement loss enables the decoder
to condition the output on the new attribute that is injected to the generator.
In Section 4.5, we also show empirically that with the disentanglement loss, the
attribute remover indeed gets rid of all the source attribute information.

Reconstruction loss. The reconstructed image I,... is evaluated by its [y dis-
tance to the original image I:

Lrec = HIrec_Iul (7)

Adversarial loss. The manipulated image I,,q, doesn’t have a paired ground
truth of how it should look like, for which its plausibility is evaluated by the
discriminator D. Using LSGAN [24], the adversarial loss of the generator can be
written as

dev =(1- D(Imap))Q +(1- D(IreC))Q (8)

In the discriminator, this adversarial loss includes both the reconstructed
image I,.. and the manipulated image I,,,,;, since they are both fake samples:

Ly = (L= DY 4 5 (D(Tnay)? + DlLec)?) )

Image attribute classification loss [6]. This loss maximizes the mutual in-
formation between the injected attribute embedding and the generated image:

9 — T . _ oI 3
Lattr - ZaiEA yi Ingd(al|Irec) ZﬁiEA Yi Ingd(alumap) (10)

where py(+) is the probability distribution of attributes predicted by a classifi-
cation branch in the discriminator. For the discriminator, this loss is defined on
the real image 1.

Lgttr = Lgttr(‘[) == ZaieA YiT log pa(a;|]) (11)

Perceptual loss. To further improve the quality of the generated images, a
perceptual loss is introduced in the generator as in [3]. It is based on the distance
of paired real and fake images in the CNN feature space

Lp = HCNN(I) - CNN(Irec)Hl + HCNN(IT'Ef) - CNN(Ima;D)Hl (12)
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Table 1: Statistics of the datasets used in our experiments in Section 4

image #training #test #attribute

Dataset . R . #attributes

size images images values
DeepFashion Synthesis [21] 128x128 76,979 2000 2 21
DeepFashion Fine-grained Attribute [21] 256x256 19,000 1000 6 26
CelebA [22] 128x128 200,599 2000 8 21
CelebA-HQ [17] 1024x1024 29,000 1000 8 21

where I,.5 is selected from the real images in the dataset to have exactly the
same attributes A as Ip;qp.

Full objective. Including all the above loss functions, the full objectives for the
generator and discriminator are

Lyen = L%, + MLa+ ALy + AsLyee + AL, (13)
Lgis = Lgdv + 2)‘2Lgttr (14)

where A1, A2, A3 are trade-off parameters. As in prior work [20,5], these param-
eters must be set carefully to control the degree of disentanglement. Note that
except for L., these loss functions are all symmetrical with respect to A and
A to enforce that the manipulated image is a plausible reconstructed image.

4 Experiments

To prove the efficiency of the proposed method, we evaluate our model on
four publicly available datasets: DeepFashion Synthesis [21], DeepFashion Fine-
grained Attribute [21], CelebA [22] and CelebA-HQ [17]. On CelebA and CelebA-
HQ, we group the attributes into 8 attribute categories and 21 attribute values
following [2]. See Table 1 for detailed statics of each dataset.

4.1 Implementation Details

We use the model architecture in [37] as our backbone on DeepFashion and
CelebA datasets. Following [35], on CelebA-HQ we adopt another backbone:
StyleGAN2 [14], which is better suited to high resolution images. To improve
training stability, we froze the weights of StyleGAN2’s encoder and generator.
Except for CelebA-HQ, the CNN used in Eq. (12) is a ResNet-50 model [10]
pretrained on image attribute classification task. On CelebA-HQ, we use Style-
GAN2’s encoder as the CNN in order to match the identity loss defined in [35].

