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Abstract

In recent years, reinforcement learning (RL) systems with general goals beyond a cumulative sum
of rewards have gained traction, such as in constrained problems, exploration, and acting upon
prior experiences. In this paper, we consider policy optimization in Markov Decision Problems,
where the objective is a general concave utility function of the state-action occupancy measure,
which subsumes several of the aforementioned examples as special cases. Such generality invalidates
the Bellman equation. As this means that dynamic programming no longer works, we focus on
direct policy search. Analogously to the Policy Gradient Theorem Sutton et al. (2000) available for
RL with cumulative rewards, we derive a new Variational Policy Gradient Theorem for RL with
general utilities, which establishes that the parametrized policy gradient may be obtained as the
solution of a stochastic saddle point problem involving the Fenchel dual of the utility function. We
develop a variational Monte Carlo gradient estimation algorithm to compute the policy gradient
based on sample paths. We prove that the variational policy gradient scheme converges globally to
the optimal policy for the general objective, though the optimization problem is nonconvex. We
also establish its rate of convergence of the order O(1/t) by exploiting the hidden convexity of
the problem, and proves that it converges exponentially when the problem admits hidden strong
convexity. Our analysis applies to the standard RL problem with cumulative rewards as a special
case, in which case our result improves the available convergence rate.

c©2020 Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang.
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1. Introduction

The standard formulation of reinforcement learning (RL) is concerned with finding a policy that
maximizes the expected sum of rewards along the sample paths generated by the policy. The additive
nature of the objective function creates an attractive algebraic structure which most efficient RL
algorithms exploit. However, the cumulative reward objective is not the only one that has attracted
attention. In fact, many alternative objectives made appearances already in the early literature on
stochastic optimal control and operations research. Examples include various kinds of risk-sensitive
objectives Kallenberg (1994); Borkar and Meyn (2002); Yu et al. (2009); Mannor and Tsitsiklis
(2011), objectives to maximize the entropy of the state visitation distribution Hazan et al. (2018),
the incorporation of constraints Derman and Klein (1965); Altman (1999); Achiam et al. (2017), and
learning to “mimic” a demonstration Schaal (1997); Argall et al. (2009).

In this paper, we consider RL with general utility functions, and we aim to develop a principled
methodology and theory for policy optimization in such problems. We focus on utility functions that
are concave functionals of the state-action occupancy measure, which contains many, although not
all, of the aforementioned examples as special cases.The general (or non-standard Kallenberg (1994))
utility is a strict generalization of cumulative reward, which itself can be viewed as a linear functional
of the state-action occupancy measure, and as such, is a concave function of the occupancy measures.

When moving beyond cumulative rewards, we quickly run into technical challenges because of
the lack of additive structure. Without additivity of rewards, the problem becomes non-Markovian
in the cost-to-go Takács (1966); Whitehead and Lin (1995). Consequently, the Bellman equation
fails to hold and dynamic programming (DP) breaks down. Therefore, stochastic methods based
upon DP such as temporal difference Sutton (1988) and Q-learning Watkins and Dayan (1992); Ross
(2014) are inapplicable. The value function, the core quantity for RL, is not even well defined for
general utilities, thus invalidating the foundation of value-function based approach to RL.

Due to these challenges, we consider direct policy search methods for the solution of RL problems
defined by general utility functions. We consider the most elementary policy-based method, namely
the Policy Gradient (PG) method Williams (1992). The idea of policy gradient methods is that to
represent policies through some policy parameterization and then move the parameters of a policy in
the direction of the gradient of the objective function. When (as typical) only a noisy estimate of the
gradient is available, we arrive at a stochastic approximation method Robbins and Monro (1951);
Kiefer et al. (1952). In the classical cumulative reward objectives, the gradient can be written as
the product of the action-value function and the gradient of the logarithm of the policy, or policy
score function Sutton et al. (2000). State-of-the-art RL algorithms for the cumulative reward setting
combine this result with other ideas, such as limiting the changes to the policies S Kakade (2002);
Schulman et al. (2015, 2017), variance reduction Kakade (2002); Papini et al. (2018); Xu et al. (2019),
or exploiting structural aspects of the policy parameterization Wang et al. (2019); Agarwal et al.
(2019); Mei et al. (2020).

As mentioned, these approaches crucially rely on the standard PG Theorem Sutton et al. (2000),
which is not available for general utilities. Compounding this challenge is the fact that the action-value
function is not well-defined in this instance, either. Thus, how and whether the policy gradient can
be effectively computed becomes a question. Further, due to the problem’s nonconvexity, it is an
open question whether an iterative policy improvement scheme converges to anything meaningful: In
particular, while standard results for stochastic approximation would give convergence to stationary
points Borkar (2009), it is unclear whether the stationary points give reasonable policies. Therefore,
we ask the question:

Is policy search viable for general utilities,
when Bellman’s equation, the value function, and dynamic programming all fail?

We will answer the question positively in this paper. Our contributions are three-folded:
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• We derive a Variational Policy Gradient Theorem for RL with general utilities which establishes
that the parametrized policy gradient is the solution to a stochastic saddle point problem.

• We show that the Variational Policy Gradient can be estimated by a primal-dual stochastic
approximation method based on sample paths generated by following the current policy Arrow
et al. (1958). We prove that the random error of the estimate decays at order O(1/

√
n) that

also depends on properties of the utility, where n is the number of episodes .

• We consider the non-parameterized policy optimization problem which is nonconvex in the
policy space. Despite the lack of convexity, we identify the problem’s hidden convexity, which
allows us to show that a variational policy gradient ascent scheme converges to the global
optimal policy for general utilities, at a rate of O(1/t), where t is the iteration index. In the
special case of cumulative rewards, our result improves upon the best known convergence rate
O(1/

√
t) for tabular policy gradient Agarwal et al. (2019), and matches the convergence rate of

variants of the algorithm such as softmax policy gradient Mei et al. (2020) and natural policy
gradient Agarwal et al. (2019). In the case where the utility is strongly concave in occupancy
measures (e.g., utilities involving Kullback-Leiber divergence), we established the exponential
convergence rate of the variational gradient scheme.

Related Work. Policy gradient methods have been extensive studied for RL with cumulative
returns. There is a large body of work on variants of policy-based methods as well as theoretical
convergence analysis for these methods. Due to space constraints, we defer a thorough review to
Supplement A.

Notation. We let R denote the set of reals. We also let ‖ · ‖ denote the 2-norm, while for matrices
we let it denote the spectral norm. For the p-norms (1 ≤ p ≤ ∞), we use ‖ · ‖p. For any matrix B,
‖B‖∞,2 := max‖u‖∞≤1 ‖Bu‖2. For a differentiable function f , we denote by ∇f its gradient. If f

is nondifferentiable, we denote by ∂̂f the Fréchet superdifferential of f ; see e.g. Drusvyatskiy and
Paquette (2019).

2. Problem Formulation

Consider a Markov decision process (MDP) over the finite state space S and a finite action space A.
For each state i ∈ S, a transition to state j ∈ S occurs when selecting action a ∈ A according to a
conditional probability distribution j ∼ P(·|a, i), for which we define the short-hand notation Pa(i, j).
Let ξ be the initial state distribution of the MDP. We let S denote the number of states and A the
number of actions. The goal is to prescribe actions based on previous states in order to maximize
some long term objective. We call π : S → P (A) a policy that maps states to distributions over
actions, which we subsequently stipulate is stationary. In the standard (cumulative return) MDP,
the objective is to maximize the expected cumulative sum of future rewards Puterman (2014), i.e.,

max
π

V π(s) := E

[

∞
∑

t=0

γtrstat

∣

∣

∣

∣

i0 = s, at ∼ π(·|st), t = 0, 1, . . .

]

, ∀s ∈ S. (2.1)

with reward rstat
∈ R revealed by the environment when action at is chosen at state st.

In this paper we consider policy optimization for maximizing general objective functions that are
not limited to cumulative rewards. In particular, we consider the problem

max
π

R(π) := F (λπ) (2.2)

where λπ is known as the cumulative discounted state-action occupancy measure, or flux under policy
π, and F is a general concave functional. Denote ∆S

A and L as the set of policy and flux respectively,
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then λπ is given by the mapping Λ : ∆S
A 7→ L as

λπ
sa = Λsa(π) :=

∞
∑

t=0

γt · P
(

st = s, at = a
∣

∣

∣
π, s0 ∼ ξ

)

for ∀a ∈ A, ∀s ∈ S . (2.3)

Similar to the LP formulation of a standard MDP, we can write (2.2) equivalently as an optimiza-
tion problem in λ (see Zhang et al. (2020a)), giving rise to

max
λ

F (λ) s.t.
∑

a∈A

(I − γP>
a )λa = ξ, λ ≥ 0, (2.4)

where λa = [λ1a, · · · , λSa]
> ∈ R

A is the a-th column of λ and ξ is the initial distribution over the
state space S. The constraints require that λ be the unnormalized state-action occupancy measure
corresponding to some policy. In fact, it is well known that a policy π inducing λ can be extracted
from λ using the mapping Π : L 7→ ∆S

A as π(a|s) = Πsa(λ) :=
λsa∑

a′∈A λsa′
for all a, s.

Problem (2.2) contains the original MDP problem as a special case. To be specific, when
F (λ) = 〈r, λ〉 with r ∈ R

SA as the reward function, then F (λ) = 〈λ, r〉 = E
[
∑∞

t=0 γ
trstat

∣

∣ π, s0 ∼ ξ
]

.
This means that (2.4) is a generalization of (2.1), and reduces to the dual LP formulation of standard
MDP for this (linear) choice of F (·) Kallenberg (1983). We focus on the case where F is concave,
which makes (2.4) a concave (hence, convenient) maximization problem. Next we introduce a few
examples that arise in practice for incentivizing safety, exploration, and imitation, respectively.

Example 2.1 (MDP with Constraints or Barriers). In discounted constrained MDPs the goal
is to maximize the total expected discounted reward under a constraint where for some cost function
c : S × A → R, the total expected discounted cost incurred by the chosen policy is constrained
from above. Letting r denote the reward function over S ×A, the underlying optimization problem
becomes

max
π

vπr := E
π

[

∞
∑

t=0

γtr(st, at)

]

s.t. vπc := E
π

[

∞
∑

t=0

γtc(st, at)

]

≤ C. (2.5)

As is well known, a relaxed formulation is

max
λ

F (λ) := 〈λ, r〉 − β · p(〈λ, c〉 − C) s.t.
∑

a∈A

(I − γP>
a )λa = ξ, λ ≥ 0. (2.6)

where p is a penalty function (e.g., the log barrier function).

