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Abstract

Consider a network of N decentralized computing agents col-
laboratively solving a nonconvex stochastic composite prob-
lem. In this work, we propose a single-loop algorithm, called
DEEPSTORM, that achieves optimal sample complexity for
this setting. Unlike double-loop algorithms that require a
large batch size to compute the (stochastic) gradient once in a
while, DEEPSTORM uses a small batch size, creating advan-
tages in occasions such as streaming data and online learning.
This is the first method achieving optimal sample complexity
for decentralized nonconvex stochastic composite problems,
requiring O(1) batch size. We conduct convergence analysis
for DEEPSTORM with both constant and diminishing step
sizes. Additionally, under proper initialization and a small
enough desired solution error, we show that DEEPSTORM
with a constant step size achieves a network-independent
sample complexity, with an additional linear speed-up with
respect to N over centralized methods. All codes are made
available at https://github.com/gmancino/DEEPSTORM.

1 Introduction

Recent years have seen an increase in designing efficient al-
gorithms for solving large-scale machine learning problems,
over a network of N computing agents connected by a com-
munication graph G = (V, E). Agents collaboratively solve
the following composite problem:

min
x

1

N

N∑

i=1

{

φi(x) , fi(x) + r(x)
}

, (1)

where the decision variable x ∈ R
1×p is treated as a row

vector; fi is a smooth, possibly nonconvex function known
only to agent i; and r is a convex, possibly non-smooth reg-
ularizer common to all agents. Agents i and j can commu-
nicate only if (i, j) ∈ E . Many real-world applications in
machine learning (Vogels et al. 2021; Ying et al. 2021; Yuan
et al. 2021; Chamideh, Tärneberg, and Kihl 2021) and re-
inforcement learning (Zhang et al. 2018; Qu et al. 2019) fit
the form of (1). Such scenarios differ from the centralized
setting (McMahan et al. 2017; T. Dinh, Tran, and Nguyen
2020), where the agents are assumed to be able to communi-
cate with one another globally via either a parameter server
or a collective communication protocol. This setting arises
naturally when data is distributed over a large geographic

region or when a centralized communication structure is too
costly (Xin, Khan, and Kar 2021a).

Utilizing the communication topology induced by G, we
reformulate (1) into the following equivalent decentralized
consensus optimization problem:

min
x1,...,xN

1

N

N∑

i=1

φi(xi), s.t. xi = xj , ∀(i, j) ∈ E . (2)

Problem (2) allows for agents to maintain and update a local
copy of the decision variable by locally computing gradients
and performing neighbor communications.

The existence of a non-smooth regularizer r renders many
decentralized optimization methods for a smooth objective
inappropriate. We assume that r admits an easily com-
putable (e.g. closed form) proximal mapping. Moreover, we
are interested in the case where each local function fi takes
the following expectation form:

fi(x) , Eξ∼Di
[fi(x; ξ)] , (3)

with a slight abuse of notation for ease of exposition. In such
a case, agents locally compute stochastic gradients of fi. We
adapt ideas from recent advances of stochastic optimization
to the decentralized setting, by combining variance reduc-
tion techniques (Johnson and Zhang 2013; Nguyen et al.
2017; Allen-Zhu 2018; Wang et al. 2019; Cutkosky and
Orabona 2019; Tran-Dinh et al. 2022) with gradient track-
ing (Lorenzo and Scutari 2016; Nedic, Olshevsky, and Shi
2017; Lu et al. 2019; Zhang and You 2020; Koloskova, Lin,
and Stich 2021), to produce an algorithmic framework that
achieves the optimal sample complexity bounds established
in (Arjevani et al. 2022) for nonconvex stochastic methods.

Our framework, coined DEEPSTORM, is a single-loop
algorithm with an attractive property that, besides the ini-
tial iteration, each agent only needs m = O (1) stochas-
tic samples to compute a gradient estimate. Further, when
a diminishing step size is used, even the first iteration does
not need a large batch, at the expense of an additional log-
arithmic factor in the sample complexity result. Intuitively,
DEEPSTORM utilizes a momentum based variance reduc-
tion technique (Cutkosky and Orabona 2019; Xu and Xu
2023; Levy, Kavis, and Cevher 2021; Tran-Dinh et al. 2022)
to guarantee convergence under a small batch size. The
use of momentum simultaneously accelerates the computa-
tion and communication complexities over non-momentum
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based methods in the small batch setting; see Table 1 for a
comparison. The recent ProxGT-SR-O/E (Xin et al. 2021)
method can also achieve optimal sample complexity for
solving (2), but at the expense of performing a double-loop
which requires a large (stochastic) gradient computation ev-
ery time the inner loop is completed. In scenarios where
the batch size is uncontrollable, such as streaming or online
learning, DEEPSTORM is advantageous.

When discussing sample complexity, it is paramount to
specify the impact of the communication graph G. With a
constant step size, we show that under a sufficient amount
of initial, or transient, iterations and proper initialization,
DEEPSTORM behaves similarly to its centralized counter-
parts (Cutkosky and Orabona 2019; Levy, Kavis, and Cevher
2021; Tran-Dinh et al. 2022), while enjoying a linear speed-
up with respect to N .

We summarize the contributions of this work below:

• We propose a novel decentralized framework, DEEP-
STORM, for nonconvex stochastic composite optimiza-
tion problems. We show that DEEPSTORM achieves the
optimal sample complexity with respect to solution accu-
racy, where each agent needs only O (1) samples to com-
pute a local stochastic gradient. To the best of our knowl-
edge, this is the first decentralized method that achieves
optimal sample complexity for solving stochastic compos-
ite problems by using only small batches.

• Additionally, we establish convergence guarantees of
DEEPSTORM with both constant and diminishing step
sizes. When a constant step size is used, we show that
under sufficiently many transient iterations and proper
initialization, DEEPSTORM achieves a linear speed-up
with respect to N , signifying an advantage over analo-
gous centralized variance reduction methods (Cutkosky
and Orabona 2019; Levy, Kavis, and Cevher 2021; Tran-
Dinh et al. 2022).

2 Related works

A rich body of literature exists for solving the problem (2)
in the decentralized setting. We discuss related works below.

Nonconvex decentralized methods. Of particular rele-
vance to this work are methods for nonconvex fi’s. When fi
takes the finite-sum form, deterministic methods (with full
gradient computation) such as DGD (Zeng and Yin 2018),
Near-DGD (Iakovidou and Wei 2021), Prox-PDA (Hong,
Hajinezhad, and Zhao 2017), xFILTER (Sun and Hong
2019), and SONATA (Scutari and Sun 2019) converge to an
ε-stationary point in O

(
ε−1
)

iterations. They all work for
the case r ≡ 0 only, except SONATA. For stochastic meth-
ods, we summarize a few representative ones in Table 1, in-
cluding the information of whether they handle r 6≡ 0. Note
that D-PSGD (Lian et al. 2017) extends the convergence re-
sults of DGD; D2 (Tang et al. 2018b) further improves over
D-PSGD by relaxing a dissimilarity assumption.

Gradient tracking (Lorenzo and Scutari 2016; Nedic, Ol-
shevsky, and Shi 2017) has been introduced as a tool to
track the gradient of the global objective and has been
studied extensively in the nonconvex and stochastic set-
ting, under different names (Zhang and You 2020; Lu et al.

2019; Koloskova, Lin, and Stich 2021; Xin, Khan, and Kar
2021b). Many works now utilize this technique to improve
the performance of their methods; those that mimic the
SARAH (Nguyen et al. 2017) and Spider (Wang, Yin, and
Zeng 2019) updates have become popular for their improved
theoretical convergence rates. D-SPIDER-SFO (Pan, Liu,
and Wang 2020) and D-GET (Sun, Lu, and Hong 2020) are
two such methods. When fi takes the finite-sum form, GT-
SARAH (Xin, Khan, and Kar 2022) and DESTRESS (Li,
Li, and Chi 2022) improve the analysis of D-GET by obtain-
ing an optimal sample complexity and an optimal commu-
nication complexity, respectively. All these methods require
computing a stochastic gradient with a large batch size every
few iterations.

GT-HSGD (Xin, Khan, and Kar 2021a) can be consid-
ered a special case of our method. It uses a stochastic
gradient estimator of the form proposed in (Cutkosky and
Orabona 2019; Levy, Kavis, and Cevher 2021), requiring a
large initial batch size, followed by O (1) batch size sub-
sequently. The convergence analysis of GT-HSGD requires
r ≡ 0; hence part of our work is to extend it to the case
of r 6≡ 0. Similar extensions have been proposed for other
methods; for example, ProxGT-SR-O/E (Xin et al. 2021) ex-
tends D-GET, GT-SARAH, and DESTRESS. Additionally,
the primal-dual method SPPDM (Wang et al. 2021) is shown
to converge in O

(
ε−1
)

communications, but it requires a

large batch size proportional to ε−1. Using such a batch size
can negatively impact the performance on machine learning
problems (Keskar et al. 2017).

Other decentralized methods. Several other decentral-
ized methods exist for scenarios differing from that con-
sidered here. They include methods that work for convex
problems only, such as DGD (Yuan, Ling, and Yin 2016),
EXTRA (Shi et al. 2015), ADMM (Shi et al. 2014), DIG-
ing (Nedic, Olshevsky, and Shi 2017), Acc-DNGD (Qu and
Li 2019), MSDA (Scaman et al. 2017), DPAG (Ye et al.
2020), Flex-PD (Mansoori and Wei 2021), IDEAL (Arje-
vani et al. 2020), PUDA (Alghunaim et al. 2021), PMGT-
VR (Ye, Xiong, and Zhang 2020), and DPSVRG (Li et al.
2021); asynchronous methods, such as AD-PSGD (Lian
et al. 2018), the Asynchronous Primal-Dual method (Wu
et al. 2017), APPG (Zhang and You 2021), asynchronous
ADMM (Wei and Ozdaglar 2013; Hong 2018), and AD-
OGP (Jiang et al. 2021); methods that operate under a time-
varying network topology, such as Acc-GT (Li and Lin
2021) and ADOM (Kovalev et al. 2021); and methods that
focus on providing convergence guarantees when communi-
cation compression is used, such as DCD-PSGD (Tang et al.
2018a), SQuARM-SGD (Singh et al. 2021), and the Primal-
Dual method developed in (Chen et al. 2021).

3 DEEPSTORM framework

We first state the assumed conditions of each φi and the com-
munication graph G. They are standard in variance reduc-
tion (Cutkosky and Orabona 2019; Xu and Xu 2023; Tran-
Dinh et al. 2022) and decentralized methods (Lian et al.
2017; Sun, Lu, and Hong 2020; Xin, Khan, and Kar 2021b).

Assumption 1 The following conditions hold.