For DeepFashion the target attributes are uniformly and randomly sampled
from items in the same clothing category, e.g., dress and leggings. Here we did
not sample the target attributes from the whole dataset because some annotated
attributes can only appear in certain clothing categories. For example, leggings
can’t have V-neckline, and skirts can’t have long sleeve. On CelebA-HQ, we tra-
verse the values of the 8 attributes for each image during test for fair comparison
with existing methods that use binary attribute values [33,35,26].
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4.2 Experimental Settings

Baselines. We compare our model with related approaches on attribute manipu-
lation: StarGAN [7], AMNet [3], FLAM [27], VPTNet [16], AttGAN [11], Student
[18], FSNet-v2 [2], CAFE-GAN [15], InterfaceGAN [26], L2M-GAN [33] and La-
tent Transformer [35]. Among these approaches, FLAM, Student, InterfaceGAN
and L2M-GAN also aim to achieve feature-level disentanglement, while AMNet,
FSNet-v2 and CAFE-GAN aim to learn spatially disentangled representations.
For StarGAN, AttGAN, Student, InterfaceGAN, L2M-GAN and LatentTrans-
former, we used the official implementations at author-provided links. AMNet
and FLAM are reproduced by us following the configurations provided in the cor-
responding papers. Results of FashionSearchNet-v2, VPTNet and CAFE-GAN
are directly copied from the original papers. For fair comparison on CelebA-HQ),
we used StyleGAN2 encoded image features in InterfaceGAN.

Evaluation metrics. Following [3,2], we use human evaluation and two stan-
dard metrics to evaluate the model’s performance on attribute manipulation:
attribute manipulation accuracy and top-k retrieval. Attribute manipulation ac-
curacy, which is the classification accuracy of the target attribute on the ma-
nipulated images, measures the extent to which a model can modify the target
attribute. We use a ResNet-50 model [10] pretrained on attribute classification to
evaluate the attribute manipulation accuracy on DeepFashion and CelebA. On
CelebA-HQ), the accuracy is computed using the same facial attribute classifier
as [35] for a fair comparison. Top-k retrieval, on the other hand, evaluates both
the attribute changing and preservation capability. It is defined as the number
of hits divided by the total number of queries. A query is called a hit if any of
the manipulated image’s top-k matches has exactly the target attributes in A.
The top-k retrieval rate is averaged across all attributes. In all experiments, we
use the deep features in the last fully-connected layer of the attribute classifier
for image retrieval. All retrieval galleries have 20,000 images.

4.3 Quantitative Results

As shown in Table 2-5, AIRR outperforms the state-of-the-art by a significant
margin on most evaluation metrics. For example, Table 5 shows the average at-
tribute manipulation accuracy and top-k retrieval rates on CelebA-HQ, which
boost performance by more than 20% compared to existing methods. The im-
provements are more obvious on additive attributes, such as wearing hat, which
reports gains over prior work by more than 40% in Table 4 and 5. Further dis-
cussion on ablations of our model can be found in Section 4.5.

Attribute preservation analysis. To analyze what influence that changing a
specific attribute has on preserving others, we gradually increase the ratio of ma-
nipulated images (i.e., the number of manipulated images divided by the number
of all test images), and observe the ratio of successfully preserved attributes. Fig-
ure 3 provides the attribute changing rate (i.e., attribute manipulation accuracy)
vs. attribute preservation rate for each attribute in the DeepFashion dataset. In
each graph, the preservation rates are averaged over all attributes excluding the
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Table 2: Results on DeepFahison Synthesis. In our models, \; = 0.25, Ay =
0.125, A3 =1.0,\4 = 1.0

Manipulation Accuracy  Top-K Retrieval

Method

Jolor  Sleeve  Avg. R@s R@20
StarGAN [7] 70.4 7.2 73.8 711 82.9
AMNet [3] 4.4 82.1 78.3 85.1 90.5
AttGAN [11] 80.2 91.0 85.6 90.6 95.2
FLAM [27] - - - 267 413
VPTNet [16] - 85.7 - - -
AIRR (w/o mask) 88.8 92.2 90.5 94.4 97.1
AIRR (w/o La) 93.9 89.5 91.7 95.0 97.3
AIRR (w Ly) 89.4 90.5 90.0 90.8 92.4
AIRR 94.1 96.5 95.3 97.6 98.8

Table 3: Results on DeepFahison Fine-grained Attributes. In our models, A; =
0.05, A2 = 0.125, A3 = 2.0, A\, = 1.0