Example 2.2 (Pure Exploration). In the absence of a reward function, an agent may consider
the problem of finding a policy whose stationary distribution has the largest “entropy”, as this should
facilitate maximizing the speed at which the agent explores its environment Hazan et al. (2018):

max
π

R(π) := Entropy(λ̄π), (2.7)

where λ̄π is the normalized state visitation measure given by λ̄π
s = (1− γ)

∑

a λ
π
sa for all s. Various

entropic measures are possible, but the simplest is the negative log-likelihood: Entropy(λ̄π) =
−∑s λ̄

π
s log[λ̄

π
s ]. As is well known, this entropy is (strongly) concave.

Another example, when d state-action features φ(s, a) ∈ R
d are available, is to cover the entire

feature space by maximizing the smallest eigenvalue of the covariance matrix:

max
π

R(π) := σmin

(

E
π

[

∞
∑

t=1

γtφ(st, at)φ(st, at)
>

])

. (2.8)
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In (2.8), observe that E
π[
∑∞

t=1 γ
tφ(st, at)φ(st, at)

>] =
∑

sa λ
π
sa · φ(s, a)φ(s, a)>. By Rayleigh

principle, it is again a concave function of λ.

Example 2.3 (Learning to mimic a demonstration). When demonstrations are available, they
may be employed to obtain information about a prior policy in the form of a state visitation
distribution µ̄. Remaining close to this prior can be achieved by minimizing the Kullback-Liebler
(KL) divergence between the state marginal distribution of λ and the prior µ̄ stated as

F (λ) = KL
(

(1− γ)
∑

a

λa||µ̄
)

(2.9)

which, when substituted into (2.4), yields a method for ensuring some baseline performance. We
further note that in place of KL divergence, one can also use other convex distances such as
Wasserstein, total variation, or Hellinger distances.

Additional instances may be found in Zhang et al. (2020a). With the setting clarified, we shift
focus to developing an algorithmic solution to (2.4), that is, to solve for policy π.

3. Variational Policy Gradient Theorem

To handle the curse of dimensionality, we allow parametrization of the policy by π = πθ, where
θ ∈ Θ ⊂ R

d is the parameter vector. In this way, we can narrow down the policy search problem to
within a d-dimensional parameter space rather than the high-dimensional space of tabular policies.
The policy optimization problem then becomes

max
θ∈Θ

R(πθ) := F (λπθ ) (3.1)

where F is the concave utility of the state-action occupancy measure λ(θ) := λπθ , Θ ⊂ R
d is a

convex set. We seek to solve for the policy maximizing the utility as in (3.1) using gradient ascent
over the parameter space Θ. Note that (3.1) is simply (2.2) with parameterization θ of policy π
substituted. We denote by ∇θR(πθ) the parameterized policy gradient of general utility.

First, recall the policy gradient theorem for RL with cumulative rewards Sutton et al. (2000).
Let the reward function be r. Define V (θ; r) := 〈λ(θ), r〉, i.e., the total expected discounted reward
under the reward function r and the policy πθ. The Policy Gradient Theorem states that

∇θV (θ; r) = E
πθ

[

∞
∑

t=0

γtQπθ (st, at; r) · ∇θ log πθ(at|st)
]

, (3.2)

where Qπ(s, a; r) := E
π
[
∑

t γ
tr(st, at) | s0 = s, a0 = a, at ∼ π(· | st)

]

. Unfortunately, this elegant
result no longer holds when we consider a general function instead of cumulative rewards: The policy
gradient theorem relies on the additivity of rewards, which is lost in our problem. For future reference,
we denote Qπ(s, a; z) := E

π
[
∑

t γ
tzstat

| s0 = s, a0 = a, at ∼ π(· | st)
]

where z is any “function”
of the state-action pairs (z ∈ R

SA). Moreover, V (θ; z) is defined similarly. These definitions are
motivated by subsequent efforts to derive an expression for the gradient of (3.1).

3.1 Policy Gradient of R(πθ)

Now we derive the policy gradient of R(πθ) with respect to θ. By the chain rule, the gradient of
F (λ(θ)) := F (λπθ ), using the definition of R(πθ), yields (assuming differentiability of F, λ):

∇θR(πθ) =
∑

s∈S

∑

a∈A

∂F (λ(θ))

∂λsa
· ∇θλsa(θ). (3.3)
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To directly use the chain rule, one needs the partial derivatives ∂F (λ(θ))
∂λsa

and ∇θλsa(θ). Unfortunately,

neither of them is easy to estimate. The partial gradient ∂F (λ(θ))
∂λsa

is a function of the current
state-action occupancy measure λπθ . One might attempt to estimate the measure λπθ and then

evaluate the gradient map ∂F (λ(θ))
∂λsa

. However, estimates of distributions over large spaces tend to
converge very slowly Tsybakov (2008).

As it turns out, a viable alternate route is to consider the Fenchel dual F ∗ of F . Recall that
F ∗(z) = infλ〈λ, z〉 − F (λ), where we use 〈x, y〉 := x>y (since F is concave, the dual is defined using
inf, instead of sup). As is well known, for F concave, under mild regularity conditions, the bidual
(dual of the dual) of F is equal to F . This forms the basis of our first result, which states that the
steepest policy ascent direction of (3.1) is the solution to a stochastic saddle point problem. The
proofs of this and subsequent results are given in the supplementary material.

Theorem 3.1 (Variational Policy Gradient Theorem). Suppose F is concave and continuously
differentiable in an open neighborhood of λπθ . Denote V (θ; z) to be the cumulative value of policy πθ

when the reward function is z, and assume ∇θV (θ; z) always exists. Then we have

∇θR(πθ) = lim
δ→0+

argmax
x

inf
z

{

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2

}

. (3.4)

Therefore, to estimate ∇θR(πθ) we require the cumulative return V (θ; z) of the function z, its
associated “vanilla” policy gradient (3.2), and the gradient of the Fenchel dual of F at z. These
ingredients are combined via (3.4) to obtain a valid policy gradient for general objectives. Next, we
discuss how to estimate the gradient using sampled trajectories.

3.2 Estimating the Variational Policy Gradient

Theorem 3.1 implies that one can estimate ∇θR(πθ) by solving a stochastic saddle point problem.

Suppose we generate n i.i.d. episodes of length K following πθ, denoted as ζi = {s(i)k , a
(i)
k }Kk=1. Then

we can estimate V (θ; z) and ∇V (θ; z) for any function z by

Ṽ (θ; z) :=
1

n

n
∑

i=1

V (θ; z; ζi) :=
1

n

n
∑

i=1

K
∑

k=1

γk · z(s(i)k , a
(i)
k ), (3.5)

∇Ṽ (θ; z) :=
1

n

∑

i=1

∇θV (θ; z; ζi) :=
1

n

n
∑

i=1

K
∑

k=1

∑

a∈A

γk ·Q(s
(i)
k , a; z)∇θπθ(a|s(i)k ).

For a given value of K, the error introduced by “truncating” trajectories at length K is of order
γK/(1− γ), which quickly decays to zero for γ < 1. Plugging in the obtained estimates into (3.4)
gives rise to the sample-average approximation to the policy gradient:

∇̂θR(πθ; δ) := argmax
x

inf
‖z‖∞≤`F

{

−F ∗(z) + Ṽ (θ; z) + δ∇θṼ (θ; z)>x− δ

2
‖x‖2

}

, (3.6)

where `F is defined in the next theorem. Therefore, any algorithm that solves problem (3.6) will serve
our purpose. A MC stochastic approximation scheme, i.e., Algorithm 1, is provided in Appendix B.1.

Theorem 3.2 (Error bound of policy gradient estimates). Suppose the following holds:
(i) domF = R

SA, there exists `F such that max{‖∇F (λ)‖∞ : ‖λ‖1 ≤ 2
1−γ } ≤ `F .

(ii) F is LF -smooth under L1 norm, i.e., ‖∇F (λ)−∇F (λ′)‖∞ ≤ LF ‖λ− λ′‖1.
(iii) F ∗ is (`F∗)-Lipschitz with respect to the L∞ norm in the set {z : ‖z‖∞ ≤ 2`F , F

∗(z) > −∞}.
(iv) There exists C with ‖∇θπ(·|s)‖∞,2 ≤ C, where ∇θπ(·|s) = [∇θπ(1|s), · · · ,∇θπ(A|s)].
Let ∇̂θR(πθ) := limδ→0+ ∇̂θR(πθ; δ). Then

E[‖∇̂θR(πθ)−∇θR(πθ)‖2] ≤ O
(

C2(`2F + L2
F `

2
F∗)

n(1− γ)4
+

C2L2
F

n(1− γ)6

)

+O(γK).
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Remarks.
(1) Theorem 3.2 suggests an O(1/

√
n) error rate, proving that the variational policy gradient -

though more complicated than the typical policy gradient that takes the form of a mean - can be
efficiently estimated from finite data.
(2) Although the variable z is high dimensional, our error bound depends only on the properties of
F .
(3) We assumed for simplicity that Q values are known. In practice, they can estimated by, e.g., an
additional Monte Carlo rollout on the same sample path or temporal difference learning. As long as

the estimator for Q(s, a; z) is unbiased and upper bouded by O(‖z‖∞

1−γ ), the result will not change.

(4) For the case of cumulative rewards, we have F (λ) = 〈r, λ〉, so that `F = ‖r‖∞, `F∗=0, LF=0.

Therefore E[‖∇̂θR(πθ)−∇θR(πθ)‖
2] ≤ O

(

C2‖r‖2∞
n(1−γ)4

)

.

Special cases of ∇θR(πθ). We further explain how to obtain the variational policy gradient
for several special cases of R, including constrained MDP, maximal exploration, and learning from
demonstrations. See Appendix B.2 for more details.

4. Global Convergence of Policy Gradient Ascent

In this section, we analyze policy search for the problem (3.1), i.e., maxθ∈Θ R(πθ) via gradient ascent:

θk+1 = argmax
θ∈Θ

R(πθk)+
〈

∇θR(πθk), θ−θk
〉

− 1

2η
‖θ−θk‖2 = ProjΘ

{

θk + η∇θR(πθk)
}

(4.1)

where ProjΘ{·} denotes Euclidean projection onto Θ, and equivalence holds by the convexity of Θ.