Method r 6≡ 0 Batch size Sample complexity (per agent)

D-PSGD (Lian et al. 2017) 7 O (1) O
(

max
{

1
Nε2

, N2

(1−ρ)2ε

})

DSGT (Xin, Khan, and Kar 2021b) 7 O (1) O
(

max
{

1
Nε2

, ρN
(1−ρ)3ε

})

D-GET (Sun, Lu, and Hong 2020) 7 O
(
1
ε

)
or O

(
1

ε0.5

)
O
(

1
(1−ρ)aε1.5

)

GT-HSGD (Xin, Khan, and Kar 2021a) 7 O
(

1
ε0.5

)
then O (1) O

(

max
{

1
Nε1.5

, ρ4

N(1−ρ)3ε ,
ρ1.5N0.5

(1−ρ)2.25ε0.75

})

SPPDM (Wang et al. 2021) 3 Ω(N
ε
) O

(
1

(1−ρ)bε2

)

ProxGT-SR-O/E (Xin et al. 2021) 3 O
(
1
ε

)
or O

(
1

ε0.5

)
O
(

1
Nε1.5

)†

Theorem 1 3 O
(

1
ε0.5

)
then O (1) O

(

max
{

1
Nε1.5

, 1
(1−ρ)2ε ,

N0.5

ε0.75

})‡

Theorem 2 3 O (1) Õ
(

1
ε1.5

)

Table 1: Comparison between DEEPSTORM (bottom two rows) and representative decentralized stochastic nonconvex meth-
ods. The sample complexity takes into account both the stationarity and consensus violation. Since D-GET and SPPDM do not
show the dependence on ρ, we use unspecified powers a and b, following the practice of (Xin, Khan, and Kar 2021a). †The
sample complexity of ProxGT-SR-O/E is independent of ρ by requiring multiple communications per update; this is similar
to our result in Theorem 2. ‡With multiple communications and ε ≤ N−2, Theorem 1 guarantees our algorithm attains the
optimal O

(
N−1ε−1.5

)
sample complexity, but with a smaller batch size than ProxGT-SR-O/E .

(i) The regularizer function r is convex and admits an
easily computable proximal mapping.

(ii) Each component function fi is mean-squared L-
smooth; i.e. there exists a constant 0 < L < ∞ such
that ∀a,b ∈ R

1×p and ∀ i = 1, . . . , N ,

Eξ ‖∇fi(a; ξ)−∇fi(b; ξ)‖22 ≤ L2 ‖a− b‖22 . (4)

(iii) There exists σ > 0 such that ∀a ∈ R
1×p,

Eξ[∇fi(a; ξ)] = ∇fi(a),
E ‖∇fi(a; ξ)−∇fi(a)‖22 ≤ σ2.

(5)

(iv) The global function φ = 1
N

∑N
i=1 φi is lower

bounded; i.e. there exists a constant φ∗ such that

−∞ < φ∗ ≤ φ(a), ∀a ∈ R
1×p. (6)

Assumption 2 The graph G is connected and undirected. It
can be represented by a mixing matrix W ∈ R

N×N such
that:

(i) (Decentralized property) wij > 0 if (i, j) ∈ E and
wij = 0 otherwise;

(ii) (Symmetric property) W = W>;
(iii) (Null-space property) null (I−W) = span{e},

where e ∈ R
N is the vector of all ones; and

(iv) (Spectral property) the eigenvalues of W lie in the
range (−1, 1] with

ρ ,

∥
∥
∥
∥
W − 1

N
ee>

∥
∥
∥
∥
2

< 1. (7)

Note that the entry values of W can be flexibly designed
as long as Assumption 2 holds. One example is W = I −
L/τ , where L is the combinatorial Laplacian of G and τ is a
value greater than half of its largest eigenvalue. It is not hard

to see that the consensus constraint xi = xj for all (i, j) ∈ E
in (2) is equivalent to WX = X, where the i-th row of X
is xi. The value ρ in (7) indicates the connectedness of the
graph. The quantity 1 − ρ is sometimes referred to as the
spectral gap; a higher value suggests that the graph is more
connected and consensus of the xi’s is easier to achieve.

Under Assumptions 1 and 2, we now present the DEEP-
STORM framework. We start with the basic algorithm and
later generalize the simple communication (using W) with
a more general communication operator, denoted by WT .

Basic algorithm. Let x
(k)
i be the k-th iterate for agent i,

and let the matrix X(k) contain all the k-th iterates among
agents, stacked as a matrix. We will similarly use such vector
and matrix notations for other variables. Our DEcEntralized
Proximal STOchastic Recursive Momentum framework,

DEEPSTORM, uses a variance reduction variable d
(k)
i and

a gradient tracking variable y
(k)
i to improve the convergence

of x
(k)
i . DEEPSTORM contains the following steps in each

iteration k:

1. Communicate the local variables:

Z(k) = WX(k). (8)

2. Update each local variable (by using, e.g., proximal map-
pings):

x
(k+1)
i

= argmin
xi

{

αkr(xi) +
1

2

∥

∥

∥
xi −

(

z
(k)
i

− αky
(k)
i

)
∥

∥

∥

2
}

.

(9)

3. Update the variance reduction variable:

d
(k+1)
i = (1−βk)

(

d
(k)
i + v

(k+1)
i − u

(k+1)
i

)

+βkṽ
(k+1)
i ,

(10)



where

v
(k+1)
i =

1

m

∑

ξ∈B
(k+1)
i

∇fi(x(k+1)
i ; ξ),

u
(k+1)
i =

1

m

∑

ξ∈B
(k+1)
i

∇fi(x(k)
i ; ξ).

(11)

Here, B
(k+1)
i is a batch of m samples at the current it-

eration. Note that while v
(k+1)
i is evaluated at the cur-

rent iterate, u
(k+1)
i is evaluated at the previous iterate.

We make the assumption that for all k and all agents i

and j, B
(k+1)
i and B

(k+1)
j contain independent and mu-

tually independent random variables. The part ṽ
(k+1)
i can

be any unbiased estimate of ∇fi(x(k+1)
i ) with bounded

variance; its details will be elaborated soon.
4. Update the gradient tracking variable via communica-

tion:

Y(k+1) = W
(

Y(k) +D(k+1) −D(k)
)

. (12)

The step that updates the variance reduction variable,
(10), is motivated by Hybrid-SGD (Tran-Dinh et al. 2022),
which allows for a single-loop update. Intuitively, this vari-
able is a convex combination of the SARAH (Nguyen et al.

2017) update and ṽ
(k+1)
i , allowing for strong variance re-

duction and meanwhile flexibility in design. By doing so,
a constant batch size m suffices for convergence. This is a
useful property in scenarios of online learning and real-time
decision making, where it is unrealistic to obtain and store
mega batches for training (Xu and Xu 2023; Xin, Khan, and
Kar 2021a).

Examples of ṽ
(k+1)
i . The vector ṽ

(k+1)
i in (10) can be

any unbiased local gradient estimate. In this work, we con-

sider two cases: either ṽ
(k+1)
i is evaluated on another set of

samples B̃
(k+1)
i , defined analogously to B

(k+1)
i that is used

to compute v
(k+1)
i in (11), such that

B̃
(k+1)
i is independent of B

(k+1)
i with

E

∥
∥
∥ṽ

(k+1)
i −∇fi(x(k+1)

i )
∥
∥
∥

2

2
≤ σ̂2;

(v1)

or simply

ṽ
(k+1)
i = v

(k+1)
i with E

∥
∥
∥v

(k+1)
i −∇fi(x(k+1)

i )
∥
∥
∥

2

2
≤ σ̂2,

(v2)
for some σ̂ > 0. Two possible unbiased estimators that sat-
isfy (v1) are

ṽ
(k+1)
i =

1

m

∑

ξ̃∈B̃
(k+1)
i

∇fi(x(k+1)
i ; ξ̃), (v1-SG)

ṽ
(k+1)
i =

1

m

∑

ξ̃∈B̃
(k+1)
i

∇fi(x(k+1)
i ; ξ̃)

+
1

m

∑

˜̃
ξ∈ ˜̃

B
(τk+1)

i

∇fi(x(τk+1)
i ;

˜̃
ξ)− 1

m

∑

ξ̃∈B̃
(k+1)
i

∇fi(x(τk+1)
i ; ξ̃),

(v1-SVRG)

for some τk+1 < k + 1. The first estimator is a stan-

dard one, evaluated by using a batch B̃
(k+1)
i independent

of B
(k+1)
i . The second estimator, which introduces fur-

ther variance reduction, uses an additional past-time iter-

ate x
(τk+1)
i and a batch

˜̃B
(τk+1)
i , whose size is generally

greater than m. Such an update is inspired by the SVRG
method (Johnson and Zhang 2013). Here, we have σ̂2 =
m−1σ2 for the estimators (v1-SG) and (v2); while σ̂2 =(

3m−1 + 6
∣
∣
∣
˜̃B
(τk+1)
i

∣
∣
∣

−1
)

σ2 for (v1-SVRG), where we re-

call that σ2 comes from (5). Note that beyond the two exam-
ples, our proof techniques hold for any unbiased estimator
satisfying (v1), leaving more open designs.

Generalized communication. Steps (8) and (12) use the
mixing matrix to perform weighted averaging of neighbor
information. The closer W is to 1

N
ee>, the more uniform

the rows of X(k+1) are, implying agents are closer to con-
sensus. Hence, to improve convergence, we can apply mul-
tiple mixing rounds in each iteration. To this end, we gener-
alize the network communication by using an operator WT ,
which is a degree-T polynomial in W that must satisfy As-
sumption 2 parts (ii)–(iv). We adopt Chebyshev accelera-
tion (Auzinger and Melenk 2011; Scaman et al. 2017; Xin
et al. 2021; Li, Li, and Chi 2022), which defines for any input
matrix B0, BT = WT (B0), where B1 = WB0, µ0 = 1,
µ1 = 1

ρ
for ρ defined in (7), and recursively,

µt+1 =
2

ρ
µt − µt−1 and

Bt+1 =
2µt

ρµt+1
WBt −

µt−1

µt+1
Bt−1, for t ≤ T − 1.

(13)

It is not hard to see that e is an eigenvector of WT , as-
sociated to eigenvalue 1, whose algebraic multiplicity is 1.
Therefore,

ρ̃ ,

∥
∥
∥
∥
WT −

1

N
ee>

∥
∥
∥
∥
2

< 1. (14)

Moreover, ρ̃ converges to zero exponentially with T , bring-
ing WT rather close to an averaging operator (for details,
see Appendix B). Notice with T = 1, WT reduces to W.

We summarize the overall algorithm in Algorithm 1, by
replacing W in (8) and (12) with WT . Additionally, see the
discussions after Theorems 1 and 2 regarding the probability
distribution for choosing the output of Algorithm 1.

4 Convergence results

For the convergence of DEEPSTORM, we start with the
following standard definitions (Xu and Xu 2023; Xin et al.
2021).

Definition 1 Given x ∈ dom(r), y, and η > 0, define the
proximal gradient mapping of y at x to be

P (x,y, η) , 1
η

(
x− proxηr(x− ηy)

)
, (15)

where prox denotes the proximal operator proxg(v) =

argmin
u

{
g(u) + 1

2‖u− v‖22
}

.