Method Manipulation Accuracy Top-K Retrieval
Pattern Sleeve Length Neckline Material —Style Avg. R@5 R@20
StarGAN (7] 54.0 38.7 22.4 44.3 47.2 24.6 38.5 25.1 39.3
AttGAN [11] 47.4 31.5 19.0 33.7 40.3 23.5 32.6 28.3 39.1
AMNet (3] 53.6 56.5 24.4 68.3 47.9 274 46.4 44.1 47.5
FLAM [27] - - - - - - - 17.6 29.8
AIRR (w/o mask) 70.7 44.3 19.0 57.3 55.0 25.9 45.4 38.2 52.4
AIRR (w/o La) 89.1 60.6 31.8 73.5 74.9 34.2 60.8 56.4 68.7
AIRR (w Lp) 85.1 59.2 25.7 72.4 72.6 34.7 58.2 51.1 60.2
AIRR 87.8 65.9 32.2 74.5 76.3 35.8 62.1 57.7 70.3

Table 4: Results on CelebA. In our models, A\; = 0.5, Ao = 0.5, A3 = 1.0, A4 = 1.0

Method Manipulation Accuracy Top-K Retrieval
Hair Beard Hair  Smiling Eyeglasses Gender  Hat Age Avg. R@j5 R@20
Color Type
StarGAN [7] 55.2 51.6 35.6 64.0 86.1 36.5 6.4 44.9 38.8 39.9 55.2
Student [18] 47.7 43.5 37.3 60.0 12.1 42.7 11.5 39.8 36.8 38.2 53.9
AMNet [3] 58.6 34.4 26.7 43.7 10.0 21.0 13.0 224 28.7 33.1 46.0
AttGAN [11] 72.6 88.5 48.1 79.8 94.7 89.7 21.7 60.6 69.5 72.4 86.5
CAFE-GAN [15] 83.6 40.1 - - - 95.2 - 88.6 - - -
FSNet-v2 [2] - - - - - - - - - 680 775
AIRR(w/o mask) 86.1 96.0 58.5 92.7 98.9 91.3 75.6 64.9 83.0 86.5 94.3
AIRR (w/o La) 74.3 93.9 51.4 92.4 99.4 89.5 83.4 69.7 81.8 87.1 94.9
AIRR 75.9 96.4 58.4 94.8 99.1 91.6 93.1 80.6 86.2 89.1 95.6

target attribute. In Figure 3, our method achieves the highest preservation rate
under the same attribute changing rate, proving its capability of controllable
attribute manipulation as well as preservation.

User study. We also conducted human evaluation experiments on DeepFashion
Fine-grained Attribute and CelebA-HQ using Amazon Mechanical Turk service
to verify the quality of manipulated images. We tested on 50 images in each
dataset, and different 5 worker were assigned per image. Each worker was pre-
sented 3 pictures: the original image, the manipulated image produced by AIRR,
and the manipulated image generated by a randomly chosen baseline approaches
in Table 6 or 7. The worker was asked to pick an image that better converts the
specified attribute in the given image. Table 6 shows that 54-65% of workers
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Table 5: Results on CelebA-HQ. In our models, Ay = 0.25, Ao = 0.125,\3 =
20.0, \y = 10.0

Method Manipulation Accuracy Top-K Retrieval
Hair Beard Hair  Smiling Eyeglasses Gender  Hat Age Avg. R@5 R@20
Color Type
InterfaceGAN [26] 38.4 80.8 36.4 97.7 29.7 55.8 2.9 42.0 48.0 19.1 38.8
LatentTrans [35] 37.0 78.8 48.9 85.3 49.6 62.2 5.6 474 51.9 20.7 41.8
L2M-GAN [33] - - - 89.7 - - - - - -
AIRR(w/o mask+Lg) 40.8 73.1 50.7 93.2 63.1 71.4 40.1 83.3 64.5 51.3 67.9
AIRR(w/o0 mask) 54.8 76.9 58.4 95.4 88.2 79.0 49.2 88.0 73.7 60.9 75.5
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Fig. 3: Attribute changing rate vs. attribute preservation rate. The interval of y
axis is made to be unequal for better visualization purposes

Table 6: A/B user judgements for attribute ~ Table 7: A/B user judgements for
manipulation correctness on the Deep- attribute manipulation correctness

Fashion Fine-grained Attribute dataset on the CelebA-HQ dataset
AIRR/StarGAN AIRR/AttGAN AIRR/AMNet AIRR /InterfaceGAN AIRR /LatentTrans
65%/35% 61%/39% 54%/46% 76%/24% 70%/30%

think our method achieves better attribute manipulation on the DeepFashion
Fine-grained Attribute dataset. On CelebA-HQ, reported in Table 7, 70-76%
workers voted for AIRR, verifying its improved capability of manipulating facial
attributes compared to prior work.