4.1 No spurious first-order stationary solutions.

We study the geometry of the (possibly) nonconvex optimization problem (3.1). When F is a linear
function of λ, and the parameterization is tabular or softmax, existing theory of cumulative-return
RL problems have shown that every first-order stationary point of (3.1) is globally optimal – see
Agarwal et al. (2019); Mei et al. (2020).

In what follows, we show that the problem (3.1) has no spurious extrema despite of its nonconvexity,
for general utility functions and policy parametrization. Specifically, to generalize global optimality
attributes of stationary points of (3.1) from (2.1), we exploit structural aspects of the relationship
between occupancy measures and parameterized families of policies, namely, that these entities are
related through a bijection. This bijection, when combined with the fact that (3.1) is concave in λ,
and suitably restricting the parameterized family of policies, is what we subsequently describe as
“hidden convexity.” For these results to be valid, we require the following regularity conditions.

Assumption 4.1. Suppose the following holds true:
(i). λ(·) forms a bijection between Θ and λ(Θ), where Θ and λ(Θ) are closed and convex.
(ii). The Jacobian matrix ∇θλ(θ) is Lipschitz continuous in Θ.
(iii). Denote g(·) := λ−1(·) as the inverse mapping of λ(·). Then there exists `θ > 0 s.t. ‖g(λ)−
g(λ′)| ≤ `θ|||λ− λ′||| for some norm ||| · ||| and for all λ, λ′ ∈ λ(Θ).

In particular, for the direct policy parametrization, also known as the “tabular” policy case, we
have λ(θ) := Λ(π) where Λ is defined in (2.3). When ξ is positive-valued, Assumption 4.1 is true for
the tabular policy case (as established in Appendix H).

Theorem 4.2 (Global optimality of stationary policies). Suppose Assumption 4.1 holds, and
F is a concave, and continuous function defined in an open neighbourhood containing λ(Θ). Let θ∗

be a first-order stationary point of problem (3.1), i.e.,

∃u∗ ∈ ∂̂(F ◦ λ)(θ∗), s.t. 〈u∗, θ − θ∗〉 ≤ 0 for ∀θ ∈ Θ. (4.2)

7
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Then θ∗ is a globally optimal solution of problem (3.1).

Theorem 4.2 provides conditions such that, despite of nonconvexity, local search methods can
find the global optimal policies. Since we aim at general utilities, we naturally separated out the
convex and non-convex maps in the composite objective and our conditions for optimality rely on the
properties of these. In a recent paper, Bhandari and Russo (2020) proposed some sufficient conditions
under which a result similar to Theorem 4.2 holds in the setting of the standard, cumulative total
reward criterion. Their conditions are (i) the policy class is closed under (one-step, weighted) policy
improvement and that (ii) all stationary points of the one-step policy improvement map are global
optima of this map. It remains for future work to see the relationship between our conditions and
these conditions: They appear to have rather different natures.

4.2 Convergence analysis

Now we analyze the convergence rate of the policy gradient scheme (4.1) for general utilities.

Assumption 4.3. There exists L > 0 such that the policy gradient ∇θR(πθ) is L-Lipschitz.

The objective R(πθ) is nonconvex in θ, so one might expect that gradient schemes converge to
stationary solutions at a standard O(1/

√
t) convergence rate Shapiro et al. (2014). Remarkably, the

policy optimization problem admits a convex nature if we view it in the space of λ, as long as F is
concave. By exploiting this hidden convexity, we establish an O(1/t) convergence rate for solving RL
with general utilities. Further, we show that, when the utility F is strongly concave, the gradient
ascent scheme converges to the globally optimal policy exponentially fast.

Theorem 4.4 (Convergence rate of parameterized policy gradient iteration). Let Assump-
tions 4.1 and 4.3 hold. Denote Dλ :=maxλ,λ′∈λ(Θ) |||λ− λ′||| as defined in Assumption 4.1(iii). Then
the policy gradient update (4.1) with η = 1/L satisfies for all k

R(πθ∗)−R(πθk) ≤ 4L`2θD
2
λ

k + 1
.

Additionally, if F (·) is µ-strongly concave with respect to the ||| · ||| norm, we have

R(πθ∗)−R(πθk)≤
(

1− 1

1+L`2θ/µ

)k

(R(πθ∗)−R(πθ0)) .

The exponential convergence result of Theorem 4.4 implies that, when a regularizer like Kullback-
Leiber divergence is used, policy gradient method converges much faster. In other words, policy
search with general utilities can actually be easier than the typical, cumulative-return problem.

Finally, we study the case where policies are not parameterized, i.e., θ = π. The next theorem
establishes a tighter convergence rate than what Theorem 4.4 already implies.

Theorem 4.5 (Convergence rate of tabular policy gradient iteration). Let θ = π and
λ(θ) = Λ(π). Let Assumption 4.3 hold and assume that ξ is positive-valued. Then the iterates
generated by (4.1) with η = 1/L satisfy for all k ≥ 1 that

R(π∗)−R(πk) ≤ 20L|S|
(1− γ)2(k + 1)

·
∥

∥

∥
dπ

∗

ξ /ξ
∥

∥

∥

2

∞
.

The case of cumulative rewards. Let us consider the well-studied special case where F is a linear
functional, i.e., R(π)=V π [cf. (2.1)] is the typical cumulative return. In this case, we have L= 2γA

(1−γ)3

(Agarwal et al. (2019)). Now in order to obtain an ε-optimal policy π̄ such that V π∗−V π̄ ≤ ε, the
gradient ascent update requires O

(

SA
(1−γ)5ε

·
∥

∥dπ
∗

ξ /ξ
∥

∥

2

∞

)

iterations according to Theorem 4.5. This

bound is strictly smaller than the O
(

SA
(1−γ)6ε2

∥

∥dπ
∗

ξ /ξ
∥

∥

2

∞

)

iteration complexity proved by Agarwal et al.

(2019) for tabular policy gradient. The improvement from O(1/ε2) to (1/ε) comes from the fact that,
although the policy optimization problem is nonconvex, our analysis exploits its hidden convexity in
the space of λ.
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5. Experiments

Now we shift to numerically validating our methods and theory on OpenAI Frozen Lake Brockman
et al. (2016). Throughout, additional details may be found in Appendix C.

Figure 1: PG estimation via Alg.

1 Cosine similarity between
PG estimates x̂t generated
by Algorithm 1 after t sam-
ples and the ground truth
x?, which consistently con-
verges to near 1 across dif-
ferent instances (E.g. (2.1)
- (2.3)) when t becomes
large. For comparison, we
also include the convergence
of PG estimates from RE-
INFORCE for cumulative re-
turns.

(a) Entropy vs. # episodes (b) World & occupancy dist. (En-

tropy)

Figure 2: Results for maximum entropy exploration: In Fig. 2(a), to
quantify exploration, we present the entropy of flux λ over train-
ing index n for our approach, as compared with the entropy of a
uniform random policy. Fig. 2(b)(bottom) visualizes the world
model (holes in the lake have null entropy, as they terminate the
episode), the lower middle layer displays the occupancy measure
associated with a uniformly random policy, the upper-middle vi-
sualizes the pseudo-reward z∗ defined by the Fenchel dual of the
entropy (2.7) – see Appendix B.2. Lastly, on top we visualize the
occupancy measure associated with the max entropy policy, which
better covers the space than a uniformly random policy.

Policy Gradient (PG) Estimation. First we investigate the use of Theorem 3.1 and Algorithm
1 (Appendix B.1) for PG estimation, for several instances of the general utility. We also compare
it with the gradient estimates computed by REINFORCE for cumulative returns. Specifically, in
Figure 1 we illustrate the convergence of gradient estimates, measured using the cosine similarity
between xn (running estimate based on n episodes) and the true gradient x∗ (which is evaluated
using brute force Monte Carlo rollouts – see Appendix C.2). The cosine similarity converges to 1
across different instances, providing evidence that Algorithm 1 yields consistent gradient estimates
for general utilities.
PG Ascent for Maximal Entropy Exploration. Next, we consider maximum entropy exploration
(2.7) using algorithm (4.1), with softmax parametrization. First, we display the evolution of the
entropy of the normalized occupancy measure over the number of episodes in Fig. 2(a). Then, we
visualize the world model in Fig. 2(b)(bottom). Moreover, the lower middle is the occupancy measure
associated with a uniformly random policy, the upper-middle layer visualizes the ”pseudo-reward” z∗

computed as the Fenchel dual of the entropy (2.7) – see Appendix B.2, which is null at the holes
and positive otherwise. We use a different color to denote that its values are not likelihoods. The
occupancy measure obtained by policy gradient ascent with gradient estimated by Algorithm 1 at
the end of training is in Figure 2(b)(top) – observe the maximal entropy policy achieves significantly
better coverage of the state space than the uniformly random policy.
PG Ascent for Avoiding Obstacles. Suppose our goal is to navigate the Frozen Lake and avoid
obstacles. We consider imposing penalties to avoid costly states [cf. (2.6)] via a logarithmic barrier
(B.3), and by applying variational PG ascent, we obtain an optimal policy whose resulting occupancy
measure is depicted in Fig. 3(a)(top). For comparison, we consider optimizing the standard expected
cumulative return (2.1), whose state occupancy measure is given in Fig. 3(a)(middle). Observe that
imposing log penalties yields policies whose probability mass is concentrated away from obstacles
(dark green). Further, we display in Fig. 3 the reward 3(b) and cost 3(c) accumulation during test

9
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(a) World & occupancy dist.

(CMDP)

(b) Reward vs. # episodes (c) Cost vs. # episodes

Figure 3: Results for avoiding obstacles. Fig. 3(a)(bottom) depicts the world model of OpenAI Frozen Lake with
augmentation to include costly states, e.g., obstacles: C represents costly states, F is the frozen lake, H is the
hole, and G is the goal. We consider softmax policy parameterization, and visualize the occupancy measure
associated with REINFORCE for the cumulative return (2.1) in the middle layer, and the relaxed CMDP (2.6)
via a logarithmic barrier (B.3) at the top.The policy obtained via barriers avoids visiting costly states, in

contrast to the middle. Fig. 3(b) and Fig. 3(c) show the reward/cost accumulated during test trajectories over
training index for Algorithm 1. Observe that the reward/cost curves behave differently as the penalty parameter
β varies: observe that without any constraint imposition (which implies β = 0 in red), one achieves the highest
reward, but incurs the most costs, i.e., hits obstacles most often. Larger β imposes more penalty, and hence
β = 4 incurs lowest cost and lowest reward. Other instances are also shown for β = 1 and β = 2.

trajectories as a function of the iteration index for the PG ascent (4.1) for the cumulative return (2.1)
as compared with a logarithmic barrier imposed to solve (2.6) for different penalty parameters β.