Algorithm 1: DEEPSTORM

Input: Initial X(0), mixing rounds T0, T , iteration K, and
{αk}, {βk}

1: Compute d
(0)
i = 1

m0

∑

ξ∈B
(0)
i

∇fi(x(0)
i ; ξ) ∀i

2: Communicate to obtain Y(0) = WT0
(D(0))

3: for k = 0, . . . ,K − 1 do
4: Communicate to obtain Z(k) = WT (X

(k))
5: Update local decision variables by (9)
6: Obtain local gradient estimator by (10)
7: Communicate to update gradient tracking variable

Y(k+1) = WT (Y
(k) +D(k+1) −D(k))

8: end for

Output: Z(τ) with τ chosen randomly from {0, . . . ,K− 1}

Definition 2 A stochastic matrix X ∈ R
N×p is called a

stochastic ε-stationary point of (2) if

E

[

1

N

N∑

i=1

‖P (xi,∇f(xi), η)‖22 +
L2

N
‖X⊥‖2F

]

≤ ε,

(16)

where η > 0, ∇f , 1
N

∑N
j=1∇fj , xi is the i-th row of X,

and X⊥ , X − 1
N
ee>X is the difference between all xi

and their average 1
N

∑N
j=1 xj .

Our analyses rely on the construction of two novel Lya-
punov functions as indicated by Theorems 1 and 2 below.
These Lyapunov functions guarantee convergence through
the careful design of function coefficients which result from
solving non-linear systems of inequalities in either the con-
stant or diminishing step size case. We first consider the use
of a constant step size. The convergence rate result is given
in the following theorem. Its proof is given in Appendix C.2.

Theorem 1 Under Assumptions 1 and 2, let
{(

X(k),D(k),Y(k),Z(k)
)}

be obtained by Algorithm 1

via (9), (12), and (10) such that ṽ
(k+1)
i is any unbiased

gradient estimator that satisfies either (v1) or (v2). Further,
let αk and βk be chosen as

αk =
α

K
1
3

, βk =
144L2α2

NK
2
3

, with

α ≤ min

{

K
1
3

32L
,
(1− ρ̃)2K

1
3

64L

}

,

(17)

for all k = 0, . . . ,K − 1. Then, it holds that βk ∈ (0, 1) for
all k ≥ 0 and that

1

K

K−1
∑

k=0

E

(

1

N

N
∑

i=1

∥

∥

∥
P
(

z
(k)
i

,∇f(z
(k)
i

), αk

)
∥

∥

∥

2

2
+

L2

N

∥

∥

∥
Z

(k)
⊥

∥

∥

∥

2

F

)

≤
512

αK
2
3

(

Φ(0)
− φ

∗

)

+

(

2048

L(1− ρ̃)2K

)

1442L4α3σ̂2

N2

+

(

128

3L2αK
2
3

+
8192α

K
4
3

+
2048α

NK
4
3

)

1442L4α3σ̂2

N2
,

(18)

for some Φ(0) > φ∗ that depends on the initialization. Note
that Φ(k) is defined in (C.43) in Appendix C for any k ≥ 0.

Network-independent sample complexity, linear
speed-up, and communication complexity. Theorem 1
establishes convergence based on the sequence {Z(k)}
defined in (8). As a consequence, if we let each agent

start with the same initial variable x(0), set α = N
2
3

64L and

the initial batch size m0 = 3
√
NK, and choose initial

communication rounds T0 = Õ
(
(1− ρ)−0.5

)
for Y(0),

then for all K ≥ N2

(1−ρ̃)6 , DEEPSTORM achieves stochastic

ε-stationarity for some iterate Z(τ), where τ is selected
uniformly from {0, . . . ,K − 1}, by using

O
(

max

{

(L∆)
3
2 + σ̂3

Nε
3
2

,
σ̂2

(1− ρ̃)2ε
,

√
Nσ̂

3
2

ε
3
4

})

(19)

local stochastic gradient computations. For the formal state-

ment, see Corollary 1 in Appendix C.2. Here, ∆ = Φ(0)−φ∗

denotes an initial function gap, which is independent of ρ̃,
N , and K. Moreover, when ε ≤ N−2(1 − ρ̃)4, we see that

O
(
N−1ε−1.5

)
dominates in (C.60); hence, this result man-

ifests a linear speed-up with respect to N over the central-
ized counterparts (Cutkosky and Orabona 2019; Tran-Dinh
et al. 2022) of DEEPSTORM. Furthermore, if the number
of Chebyshev mixing rounds is T = d 2√

1−ρ
e, we have

(1 − ρ̃) ≥ 1√
2

, which suggests that ε does not need to

be small for the linear speed-up to hold. For details, see
Lemma B.1 and Remark C.2 in the Appendix. The commu-
nication cost is O (T0 + TK).

In parallel, we state a result for the case of diminishing
step size. Its proof is given in Appendix C.3.

Theorem 2 Under the same assumptions as Theorem 1, let
αk and βk be chosen as

αk =
α

(k + k0)
1
3

, βk = 1−
αk+1

αk

+ 48L2
α
2
k+1, with

α ≤ min

{

k
1
3
0

32L
,
(1− ρ̃)2k

1
3
0

64L

}

,

(20)

for all k = 0, . . . ,K−1, where k0 ≥ d 2
1−ρ̃3 e. Then, it holds

that βk ∈ (0, 1) for all k ≥ 0 and that

K−1
∑

k=0

cαkE

(

1

N

N
∑

i=1

∥

∥

∥
P
(

z
(k)
i
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(k)
i

), αk
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∥
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2

2
+

L2

N
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∥
Z

(k)
⊥
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2

F

)

≤12
(

Φ̂(0)
− φ

∗

)

+

K−1
∑

k=0

(

1

L2αk+1
+

48

L(1− ρ̃)2
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β
2
kσ̂

2
,

(21)

for some Φ̂(0) > φ∗ that depends on initialization and c ,

k
1
3
0

2k
1
3
0 +(k0+1)

1
3

> 1
4 . Note that Φ̂(k) is defined in (C.69) in

Appendix C for any k ≥ 0.

Sample complexity. Theorem 2 establishes the conver-
gence rate of DEEPSTORM with diminishing step sizes.
If we choose k0 = d 2

(1−ρ̃)6 e in (20), then DEEP-

STORM achieves stochastic ε-stationarity for some iter-

ate Z(τ), where τ is chosen according to (C.87), by us-



ing Õ
(
(1− ρ̃)−3ε−1.5

)
local stochastic gradient computa-

tions; this sample complexity is network-dependent. How-
ever, by using an initialization technique similar to the case
of constant step sizes above and letting the initial batch size
be O (1), we can set the Chebyshev mixing rounds to be

T = d 2√
1−ρ
e, so that (1 − ρ̃)−1 ≤

√
2. This leads to

the network-independent sample complexity reported in Ta-
ble 1. For a full statement of the complexity results, see
Corollary 2 in Appendix C.3 and Remark C.4.

5 Experiments

In this section, we empirically validate the convergence the-
ory of DEEPSTORM and demonstrate its effectiveness in
comparison with representative decentralized methods. We
compare all versions of DEEPSTORM with DSGT (Lu et al.
2019; Zhang and You 2020; Koloskova, Lin, and Stich 2021;
Xin, Khan, and Kar 2021b), SPPDM (Wang et al. 2021),
and ProxGT-SR-O/E (Xin et al. 2021). DSGT uses gradient
tracking but it is not designed for non-smooth objectives;
nevertheless, it outperforms strong competitors (e.g., D-
PSGD (Lian et al. 2017) and D2 (Tang et al. 2018b)) in prac-
tice (Zhang and You 2020; Xin, Khan, and Kar 2021b). SP-
PDM is a primal-dual method, but it does not utilize gradient
tracking and its convergence theory requires a large batch
size. ProxGT-SR-O/E is a double-loop algorithm, which re-
quires using a mega-batch to compute the (stochastic) gra-
dient at each outer iteration. All experiments are conducted
using the AiMOS 1 supercomputer with eight NVIDIA Tesla
V100 GPUs in total, with code implemented in PyTorch
(v1.6.0) and OpenMPI (v3.1.4).

Problems. We conduct tests on three classification prob-
lems. Each local agent i has the objective φi(xi) =
1
M

∑M
j=1 ` (g (xi,aj) ,bj) + λ ‖xi‖1 , where g(x,a) is the

output of a neural network with parameters x on data a,
and ` is the cross-entropy loss function between the output
and the true label b. The data is uniformly randomly split
among the agents, each obtaining M training examples. The
L1 regularization promotes sparsity of the trained network.
The regularization strength λ is set to 0.0001 following gen-
eral practice.

Data sets and neural networks. The three data sets we
experiment with are summarized in Table 2 in Appendix A.
Two of them are tabular data and we use the standard multi-
layer perceptron for g (one hidden layer with 64 units). The
other data set contains images; thus, we use a convolutional
neural network. Both neural networks use the tanh activation
to satisfy the smoothness condition of the objective function.

Communication graphs. Each data set is paired with
a different communication graph, indicated by, and visual-
ized in, Table 2 in Appendix A. For the ladder and random
graphs, the mixing matrix is set as W = I− γL, where γ is
reciprocal of the maximum eigenvalue of the combinatorial
Laplacian L. For the ring graph, self-weighting and neigh-
bor weights are set to be 1

3 .

Performance metrics. We evaluate on four metrics: train-
ing loss, stationarity violation, solution sparsity, and test

1See: https://cci.rpi.edu/aimos

accuracy. Further, we compare the methods with respect
to data passes and algorithm iterations, which reflect the
sample complexity and communication complexity, respec-
tively. Note that for each iteration, all methods except SP-
PDM communicate two variables. For the training loss, sta-
tionarity violation, and test accuracy, we evaluate on the
average solution x̄. The stationarity violation is defined as

‖x̄− proxr (x̄−∇f(x̄))‖
2
2+
∑N

i=1 ‖xi − x̄‖22, which mea-
sures both optimality and consensus. For sparsity, we use
the average percentage of non-zeros in each xi prior to local
communication.

Protocols. For hyperparameter selection, see Ap-
pendix A. We perform ten runs with different starting points
for each dataset. In several runs for the MNIST dataset,
DSGT and SPPDM converge to solutions with� 1% non-
zero entries, but the training loss and test accuracy are not
competitive at all. We remove these runs and keep only the
five best runs for reporting the (averaged) performance.

Results. Figure 1 summarizes the results for all perfor-
mance metrics, by using the same number of data passes
for all methods when convergence has been observed. For
a9a and MiniBooNE, the results are averaged over passes 80
to 100; while for MNIST, over passes 180 to 200. Figure 2
compares different methods by using the same number of
algorithm iterations.