4.4 Qualitative Results

Figure 4-7 presents some qualitative examples on each dataset that we used.
For attributes that are relatively shallow and easy to learn, such as color in
Figure 5, all methods perform well in transforming the source attribute into
the target attribute. Whereas for attributes with relatively more complicated
semantics, e.g., lattice in Figure 5, our method better represents the target
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Fig. 4: Qualitative examples on DeepFashion Synthesis. The first column shows
original images

To Floral To Denim

o]

o

3 -

W%‘.@E@ .

g -

EEme [ 5P e
== o -

A 5 5 e

;A e G B P v

o= »

Ty

AMNet  StarGAN  AttGAN AMNet  Stal rGAN AUGAN Ours AMNet ~ StarGAN  AttGAN

Fig.5: Qualitative examples on DeepFashion Fine-grained Attribute
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Fig. 6: Qualitative examples on CelebA

attribute in the generated images. In addition, it can also be observed that due
to the information hiding problem, several failures of previous methods exhibit
as visually not altering the original image, such as AMGAN’s To Denim in
Figure 5 and LatentTrans’s To Hat in Figure 7. On the other hand, although
our method avoids using the source attribute information for manipulation, it’s
failures can be more significant due to excessive manipulation. For example, the
last two rows of To Floral in Figure 5 alter the dresses’ appearance completely.
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4.5 Model Analysis

Ablations of model components. To demonstrate the contribution of the
components of our proposed framework, we evaluate the performance of our
model without the disentanglement loss and the parsing mask. Tables 2-5 report
quantitative results of ablations of our model. AIRR (w/o Lg), which disables
the attribute remover, causes losses on average attribute manipulation accuracy
and top-5 retrieval on all four datasets. Especially in CelebA-HQ, AIRR (w/o
Lg) losses 9% accuracy compared to AIRR. This suggests that disentangling at-
tribute information by decorrelation is effective in image manipulation. We also
explored what the generated images would look like when injecting no attribute,
i.e., setting the target attribute’s scale embedding vector to be 1 and the bias
embedding vector to be 0. This way we can check if the model is hiding source
attribute information in the encoded features. If it suffers from information hid-
ing, then the source attributes should been seen in generated images. In Figure
8a, without the proposed disentanglement loss, most source attributes, including
material and pattern, indeed appear in the generated images. With the proposed
attribute excluded representation, all these attribute information is successfully
removed, avoiding the information hiding problem suffered by prior work.

In the meanwhile, ATRR (w/o mask), which removes the parsing mask along
with the second encoder, also degrades the evaluation metrics as seen in TA-
bles 2-5. This indicates the importance of concentrating manipulation on the
object of interest. However, we note that even without the parsing mask, our
approach still outperforms prior work on most metrics. Note that in the two
ablations of CelebA-HQ, we didn’t add the parsing mask in order to reduce the
computational costs for generating high resolution images.

We also tried replacing the proposed disentanglement loss with the honesty
loss in [4], which was introduced to avoid the general information hidden problem
when using cycle consistency. In Table 2 and 3, AIRR still outperforms ATRR (w
Ly) that adopts the honesty loss, suggesting that the proposed disentanglement
loss is more targeted to the attribute manipulation task. See the Supplementary
for more ablation results for hyperparameters used by our model.

Interpolation of attribute values. Linear interpolating between different
attribute embedding vectors B4, and 74, corresponds to an interpolation be-
tween different values of the target attribute. Take "smile” for example, Figure
8b gives the outputs of interpolating from the not smiling embedding vector to
the smiling embedding vector. Let ¢ be the weight (i.e., interpolation coefficient)
of the target attribute smiling. The smile in generated images gradually builds
up as c increases, showing a continuous control over the attribute strength.