6. Broader Impact

While RL has a great number of potential applications, our work is of foundational nature and as
such, the application of the ideas in this paper can have both broad positive and negative impacts.
However, this paper is purely theoretical, as we do not aim at any specific application, there is nothing
we can say about the most likely broader impact of this work that would go beyond speculation.
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Supplementary Material for

“Variational Policy Gradient Method

for Reinforcement Learning with General Utilities”

Appendix A. Related Work

We provide a more extension discussion for the context of this work. Firstly, when closed-form
expressions for the optimizer of a function are unavailable, solving optimization problems requires
iterative schemes such as gradient ascent Nocedal and Wright (2006). Their convergence to global
extrema is predicated on concavity and the tractability of computing ascent directions. When the
objective takes the form of an expected value of a function parameterized by a random variable,
stochastic approximations are required Robbins and Monro (1951); Kiefer et al. (1952). The PG
Theorem mentioned above gives a specific form for obtaining ascent directions with respect to a
parameterized family of stationary policies via trajectories in a Markov decision process, when the
objective is the expected cumulative return Sutton et al. (2000), which gives rise to the REINFORCE
algorithm.

The convergence of policy search for the expected cumulative return has been studied extensively
in recent years. Under general parameterizations the problem becomes nonconvex. Hence, early
work focused on asymptotic convergence to stationarity Pirotta et al. (2015) by invoking dynamical
systems Borkar (2008). In actor-critic Konda and Borkar (1999); Konda and Tsitsiklis (2000), one
replaces the Monte Carlo rollout of the Q function with a temporal difference estimator Sutton
(1988), and its asymptotic stability follows similar logic Bhatnagar et al. (2009). Another line of
work focused on only on per-step value increase, i.e., policy improvement bounds Pirotta et al. (2013,
2015). Recent interest has been on structural results that yield convergence to global optimality:
when state transitions are linear Fazel et al. (2018); Bu et al. (2019)), the policy parameterization is
direct (tabular) Bhandari and Russo (2019); Agarwal et al. (2019), function approximation error can
be quantified S Kakade (2002); Liu et al. (2019). Clever step-size rules have also been designed to
ensure convergence to second-order stationary points under general settings Zhang et al. (2019).

These results, however, are restricted to the expected cumulative return, a linear functional of the
state-action occupancy measure, and hence do not apply to general concave functionals of the form
considered in this work. Early works in operations research consider nonstandard utilities Huang and
Kallenberg (1994), motivated by certain variance-penalizations which may also be written as concave
functionals of occupancy measures Filar et al. (1989). Similar in spirit to this work is Kallenberg
(1994), as it also puts occupancy measures at the center of its conceptual development. These
works develop dynamic programming approaches for tabular settings, and hence are not scalable to
problems with large spaces. More recently, maximizing the entropy of the state visitation distribution
has been considered Hazan et al. (2018), a special case of the concave utilities we study. Moreover,
the authors develop a model-based iteratively policy update, which requires explicit knowledge of
the transition probability matrix. By contrast, in this work we prioritize model-free approaches for
possibly large spaces via the fusion of direct policy search and parameterization over a family of
policies.

Appendix B. Supplementary materials of Section 3

B.1 A Monte Carlo Algorithm for solving (3.6)

Note that any algorithm that solves problem (3.6) will serve our purpose. Therefore, we provide a
Monte Carlo method that alternates between stochastic primal and dual updates as an example,
stated in Algorithm 1, in which the projection operator onto the set {z : ‖z‖∞ ≤ `F } is denoted as
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Proj `F {z}. For any z, z′ = Proj `F {z} is defined as

z′i =











−`F , if zi ∈ (−∞,−`F ),
zi, if zi ∈ [−`F , `F ],
`F , if zi ∈ (`F ,+∞).

It is worth noting that we have we omit the term δ∇Ṽ (θ; z)>x when computing the gradient w.r.t.

Algorithm 1 Monte Carlo Variational Policy Gradient Estimation

Require: a differentiable policy parametrization πθ, stepsizes αt, βt > 0, initial points x = 0, z = 0.
A constant `F .
policy parameter θ ∈ R

d

Generate episodes ζi = {(sk, ak)} from i = 1, · · · , n following πθ(a|s)
For t = 0, 1, 2, ... until some stopping criterion is met:

Sample (sk, ak) from the data set
Update

zt+1 ← Proj `F

{

zt − αt

1− γ
1sk,ak

+ αt∇F ∗(zt)

}

(B.1)

xt+1 ← xt + βt

[

∑

a∈A

Qπθ (sk, a; z
t) · ∇θπθ(a|sk)− xt

]

(B.2)

Output: the last iterate x

z in (B.1). Note that for the iterates xt are all well bounded, then δ∇Ṽ (θ; zt)>xt=O(δ), which is
negligible when δ → 0.

B.2 Special cases of policy gradient computation

We give several examples of the policy gradient for special cases of the general utility in (3.1).

Linear utility The simplest, where F (λ) = 〈λ, r〉 [cf. (2.1)], we have F ∗(z) = 0 if z = c · r for
some scalar c and F ∗(z) =∞ otherwise. In this case z∗ = r and Theorem 3.1 recovers the known
policy gradient theorem for the risk-neutral MDP (2.1), that is ∇θR(πθ) = ∇θV (θ; r).

Constrained MDPs By contrast, in Example 2.1, i.e., when a constraint Eπ [
∑∞

t=0 γ
tc(st, at)] ≤ C

on the accumulation of costs c(st, at) is present, and we may enforce it approximately with a log
barrier by defining

R(πθ) = 〈r, λ(θ)〉+ β log (C − 〈c, λ(θ)〉) = V (θ; r) + β log (C − V (θ; c)) , (B.3)

where β is a regularization parameter, in which case the policy gradient takes the form

∇R(πθ) = ∇θV (θ; r)− β
∇θV (θ; c)

C − V (θ; c)
.

Estimating the policy gradient R of constrained MDP consists of estimating two policy gradients
∇θV (θ; c) and ∇θV (θ; r) and accumulated reward V (θ; c).

Minimum eigenvalue For case (2.8), define Φ(λπθ ) =
∑

s,a λ
πθ
sa · φ(s, a)φ(s, a)>. Then Φ(λπθ ) is

symmetric and positive semidefinite, since λπθ ≥ 0. By using Rayleigh principle, we have

R(πθ) = σmin (Φ(λ
πθ )) = min

‖u‖=1
u>Φ(λπθ )u = min

‖u‖=1

∑

s,a

λπθ
sa |φ(s, a)>u|2. (B.4)
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which is the minimum of a family of linear function in λ. Let v(1), ..., v(k) be a group of orthonormal
bases of the eigenspace of Φ(λπθ ) corresponding to the minimum eigenvalue. Then define k vectors
as r(i)(s, a) = |φ(s, a)>v(i)|2, ∀s, a, i = 1, ..., k. Then the Fréchet superdifferential of R at θ is

∂̂θR(πθ) =
{

∇θV (θ; r) : r ∈ conv(r(1), ..., r(k))
}

,

where conv(·) denotes the convex hull of a group of vectors. When the multiplicity of the minimum

eigenvalue is 1, then R(·) is differentiable at this point and ∂̂θR(·) = {∇θR(·)}.
Entropy maximization For the entropy (2.7), its Fenchel dual takes the form

F ∗(z) = −
∑

sa

exp
{

− zsa
1− γ

− 1
}

.

Learning to mimic a distribution For the KL divergence to a prior µ in (2.9), we have

F ∗(z) =

{

−∑s µs exp
{

− zs1
1−γ − 1

}

if zsa1
= zsa2

∀s ∈ S, a1, a2 ∈ A,
−∞ otherwise.

Appendix C. Additional Details of Experiments

C.1 Details of Environment

OpenAI Frozen Lake is a finite-state action problem. The standard state consists of {S, F,H,G},
to which we add an additional state C which is visualized in Fig. 3(a). At each step, an agent
selects an action a ∈ A, which consists of one of four directions (up, down, left, right), which may
be enumerated as {1, . . . , 4}. The reward is null at all Frozen F spaces, the start S location, and
the Holes H in the lake. If the agent enters a hole, the episode terminates, and hence null reward is
accumulated for this trajectory. The only positive reward is 1 and may be obtained when reaching
the goal state G. Our augmentation is that costly states C have been added, which incur reward
−0.4 to represent, for instance, obstacles. We note that only for the cumulative return and its
constrained variants, or other utilities that are defined in terms of the problem’s inherent reward do
these quantities matter. That is, for the entropy maximization problem, there is no reward associated
with any state in the usual sense. The MDP transition model is unknown and defined by the OpenAI
environment, a simulation oracle that provides state-action-reward triples.

Throughout all experiments, for simplicity, we considered a softmax policy parameterization. For
this parameterization, the policy takes the form πθ(s | a) = eθsa/(

∑

a′ eθsa′ ) for θ ∈ R
|S|×|A|. For

the Frozen lake environment in this paper, we have |S| = 16 and |A| = 4.

C.2 Computing the True Policy Gradient

For comparison, we compute the true policy gradient by using a baseline approach based on the chain
rule and a variant of REINFORCE Sutton et al. (2000): the second factor on the right-hand side

of (3.3) is exactly computed using REINFORCE ∇θλsa(θ), whereas the first, ∂F (λ(θ))
∂λsa

, is computed
using an additional Monte Carlo rollout. We denote as x∗ the result of this procedure and use it
as ground truth. In Figure 4(a) we display the evolution of its norm difference ‖x̂?

n − x̂?
n−1‖ as the

sample size n increases. That it approaches null with the sample size implies that this brute force
Monte Carlo variant of REINFORCE is convergent, and hence is a reasonable benchmark comparator.

C.3 Details about Maximum Entropy Exploration

For this problem instance, i.e., (2.7) from Example 2.2, we also consider the state space defined by
Frozen Lake, but note that the reward as defined by the environment is now a moot point. This is
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(a) Convergence of x?