Overall, we see that DEEPSTORM (all variants) gener-
ally yields a lower training loss and significantly fewer non-
zeros in the solution than the other decentralized algorithms.
This observation suggests that DEEPSTORM indeed solves
the optimization problem (2) much more efficiently in terms
of both data passes and iterations. Moreover, the test accu-
racy is also highly competitive, concluding the practical use-
fulness of DEEPSTORM.

6 Conclusion

We have presented a novel decentralized algorithm for solv-
ing the nonconvex stochastic composite problem (2) by
leveraging variance reduction and gradient tracking. It is the
first such work that achieves optimal sample complexity for
this class of problems by using O (1) batch sizes. Our al-
gorithm is a framework with an open term (see (10)), for
which we analyze two examples that allow the framework to
achieve network-independent complexity bounds, suggest-
ing no sacrifice over centralized variance reduction methods.
Our proof technique can be used to analyze more designs of
the open term. While our work is one of the few studies on
the nonconvex stochastic composite problem (2), our anal-
ysis is for the synchronous setting with a static communi-
cation graph. Analysis (or adaptation of the algorithm) for
asynchronous or time-varying settings is an avenue of future
investigation.
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Method Train loss Stationarity % Non-zeros Test accuracy

a9a

DSGT 0.3308±1.272e-4 0.0003±1.819e-4 74.18±160.09e-4 84.89±271.02e-4
SPPDM 0.5457±20.014e-4 0.001±2.99e-4 46.19±51.04e-4 76.38±0.0e-4
ProxGT-SR-E 0.545±85.017e-4 0.0491±64.099e-4 98.04±15.035e-4 76.38±0.0e-4
DEEPSTORM v1-SG 0.3306±9.46e-4 0.0002±1.292e-4 2.99±60.066e-4 84.96±1235.0e-4
DEEPSTORM v1-SVRG 0.3308±7.689e-4 0.0001±0.21278e-4 2.86±45.018e-4 84.94±929.04e-4
DEEPSTORM v2 0.3277±7.461e-4 0.0001±0.8179e-4 1.92±53.073e-4 85.11±478.03e-4

MiniBooNE

DSGT 0.3735±3.844e-4 0.0003±2.076e-4 81.83±227.0e-4 84.24±202.07e-4
SPPDM 0.5699±61.016e-4 0.0025±5.565e-4 35.32±77.02e-4 72.02±0.0e-4
ProxGT-SR-E 0.5663±32.027e-4 0.0115±7.57e-4 97.88±17.017e-4 72.02±0.0e-4
DEEPSTORM v1-SG 0.3637±19.015e-4 0.0002±0.6464e-4 4.34±60.07e-4 84.24±1902.0e-4
DEEPSTORM v1-SVRG 0.3653±23.054e-4 0.0002±0.9716e-4 4.42±65.068e-4 84.15±1974.0e-4
DEEPSTORM v2 0.3637±18.046e-4 0.0001±0.4136e-4 4.2±61.073e-4 84.25±1752.0e-4

MNIST

DSGT 0.1055±24.03e-4 0.0024±3.554e-4 51.05±896.0e-4 97.61±1346.0e-4
SPPDM 0.1851±55.065e-4 0.0051±2.058e-4 66.81±616.03e-4 95.55±1488.0e-4
ProxGT-SR-E 1.699±903.07e-4 0.21299±268.0e-4 91.4±70.087e-4 52.25±41480.0e-4
DEEPSTORM v1-SG 0.081±33.014e-4 0.0027±5.376e-4 10.31±70.031e-4 97.97±1261.0e-4
DEEPSTORM v1-SVRG 0.078±34.022e-4 0.0031±7.366e-4 10.99±82.095e-4 98.08±1485.0e-4
DEEPSTORM v2 0.0768±29.095e-4 0.0016±1.83e-4 7.36±50.07e-4 98.15±659.04e-4

Figure 1: Comparisons of different methods by running them with the same number of data passes. Bold values indicate the
best results and underlined values indicate the second best.

Figure 2: Comparison of different methods by running them with the same number of iterations. From top to bottom: a9a,
MiniBooNE, MNIST. From left to right: training loss, stationarity violation, average percentage non-zeros, testing accuracy.
The shaded regions indicate standard deviations (with some being small and unnoticeable).
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Fox, E.; and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

Wang, Z.; Zhang, J.; Chang, T.-H.; Li, J.; and Luo, Z.-Q. 2021.
Distributed Stochastic Consensus Optimization With Momentum
for Nonconvex Nonsmooth Problems. IEEE Transactions on Sig-
nal Processing, 69: 4486–4501.

Wei, E.; and Ozdaglar, A. 2013. On the O(1/k) convergence of
asynchronous distributed alternating Direction Method of Multipli-
ers. In 2013 IEEE Global Conference on Signal and Information
Processing, 551–554.

Wu, T.; Yuan, K.; Ling, Q.; Yin, W.; and Sayed, A. 2017. De-
centralized Consensus Optimization With Asynchrony and Delays.
IEEE Transactions on Signal and Information Processing over Net-
works, 4: 293 – 307.

Xin, R.; Das, S.; Khan, U. A.; and Kar, S. 2021. A Stochastic Proxi-
mal Gradient Framework for Decentralized Non-Convex Compos-
ite Optimization: Topology-Independent Sample Complexity and
Communication Efficiency. arXiv preprint arXiv:2110.01594.

Xin, R.; Khan, U.; and Kar, S. 2021a. A Hybrid Variance-Reduced
Method for Decentralized Stochastic Non-Convex Optimization. In
Meila, M.; and Zhang, T., eds., Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, 11459–11469. PMLR.

Xin, R.; Khan, U. A.; and Kar, S. 2021b. An Improved Conver-
gence Analysis for Decentralized Online Stochastic Non-Convex
Optimization. IEEE Transactions on Signal Processing, 69: 1842–
1858.

Xin, R.; Khan, U. A.; and Kar, S. 2022. Fast Decentralized Non-
convex Finite-Sum Optimization with Recursive Variance Reduc-
tion. SIAM Journal on Optimization, 32(1): 1–28.

Xu, Y.; and Xu, Y. 2023. Momentum-Based Variance-Reduced
Proximal Stochastic Gradient Method for Composite Nonconvex
Stochastic Optimization. Journal of Optimization Theory and Ap-
plications, 196(1): 266–297.



Ye, H.; Xiong, W.; and Zhang, T. 2020. PMGT-VR: A decentral-
ized proximal-gradient algorithmic framework with variance re-
duction. arXiv preprint arXiv:2012.15010.

Ye, H.; Zhou, Z.; Luo, L.; and Zhang, T. 2020. Decentralized
Accelerated Proximal Gradient Descent. In Larochelle, H.; Ran-
zato, M.; Hadsell, R.; Balcan, M. F.; and Lin, H., eds., Advances in
Neural Information Processing Systems, volume 33, 18308–18317.
Curran Associates, Inc.

Ying, B.; Yuan, K.; Chen, Y.; Hu, H.; PAN, P.; and Yin, W. 2021.
Exponential Graph is Provably Efficient for Decentralized Deep
Training. In Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.;
and Vaughan, J. W., eds., Advances in Neural Information Process-
ing Systems, volume 34, 13975–13987. Curran Associates, Inc.

Yuan, K.; Chen, Y.; Huang, X.; Zhang, Y.; Pan, P.; Xu, Y.; and Yin,
W. 2021. DecentLaM: Decentralized Momentum SGD for Large-
Batch Deep Training. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 3029–3039.

Yuan, K.; Ling, Q.; and Yin, W. 2016. On the Convergence of
Decentralized Gradient Descent. SIAM Journal on Optimization,
26: 1835 – 1854.

Zeng, J.; and Yin, W. 2018. On Nonconvex Decentralized Gradi-
ent Descent. IEEE Transactions on Signal Processing, 66: 2834 –
2848.

Zhang, J.; and You, K. 2020. Decentralized Stochastic Gradi-
ent Tracking for Non-convex Empirical Risk Minimization. arXiv
preprint arXiv:1909.02712.

Zhang, J.; and You, K. 2021. Fully Asynchronous Distributed Op-
timization with Linear Convergence in Directed Networks. arXiv
preprint arXiv:1901.08215.

Zhang, K.; Yang, Z.; Liu, H.; Zhang, T.; and Basar, T. 2018.
Fully Decentralized Multi-Agent Reinforcement Learning with
Networked Agents. In Dy, J.; and Krause, A., eds., Proceed-
ings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, 5872–
5881. PMLR.



A Reproducibility
Data sets and communication graphs. The data sets and communication graphs are summarized/visualized in Table 2.

Dataset Train Test Features Model Graph

a9a 32,561 16,281 123 MLP Ladder
MiniBooNE 100,000 30,064 50 MLP Ring
MNIST 60,000 10,000 784 LENET Random

Table 2: Summary of data sets; all are downloaded from https://www.openml.org. Graphs from left to right: ladder, ring, and
random.

Code. Code for all numerical experiments is available at https://github.com/gmancino/DEEPSTORM.
Hyperparameter selection. We choose the batch size according to theoretical guidance, while observing reasonably good

performance. For all methods but SPPDM, we set the batch size to be 64, 128, and 64 for a9a, MiniBooNE, and MNIST,
respectively. For SPPDM, the respective sizes are 512, 1024, and 128.

For all variants of DEEPSTORM, we set the number of communication rounds to be T = 1 such that W1 = W. We use
a diminishing step size as in (20) with k0 = d 2

1−ρ3 e and βk = 1 − αk+1

αk
+ βα2

k+1 with β < 1
α0α1

, such that β0 < 1. Such a

choice ensures that βk ∈ (0, 1) for all k. For the (v1-SVRG) variant, we compute the snapshot gradient every four passes, by
using all local data for a9a and MiniBooNE; whereas for MNIST, we compute the snapshot gradient at the end of every pass,
by using 20% of the local data.

For DSGT, we set the step size to be αk = α√
k+1

for all k, according to (Lu et al. 2019; Xin, Khan, and Kar 2021b). For

SPPDM, we follow the choices of many hyperparameters used in the original paper and only tune c ∈ {0.1, 1} and α. For
ProxGT-SR-O/E, we tune the step size α and the frequency of communicating the full local gradient, q. We find that q = 32
yields the most stable results for a9a and MiniBooNE and q = 64 performs the best for MNIST. For all these methods, α is
tuned from {10.0, 5.0, 1.0, 0.1, 0.01, 0.005, 0.001}. We choose the Pareto optimal α that balances a small stationarity violation
and a high test accuracy.

B Chebyshev acceleration
The Chebyshev mixing protocol (Auzinger and Melenk 2011) can be summarized in the following pseudo-code.

Algorithm B.1: Chebyshev mixing protocol WT (B)

Input: Mixing matrix W, input B, rounds T

1: Let B0 = B and B1 = WB0

2: Compute step sizes µ0 = 1, µ1 = 1
ρ

3: for t = 0, . . . , T − 1 do
4: µt+1 ← 2

ρ
µt − µt−1

5: Bt+1 ← 2µt

ρµt+1
WBt − µt−1

µt+1
Bt−1

6: end for

Output: BT = WT (B0)

This method is accompanied with the following convergence result, relating the spectrum of WT to the spectrum of W. For
a proof, see (Mancino-Ball, Xu, and Chen 2021).

