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Abstract

Bilevel optimization have gained growing interests, with numerous applications
being found in meta learning, minimax games, reinforcement learning, and nested
composition optimization. This paper studies the problem of decentralized dis-
tributed stochastic bilevel optimization over a network where each agent can only
communicate with its neighbors, and gives examples from multi-task, multi-agent
learning and federated learning. In this paper, we propose a gossip-based decen-
tralized bilevel learning algorithm that allows networked agents to solve both the
inner and outer optimization problems in a single timescale and share information
through network propagation. We show that our algorithm enjoys the G( |e-1-»2‘) per-

agent sample complexity for general nonconvex bilevel optimization and Q(-)
for Polyak-tojasiewicz objectives, achieving a speedup that scales linearly \Aﬁth
the network size K. The sample complexities are optimal in both == and K. We
test our algorithm on the examples of hyperparameter tuning and decentralized
rein-forcement learning. Simulated experiments confirmed that our algorithm
achieves the state-of-the-art training efficiency and test accuracy.

1 Introduction

In recent years, stochastic bilevel optimization (SBO) has attracted increasing attention from the

machine learning community. It has been found to provide favorable solutions to a variety of

problems, such as meta learning and hyperparameter optimization (Franceschi et al., 2018; Snell et al.,
2017; Bertinetto et al., 2018), composition optimization (Wang and Liu, 2016), two-player games
(Von Stackelberg and Von, 1952), reinforcement learning and imitation learning (Arora et al., 2020;
Hong et al., 2020). While the majority of the above mentioned work focuses on algorithm designs in

the classic centralized setting, such problems often arise in distributed/federated applications, where
agents are unwilling to share data but rather perform local updates and communicate with neighbors.
Theories and algorithms for distributed stochastic bilevel optimization are less developed.

Consider the decentralized learning setting where the data are distributed over K agents K =
{1,2,---, K} over a communication network. Each agent can only communicate with its neighbors
over the network. One example is federated learning which is often concerned with a single-server-
multi-user system, where agents communicate with a central server to solve a task cooperatively (Lan
and Zhou, 2018; Ge et al., 2018). Another example is the sensor network, where sensors are fully
decentralized and can only communicate with nearby neighbors (Taj and Cavallaro, 2011).

We consider the following decentralized stochastic bilevel optimization (DSBO) problem,

( ) ( )
min F(x) = i)« fR(x, y*(x)) , st y’(x) = argmin i)@ g“ x,y) , (1)
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Figure 1: Illustration of Distributed Network Structures. In a centralized network, the agents may
cooperate to solve a specific task by communicating with the central server, commonly seen in
federated learning.

where fX(x,y) = E . [f¥(x,y;4%)] and g“(x, y) = E..[g"(x,y; «-X)] may vary between
agents. The expectations E;«[*] and E..«[*] are taken with respect to the random variables i*

and «-¥, with heterogeneous distributions across agents. We consider the scelpario where each

gX(x, y) is strongly convex iny. We use the notation F*" = min,,ga F (X), fK(x, y)= % K2 K

fk(xly)l aﬂ‘dg(x;y)£ K kZKg (le)for
convenience.

1.1 Example applications of SBO

SBO was first employed to formulate the resource allocation problem (Bracken and McGill, 1973)
and has since found its applications in many classic operations research settings (Cramer et al., 1994;
Sobieszczanski-Sobieski and Haftka, 1997; Livne, 1999; Tu et al., 2020; Tu, 2021), and more recently in
machine learning problems (Franceschi et al., 2018; Snell et al., 2017; Bertinetto et al., 2018;
Wang and Liu, 2016). In particular, we introduce two applications that have recently attracted lot of
attention, namely hyperparameter optimization and compositional optimization.