Figure 4: Fig. 4(a) displays the convergence of a generalization of REINFORCE-based gradient
estimator for (3.3) in terms of its difference ‖x̂?

n − x̂?
n−1‖ as the number of processed

trajectories n increases, which converges to null, certifying x̂?
n as a baseline.

because each state contributes positive entropy, with the exception of the holes in the lake, which
terminate the episode. We visualize this setup at the bottom layer of Fig. 2(b). The lower middle
layer visualizes the occupancy measure associated with a uniform policy. Moreover, the upper middle
layer visualizes the “pseudo-reward” z for each point in the state space. This quantity is computed in
terms of the Fenchel dual of the entropy – see Appendix B.2, and the occupancy measure associated
with the output of Algorithm 1 at the end of training is visualized at the top layer. To obtain this
result, we run it for 105 total episodes, and for each episode we evaluate the entropy using (2.7). We
consider a constant step-size α = 0.01, β = 0.1, and η = 0.001 throughout this experiment.

C.4 Details about the Constrained Markov Decision Process

In this subsection, we elaborate upon the implementation of Example 2.1, specifically, (2.6) and its
approximation using a logarithmic barrier as detailed in (B.3). We consider the problem of navigating
through the FrozenLake environment as shown in Fig. 3(a)(bottom): we seek to reach the goal state
G (reward = 1) from the starting location S (reward = 0), navigating along F frozen spaces (reward
= 0), while avoiding locations marked C (reward = −0.2) that denote costly states (obstacles) and
H holes.

We consider two approaches to the problem: first, we focus on optimizing the standard expected
cumulative return (2.1), whose associated state occupancy measure is given in Fig. 3(a)(middle);
second, we consider imposing constraints to avoid costly states [cf. (2.6)] via a logarithmic barrier
(B.3), whose resulting occupancy measure is depicted in Fig. 3(a)(top). Bluer/yellower colors denote
higher/lower likelihoods, respectively. We observe that imposing constraints yields policies whose
probability mass is concentrated away from constraints and instead along paths from the start to the
goal. Thus, Algorithm 1 combined with a policy search scheme (4.1) may be used to solve CMDPs.

This trend is corroborated in Fig. 3, which depicts the reward 3(b) and cost 3(c) accumulation
during test trajectories as a function of training index for Algorithm 1 for the cumulative return
(2.1) as compared with a logarithmic barrier imposed to solve CMDP (2.6) for different penalty
parameters β. We may observe that without imposing any constraint (β = 0 in red), one achieves
the highest reward, but incurs the most costs, i.e., hits obstacles most often, a form of “reckless
boldness.” Larger β means higher penalty for the constraints, and hence β = 4 incurs lower cost and
lower reward. We further added the curves for β = 1 and β = 2 for comparison.

For all results reported in Fig. 3, we run the algorithm for 10K total training steps in the form
of episodes. For each episode, we run a number of evaluation (test) trajectories in order to determine
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their merit, both in terms of reward and cost accumulation. Put more simply, we evaluate the
performance averaged over a few test trajectories as a function of episode number and report its
average over last 20 episodes to show the trend. This is to illuminate policy improvement in its
various forms (reward/cost accumulation) during training. Moreover, the algorithm is run with
constant step-size η = 0.1 throughout this experiment.

Appendix D. Proof of Theorem 3.1

Proof. First note that for any z ∈ R
SA, x ∈ R

d, we have

V (θ; z) = 〈z, λ(θ)〉 ,
∇θV (θ; z)>x = 〈z,∇θλ(θ)x〉 , (D.1)

where ∇θλ(θ) is the SA× d Jacobian matrix, the first identity holds by definition, and the second
holds by directly differetiating the first indentity and product it with x.

Consider the saddle point problem in (3.4) for fixed 0 < δ < 1. Let G be any constant such that
‖∇F (λ(θ))‖∞ < G. Define

(x∗(δ), z∗(δ)) := argmaxx argmin‖z‖∞≤G

{

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ
2‖x‖2

}

. (D.2)

Note in (D.2) we added the auxiliary constraint set {z : ‖z‖∞ ≤ G}, and later we will show
that this constraint is inactive for all δ sufficiently small. We will also show that (x∗(δ), z∗(δ)) are
bounded for all δ sufficiently small.

By the first-order stationarity condition, we have

x∗(δ) = ∇θV (θ; z∗(δ)).

Note that ∇θV (θ; ·) is a linear function of z, thus there exists B > 0 such that ‖∇θV (θ; z)‖ ≤ B for
all z ∈ {‖z‖∞ ≤ G}. And consequently ‖x∗(δ)‖ ≤ B for all δ > 0.

For all x ∈ {‖x‖ ≤ 2B}, we have

lim
δ→0+

λ(θ) + δ∇θλ(θ)x = λ(θ).

Therefore, there exists some small δ0 > 0, such that for all δ < δ0, the vector λ(θ)+δ∇θλ(θ)x belongs
to the neighborhood on which F is differentiable and

‖∇F (λ(θ) + δ∇θλ(θ)x)‖∞ < G, ∀ x ∈ {x : ‖x‖ ≤ 2B}.

In this case, we consider the unconstrained solution, for ‖x‖ ≤ 2B, defined by

z∗(x; δ) := argmin
z

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z) = ∇F
(

λ(θ) + δ∇θλ(θ)x
)

,

and observe that the unconstrained solution satisfies ‖z∗(x; δ)‖∞ < G, and consequently the constraint
‖z‖∞ ≤ G is not active. Therefore, for δ < δ0, we can equivalently rewrite (D.2) as

x∗(δ) := argmax
‖x‖≤2B

min
z

{

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2

}

(D.3)

= argmax
‖x‖≤2B

F (λ(θ) + δ∇θλ(θ)x)−
δ

2
‖x‖2 ,

Recall that we showed ‖x∗(δ)‖ ≤ B, therefore the constraint ‖x‖ ≤ 2B is also inactive and removable.
Therefore x∗(δ) is equivalent to the unconstrained min-max solution, for all δ sufficiently small, and
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Fenchel duality together with the first-order stationarity condition implies

x∗(δ) = argmax
x

inf
z

{

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2

}

= ∇θλ(θ)
>∇F

(

λ(θ) + δ∇θλ(θ)x
∗(δ)

)

.

By using the fact that ∇F is continuous at λ(θ) and x∗(δ) is bounded, by letting δ → 0 on both
sides, we get

lim
δ→0+

x∗(δ) = lim
δ→0+

∇θλ(θ)
>∇F

(

λ(θ) + δ∇θλ(θ)x
∗(δ)

)

= ∇θλ(θ)
>∇F

(

λ(θ)
)

= ∇R(θ) ,

where the last equality uses the chain rule.

Appendix E. Proof of Theorem 3.2

Proof. First, let us denote the expression in (3.4) for fixed 0 < δ < 1 as

(x∗(δ), z∗(δ)) = argmax
x

argmin
‖z‖∞≤`F

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2, (E.1)

and its approximation with empirically estimated value functions and their gradients in (3.5) as

(x̂(δ), ẑ(δ)) = argmax
x

argmin
‖z‖∞≤`F

Ṽ (θ; z) + δ∇θṼ (θ; z)>x− F ∗(z)− δ

2
‖x‖2. (E.2)

Then we decompose the entity E

[

∥

∥

∥
∇̂θR(πθ)−∇θR(πθ)

∥

∥

∥

2
]

into three terms by adding and subtract-

ing (i) x∗(δ) and (ii) x̂(δ), which we then establish depends on the difference between (iii) ẑ(δ) and
z∗(δ). Taken together with computing the limit of the right-hand side as δ → 0 we obtain the result.
Each of these steps is analyzed independently, whose estimation errors are derived in the following
lemma.

Lemma E.1. Consider (x∗(δ), z∗(δ)) and (x̂(δ), ẑ(δ)) as defined in (E.1)-(E.2), respectively. Under
the technical conditions stated in Theorem 3.2, their respective estimation errors satisfy:

(i)
∥

∥

∥
x∗(δ)−∇θR(πθ)

∥

∥

∥

2

= O(δ2).

(ii) E

[

∥

∥

∥
x∗(δ)− x̂(δ)

∥

∥

∥

2
]

≤ 2C2‖z∗(δ)‖2
∞

(1−γ)4 ·
(

γ2K

(1−γ)2 + 1
n

)

+ 2C2

(1−γ)4 · E
[

‖z∗(δ)− ẑ(δ)‖2∞
]

.

(iii) E
[

‖ẑ(δ)− z∗(δ)‖2∞
]

≤ O
(

L2
F

n(1−γ)2 +
L2

F `2F∗

n +
L2

F δ2+LF δ
n

)

.

Combining the three steps and the fact that ‖z∗(δ)‖∞ ≤ `F yields

E

[

‖x̂(δ)−∇θR(θ)‖2
]

≤ O
(

C2(`2F + L2
F `

2
F∗)

n(1− γ)4
+

C2L2
F

n(1− γ)6

)

+O(δ2 + δ/n+ γK).

Let δ → 0, we get

E

[

∥

∥

∥
∇̂θR(πθ)−∇θR(πθ)

∥

∥

∥

2
]

≤ O
(

C2(`2F + L2
F `

2
F∗)

n(1− γ)4
+

C2L2
F

n(1− γ)6

)

+O(γK).
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Lemma E.1(i) - (iii) is proved in the next subsection. For the ease of notation, we will simply
denote x∗ and x̂ instead of x∗(δ) and x̂(δ). Similarly, we denote z∗ and ẑ instead of z∗(δ) and ẑ(δ).

E.1 Preliminary Technicalities

Linearity property. The functions Q, V and ∇θV are linear in the reward function. Namely, for
any α, α′ ∈ R and r, r′ ∈ R

|S||A|,

α∇θV (θ; r) + α′∇θV (θ; r′) = ∇θV (θ;αr + α′r′).

Similar identities holds for Qπθ(s, a; ·) and V (θ; ·). For the stochastic estimators ∇θṼ (θ; r; ζ), it is
straightforward to check that the linearity property is still true.
Upperbounding Q and V . Given an arbitrary reward function r, the upper bounds of Q and V
functions are

|Qπθ (s, a; r)| ≤ ‖r‖∞
1− γ

and |V (θ; r)| ≤ ‖r‖∞
1− γ

.