Lemma B.1 The output of Algorithm B.1 can be denoted as BT = WTB, where WT is a degree-T polynomial of W and it
satisfies Assumptions 2(ii)–(iv). Additionally, we use the bar notation to mean replacing each row of a matrix by the average of
its rows; that is, B̄ = 1

N
ee>B. Then, B̄T = B̄ for all T and

∥
∥BT − B̄

∥
∥
F
≤ 2

(

1−
√

1− ρ
)T ∥
∥B− B̄

∥
∥
F
. (B.1)

The analysis in Appendix C uses a sufficiently large degree T such that ρ̃ as defined in (14) is bounded by a constant, indepen-
dent of the communication graph. For this, by Corollary 6.1 in (Auzinger and Melenk 2011), it holds that

ρ̃ ≤ 2
(

1−
√

1− ρ
)T

. (B.2)

Hence, by the proof of Theorem 4 in (Mancino-Ball, Xu, and Chen 2021), we see that when T = d 2√
1−ρ
e, we obtain

(1− ρ̃)2 ≥ 1

2
. (B.3)



C Convergence results

We denote the global objective function and the corresponding smooth part to be

φ ,
1

N

N∑

i=1

φi and f ,
1

N

N∑

i=1

fi (C.1)

respectively. Crucially, our analysis relies on bounding the difference between the local first-order estimators given in (10) and
the true local gradient; namely we define

r
(k)
i , d

(k)
i −∇fi(x(k)

i ). (C.2)

Additionally, we define the following matrix terms to be used throughout the analysis,

Ā ,
1

N
ee>A, ∀A ∈ R

N×p, (C.3)

X⊥ , X− X̄, (C.4)

Y⊥ , Y − Ȳ, (C.5)

R , D−∇F (X), (C.6)

where ∇F is the gradient of the smooth part of the objective function written in the following matrix form

∇F (X) ,






∇f1(x1)
...

∇fN (xN )




 ∈ R

N×p. (C.7)

Before beginning with the analysis, we present two preparatory Lemmas. The first is standard in the literature (Ghadimi, Lan,
and Zhang 2016).

Lemma C.1 Let r : R1×p → R be a closed, convex function, then for any a,b ∈ R
1×p, it holds that

‖proxr (a)− proxr (b)‖2 ≤ ‖a− b‖2 . (C.8)

Lemma C.2 For all k ≥ 0,

ȳ(k) = d̄(k). (C.9)

Proof We proceed by induction. Notice WT is a degree-T polynomial of W, so e>WT = e> and thus ȳ(0) = 1
N
e>Y(0) =

1
N
e>WTD

(0) = 1
N
e>D(0) = d̄(0). For k ≥ 0, we have

ȳ(k) =
1

N
e>Y(k) (12)

=
1

N
e>WT

(

Y(k−1) +D(k) −D(k−1)
)

=
1

N
e>
(

Y(k−1) +D(k) −D(k−1)
)

= ȳ(k−1) + d̄(k) − d̄(k−1)

= d̄(k)

where in the last step we used the inductive hypothesis, ȳ(k−1) = d̄(k−1). �

C.1 Building blocks for constant and diminishing step size convergence.

Our analysis begins by building a non-increasing Lyapunov function by relating changes in X and Y to various quantities.

Lemma C.3 For all k ≥ 0 and for all i = 1, . . . , N ,

r(x
(k+1)
i )− r(x̄(k)) +

〈

x
(k+1)
i − x̄(k),y

(k)
i

〉

≤− 1

2αk

(∥
∥
∥x

(k+1)
i − x̄(k)

∥
∥
∥

2

2
+
∥
∥
∥x

(k+1)
i − z

(k)
i

∥
∥
∥

2

2
−
∥
∥
∥x̄

(k) − z
(k)
i

∥
∥
∥

2

2

) (C.10)

Proof By (9), we have

0 ∈ αk∂r(x
(k+1)
i ) + x

(k+1)
i −

(

z
(k)
i − αky

(k)
i

)

.



Thus, for some ∇̃r(x(k+1)
i ) ∈ ∂r(x

(k+1)
i ), and for any xi ∈ R

1×p

〈

x
(k+1)
i − xi, ∇̃r(x(k+1)

i ) +
1

αk

(

x
(k+1)
i − z

(k)
i

)

+ y
(k)
i

〉

= 0. (C.11)

By the convexity of r, it holds for any xi ∈ R
1×p,

r(x
(k+1)
i )− r(xi) +

〈

x
(k+1)
i − x̄(k),y

(k)
i

〉

≤
〈

x
(k+1)
i − xi, ∇̃r(x(k+1)

i ) + y
(k)
i

〉

(C.11)
=− 1

αk

〈

x
(k+1)
i − xi,x

(k+1)
i − z

(k)
i

〉

(a)
=− 1

2αk

(∥
∥
∥x

(k+1)
i − xi

∥
∥
∥

2

2
+
∥
∥
∥x

(k+1)
i − z

(k)
i

∥
∥
∥

2

2
−
∥
∥
∥xi − z

(k)
i

∥
∥
∥

2

2

)

,

where (a) follows from 〈a,b〉 = 1
2

(

‖a‖22 + ‖b‖
2
2 − ‖a− b‖22

)

. Letting xi = x̄(k) completes the proof. �

Lemma C.4 For all k ≥ 0,

φ(x̄(k+1))− φ(x̄(k))

≤L

2

∥
∥
∥x̄

(k+1) − x̄(k)
∥
∥
∥

2

2
+
〈

∇f(x̄(k)), x̄(k+1) − x̄(k)
〉

− 1

N

N∑

i=1

〈

x
(k+1)
i − x̄(k),y

(k)
i

〉

− 1

2Nαk

N∑

i=1

(∥
∥
∥x

(k+1)
i − x̄(k)

∥
∥
∥

2

2
+
∥
∥
∥x

(k+1)
i − z

(k)
i

∥
∥
∥

2

2
−
∥
∥
∥x̄

(k) − z
(k)
i

∥
∥
∥

2

2

)

,

(C.12)

where ∇f(x̄(k)) , 1
N

∑N
i=1∇fi(x̄(k)) comes from (C.1).

Proof From the L-smoothness of each fi and the convexity of r, we have

φ(x̄(k+1))− φ(x̄(k))

=
1

N

N∑

i=1

(

fi(x̄
(k+1)) + r(x̄(k+1))

)

− 1

N

N∑

i=1

(

fi(x̄
(k)) + r(x̄(k))

)

=
1

N

N∑

i=1

(

fi(x̄
(k+1))− fi(x̄

(k))
)

+ r(x̄(k+1))− r(x̄(k))

≤ 1

N

N∑

i=1

(

fi(x̄
(k+1))− fi(x̄

(k))
)

+
1

N

N∑

i=1

r(x
(k+1)
i )− r(x̄(k))

≤L

2

∥
∥
∥x̄

(k+1) − x̄(k)
∥
∥
∥

2

2
+

〈

1

N

N∑

i=1

∇fi(x̄(k)), x̄(k+1) − x̄(k)

〉

+
1

N

N∑

i=1

r(x
(k+1)
i )− r(x̄(k))

(C.10)

≤ L

2

∥
∥
∥x̄

(k+1) − x̄(k)
∥
∥
∥

2

2
+

〈

1

N

N∑

i=1

∇fi(x̄(k)), x̄(k+1) − x̄(k)

〉

− 1

N

N∑

i=1

〈

x
(k+1)
i − x̄(k),y

(k)
i

〉

− 1

2Nαk

N∑

i=1

(∥
∥
∥x

(k+1)
i − x̄(k)

∥
∥
∥

2

2
+
∥
∥
∥x

(k+1)
i − z

(k)
i

∥
∥
∥

2

2
−
∥
∥
∥x̄

(k) − z
(k)
i

∥
∥
∥

2

2

)

.

Utilizing (C.1) to have ∇f(x̄(k)) = 1
N

∑N
i=1∇fi(x̄(k)) completes the proof. �



Lemma C.5 For all k ≥ 0, the following equality holds,

〈

∇f(x̄(k)), x̄(k+1) − x̄(k)
〉

− 1

N

N∑

i=1

〈

x
(k+1)
i − x̄(k),y

(k)
i

〉

=

〈

∇f(x̄(k))− 1

N

N∑

i=1

∇fi(x(k)
i ), x̄(k+1) − x̄(k)

〉

−
〈

r̄(k), x̄(k+1) − x̄(k)
〉

+
1

N

N∑

i=1

〈

ȳ(k) − y
(k)
i ,x

(k+1)
i − x̄(k)

〉

,

(C.13)

where r̄(k) = 1
N

∑N
i=1 r

(k)
i for all k.

Proof We have,

〈

∇f(x̄(k)), x̄(k+1) − x̄(k)
〉

− 1

N

N∑

i=1

〈

x
(k+1)
i − x̄(k),y

(k)
i

〉

=

〈

∇f(x̄(k)),
1

N

N∑

i=1

x
(k+1)
i − x̄(k)

〉

− 1

N

N∑

i=1

〈

x
(k+1)
i − x̄(k),y

(k)
i

〉

(a)
=

1

N

N∑

i=1

〈

∇f(x̄(k)),x
(k+1)
i − x̄(k)

〉

− 1

N

N∑

i=1

〈

x
(k+1)
i − x̄(k),y

(k)
i

〉

=
1

N

N∑

i=1

〈

∇f(x̄(k))− ȳ(k) + ȳ(k) − y
(k)
i ,x

(k+1)
i − x̄(k)

〉

(b)
=
〈

∇f(x̄(k))− d̄(k), x̄(k+1) − x̄(k)
〉

+
1

N

N∑

i=1

〈

ȳ(k) − y
(k)
i ,x

(k+1)
i − x̄(k)

〉

(C.14)

where (a) utilizes the linearity of the inner product and (b) comes from Lemma C.2 in conjunction with the linearity of the inner
product. Now,

〈

∇f(x̄(k))− d̄(k), x̄(k+1) − x̄(k)
〉

=

〈

∇f(x̄(k))− 1

N

N∑

i=1

∇fi(x(k)
i ), x̄(k+1) − x̄(k)

〉

+

〈

1

N

N∑

i=1

∇fi(x(k)
i )− 1

N

N∑

i=1

d
(k)
i , x̄(k+1) − x̄(k)

〉

. (C.15)

Plugging (C.15) into (C.14) and utilizing (C.2) completes the proof. �

Lemma C.6 For all k ≥ 0, the following inequality holds,

φ(x̄(k+1))− φ(x̄(k)) ≤− 1

2N

(
1

αk

− 3L

)∥
∥
∥X

(k+1) − X̄(k)
∥
∥
∥

2

F
−
〈

r̄(k), x̄(k+1) − x̄(k)
〉

+
1

2Nαk

∥
∥
∥X̄

(k) − Z(k)
∥
∥
∥

2

F
− 1

2Nαk

∥
∥
∥X

(k+1) − Z(k)
∥
∥
∥

2

F

+
L

2N

∥
∥
∥X

(k)
⊥

∥
∥
∥

2

F
+

1

2NL

∥
∥
∥Y

(k)
⊥

∥
∥
∥

2

F
.