Hyperparameter Optimization The problem of hyper-parameter tuning (Okuno et al., 2021) often
takes the following form:

Oy ? ) ? & 9
min “(yT(x)) , sty (x)2 argmin T (y)+ R(x,y) , (2)

; )
x2Rd y2RIy * !

i2Dval " j2Dtrain !

where D . and D are two datasets used for training and validation, respectively, y 2 Ry isa

vector of unknown parameters to optimize, “j(y) is a convex loss over data i, and x 2 R is a vector

of hyper-parameters for a strongly convex regularizer R(x, y). For any hyper-parameter x 2 R9,

the inner-level problem solves for the best parameter y’(x) over the training set Dirain under the

regularized training loss " (y) + R(x, y). The goal is to find the hyper-parameter x*= 2 RY whose
corresponding best response y’(x) yields the least loss over the validation set D, . In practice,
continuous hyperparameters are often tuned by a grid search which is exponentially expensive. An
efficient SBO algorithm should find the optimal parameters in time increasingly polynomially with
the dimension, rather than exponentially. When the training and validation sets are distributed across
nodes, the problem becomes a distributed SBO.

Compositional Optimization Let g(x, «-):R9 1 R9v andf(y, ) :R9 | R betwo
stochastic mappings. Stochastic compositional optimization (SCO) (Wang et al., 2017a) takes the
form

min E: [f(Ec-[h(x; <)]; ).
x2X

SCO applies to risk management (Yang et al., 2019; Ruszczynski, 2021), machine learning (Chen
et al., 2021b), and reinforcement learning (Wang et al., 2017b). SCO was identified as a special
case of SBO by (Chen et al., 2021c). To see this, we take the inner optimization objective to be
g(x,y) = Ely h(x,«))?]. Thusy’(x) = argmin g(x,y) becomesy?(x) = E_[h(x; «)],
arriving at an instance of SBO.



1.2 Challenges with Distributed SBO

Despite the recent rapid development of distributed single-level optimization, a method appropriate to
DSBO remains elusive. The major hurdle to solving DSBO lies in the absence of explicit knowledge
of y?(x), so that an unbiased gradient for rf (x, y°(x)) is not available. Recently, by applying the
implicit function theorem, (Couellan and Wang, 2016; Ghadimi and Wang, 2018) showed that the
gradient of a non-distributed SBO can be expressed as

rf Gy (X)) ey ()2, e(x, vy ()] Tryf(x, y7(x)), (3)
providing a connection between SBO and classical stochastic optimization. Since then, various
algorithms have been proposed to obtain sharp estimators for y?(x) and reduce the bias of the
constructed gradients (Chen et al., 2021a; Hong et al., 2020; Ji et al., 2021; Yang et al., 2021). These
techniques result in tight convergence analysis and give rise to algorithms widely used in applications.
However, no prior algorithms can be applied to the distributed setting.

Solving Problem (1) becomes challenging in the distributed setting in several aspects:

1. Even in single-agent SBO, the lack of y?(x) makes outer optimization nontrivial, and estimat-
ing y?(x) requires additional stochastic approximation, weighted averaging, and sophisticated
calculation.

2. Calculating the outer gradient is highly nontrivial, even when we have an inner solution y. Note
that

1 X

K

rz)ygk(x;y)[rzwgk(xly)] 1rYfk(Xl y) = rz)yg(X,Y)[rz\yg(X,V)] 1ryf(xly)- (4)

k2K
In other words, even if the inner problem is solved, the outer gradient requires a new estimation
mechanism.

3. Now we move to SBO over distributed networks. In network learning, communication between
agents can be limited by the network structure and communication protocol, so taking a simple
average across agents may require multiple communication rounds.

Because of the above difficulties, it remains unclear how to estimate the outer gradient sharply under a
distributed network. In an attempt to tackle this problem, this paper studies the convergence theory and
sample complexity of gossip-based algorithms. In particular, we ask two theoretical questions:

(i) How does the sample complexity of DSBO scale with the optimality gap and network size?
(ii) How is the efficiency of DSBO affected by the network structure?