Uniform upperbounds for estimators. Given any sample path ζ = {(sk, ak)}Kk=0, the estimators

Ṽ (θ; z; ζ) and ∇θṼ (θ; z; ζ) are upper bounded by

Ṽ (θ; z; ζ)| ≤ ‖z‖∞
1− γ

and ‖∇θṼ (θ; z; ζ)‖ ≤ C‖z‖∞
(1− γ)2

. (E.3)

Consequently, as the sample averages of Ṽ (θ; z; ζi) and ∇θṼ (θ; z; ζi), we also have

|Ṽ (θ; z)| ≤ ‖z‖∞
1− γ

and ‖∇θṼ (θ; z)‖ ≤ C‖z‖∞
(1− γ)2

(E.4)

for any set of sample paths {ζi}ni=1.

Proof. For Ṽ (θ; z; ζ), for any z,

|Ṽ (θ; z; ζ)| =
∣

∣

∣

∣

∣

K
∑

k=0

γk · z(sk, ak)
∣

∣

∣

∣

∣

≤
K
∑

k=0

γk‖z‖∞ ≤
‖z‖∞
1− γ

For ∇θṼ (θ; z; ζ), for any z,

‖∇θṼ (θ; z; ζ)‖ =

∥

∥

∥

∥

∥

K
∑

k=1

∑

a∈A

γk ·Q(sk, a; z)∇θπθ(a|sk)
∥

∥

∥

∥

∥

≤
K
∑

k=1

γk ·
∥

∥

∥

∥

∥

∑

a∈A

Q(sk, a; z)∇θπθ(a|sk)
∥

∥

∥

∥

∥

≤
K
∑

k=1

γk · max
‖u‖∞≤

‖z‖∞
1−γ

‖πθ(·|sk)u‖

≤ C‖z‖∞
(1− γ)2

.
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E.2 Proof of Lemma E.1(i).

Consider the problem (E.1). First let us ignore the requirement that ‖z‖∞ ≤ `F . For this series of
unconstrained problem, Theorem 3.1 suggests that

lim
δ→0+

x∗(δ) = ∇θR(πθ).

Consequently, limδ→0+ λ(θ) + δ∇θλ(θ)x
∗(δ) = λ(θ). Because ‖λ(θ)‖1 = (1− γ)−1, ∃δ0 > 0 s.t. when

δ < δ0 we have

‖λ(θ) + δ∇θλ(θ)x
∗(δ)‖1 ≤

2

1− γ
.

According to condition (i) of this theorem, we have

‖∇F (λ(θ) + δ∇θλ(θ)x
∗(δ))‖∞ ≤ `F .

It is worth noting that z∗(δ) = ∇F (λ(θ) + δ∇θλ(θ)x
∗(δ)) is also the solution to the unconstrained

version of (E.1). Therefore we have ‖z‖∞ ≤ `F , so that we can add this to the constraint without
changing the optimal solutions. By the intermediate result in the proof of Theorem 3.1, we have

x∗(δ) = ∇θλ(θ)
>∇F

(

λ(θ) + δ∇θλ(θ)x
∗(δ)

)

.

Consequently, by the Lipschitz continuity of ∇F , we have
∥

∥

∥
x∗(δ)−∇θR(θ)

∥

∥

∥

2

=
∥

∥

∥
∇θλ(θ)

>∇F
(

λ(θ) + δ∇θλ(θ)x
∗(δ)

)

−∇θλ(θ)
>∇F

(

λ(θ)
)

∥

∥

∥

2

≤ ‖∇θλ(θ)
>‖∞,2 ·

∥

∥

∥
∇F

(

λ(θ) + δ∇θλ(θ)x
∗(δ)

)

−∇F
(

λ(θ)
)

∥

∥

∥

2

∞

≤ LF ‖∇θλ(θ)
>‖2∞,2 ·

∥

∥

∥
δ∇θλ(θ)x

∗(δ)
∥

∥

∥

2

1

= O(δ2).
as stated in Lemma E.1(i). In the last step, we used the fact that x∗(δ) is bounded because
x∗(δ)→ ∇θR(πθ).

E.3 Proof of Lemma E.1(ii).

By the first order stationarity condition of the problems (E.1)-(E.2), we know

x∗ = ∇θV (θ; z∗) and x̂ = ∇θṼ (θ; ẑ).

Consider the norm-difference between the preceding quantities:

E

[

∥

∥x∗ − x̂
∥

∥

2
]

≤ 2E
[

‖∇θV (θ; z∗)−∇θṼ (θ; z∗)‖2
]

+ 2E
[

‖∇θṼ (θ; z∗)−∇θṼ (θ; ẑ)‖2
]

. (E.5)

To bound the term E

[

‖∇θV (θ; z∗)−∇θṼ (θ; z∗)‖2
]

, recall the definition (3.5):

∇Ṽ (θ; z) :=
1

n

∑

i=1

∇θV (θ; z; ζi) =
1

n

n
∑

i=1

K
∑

k=1

∑

a∈A

γkQ(s
(i)
k , a; z)∇θπθ(a|s(i)k ).

Consider the first term on the right-hand side of (E.5). Add and subtract E
[

∇θṼ (θ; z∗)
]

and use

the fact that E
[

∇θṼ (θ; z∗)
]

= ∇θV (θ; z∗), i.e., the bias-variance decomposition identity, to write

E

[

∥

∥

∥
∇θV (θ; z∗)−∇θṼ (θ; z∗)

∥

∥

∥

2
]

(E.6)

=
∥

∥

∥
∇θV (θ; z∗)− E

[

∇θṼ (θ; z∗)
]
∥

∥

∥

2

+ E

[

∥

∥

∥
∇θṼ (θ; z∗)− E

[

∇θṼ (θ; z∗)
]
∥

∥

∥

2
]

.

21



Zhang, Koppel, Bedi, Szepesvari, and Wang

For the first (squared bias) term on the right-hand side of (E.6), denote dπξ,K(s) = (1−γ)
∑K

t=0 γ
tProb(st =

s|π, s0 ∼ ξ). Then it is straightforward that
∑

s |dπξ,K(s)− dπξ (s)| ≤ γK

1−γ . As a result, we know

∥

∥

∥
∇θV (θ; z∗)− E

[

∇θṼ (θ; z∗)
]∥

∥

∥

2

(E.7)

=
1

(1− γ)2

∥

∥

∥

∥

∥

∑

s

(

dπξ (s)− dπξ,K(s)
)

∑

a

Qπθ (s, a; z∗)∇θπθ(a|s)
∥

∥

∥

∥

∥

2

=
1

(1− γ)2

(

∑

s

|dπξ (s)− dπξ,K(s)| ·
∥

∥

∥

∑

a

Qπθ (s, a; z∗)∇θπθ(a|s)
∥

∥

∥

)2

=
1

(1− γ)2

(

∑

s

|dπξ (s)− dπξ,K(s)| ·
∥

∥

∥

∑

a

Qπθ (s, a; z∗)∇θπθ(a|s)
∥

∥

∥

)2

≤ 1

(1− γ)2

(

∑

s

|dπξ (s)− dπξ,K(s)| · max
‖u‖∞≤

‖z∗‖∞
1−γ

‖∇θπ(·|s)u‖
)2

≤
‖∇θπ(·|s)‖2∞,2 · ‖z∗‖2∞

(1− γ)4

(

∑

s

|dπξ (s)− dπξ,K(s)|
)2

≤ C2‖z∗‖2∞
(1− γ)6

γ2K .

Next, we consider the second (variance) term on the right-hand side of (E.6). By substituting (3.5)
in for ∇θṼ (θ; z∗) to rewrite it in terms of trajectories ζi, we have

E

[

∥

∥

∥
∇θṼ (θ; z∗)− E

[

∇θṼ (θ; z∗)
]∥

∥

∥

2
]

=
1

n
E

[

∥

∥

∥
∇θṼ (θ; z∗; ζi)− E

[

∇θṼ (θ; z∗; ζi)
]∥

∥

∥

2
]

≤ 1

n
E

[

∥

∥

∥
∇θṼ (θ; z∗; ζi)

∥

∥

∥

2
]

≤ C2‖z∗‖2∞
n(1− γ)4

.

The first inequality comes from crudely upper-bounding the bias by the estimator itself. The last
equality uses (E.3).

Now, returning focus to the second term in the bound (E.5), by the linearity of the stochastic
estimators with respect to the differential and (E.4), we have

∥

∥

∥
∇θṼ (θ; z∗)−∇θṼ (θ; ẑ)

∥

∥

∥

2

=
∥

∥

∥
∇θṼ (θ; z∗ − ẑ)

∥

∥

∥

2

≤ C2‖z∗ − ẑ‖2∞
(1− γ)4

.

Taking the expectation after squaring both sides yields

E

[

∥

∥

∥
∇θṼ (θ; z∗)−∇θṼ (θ; ẑ)

∥

∥

∥

2
]

≤ C2

(1− γ)4
E
[

‖z∗ − ẑ‖2∞
]

. (E.8)

Combining inequalities (E.5), (E.6), (E.7), (E.8), (E.8) yields

E

[

∥

∥x∗ − x̂
∥

∥

2
]

≤ 2C2‖z∗‖2∞
(1− γ)4

·
(

γ2K

(1− γ)2
+

1

n

)

+
2C2

(1− γ)4
· E
[

‖z∗ − ẑ‖2∞
]

.

which is as stated in Lemma E.1(ii).
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E.4 Proof of Lemma E.1(iii).

In this section we will apply the generalization bound for stochastic saddle points from Zhang et al.
(2020b) to bound the term E[‖ẑ − z∗‖2∞]. To achieve this, we need a compact feasible region for x.
Note that for problems (E.1) and (E.2), the solutions x∗ and x̂ has the form

x∗ = ∇θV (θ; z∗) and x̂ = ∇θṼ (θ; ẑ).