(C.16)

Proof From (C.12), we use (C.13) to have

φ(x̄(k+1))− φ(x̄(k))

≤L

2

∥
∥
∥x̄

(k+1) − x̄(k)
∥
∥
∥

2

2
−
〈
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〉

+
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N

N∑

i=1

∇fi(x(k)
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〉

+
1

N

N∑

i=1

〈

ȳ(k) − y
(k)
i ,x

(k+1)
i − x̄(k)
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∥
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∥
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We bound terms individually. By Jensen’s inequality, we have

∥
∥
∥x̄

(k+1) − x̄(k)
∥
∥
∥

2

2
≤ 1

N

N∑

i=1

∥
∥
∥x

(k+1)
i − x̄(k)
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2

2
. (C.17)

By the Peter-Paul inequality, we have

1
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〉
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∥
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(4),(C.17)
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,

where the second inequality also uses Jensen’s inequality. Combining like terms results in

φ(x̄(k+1))− φ(x̄(k))
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We complete the proof by writing the summations of the 2-norms into the equivalent Frobenius norm expressions. �

Lemma C.7 For all k ≥ 0, the followings hold,

∥
∥
∥X

(k+1)
⊥

∥
∥
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2

F
≤ ρ̃

∥
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∥X
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F
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and

E

∥
∥
∥Y

(k+1)
⊥

∥
∥
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where ρ̃ is defined in (14) and σ̂2 > 0 is defined in (v1).

Proof We first prove (C.18). First, we use the following identity
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(k)
)

,



since each row is identical. Then by (9) we have
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(k)
)

− proxαkR

(

WT (X
(k))− αkY

(k)
))
∥
∥
∥
∥

2

F

(C.8)

≤
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where (a) uses that 1
N
ee> is a projection operator to have, for any matrix A ∈ R
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(b) uses the Peter-Paul inequality with δ > 0, and (c) uses
(
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N
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)
=
(
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N
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) (
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N
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)
. Choosing

δ = 1−ρ̃
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with ρ̃ defined in (14) and using the compatibility of the Frobenius norm and the 2-norm to have
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To prove (C.19), we use Assumption 2 parts (ii) and (iii) to have
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)
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coupled with part (iv) of Assumption 2 and (b) uses ρ̃2 < 1
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where the last inequality comes from the assumption that βk ∈ (0, 1). Hence we have
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≤ (1 + c1)ρ̃
2
∥
∥
∥Y

(k)
⊥

∥
∥
∥

2

F
+ 4(1 +

1

c1
)

(∥
∥
∥V

(k+1) −U(k+1)
∥
∥
∥

2

F
+ β2

k

∥
∥
∥R

(k)
∥
∥
∥

2

F

)

+ 4(1 +
1

c1
)

(

β2
k

∥
∥
∥Ṽ
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Letting c1 = 1
ρ̃
− 1 > 0 and then first taking the expectation with respect to the samples and utilizing (4) and (v1) on the above

two inequalities and then taking the full expectation, completes the proof. �

Our analysis relies on bounding the gradient error term defined in (C.6). Hence, we present the following two Lemmas which

define a recursive error bound given either (v1) or (v2) holds for the unbiased estimator ṽ
(k+1)
i in (10).

Lemma C.8 Suppose {d(t)
i }

(k)
t=0 is updated by (10) such that ṽi satisfies (v1) for all iterates t = 0, . . . , k, for each agent

i = 1, . . . , N . Then at iteration k + 1, the following bound holds
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Proof The proof follows the same logic as the proof of Lemmas 3 and 4 in (Tran-Dinh et al. 2022), but is included here for

the sake of completeness. For sake of brevity, define B , B
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i and B̃ , B̃

(k+1)
i . Then for each agent i, by (v1) and the
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where the second equality comes from adding and subtracting βk∇fi(x(k+1)
i ) and (1− βk)∇fi(x(k)

i ) and expanding the norm
squared. The first two inner products evaluate to zero by the unbiasedness in Assumption 1 (iv). Next, since all ξ ∈ B are

independent from all ξ̃ ∈ B̃, it holds by E(B,B̃)[·] = EB̃
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Summing over the agents i = 1, . . . , N , utilizing (4), (5), (v1), and taking the full expectation completes the proof. �

Lemma C.9 Suppose {d(t)
i }

(k)
t=0 is updated by (10) with (v2) for each agent i = 1, . . . , N . Then at iteration k+1, the following

bound holds
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Proof The proof follows from Lemma 2 of (Xu and Xu 2023), but is included here for sake of completeness. Using (10)

with (v2) and defining B , B
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i , for each agent i we have
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where we have used
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Applying (C.23) to the last term above, summing over all agents i = 1, . . . , N , utilizing both (4) and (v2), and taking the full
expectation completes the proof. �

Lemma C.10 Suppose {d(t)
i }

(k)
t=0 is updated by (10) such that ṽi satisfies (v1) for each agent i = 1, . . . , N . Then at iteration

k + 1, the following bound holds
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Proof The proof follows from Lemma 3 of (Xin, Khan, and Kar 2021a), but is included here for sake of completeness.



Following similar notation to the proof of Lemma C.8, by (10), it holds that
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Taking the average results in
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Defining B ,
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Similar to the proof of Lemma C.8, we have the first two inner products evaluate to zero by the unbiasedness in Assumption 1

(iv). Next, since all ξ ∈ B are independent from all ξ̃ ∈ B̃, it holds by E(B,B̃)[·] = EB̃

[

EB

[

·
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∣B̃
]]
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By similar logic,
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Plugging (C.28) to (C.29) into (C.27) and taking the full expectation yields
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where we have used (5) and the equivalence of the Frobenius norm to the sum of the squared 2-norms. This completes the
proof. �

Lemma C.11 Suppose {d(t)
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Proof The proof follows from Lemma 3 of (Xin, Khan, and Kar 2021a), but is included here for sake of completeness.



Following similar notation as the proof of Lemma C.10, by (v2), we define B ,
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Applying (C.28) and (C.29), utilizing both (4) and (v2), and taking the full expectation completes the proof. �

Before presenting our convergence results, we give the following Lemma which relates relevant terms to a stochastic ε-
stationary point as defined in Definition 2.

Lemma C.12 For all k ≥ 0, the following bound holds,
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Proof Notice that by (15), for all i = 1, . . . , N , we have
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and by (C.8), we further have
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By Young’s inequality and (C.32), we have
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Plugging (C.33) into (C.34) and summing over i = 1, . . . , N yields
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where we have utilized the definition of the Frobenius norm. Next, we bound
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Looking at terms individually, we have
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By Jensen’s inequality, we have
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Plugging (C.37) and (C.38) into (C.36) yields

N∑

i=1

∥
∥
∥y

(k)
i −∇f(z(k)i )

∥
∥
∥

2

2

≤3
∥
∥
∥Y

(k)
⊥

∥
∥
∥

2

F
+ 3N

∥
∥
∥r̄

(k)
∥
∥
∥

2

2
+ 6L2

∥
∥
∥X

(k)
⊥

∥
∥
∥

2

F
+ 6L2

∥
∥
∥X̄

(k) − Z(k)
∥
∥
∥

2

F
. (C.39)



Adding L2
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Notice that by line 3 of Algorithm 1 and Assumption 2 (iv), Z̄(k) = 1
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so adding L2
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Finally, we multiply both sides by 2, which completes the proof. �

We are now in position to define a lower bounded Lyapunov function and use this to show the convergence of DEEPSTORM
v1 and v2. Notice that until this point, the analyses of v1 and v2 of our method only differ slightly, i.e. in terms of the constants
involved in Lemmas C.8, C.9, C.10, and C.11. Since the bound established in (C.24) is larger than (C.21), we upper bound (C.21)
by (C.24). Additionally, we notice that Lemma C.11 provides an upper bound on the results from Lemma C.10 and hence
use (C.30) in the following Lemma.



C.2 Constant step size

Lemma C.13 For all k ≥ 0, the following inequality holds
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(k)
3 , γ

(k)
4 are strictly positive values and

Φ(k) , φ(x̄(k)) + γ
(k−1)
1

∥
∥
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∥
∥

2

F
+ γ

(k−1)
2

∥
∥
∥X

(k)
⊥

∥
∥
∥
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(C.43)

is a lower bounded Lyapunov function.

Proof We start by using part (iv) of Assumption 2 and (8) to note that

1
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∥
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∥
∥
∥
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N
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∥
∥
∥
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F
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Next, we utilize the Peter-Paul inequality and Jensen’s inequality to have

−
〈

r̄(k), x̄(k+1) − x̄(k)
〉

=
〈

−r̄(k+1) + r̄(k+1) − r̄(k), x̄(k+1) − x̄(k)
〉

≤αk

∥
∥
∥−r̄(k+1) + r̄(k+1) − r̄(k)

∥
∥
∥
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2
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1
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∥
∥x̄

(k+1) − x̄(k)
∥
∥
∥
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2
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∥
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2

2
+ 2αk

∥
∥
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∥
∥
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∥
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i − x̄(k)

∥
∥
∥

2

2
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∥
∥
∥r̄
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∥
∥
∥

2

2
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∥
∥r̄
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∥
∥
∥

2

2
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1
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∥
∥
∥X
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∥
∥
∥

2

F
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Further, by Young’s inequality it holds that
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∥
∥
∥r̄
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2
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∥
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∥
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∥
∥d

(k+1)
i − d

(k)
i

∥
∥
∥
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2
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N
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2

2
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∥
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∥
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2
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∥
∥

2

F
. (C.46)

Taking the expectation conditioned on the local samples and then taking the full expectation yields

4αk

N
E

∥
∥
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∥
∥
∥

2

F
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≤ 4αk

N

(

8L2
E

∥
∥
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(k+1) −X(k)
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∥
∥
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F
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∥
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F
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kσ̂
2

)

, (C.47)

where we have also used (4) and (v1). Plugging (C.47) into (C.46) and using (C.45) yields

− E
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∥
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∥
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∥
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Using (C.44) and (C.48) in (C.16) and taking the full expectation results in

E
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Noticing that the right-hand side of (C.24) is larger than the right-hand side of (C.21), we add γ
(k)
1 E

∥
∥
∥Y

(k+1)
⊥

∥
∥
∥

2

F
,

γ
(k)
2 E

∥
∥
∥X

(k+1)
⊥

∥
∥
∥

2

F
, γ

(k)
3 E

∥
∥R(k+1)

∥
∥
2

F
, γ

(k)
4 E

∥
∥r̄(k+1)

∥
∥
2

2
to both sides of the above inequality and use the results from Lem-
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from both sides of the above inequality yields
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Grouping like terms in (C.50) results in
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Next, we use that the right-hand side of (C.30) is larger than the right-hand side of (C.25) to have,

E
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Further using
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and combining like terms completes the proof. �

Proof of Theorem 1 Proof We approach this proof in phases; first, we note that βk ∈ (0, 1) by 0 < α ≤ K
1
3

32L . Second, let
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in (C.42) to have
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Next, we lower bound (A′) - (E′). For (A′), we have
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where the first inequality uses α ≤ K
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For (C ′), we again use (1− βk) < 1 and ρ̃2 < 1 to have
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where we have used α ≤ (1−ρ̃)2K
1
3

64L . For (E′), we expand 1− (1− βk)
2 = 2βk − β2

k > βk and use (17) and β2
k < βk to have
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where the second inequality uses α4 ≤ K
4
3

324L4 and α3 ≤ (1−ρ̃)2K
64·322L3 . For (F ′), we also expand 1 − (1 − βk)

2 = 2βk − β2
k > βk

and use (17) to have

(F ′) =
NK

1
3

48L2α
− (1− βk)

2NK
1
3

48L2α
− 2α(1− βk)

2

K
1
3

>
3α

K
1
3

− 2α

K
1
3

=
α

K
1
3

.