In this paper, we develop a gossip-based stochastic approximation scheme where each agent solves
an optimization problem collaboratively by sampling stochastic first- and second-order information
using its data and making gossip communications with its neighbors. In addition, we develop novel
techniques for convergence analysis to characterize the convergence behavior of our algorithm. To
the best of our knowledge, our work is the first to formulate DSBO mathematically and propose an
algorithm with theoretical convergence guarantees. Moreover, we show that our algorithm enjoys an
@ (1<-11_) sample complexity for finding «==-stationary points for nonconvex objectives, whereO (-)

hides logarithmic factors, and enjoys an O(-1-) sample complexity for Polyak-tojasiewicz (PL)
functions, subsuming strongly convex optimization. These results subsume the state-of-the-art
results for non-federated stochastic bilevel optimization (Chen et al., 2021c) and central-server
regimes (Tarzanagh et al., 2022), showing that almost no degradation is induced by network
consensus. Further, the above results suggest that our algorithm exhibits a linear speed-up effect for
decentralized settings; that is, the required per-agent sample complexities decrease linearly with the
number of agents.

2 Related Works

Bilevel optimization was first formulated by (Bracken and McGill, 1973) for solving resource
allocation problems. Later, a class of constrained-based algorithms was proposed by (Hansen et
al., 1992; Shi et al., 2005), which treats the inner-level optimality condition as constraints to the
out-level problem. Recently, (Couellan and Wang, 2016) examined the finite-sum case for
unconstrained strongly convex lower-lower problems and proposed a gradient-based algorithm that



Stochastic Bilevel Optimization
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Stochastic Compositional Optimization
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Table 1: Summary of per-agent sample complexities for nonconvex stochastic bilevel and compo-
sitional optimization in different settings: BSA (Ghadimi and Wang, 2018), ALSET (Chen et al.,
2021c), stocBio (Ji et al., 2021), FEDNEST (Tarzanagh et al., 2022), SCGD (Wang and Liu, 2016),
and NASA (Ghadimi et al., 2020). Given the weight matrix W, - = kW % 117k3.

exhibits asymptotic convergence under certain step-sizes. For SBO, (Ghadimi and Wang, 2018)
developed a double-loop algorithm and established the first known complexity results. Subsequently,
various methods have been employed to improve the sample complexity, including two-timescale
stochastic approximation (Hong et al., 2020), acceleration (Chen et al., 2021a), momentum (Khanduri et
al., 2021), and variance reduction (Guo et al., 2021; Ji et al., 2021; Yang et al., 2021).

Distributed optimization was developed to handle real-world large-scale datasets (Dekel et al., 2012;
Feyzmahdavian et al., 2016) and graph estimation (Wang et al., 2015). Centralized and decentralized
systems are both important problems that have drawn significant attention. A centralized system
considers the network topology where there is a central agent that communicates with the remaining
agents (Lan and Zhou, 2018), while in a decentralized system (Gao and Huang, 2020; Koloskova et al.,
2019; Lan et al., 2020; McMahan et al., 2017), each agent can only communicate with its neighbors by
using gossip (Lian et al., 2017b) or gradient tracking (Pu and Nedi¢, 2021) communication
strategies, with applications in multi-agent reinforcement learning (Xu et al., 2020). Variance
reduction approaches (Xin et al., 2020, 2021; Lian et al., 2017a) have also been applied to improve
the convergence rate of decentralized optimization. Random projection schemes have been studied to
handle large sets of constraints (Wang and Bertsekas, 2015, 2016; Liu et al., 2015). All of the above
trials were made on vanilla stochastic optimization problems. We are the first to study the
decentralized bilevel optimization problem to our knowledge. Table 1 compares this work with prior
arts under different settings.

3 Problem Setup

Assumption 3.1 (Sampling Oracle SO) Agent k may query the sampler and receive an indepen-
dent locally sampled unbiased first- and second-order information ryf*(x, y; i ¥),

ryFEOG Y5 e X), ryg (x, y; e f), r2ygh(x, v; «-¥), and r? gk (x, y; «¥).

Assumption 3.2 (Gossip Protocol) The network gossip protocol is specified by a K -1 K symmetric
weight matrix W with nonnegative entries. Each agent kF;nay receive information from its neighbors,
e.8. zj, ] 2 Nk, and aggregate them by a weighted sum~ ;, Wk,jzj. Further, matrix W satisfies

P P
(i) W is doubly stochastic such that ; wj; = 1and wi,; = 1foralli,j 2 [K].

j
(ii) There exists a constant -» 2 (0, 1) such that kW KLl 171, = -, where kAk, denotes
the spectral norm of A 2 RK™K,

These assumptions on the adjacency matrix are crucial to ensure the convergence of decentralized
algorithms and are commonly made in the literature of decentralized optimization (Lian et al., 2017b).