Due to (E.4) and the constraint that ‖z‖∞ ≤ `F , we have ‖x∗‖ ≤ C‖z∗‖∞

(1−γ)2 ≤
C`F

(1−γ)2 and thus

‖x̂‖ ≤ C`F
(1−γ)2 with probability 1. Therefore, adding a constraint that ‖x‖ ≤ C`F

(1−γ)2 will not change

the solutions of problems (E.1) and (E.2). Formally speaking, we will then apply the theory of Zhang
et al. (2020b) to the following pair of constrained problems:

(x∗, z∗) = argmax
x∈X

argmin
z∈Z

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2, (E.9)

and

(x̂, ẑ) = argmax
x∈X

argmin
z∈Z

Ṽ (θ; z) + δ∇θṼ (θ; z)>x− F ∗(z)− δ

2
‖x‖2. (E.10)

with X = {x : ‖x‖ ≤ C`F
(1−γ)2 } and Z = {z : ‖z‖∞ ≤ `F }. The problems (E.1) and (E.9) share the

same solution, and problems (E.2) and (E.10) share the same solution.
Finally, similar to the proof of (E.7), for any x ∈ X and z ∈ Z

V (θ; z) + δ∇θV (θ; z)>x− E

[

Ṽ (θ; z; ζi) + δ∇θṼ (θ; z; ζi)
>x
]

= O
(

γK

1− γ

)

.

For the simplicity of discussion, let us assume that K is large enough so that we can ignore the

O
(

γK

1−γ

)

bias. Therefore problem (E.10) can be viewed as an empirical version of the problem (E.9)

with negligible bias. To apply the theory of Zhang et al. (2020b), define

Ψζ(x, z) := Ṽ (θ; z; ζ) + δ∇θṼ (θ; z; ζ)>x− F ∗(z)− δ

2
‖x‖2.

Then for any sample path ζ, Ψζ satisfies the following set of properties:

• Ψζ(·, z) is µx-strongly concave under L2 norm. And Ψζ(x, ·) is µz-strongly convex under the
L∞ norm. In other words, for ∀x, x′ ∈ X and z, z′ ∈ Z,

{

Ψζ(x
′, z) ≥ Ψζ(x, z) + 〈u, x′ − x〉+ µx

2 ‖x′ − x‖2, u ∈ ∂xΨζ(x, z),

Ψζ(x, z
′) ≤ Ψζ(x, z) + 〈v, z′ − z〉 − µz

2 ‖z′ − z‖2∞, v ∈ ∂zΨζ(x, z).

In our case, it is clear that µx = δ. Due to Theorem 3 of Kakade et al. (2012), µz = L−1
F .

• The feasible regions X and Z are compact convex sets. For every ζ, there exist constants
`x(ξ, z) and `z(ξ, x) s.t.

{

|Ψζ(x
′, z)−Ψζ(x, z)| ≤ `x(ζ, z)‖x′ − x‖, ∀x, x′ ∈ X and y ∈ Y,

|Ψζ(x, z
′)−Ψζ(x, z)| ≤ `z(ζ, x)‖z′ − z‖∞, ∀z, z′ ∈ Z and x ∈ X .

In our case, we gave `z(ζ, x) = sup {‖u‖1 : z ∈ Z, u ∈ ∂zΨζ(x, z)} = 1
1−γ + `F∗ + O(δ) and

`x(ζ, z) = supx∈X ‖∇xΨζ(x, z)‖ = O(δ). Consequently,
{

(`wx )
2 := supz∈Z E

[

`2x(ζ, z)
]

= O(δ2),
(`wz )

2 := supx∈X E
[

`2z(ζ, x)
]

= O(`2F∗ + 1
(1−γ)2 + δ2).
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With the above two properties, Theorem 1 of Zhang et al. (2020b) indicates that

µz

2
E
[

‖ẑ − z∗‖2∞
]

≤ 2
√
2

n
·
(

(`wx )
2

µx
+

(`wz )
2

µz

)

.

With the detailed parameters substituted in the above inequality, we have

E
[

‖ẑ − z∗‖2∞
]

≤ O
(

L2
F

n(1− γ)2
+

L2
F `

2
F∗

n
+

L2
F δ

2 + LF δ

n

)

as stated in Lemma E.1(iii).

Appendix F. Proof of Theorem 4.2

Proof. Let θ∗ be a first-order stationary solution of (3.1). When F is concave and locally Lipschitz
continuous in a neighbourhood containing λ(Θ), we can compute the Fréchet superdifferential of
F ◦ λ at θ∗ by the chain rule, see Drusvyatskiy and Paquette (2019). That is

∂̂(F ◦ λ)(θ∗) = [∇θλ(θ
∗)]

>
∂F (λ∗)

where ∂F (λ∗) denotes the set of supergradients of the concave function F at λ∗. Then there exists

w∗ ∈ ∂F (λ∗) ∈ R
SA such that u∗ := [∇θλ(θ

∗)]>w∗ ∈ ∂̂(F ◦ λ)(θ∗) as in (4.2). It follows from (4.2)
that

〈w∗,∇θλ(θ
∗)(θ − θ∗)〉 ≤ 0, for ∀θ ∈ Θ. (F.1)

For any λ ∈ λ(Θ), we let θ := g(λ) such that λ = λ(θ). Therefore, by adding and subtracting
∇θλ(θ

∗)θ inside the inner product we have

〈w∗, λ− λ∗〉 = 〈w∗, λ(θ)− λ(θ∗)〉 (F.2)

= 〈w∗,∇θλ(θ
∗)(θ − θ∗)〉+ 〈w∗, λ(θ)− λ(θ∗)−∇θλ(θ

∗)(θ − θ∗)〉
≤ 0 + ‖w∗‖‖λ(θ)− λ(θ∗)−∇θλ(θ

∗)(θ − θ∗)‖.

where in the last inequality we group terms and apply Cauchy-Schwartz. Note that the Jacobian matrix
∇θλ(θ) is Lipschitz continuous. Denote the Lipschitz constant by Lλ, i.e., ‖∇θλ(θ) −∇θλ(θ

′)‖ ≤
Lλ‖θ − θ′‖ for all θ, θ′ ∈ Θ. Then,

‖λ(θ)− λ(θ∗)−∇θλ(θ
∗)(θ − θ∗)‖ ≤ Lλ

2
‖θ − θ∗‖2.

By Assumption 4.1, we know

‖θ − θ∗‖2 = ‖g(λ)− g(λ∗)‖2 ≤ `2θ|||λ− λ∗|||2.

Substituting the above inequalities into (F.2) yields

〈w∗, λ− λ∗〉 ≤ Lλ`
2
θ

2
‖w∗‖|||λ− λ∗|||2 ∀λ ∈ λ(Θ). (F.3)

Note that (F.3) holds for arbitrary λ ∈ λ(Θ). Therefore, since λ(Θ) is assumed to be convex
(Assumption 4.1(i)), we can also substitute λ with (1− α)λ∗ + αλ, α ∈ [0, 1] into the above equation,
which yields

α〈w∗, λ− λ∗〉 ≤ Lλ`
2
θα

2

2
‖w∗‖|||λ− λ∗|||2 ∀λ ∈ L, ∀α ∈ [0, 1].
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Divide both sides of the preceding expression by α and take α→ 0+ gives

〈w∗, λ− λ∗〉 ≤ lim
α→0+

Lλ`
2
θα

2
‖w∗‖|||λ− λ∗|||2 = 0 ∀λ ∈ λ(Θ).

Recall that the following problem is concave in λ:

max
λ

F (λ) s.t. λ ∈ λ(Θ),

therefore we conclude that λ∗ is the global optimal solution. Then θ∗ = g(λ∗) is the globally optimal
solution of the nonconvex optimization problem (3.1).

Appendix G. Proof of Theorem 4.4

G.1 Proof of sublinear convergence

Proof. First, the Lipschitz continuity in Assumption 4.3 indicates that

∣

∣F (λ(θ))− F (λ(θk))− 〈∇θF (λ(θk)), θ − θk〉
∣

∣ ≤ L

2
‖θ − θk‖2.

Consequently, for any θ ∈ Θ we have the ascent property:

F (λ(θ)) ≥ F (λ(θk)) + 〈∇θF (λ(θk)), θ − θk〉 − L

2
‖θ − θk‖2 ≥ F (λ(θ))− L‖θ − θk‖2. (G.1)

The optimality condition in the policy update rule (4.1) then yields

F (λ(θk+1)) ≥ F (λ(θk)) + 〈∇θF (λ(θk)), θk+1 − θk〉 − L

2
‖θk+1 − θk‖2

= max
θ∈Θ

F (λ(θk)) + 〈∇θF (λ(θk)), θ − θk〉 − L

2
‖θ − θk‖2

(a)

≥ max
θ∈Θ

F (λ(θ))− L‖θ − θk‖2

(b)

≥ max
α∈[0,1]

{

F (λ(θα))− L‖θα − θk‖2 : θα = g(αλ(θ∗) + (1− α)λ(θk))
}

. (G.2)

Here, step (a) is due to (G.1) and step (b) uses the convexity of λ(Θ). Now, we proceed to analyze
the right-hand side of (G.2). First, by the concavity of F and the fact that λ ◦ g = id, we have

F (λ(θα)) = F (αλ(θ∗) + (1− α)λ(θk)) ≥ αF (λ(θ∗)) + (1− α)F (λ(θk)).

Moreover, by the Lipschitz continuity assumption of g, we have

‖θα − θk‖2 = ‖g(αλ(θ∗) + (1− α)λ(θk))− g(λ(θk))‖2 (G.3)

≤ α2`2θ|||λ(θ∗)− λ(θk)|||2

≤ α2`2θD
2
λ.

Substituting the above two inequalities into the right-hand side of (G.2), we get

F (λ(θ∗))− F (λ(θk+1))

≤ min
α∈[0,1]

{

F (λ(θ∗))− F (λ(θα)) + L‖θα − θk‖2 : θα = g(αλ(θ∗) + (1− α)λ(θk))
}

≤ min
α∈[0,1]

(1− α)
(

F (λ(θ∗))− F (λ(θk))
)

+ α2L`2θD
2
λ . (G.4)
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Let αk = F (Λ(π∗))−F (Λ(πk))
2L`2

θ
D2

λ

≥ 0, which is the minimizer of the RHS of (G.4) as long as it satisfies

αk ≤ 1.
Now, we claim the following: If αk ≥ 1 then αk+1 < 1. Further, if αk < 1 then αk+1 ≤ αk. The

two claims together mean that (αk)k is decreasing and all αk are in [0, 1) except perhaps α0.
To prove the first of the two claims, assume αk ≥ 1. This implies that F (Λ(π∗))− F (Λ(πk)) ≥

2L`2θD
2
λ. Hence, choosing α = 1 in (G.4), we get

F (λ(θ∗))− F (λ(θk)) ≤ L`2θD
2
λ

which implies that αk+1 ≤ 1/2 < 1.
To prove the second claim, we plug αk into (G.4) to get

F (λ(θ∗))− F (λ(θk+1)) ≤
(

1− F (λ(θ∗))− F (λ(θk))

4L`2θD
2
λ

)

(F (λ(θ∗))− F (λ(θk))),

which shows that αk+1 ≤ αk as required.
Now, by our preceding discussion, for k = 1, 2, . . . the previous recursion holds. Using the

definition of αk, we rewrite this in the equivalent form

αk+1

2
≤
(

1− αk

2

)

· αk

2
.