Next, we sum (C.52) over k = 0 to K − 1 and divide by K; using the established lower bounds to have
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, (C.53)

where we have used φ∗ ≤ Φ(k) for any k ≥ 0.
The final phase of the proof uses Lemma C.12 to provide a concise convergence statement. To do so, multiply both sides



of (C.31) by α

K
1
3

, sum from k = 0, . . . ,K − 1 and divide by K, and take the expectation to have
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. (C.54)

We relate each of the terms on the right-hand side of (C.54) to 512 times of the left-hand side of (C.53). Since α ≤ K
1
3

32L it holds
that

α

K
1
3

· 6

NK

K−1∑

k=0

∥
∥
∥Y

(k)
⊥

∥
∥
∥

2

F
≤ 128

NL
· 1
K

K−1∑

k=0

∥
∥
∥Y

(k)
⊥

∥
∥
∥

2

F
. (C.55)

Using α ≤ K
1
3

32L we have,
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Combining (C.55) and (C.56) in conjunction with 512 times of (C.53) and (C.54) yields:
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Multiplying both sides by K
1
3

α
and using

∥
∥
∥X

(k)
⊥

∥
∥
∥

2

F
≥ 0 and

∥
∥R(k)

∥
∥
2

F
≥ 0 for all k ≥ 0 completes the proof. �

Complexity analysis Before presenting the complexity analysis for DEEPSTORM with a constant step size, we first present
a preparatory Lemma.

Lemma C.14 For any real numbers x ∈ (0, 1), it holds that

1

x
≥ −1

ln(1− x)
. (C.57)

Proof We prove

g(x) , x+ ln(1− x) ≤ 0, (C.58)

which is equivalent to (C.57). Computing the first derivative results in

d

dx
g(x) = 1− 1

1− x
< 0, ∀x ∈ (0, 1)

since (1 − x) < 1 for all x ∈ (0, 1). Hence g(x) is decreasing on (0, 1). Computing g(0+) = 0, we have (C.58) and
hence (C.57). �

We make the following remark in order to aid in the discussion of presenting final complexity results for Algorithm 1 with a
constant step size.

Remark C.1 Notice that the convergence of Algorithm 1 depends upon Φ(0) (see (C.43)) which in turn depends upon γ
(0)
2 ,

γ
(0)
3 , and γ

(0)
4 , all of which are O
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K
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. In order to obtain the best possible convergence rate which is also independent of
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enough; by Jensen’s inequality, this will in turn make
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2
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3

)

. Additionally, we make a standard assumption (Lian



et al. 2017; Tang et al. 2018b; Xin, Khan, and Kar 2021a) that x
(0)
i = x
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j for all i and j; this eliminates the

∥
∥
∥X

(0)
⊥

∥
∥
∥

2

F
error. For
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independent of ρ̃. Notice that 1
NL(1−ρ̃) = O (1) if NL is sufficiently large and ρ̃ is not too close to 1; in the following Corollary,

we assume the worst case so that 1
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.

Corollary 1 Let ε > 0 be given and assume that L ≥ 1. Under the same conditions as in Theorem 1, let x
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i, j = 1, . . . , N , let the initial batch size m0 = 3
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by Algorithm B.1 for the initial gradient tracking update in line 1 of Algorithm 1. Let ṽ
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i be any unbiased gradient estimator

such that either (v1) or (v2) holds, let the local batch size m = O (1) for all remaining iterations, and choose α such that
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. (C.59)

Then, provided K ≥ N2

(1−ρ̃)6 , Algorithm 1 produces a stochastic ε-stationary point as defined in Definition 2 in
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})

(C.60)

local stochastic gradient computations and T0 + T (K − 1) neighbor communications for any T ≥ 1, where ∆ , Φ(0) − φ∗,

with Φ(0) defined in (C.43).

Proof First, notice that if K ≥ N2

(1−ρ̃)6 , then K
1
3 ≥ N
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3

(1−ρ̃)2 , so the choice of α in (C.59) satisfies α ≤ (1−ρ)2K
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.

Next, by (C.43) and (C.51), we have
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Notice that

1

N
E

∥
∥
∥R

(0)
∥
∥
∥

2

F
=

1

N

N∑

i=1

E

∥
∥
∥d

(0)
i −∇fi(x

(0)
i )
∥
∥
∥

2

2
≤ σ2

m0

by (5) since d
(0)
i = 1

m0

∑

ξ∈B
(0)
i

∇fi(x(0)
i , ξ) for all i = 1, . . . , N . Hence with m0 = 3

√
NK, it holds that

4K
1
3

3N
5
3L

∥
∥
∥R

(0)
∥
∥
∥

2

F
≤ 4σ2

3NL
≤ 4σ2

3L

which is independent of K. By Jensen’s inequality, we further have

4N
1
3K

1
3

3L

∥
∥
∥r̄

(0)
∥
∥
∥

2

2
≤ 4K

1
3

N
2
3 3L

∥
∥
∥R

(0)
∥
∥
∥

2

F
≤ 4σ2

3L
,

which is also independent of K. Next, notice that Y(0) = WT0
(D(0)) by line 1 in Algorithm 1; hence it holds
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where we have also used N,L ≥ 1. By the choice of T0 =
⌈
−2 ln(1−ρ̃)√

1−ρ

⌉

, we have
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(C.57)

≥ 2 ln (1− ρ̃)

ln
(
1−√1− ρ

) (C.63)



where we have used Lemma (C.14) with x =
√
1− ρ and ln(1− ρ̃) ≤ 0. By (C.63), it holds that
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since 4 ln(1 − ρ̃) ≤ ln(1 − ρ̃) as ρ̃ ∈ [0, 1). Thus, by x
(0)
i = x

(0)
j for all i, j = 1, . . . , N , we have that ∆ is independent of

ρ̃, N , and K. Hence, for τ chosen uniformly at random from {0, . . . ,K − 1}, we have
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Plugging α = N
2
3

64L into (C.65) results in
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Hence, the number of gradient evaluations is

K , m(K − 1) = O
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,

which yields a total number of gradient evaluations dK+ 3
√
NKe, provided K ≥ N2

(1−ρ̃)6 . Since K = Ω
(

3
√
NK

)

, we drop the

3
√
NK and obtain (C.60). �

Remark C.2 Similar to other works (Lian et al. 2017; Xin, Khan, and Kar 2021b,a), we have a minimum requirement on the
number of iterations, called transient iterations, in order to achieve the complexity results in (C.60). Further, we notice that if the
connectivity of the original network is poor, i.e. ρ ≈ 1 for ρ defined in (7), and we only perform one neighbor communication

during lines 3 and 6 in Algorithm 1 so that ρ̃ = ρ, then it could be that σ̂2

(1−ρ)2ε dominates in (C.60), meaning DEEPSTORM is

network-dependent. Similar to (Xin, Khan, and Kar 2021a), we can place a requirement that ε ≤ N−2(1− ρ)4, in which case
DEEPSTORM achieves the optimal complexity result and is independent of the communication network. In order to relax this
requirement to ε ≤ N−2 (which can be significantly greater than N−2(1−ρ)4), we perform Algorithm B.1 during the neighbor
communications (lines 3 and 6 in Algorithm 1) such that for T = d 2√

1−ρ
e, ρ̃ ≤ 1

2 by (B.3), so that the number of local gradient

computations becomes
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(C.66)

which is independent of ρ. Additionally, the number of local neighbor communications becomes
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(C.67)

which is optimal in terms of the dependence upon ρ (Scaman et al. 2017).

C.3 Diminishing step size

The Lyapunov function and relation defined in (C.13) are specially designed for the constant step size proof. Here, we make
analogous designs for the diminishing step size proof.



Lemma C.15 For all k ≥ 0, the following inequality holds
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where γ
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1 , γ
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3 are strictly positive values and
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is a lower bounded Lyapunov function.

Proof We start by using part (iv) of Assumption 2 and (8) to note that
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Next, we utilize the Peter-Paul inequality and Jensen’s inequality to have
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Applying (C.70) and (C.71) to (C.16) results in
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Next, from Lemma (C.9), we use Young’s inequality to have
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Adding γ
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to both sides of (C.72) and taking the full expectation in conjunc-

tion with the results from Lemmas C.7 and (C.73) yields
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Next we apply the following bound to the above relation,
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where we have used Assumption 2 part (iv) to bound ‖I−WT ‖2 ≤ 2. Finally, we subtract γ
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∥
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∥
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from both sides to complete the proof. The lower boundedness of (C.69) follows

from the non-negativity of the Frobenius norm and Assumption 1 (iv). �

Lemma C.16 Let x ∈ [0, 1). Then for any y ≥ d 2
1−x3 e, it holds that

(
y − 1

y

) 1
3

− x >
1− x

2
. (C.74)

Proof The proof begins by analyzing h(x) , x3 − x2 − x + 1 for x ∈ [0, 1). Notice that h(x) is decreasing on [0, 1) by
h′(x) = 3x2 − 2x− 1 < 0. Since h(0) = 1 and h(1−) = 0, it holds that h(x) > 0 for x ∈ [0, 1). Hence

3 + 3x3 >3x+ 3x2.

Adding 1 + x3 to both sides results in

4 + 4x3 >(1 + x)3.



Dividing by 4, adding 1 to both sides, and rearranging results in

2− 1

4
(1 + x)3 >1− x3.

Since x < 1, we divide both sides by (1− x3) and use dae ≥ a for any a ∈ R to have
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.