Assumption 3.3 Let C, L, be positive scalars. The outer level functions {fk} ,,  satisfy the
followings.



(i) There exists at least one optimal solution to Prob. (1).

(ii) Bothrxf¥(x,y) and ryf¥(x,y) are L¢ -Lipschitz continuous in (x, y) such that for all
X1, X2 2 R9x and y1,vy2 2 RYy,
erfk(xllyl) rxfk(xz,yz)k BLf(kxy x2k+ ky:r yz2k), and
kryfk(xl,yl) I"yfk(Xz,yz)ka(kxl X2k+ kyl yzk).

(iii) Forallx 2 R9 andy 2 R9v,
Elkryf¥(x, y; $¥)k?]1 B C% and E[kr«f¥(x, y; i¥)k?] B C?,

Assumption 3.4 Let C, L, By, Wy, @, be positive scalars. The inner level functions {g"} o«
satisfy the followings.

(i) Forallx 2 R9, g(x,y) is pg-strongly convex in y.
(ii) Forallx 2 R9x andy 2 R9v, g*(x, y) is twice continuously differentiable in (x, y).

(iii) ryg*(x,y), r2,g*(x,y), and rzwgk(x, y) are Lipschitz continuous in (x, y) such that for
all x1, x2 2 R andy1,y2 2 R,

kryg“(x1,y1) ryg*(x2,y2)k Blg(kxs xak+ ky1 yak),
kre,8 (1, y1) r8%(k2, v2)ke Blg(lko@ x2k+ kyr  yak),
kr§ygk(x1,y1) ryzygk(xz,yz)kp B Eg(kx1 xa2k+ ky:1 y2k).

(iv) For all x 2 R,y 2 R, rygh(x,y; k), rzygk(x,y;e--k), and r2,g*(x,y; «¥)
have bounded second-order moments such that E[kr,gX(x,y; <-¥)k?] ng,
Elkr? 8" (x, y; «-*)K2] BL2, and E[kr? g"(x, y; «-¥)k*] BIL2 .

(v) Forallx 2 R9x,y 2 R9v, | gr 2y8 kK(x, y; «*) has bounded second moment such
that E[ k& b r2,gX(x,y; k2] B (1 Bg)?, where 0 < Bfa L, 2L

We defer the detailed assumptions to Section A.1 of the supplement.

Note that we denote by kAkz = max(A) the induced 2-norm for any matrix A. Here we point out
that the above assumptions allow heterogeneity between functions f*’s and g*’s over the agents, and

the smoothness and boundedness conditions are commonly adopted in SBO (Hong et al., 2020; Chen
et al., 2021a).

4 Algorithm

As discussed in Section 1.2, the key challenge to solving DSBO is that each agent only has access to
its own data but is required to construct estimators for the gradients and Hessian averaged across all
agents. It is particularly challenging to construct such estimators when limited by the network’s
communication protocol.

To overcome this issue, we propose a gossip—based DSBO algorithm where each agent k 2 K

iteratively updates a solution pair ( A k) by using the combination of gossip communications and

welghted average stochastlchpproxmatlon where y serves as an estimator of the best response y’
TV’ (X 7y) with Xy @ = K Lk x . The full algorlthm is givenin Alg. 1.

Here we briefly explain the idea of our DSBO algorithm. Suppose agent k would like to estimate
r, f(x¥, y¥) by s¥, under Alg. 1 Step 6, it would query the stochastic first-order information using
its own data, make gossip communications with neighbors, and update its estimators by taking the
weighted average of its previous estimate s¢ ;, neighbors j’s estimate sé 1, and the newly sampled
gradient r  f*(x¥, y¥; {¥). Roughly speaking, this procedure can be viewed as taking a weighted
average of the gradients sampled by all agents over the network, except that the effect of consensus
should also been taken into account.