Controlling multiple attributes in one forward pass. In some prior work,
e.g., [35,31,33], multi-attribute editing is often accomplished by sequential ma-
nipulation, i.e., edit one attribute at a time. In contrast, AIRR is capable of
changing multiple attributes in a single forward-pass by directly specifying the
input target attributes in A. Figure 8c gives some examples on CelebA-HQ.
Even manipulating 3 or 4 attributes at the same time, our model is able to edit
only the specified attributes without influencing other information in the image.



14 N. Li, B. A. Plummer

To Male
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Fig. 7: Qualitative examples on CelebA-HQ
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Fig. 8: Visualizations used for model analysis in Sec. 4.5

5 Conclusion

In this paper, we propose Attribute Information Removal and Reconstruction
(AIRR) network for image editing. The attribute information removal and re-
construction module in AIRR produces an attribute excluded representation,
eliminating sources of information hiding suffered by prior work. Results on four
diverse datasets including DeepFashion Synthesis, DeepFashion Fine-grained At-
tribute, CelebA and CelebA-HQ, report that our model improves attribute ma-
nipulation accuracy and top-k retrieval rate by 10% on average over prior work.
A user study also demonstrates that images with attributes manipulated with
our approach are preferred in up to 76% of cases. One direction for future work
is to explore controllable attribute manipulation in unsupervised setting.
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by DARPA under agreement number HR00112020054 and the National Science
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Supplementary

1 Proof of the Upper Bound for Mutual Information

In Eq. (2) of the paper, we claimed that the mutual information between the
source attributes a; and the attribute excluded features R(FE;(I.)) is upper
bounded by the maximum log probability in the attribute distribution. We prove
this claim in the following.

Let MI(a;, R(E1(I))) denote the mutual information. Replacing R(E1 (1))
with r for convenience gives

p(am r)
@) =2, 2, pannlos ooy
_Z Z p(a;,r)log ]5(;17)“) (15)
_Z Z p(a;, r)[logp(a;|r) — logp(a;)]

Since the number of attribute values in a; is finite, —logp(a;) can be upper
bounded by a constant ¢, c > 0:

I(a;,r <Z Z p(a;, ) log p(a;|r) +CZ Z p(ag,r
=D, >, plair)logpailr) +c

In the r.h.s., we can continue upper bounding p(a;|r) with the maximum prob-
ability in the distribution to make it independent of a;:

Ml(a;, r) < Z maxlogp(aiIT)Z plai, ) +c

= ZT p(r) max log p(a;|r) + ¢ (17)

= ET'N;U(T') [n}lax logp(az|r)] +c

(16)

where ¢ is a constant. Note that we can not minimize the mutual information
itself because the joint distribution p(a;,r) is intractable. The tightness of this
upper bound depends on the distribution p(a;) and p(a;|r). More specifically,
larger min,, p(a;) gives smaller constant ¢, and smaller max,, p(a;|r) reduces the
gap. The equality is reached when p(a;|r) is an uniform distribution.

To conclude, using an attribute classifier to estimate the above conditional
probability p(a;|r), we prove that the upper bound is the maximum log proba-
bility in the attribute distribution as in Eq. (2).

2 Ablations on Hyperparameters

In Figure 9, we provide the experimental results for setting different values of the
hyperparameters in Eq. (13) and (14) on CelebA. A; to A4 denotes the trade-off
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parameter for disentanglement, image attribute prediction, image reconstruction
and perceptual loss, respectively. Figure 9a shows the manipulation accuracy,
top-5 retrieval and top-20 retrieval rates for each parameter. The reconstruction
error has a different unit of measurement, for which we show its corresponding
graph in Figure 9b. It can be noticed that increasing the weight (i.e., Ay) for the
image attribute loss improves the manipulation accuracy, whereas it can hurt
the reconstruction performance. This indicates a trade-off between successful
manipulation and qualitative reconstruction. In the paper, we chose the values
of each trade-off parameter for a balance between these two aspects.
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Fig. 9: Results on using different values of the hyperparameters. A\; to A4 denotes
the trade-off parameters for disentanglement, image attribute prediction, image
reconstruction and perceptual loss, respectively
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Fig. 10: Additional examples on manipulating the attribute strength
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