Taking the cube-root and subtracting x from both sides completes the proof. �

Proof of Theorem 2 Proof The proof follows similar steps as the proof for Theorem 1. We frequently use (20) to have

αk ≤ min{ 1
32L ,
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64L }. First, we show βk ∈ (0, 1) for all k ≥ 0. By α ≤ (1−ρ̃)2k
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(C.75)

where the first inequality uses k0 ≥ d 2
1−ρ̃3 e ≥ 2 and the last uses 2k

1
3
0 < 3(k0 + 1)

1
3 for all k0 ≥ 2. Rearranging (C.75) results

in
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3
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1
3

< 1 (C.76)

where the right most inequality uses 2k
1
3
0 > 0 by k0 ≥ 2. Since 1− αk+1

αk
> 0 by αk > αk+1, we also have 0 < βk.
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in (C.68) to have
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Next we lower bound (A′) - (E′). For (A′), since (1− βk)
2 < 1 we have
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Thus, using (1− βk)
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where we have used αk ≤ 2αk+1. Plugging in the definition of βk from (20) and using βk ≥ 48L2α2
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where the second inequality uses αk+1 ≤ α
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1
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and α ≤ (1−ρ̃)2k
1
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64L and the last inequality uses αk ≤ 2αk+1. Next, we

sum (C.78) over k = 0 to K − 1; using the established lower bounds to have
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where we have used φ∗ ≤ Φ̂(k) for any k ≥ 0. The final phase of the proof uses Lemma C.12 to provide a concise convergence
statement. To do so, we use Jensen’s inequality to have
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We relate each of the terms on the right-hand side of (C.80) to 12 times of the left-hand side of (C.79). Since αk ≤ 1
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Next, by αk ≤ 1
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Additionally, since
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Combining (C.81) - (C.83) in conjunction with 12 times of (C.79) and (C.80) results in
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Using

∥
∥
∥X

(k)
⊥

∥
∥
∥

2

F
≥ 0 completes the proof. �

Complexity analysis

Remark C.3 Similar to Remark C.1, the convergence of Algorithm 1 depends upon Φ̂(0) (see (C.69)), but in this setting we do
not need a big initial batch, in terms of dependence upon ε. The initial variables must be equal for all agents and the number
of initial communications to have Y(0) must be sufficiently large, as in Corollary 1.

Corollary 2 Let ε > 0 be given and assume that L ≥ 1. Under the same conditions as in Theorem 2, let x
(0)
i = x

(0)
j for all

i, j = 1, . . . , N , let the local batch size m = O (1) for all iterations, choose k0 = d 2
(1−ρ̃)6 e, and perform T0 =

⌈
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⌉

communications by Algorithm B.1 for the initial gradient tracking update in line 1 of Algorithm 1. Then choose α such that
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. (C.84)

Then for all

K ≥ 2
3
2 k0, (C.85)

Algorithm 1 produces a stochastic ε-stationary point as defined in Definition 2 in
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(C.86)

local stochastic gradient computations and T0 + T (K − 1) neighbor communications for any T ≥ 1.

Proof First, notice that k0 = d 2
(1−ρ̃)6 e ≥ d 2

(1−ρ̃3 e by (1 − ρ̃)6 ≤ (1 − ρ̃)3 ≤ 1 − ρ̃3 for all ρ̃ ∈ [0, 1). Hence k0 satisfies the

requirements of Theorem 2. Next, we have c ,
k

1
3
0

2k
1
3
0 +(k0+1)

1
3

> 1
4 for all k0 ≥ 2. Hence it holds that

c

K−1∑

k=0

αk = cα

K−1∑

k=0

1

(k + k0)
1
3

≥ cα

∫ K

0

1

(x+ k0)
1
3

dx

=
3cα

2

(

(K + k0)
2
3 − k

2
3
0

)

>
3α

8

(

(K + k0)
2
3 − k

2
3
0

)

Notice (K + k0)
2
3 − k

2
3
0 > K

2
3

2 as long as K satisfies (C.85). Hence for some iterate τ ∈ {0, 1, . . . ,K − 1} chosen with
probability

Prob
(
τ = k

)
=

cα

(k+k0)
1
3

∑K−1
j=0

cα

(j+k0)
1
3

, k = 0, . . . ,K − 1, (C.87)



it holds that

1

N

N∑

i=1

E

∥
∥
∥P
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z
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i ,∇f(z(τ)i ), ατ
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2

2
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N
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∥
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∥
∥
∥

2

F

≤ 64∆̂

αK
2
3

+
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3αK
2
3

K−1∑

k=0

(
1

L2αk+1
+

48

L(1− ρ̃)2

)

β2
kσ̂

2.

Expanding the summation on the right yields

K−1∑

k=0

(
1

L2αk+1
+

48

L(1− ρ̃)2

)

β2
kσ̂

2

=σ̂2
K−1∑

k=0

(
1

L2αk+1
+

48

L(1− ρ̃)2

)(

1− αk+1

αk

+ 48L2α2
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)2
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(
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48

L(1− ρ̃)2

)((

1− αk+1

αk

)2

+
(
48L2α2

k+1

)2

)

(C.88)

where the last inequality uses (a+b)2 ≤ 2a2+2b2 for any a, b ∈ R. Utilizing a3−b3 = (a−b)(a2+ab+b2) for any a, b ∈ R,
it holds that

1− αk+1

αk

= 1− (k + k0)
1
3

(k + k0 + 1)
1
3

=
(k + k0 + 1)−

1
3

(k + k0 + 1)
2
3 + (k + k0 + 1)

1
3 (k + k0)

1
3 + (k + k0)

2
3

. (C.89)

Notice that for all k ≥ 1 and k0 ≥ 2, it holds that

2(k + k0 + 1)
2
3 ≤ (k + k0 + 1)

2
3 + (k + k0 + 1)

1
3 (k + k0)

1
3 + (k + k0)

2
3 .

Squaring both sides of the above inequality and rearranging results in

1
(

(k + k0 + 1)
2
3 + (k + k0 + 1)

1
3 (k + k0)

1
3 + (k + k0)

2
3

)2 ≤
1

4(k + k0 + 1)
4
3

(C.90)

Utilizing (C.89) and multiplying both sides of (C.90) by (k + k0 + 1)−
1
3 , we further bound

2σ̂2
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k=0

1

L2αk+1

(

1− αk+1

αk

)2

=
2σ̂2
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1
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(
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2
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1
3 (k + k0)

1
3 + (k + k0)

2
3

)2

≤ σ̂2

2L2α

K−1∑

k=0

1

(k + k0 + 1)
5
3

≤ σ̂2

2L2α

∫ K−1

−1

1

(x+ k0 + 1)
5
3

dx

≤ σ̂2

2L2α
· 3

2k
2
3
0

=
3σ̂2

4L2αk
2
3
0

(C.91)

Again, utilizing (C.89) and multiplying both sides of (C.90) by (k + k0 + 1)−
2
3 , we have

2σ̂2
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k=0
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(

1− αk+1
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K−1∑

k=0

1

(k + k0 + 1)2

≤ 24σ̂2

L(1− ρ̃)2k0
, (C.92)



where we have also upper bounded the summation by the corresponding integral, since both (x+k0+1)−2 and (x+k0+1)−
5
3

are decreasing for all x > 0. Next, we bound

2σ̂2
K−1∑

k=0

1

L2αk+1

(
48L2α2

k+1

)2
=4608σ̂2L2α3

K−1∑

k=0

1

k + k0 + 1

≤4608σ̂2L2α3 (ln(K + k0)− ln(k0))

≤4608σ̂2L2α3 ln(K + k0), (C.93)

and for b = 2 · 483 we have,

2σ̂2
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1
3
0

. (C.94)

Plugging (C.91) - (C.94) into (C.88) results in an inequality of the form
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. (C.95)

Next, by (C.69) and (C.77), we have

Φ̂(0) , φ(x̄(0)) +
1
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2

F
, (C.96)

where we have defined α−1 , α0 for the γ
(−1)
2 term in (C.69). Similar to the proof of Corollary 1, we bound each of the terms

on the right-hand side of (C.96) by the initialization from Algorithm 1. We have

k
1
3
0

24NL2α

∥
∥
∥R

(0)
∥
∥
∥

2

F
≤ k

1
3
0 σ

2

24L2αm0
(C.97)

by (5) since d
(0)
i = 1

m0

∑

ξ∈B
(0)
i

∇fi(x(0)
i , ξ) for all i = 1, . . . , N . Notice that Y(0) = WT0

(D(0)). Hence (C.62) still holds,

so by T0 =
⌈
−2 ln(1−ρ̃)√

1−ρ

⌉

, we have (C.64). Thus, by x
(0)
i = x

(0)
j for all i, j = 1, . . . , N , we have that ∆̂ ≤ φ(x̄(0)) +
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− φ∗. By k0 = d 2
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Additionally we further bound the two terms on the right-hand side of (C.95) that contain (1 − ρ̃)−2. By the choice of k0, we
have k0 ≥ 1

(1−ρ̃)6 , thus it holds that

1

(1− ρ̃)2k
1
3
0

≤ 1 and
1

(1− ρ̃)2k0
≤ (1− ρ̃)4 ≤ 1.

Hence, by recalling α = 1
64L and b = 2 · 483, we have

24σ̂2

αL(1− ρ̃)2k0
≤ 1536σ̂2, (C.99)



and
3bσ̂2L3α3

(1− ρ̃)2k
1
3
0

≤ 3σ̂2. (C.100)

Further, it holds that 3σ̂2

4L2α2k
2
3
0

≤ 3072σ̂2; using this and plugging (C.98), (C.99), and (C.100) into (C.95) yields
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Finally, for τ chosen according to (C.87), we have
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(C.102)

where δ ,
∥
∥D(0) − D̄(0)

∥
∥
2

F
+ φ(x̄(0)) − φ∗. Choosing the initial batch size m0 = m = O (1) yields the total number of

gradient computations mK in (C.86), provided K satisfies (C.85). �

Remark C.4 Similar to the discussion provided in Remark C.2, we note that Chebyshev acceleration can be utilized to perform

the neighbor communications (lines 3 and 6 in Algorithm 1). Since k
1
2
0 = O

(
(1− ρ̃)−3

)
, this number can dominate in (C.86),

indicating that the sample complexity result is network-dependent. In order to have the complexity result as indicated in Table 1,
we perform T = d 2√

1−ρ
e Chebyshev communications rounds by Algorithm B.1 so that ρ̃ ≤ 1

2 by (B.3) and hence the sample

complexity cost is independent of ρ and ρ̃. In this regime, the number of local neighbor communications is

T0 + TK = O
(

1√
1− ρ

max

{

(Lδ)
3
2 + σ̂3 + σ3

ε
3
2

,
σ̂3 (|ln ε|+ |ln σ̂|)

3
2

ε
3
2

})

which is optimal in terms of dependence upon ρ (Scaman et al. 2017). Alternatively, if we let the initial batch size be m0 =

O
(

k
1
3
0

σ2

)

independent of ε, then the middle term in (C.102) can be dominated by the first term, in which case the sample

complexity is network-independent, after the initial iteration. For cases where the original communication network is not too
sparse, e.g. ρ is not too close to 1, this may be preferred over performing Chebyshev acceleration.