Algorithm 1 Gossip-Based Decentralized Stochastic Bilevel Optimization

input: Step-sizes {¢ .}, { }, { (}, total iterations T, sampling oracle SO, weight matrix W,
smoothness constant Lg, hessian sampling parameter b
x§=0,y§=0,u5= 0,56 =0,hb = 0,v§, = pgl fori=1,2,---,b
1: fort=0,1,---,T 1do
2: fork=1,---,K do
3: Local sampling: Query SO at (x¥, y¥) to obtain ryf* (x*, y*; £%), ryfk(xk yk; i¥),
ryg*(x%, v%; «:%), r2, gk (xk, y¥; %), and

{r2, g (kb y ks ek . ty o
4: Outer loop update: xk, ; = p 2N, wk,jx{ dy sk ukgkhk
5: Inner loop update: y¢,; = |5y, wk,jyljj et ot
erygX (XK, y¥; k). )
6: Estimate ryf (x¢, yt): ska = (1 ) P3Ny WhiSt erxF R (x5, y%; 5., 7

Estimate ryf(xt, yi): h&, 1= (1 ) pi2N, wihl + oy fR(xk, vk £%).

s: Estimate rZ)vg(Xt, Yt)3 ui(_*_l = (1 t) i2N ka,j ut]+ trzwgk(xk,tyki(-“»r).
9: Estimate [r%,g(x¢, yi)] *:Set Qg o = |
10: fori=1,"',bd0p
11: Vi = (1 ) o, WiivE+ ‘
: t+1,i t J2Ny k,jiVi,i y t ot
K (yk . . -
trzyg (x*, v%; "“t,i): 12: g tlil,i = K+ (1 L Vt+1,i)Qt+1,i 1
13: end for
K k
14:  Setdfiy = Qi
15:  end for
16:—end-for P

- k
output: * "¢ =L, Xy

The updates for ry f and r 2 g are conducted in a similar manner (Steps 7 & 8), but it requires
extra efforts to evaluate [rzyyg] 1, because it has no unbiased estimator. To be specific, we note
that T, [r2,e*] 1 = [, r% 8"l !, making the unbiased estimator of the desired
term unavailable even if each agent has an unbiased estimator for [rzyygk] 1. This is indeed a
unique challenge for decentralized bilevel optimization. T o overcome this issue, we propose a novel
approach that each agent k constructs b independent estimators {Vlé,j }’J?=1 for rzwg(x';, ytk) using

consensus and stochastic approximation. We then estimate r Zyy g(x{‘, ytk) by utilizing the following
approximation.

i 1 Xb i 1 Bl xb i i 1
—r2g(xf,yE) T+ I e eixaky T+ I S
Lg j=1 Le i=1j=1 Le

We provide details in Steps 9 - 14.

Finally, each agent will compute the gradient (3) using the estimators obtained in the above procedure
and update the outer solution x'; by using the combination of gossip communication and stochastic
gradient descent (Step 4). The inner loop solution y can be updated similarly by Step 5.

We highlight the following key features of our DSBO algorithm: (1) each agent only communicates
its estimates instead of the raw data in the gossip-communication process, preserving data privacy.
(2) agent k makes O(|N, |) communications with its neighbors in each round, which is much less
than the total number of agents in a naive approach. (3) the algorithm is robust to contingencies in the
network. If a communication channel fails, the agents can still jointly learn provided that the network
is still connected. By contrast, a single-center-multi-user network would fail completely in case of a
center failure.

5 Theory

In this section, we analyze the performance of our DSBO algorithm for both nonconvex and PL
objectives and derive the convergence rates for both cases.



5.1 Nonconvex Objectives

We first consider the scenario where overall the objective function F (x) is nonconvex. For nonconvex
objectives, given the total number of iterations T, we employ the step-sizes in a constant form such

that q__ q

di=Co &, t= ¢= &, andb= -(log(T))forallt=10,1,---,T, (5)

where Co > 0 is a small constant.

Compounded effect of consensus and SBO: As discussed earlier, to derive the convergence rate of
SBO under decentralized federated setting, the key step is to quantify the compounded effect between
the consensus errors induced by the network structure and the biases induced by estimating gradient
within (3). Unlike the central-server or non-federated regimes, the consensus errors induced by the
decentralized network structure must be handled carefully. We conduct a thorough analysis to derive
the contraction of consensus errors, and further show that both the bias and variance of the averaged
estimator diminish to zero, establishing a nontrivial convergence argument for the desired gradient
and Hessian. In particular, the estimators preserve a concentration property so that their variances
decrease proportionally to 1/K, suggesting that the network consensus effect does not degrade the
concentration of the generated stochastic samples. To achieve the best possible convergence rate, we
carefully set the algorithm parameters, including the step-sizes ¢, , , and averaging weights ,, to
control the above consensus errors and biases.

We provide the convergence rate of Alg. 1 in the following theorem and defer the detailed proof to
Section B.7 of the supplementary material.

)
Theorem 5.1 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Letting* "t =2 |, %,
en v v
. X g le ")k’ @0 . o A
— - —_— + e —
T, RO T =)

More details and proof are deferred to Section B.7 of the supplement.

Effect of consensus: In this result, the O(T(+Z ) term represents the errors induced by the consen-
sus of the network. Despite the depending on the network structure, this term diminishes to zero in the
order of O(1/T), becoming a small order term when T is large. Consequently, given the network
topology, the asymptotic convergence behavior of DSBO is independent of the network structure,
answering question (ii) raised in Section 1.
Linear speedup: Because each agent queries O(b) stochastic samples per round, clearly the
required iteration and per-agent sample complexities for finding an «=-stationary point such
; thatd T OLE[KrF (X7 )k o= are O(—2-) and O(—1-), respectively. This result implies
that our algorithm achieves a lineprspeed-up effect proportionate to the number of agents K. In
other words,
in the presence of more agents, each agent needs to obtain fewer stochastic samples to achieve
a specified accuracy. Meanwhile, our rate also matches the best-known O (1/K=2) iteration and
per-agent sample complexities under the decentralized vanilla stochastic gradient descent settings
(Lian et al., 2018). This is the first time such a result has been established for DSBO problems.
Single-center-multi-user-federated SBO: We point out that a simplified version of our algorithm
solves single-center-multi-user-federated SBO, where the central server collects information directly
from each agent and calculates the gradient by employing the weighted-average stochastic approxi-
mation scheme for the collected information. In such a scenario, the agents no longer communicate
by gossip with neighbors but synchronously receive a common solution from the central server, so
that the consensus effect disappears. In Theorem D.1, we show that a variant of our algorithm can
indeed achieve the same O ( &KliT) convergence rate in this setting.

5.2 PL Objectives
Next we study the case where the objective function satisfies the following p-PL condition.

Assumption 5.2 There exists a constant i > 0 such that the objective satisfies the PL condition:

2u(F(x) F*)BkrF(x)k2.



Note that the class of strongly convex functions is a special case of PL functions. To utilize the pu-PL
property and achieve fast convergence, unlike the nonconvex case (5) where the step-sizes are set as
constants depending on the total number of iterations T, we employ step-sizes in a diminishing form

that
dy = 2 = = €1 andb = -i(log(T)) fort 1 (6)
M(C1 + t)’ Ci+ t ’
where C, > 0O is a large constant. By following an analytical process similar to that of the nonconvex
scenario, in the next result, we derive the convergence rate of Alg. 1 for -PL objectives.

Theorem 5.3 Suppose Assumptici:ns 3.1, 3.2, 3.3, and 3.4 hold and the function satisfies the p-PL
1

Assumption 5.2. Letting* 7 = L x, then
v v
EIF(r)] F"BO — +0 — 1 —
T TUKT T2(1 )2

The iteration and per-agent sample complexities for finding an ==-optimal point E[F (* "7t)] F*“
= are é—( Ko ) aﬁd'(l)( k=), respectively.

Details and proof are deferred to Section C.2 of the supplement. This result shows that our algorithm
achieves a faster convergence rate for functions satisfying the p-PL condition in terms of both iteration
and sample complexities. First, as in the nonconvex scenario, the consensus error decays in the
order of @(T—Tﬁ ). Dominated by O(-%-), such on order of consensus decaying order indicates
that the network structure will not affect Alg. 1’s asymptotic convergence behavior under p-PL
objectives. Meanwhile, the above result implies that Alg. 1 speeds up linearly with the number of
agents and matches the optimal O(1/+=) sample complexity for single-server vanilla strongly-convex
stochastic optimization (Rakhlin et al., 2011). As a result, our algorithm achieves the optimal sample
complexities for decentralized stochastic bilevel optimization, establishing the benchmark.

6 Numerical Experiments

In this section, we validate the practical performance of our algorithm in two examples: hyper-
parameter optimization and policy evaluation in Markov Decision Processes (MDP), on artificially
constructed decentralized ring networks. We run the experiments on a single server desktop computer.
We provide the details of federate hyper-parameter optimization and federated policy evaluation.

Hyper-parameter Optimization We consider federated hyper-parameter optimization (2) for a
handwriting recognition problem over the Australia handwriting dataset (Chang and Lin, 2011)
consisting of data points (w ,z ), wherew 2 R* s the feature and z 2,{0, 1} indicates whether this
data point belongs to category “1” or not. In our experiment, we consider the sigmoid loss function
thatl (z) = 1/(1 + exp( z)) and a strongly convex regularizer R(x, y) = fj=1 i ky, k2.
We consider a ring network of K agents where each agent i preserves two neighbors (i 1') andz( i+1)
and conducts a gossip communication strategy with adjacency matrix wi,; = l3forj 2 {i 1,i,i+1}.

Before testing Alg. 1, we first randomly split the dataset for training and validation, and then allocates
both training and validatl_i)on dataset over K agents. We then run Algorithm 1 for T = 20000 iterations,
withb = 200, ¢t = 0.1 K/T,and (= = 10 K/T.

To provide a benchmark for comparison, we implement a baseline algorithm Decentralized Bilevel
Stochastic Approximation (DBSA) algorithm, a naive extension of the double-loop BSA algorithm
(Ghadimi and Wang, 2018) in the decentralized setting, formally stated in Section E.1 of the supple-
mentary materials.

We first consider K = 5, test Alg. 1 for 5 - 10* iterations, and compare its performance with DBSA.
We report the validation loss against total samples in Figure 2 and observe that DSBO exhibits
better performance than DBSA. In particular, Further, we observe that our algorithm outperforms the
baseline algorithm DBSA in that it requires fewer samples for DSBO to achieve a certain accuracy.

To investigate the efficiency of Alg. 1 to the network structure, we test Alg. 1 over K = 5,10, 20, and
report the details of training and validation loss in Figure 2. Further, comparing the performances of Alg.
1 over different agents K = 5, 10, 20, we observe that Alg. 1 converges faster when using more
agents. This observation suggests that Alg. 1 exhibits a speed-up effect when using more agents.
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Figure 2: (a) Empirical averaged training loss against total samples for DSBO K = 5,10, 20 and
DBSA K = 5. (b) Empirical averaged validation loss against iteration for DSBO K = 5,10, 20. All
figures are generated through 10 independent simulations over the Australia handwriting dataset.
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We provide additional experiments on networks of larger size (K = 100) and various topologies
(fully-connected and randomly-connected) in Section E.1 of the supplement.

Distributed Policy Evaluation for Reinforcement Learning We consider a multi-agent MDP
problem that arises in reinforcement learning. Let S be the state space. For any state s 2 S, we denote
the value function by V (s). We consider the scenario where the value function can be approximated
by a linear function such that V (s) = :x”‘, where (2 R™ isafeatureand x” 2 R™ is an unknown
parameter. To obtain the optimal x'~, we consider the following regularized Bellman minimization
problem X

. 2 2
min F(x) = z_|1s| > Esolr(s,s%)+ T |s] T+ 2K

S
s2S
where r(s, s°) is the random reward incurred by a transition s to s°, 2 (0, 1) is the discount factor,
is the coefficient for the | ,-regularizer, and the expectation is taken over all random transitions from
s to sP.

In the federated learning setting, we consider a ring network of K agents. Here each agent k has access
to its own data with a heterogeneous random reward function r* and cap only communicate with its
two neighbors k + 1andk 1. Wedenotebyy”(x) = >x Es [Kl ok (s, ) + Zox | s]
where rk(s, s€) is the random reward function for agent k. The above problem can then be recast as a
bilevel optimization problem

X 2

. 7 = k

min f(x,y’(x)) = o, (y,(x))? + <.
x2Rd <25

As pointed out by (Wang et al., 2016), the above problem is -strongly convex.

In our experiments, we simulate an environment with state space | S| = 100 and set the regularizer

parameter = 1. We test the performance of Alg.1 over three cases with K = 5,10, 20 and conduct
10 independent simulations for each K. We implement a baseline double-loop algorithm DSGD that
first estimates y” (x ) with t samples in iteration t and then optimizes the solution x, . We defer the
implementation details of the environment and above algorithms to Section E.2 of the supplement.

We first consider K = 5, run Alg. 1 for 10* iterations and compare its performance with DSGD.
We plot the empirical averaged mean square error kx,  x*k? against total samples generated by all
agents in Figure 2. This empirical result suggests that Alg. 1 outperforms the DSGD. To investigate
the convergence rate of DSBO, we compare the performance of DSBO over all three scenarios with
K = 5,10, 20 and plot the trajectory of the averaged log-error log(k*;  x*k?) averaged, with one a
straight line of slope -1 provided for comparison. We observe that for all four cases, the slopes of
log(k*;  x*k?2) are close to -1, matching our theoretical claim in Theorem 5.3 that Alg. 1
converges at a rate of O(1/t) for strongly convex objectives.

In the above experiment, we also note that Alg. 1 converges faster when using more agents. T o further
demonstrate the linear speedup effect, we compute the total generated samples for finding an *=-optimal

solutipn k* ~ x'“k? [@ == and plot the 75% confidence region of the log-sample against the
number of agents K = 5,10, 20 in Figure 3. We observe that it takes a roughly same number of
samples to



%102

Empirical Clenvergence Empirical Log-Convergenes 75% Confidence Region for e = 107°
K 11
m ?

7000 2000 3 7 [ 70 75 2
Total Samples Log-Tteration log{#) Servers K

(a) (b) (c)
Figure 3: (a) Empirical averaged MSEk* " x""k? against total samples for DSBO K =
5,10,20and DSGD K = 5. (b) Empirical averaged lQg-MSE log(k* ~ X k?) against log-
iteration log(t) for
DSBOK = 5,10, 20. (c) 75% confidence region of log- total samples for achieving k* ~, x*" k2 @ =,
with varying network sizes K = 5,10,20. All figures are generated through 10 independent
simulations.
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find a 10 ®-optimal solution despite different number of agents being involved. This suggests that
the per-node sample complexity decreases linearly with K, validating the linear speedup claim in
Theorem 5.3. We provide additional numerical results for other optimality level == in Section E.2 of
the supplementary material to further demonstrate the linear speedup effect.

7 Conclusion

In this paper, we propose a novel formulation for decentralized stochastic bilevel optimization. We
develop a gossip-based stochastic approximation scheme to solve this problem in various settings.
We show that our proposed algorithm finds a stationary point at a rate of O (}TT ) for

nonconvex objectives, and converges to the optimal solution at aiégte of O( ) for PL
objectives. Numerical experiments on hyper-parameter optimization and multi-agent federated
MDP demonstrate the practical efficiency of our algorithm, exhibit the effect of speed-up in a
decentralized setting, and validate our theoretical claims. In our future work, we wish to develop
algorithms that achieve lower iteration complexities and enjoy lower communication costs.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes], , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

¢ Did you include the license to the code and datasets? [Yes]

¢ Did you include the license to the code and datasets? The code and the data are
proprietary.

¢ Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This is an
algorithmic and theoretical work justified by numerical experiments. We are not aware
of any negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are
provided in the supplement.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? We will provide
the code via github in the camera-ready version stage.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? We provided averaged results over different random seeds
and the obtained results are stable.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A] The dataset is publicly available and
no license is required.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
We are not releasing new assets.

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A] We cited the website link where data is presented.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? The data does not contain personally identifiable
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We did not involve human subjects.
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Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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