By rearranging the preceding expressions and algebraic manipulations, we obtain

2

αk+1
≥ 1
(

1− αk

2

)

· αk

2

=
2

αk
+

1

1− αk

2

≥ 2

αk
+ 1.

For simplicity assume that α0 < 1 also holds. Then, 2
αk
≥ 2

α0
+ k, and consequenlty

F (λ(θ∗))− F (λ(θk)) ≤ F (λ(θ∗))− F (λ(θ0))

1 + F (λ(θ∗))−F (λ(θ0))
4L`2

θ
D2

λ

· k
≤ 4L`2θD

2
λ

k
.

A similar analysis holds when α0 > 1. Combining these two gives that F (λ(π∗))−F (λ(πk)) ≤ 4L`2θD
2
λ

k+1
no matter the value of α0, which proves the result.

G.2 Proof of exponential convergence

When the strong concavity of F is available, we further provide the exponential convergence result.

Proof. We start from (G.2) whose proof requires no assumption on strong concavity of F , which is

F (λ(θk+1)) ≥ max
α∈[0,1]

{

F (λ(θα))− L‖θα − θk‖2 : θα = g(αλ(θ∗) + (1− α)λ(θk))
}

. (G.5)

By the µ-strong concavity of F , we have

F (λ(θα)) = F (αλ(θ∗)+(1−α)λ(θk)) ≥ αF (λ(θ∗))+(1−α)F (λ(θk))+
µ

2
α(1−α)|||λ(θ∗)− λ(θk)|||2.

By the Lipschitz continuity of g, we know that

‖θα − θk‖ = ‖g(αλ(θ∗) + (1− α)λ(θk))− g(λ(θk))‖ ≤ α`θ|||λ(θ∗)− λ(θk)|||
Substituting the above two inequalities into the right-hand side of (G.5), we get

F (λ(θ∗))− F (λ(θk+1)) (G.6)

≤ min
α∈[0,1]

{

F (λ(θ∗))− F (λ(θα)) + L‖θα − θk‖2 : θα = g(αλ(θ∗) + (1− α)λ(θk))
}

≤ min
α∈[0,1]

(1− α)
(

F (λ(θ∗))− F (λ(θk))
)

− α

(

1− α

2
µ− L`2θα

)

|||λ(θ∗)− λ(θk)|||2
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Suppose we choose ᾱ = 1
1+L`2

θ
/µ

< 1 such that
(

1−ᾱ
2 µ− L`2θᾱ

)

= 0. Then we have a contraction

with modulus 1− ᾱ as

F (λ(θ∗))− F (λ(θk+1)) ≤ (1− ᾱ)F (λ(θ∗))− F (λ(θk)).

Consequently, for any k ≥ 1, we have

F (λ(θ∗))− F (λ(θk)) ≤ (1− ᾱ)k
(

F (λ(θ∗))− F (λ(θ0))
)

.

which can be translated into iteration complexity by fixing ε and initialization θ0, and solving for the
minimal k such that F (λ(θ∗))− F (λ(θk)) ≤ ε. Doing so is an algebraic exercise which results in

O
(

1

ᾱ
log

(

F (λ(θ∗))− F (λ(θ0))

ε

))

= O
(

L`2θ
µ

log

(

1

ε

))

Appendix H. Validating Assumption 4.1 for tabular policy case

For the tabular policy case, the following Proposition holds true and hence the Assumption 4.1 is
satisfied in this case.

Proposition H.1. Suppose ξs > 0 for ∀s ∈ S. Then the following hold:

(i). The mappings Π and Λ form a pair of bijections between the convex sets ∆S
A and L;

(ii). ∃Lλ > 0 s.t. ‖∇Λ(π)−∇Λ(π′)‖ ≤ Lλ‖π − π′‖, ∀π, π′ ∈ ∆S
A;

(iii). For all λ, λ′ ∈ L, we have

‖Π(λ)−Π(λ′)‖2 ≤ 2
∑

s

(

∑

a

(λ′
sa − λsa)

2 + (
∑

a

λ′
sa − λsa)

2
)

/
(

∑

a

λsa

)2
.

Consequently, ‖Π(λ)−Π(λ′)‖ ≤ 2
mins ξs

‖λ− λ′‖1
Proof.

Proof of (i): The equations Π ◦ Λ = idL and Λ ◦Π = id∆S
A
are standard. See, e.g., Altman (1999)

or Appendix A of Zhang et al. (2020a).

Proof of (ii): For the existence of the Lλ-Lipschitz constant of the gradient ∇Λ, note that the t-th
term of the infinite sum

Λsa(π) =
∞
∑

t=0

γt · P
(

st = s, at = a

∣

∣

∣

∣

π, s0 ∼ ξ

)

is a (t+ 1)-th order polynomial. Therefore, Λsa(π) can actually be defined for any π even if π /∈ ∆S
A,

as long as this infinite series of polynomial of π converges absolutely. Note that for ∀π ∈ ∆S
A, since

0 ≤ P
(

st = s, at = a
∣

∣ π, s0 ∼ ξ
)

≤ 1 this infinite series is absolutely convergent. Because we have
0 < γ < 1, even if we slightly purterb the π within a neighbourhood of it (not necessarily in ∆S

A after
purterbation), the infinite series is still absolutely convergent. This indicates that Λsa is infinitely
continuously differentiable in an open neighbourhood containing ∆S

A, then due to the compactness of
∆S

A, we are able to argue that there exists a Lλ s.t. ∇Λ is Lλ-Lipschitz continuous within ∆S
A.
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Proof of (iii): Now, we provide the calculation of the Lipschitz constant of Π. For the ease of
notation, let us define µs =

∑

a∈A λsa and µ′
s =

∑

a∈A λ′
sa. Then for ∀λ, λ′ ∈ L and ∀(s, a) ∈ S ×A,

it holds that

Πsa(λ)−Πsa(λ
′) =

λsa

µs
− λ′

sa

µ′
s

=

(

λsa

µs
− λ′

sa

µs

)

+

(

λ′
sa

µs
− λ′

sa

µ′
s

)

=
1

µs
(λsa − λ′

sa) +
µ′
s − µs

µsµ′
s

λ′
sa.

Consequently, we can compute the norm difference of the preceding expression and apply the triangle
inequality:

‖Π(λ)−Π(λ′)‖2 =
∑

s∈S

∑

a∈A

(Πsa(λ)−Πsa(λ
′))

2
(H.1)

≤ 2
∑

s∈S

∑

a∈A

1

µ2
s

(λsa − λ′
sa)

2 + 2
∑

s∈S

∑

a∈A

(µ′
s − µs)

2

µ2
s(µ

′
s)

2
(λ′

sa)
2

≤ 2
∑

s∈S

1

µ2
s

(

∑

a∈A

(λsa − λ′
sa)

2 + (µ′
s − µs)

2

)

,

where the last inequality follows because ‖x‖22 ≤ ‖x‖21 holds for any vector x (here, ‖ · ‖p denotes the
p-norm). Finally, note that µs ≥ ξs > 0, we have

‖Π(λ)−Π(λ′)‖2 ≤ 2
∑

s∈S

1

µ2
s

(

∑

a∈A

(λsa − λ′
sa)

2 + (µ′
s − µs)

2

)

≤ 2

mins ξ2s

∑

s∈S

(

∑

a∈A

(λsa − λ′
sa)

2 +
(

∑

a∈A

|λsa − λsa′ |
)2

)

≤ 4

mins ξ2s
‖λ− λ′‖21

Take the square root of both sides completes the proof.

Appendix I. Proof of Theorem 4.5

Proof. To prove this theorem, it suffices to observe that (G.2) is still true with θ = π, λ(θ) = Λ(π)
and g(λ) = Π(λ). Therefore, (G.2) can be translated as

F (Λ(πk+1)) ≥ max
α∈[0,1]

{

F (Λ(πα))− L‖πα − πk‖2 : πα = Π(αΛ(π∗) + (1− α)Λ(πk))
}

. (I.1)

By the concavity of F and the fact that Λ ◦Π = id, we have

F (Λ(πα)) = F (αΛ(π∗) + (1− α)Λ(πk)) ≥ αF (Λ(π∗)) + (1− α)F (Λ(πk)). (I.2)
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For the inequality (G.3), we can derive a tighter bound by the following argument:

‖πα − πk‖2 = ‖Π(αΛ(π∗) + (1− α)Λ(πk))−Π(Λ(πk))‖2 (I.3)

≤ α2
∑

s

1
(
∑

a λsa

)2

(

∑

a

(λ∗
sa − λsa)

2 +
(

∑

a

λ∗
sa −

∑

a

λsa

)2

)

≤ 4α2
∑

s

1
(
∑

a λsa

)2

(

(

∑

a

λ∗
sa

)2
+
(

∑

a

λsa

)2

)

= 4α2
∑

s

(

dπ
∗

ξ (s)
)2

+
(

dπ
k

ξ (s)
)2

(

dπ
k

ξ (s)
)2

= 4α2|S|+ 4α2
∑

s

(

dπ
∗

ξ (s)

dπ
k

ξ (s)

)2

≤ 4α2|S|+ 4α2|S|
∥

∥

∥

∥

∥

dπ
∗

ξ

dπ
k

ξ

∥

∥

∥

∥

∥

2

∞

≤ 4α2|S| ·
(

1 + (1− γ)−2
∥

∥

∥
dπ

∗

ξ /ξ
∥

∥

∥

2

∞

)

≤ 5α2|S|
(1− γ)2

∥

∥

∥
dπ

∗

ξ /ξ
∥

∥

∥

2

∞

Denote D := 5|S|
(1−γ)2

∥

∥

∥
dπ

∗

ξ /ξ
∥

∥

∥

2

∞
. Substituting the above two inequalities into the right-hand side of

(I.1), we get

F (Λ(π∗))− F (Λ(πk+1))

≤ min
α∈[0,1]

{

F (Λ(π∗))− F (Λ(πα)) + L‖πα − πk‖2 : πα = Π(αΛ(π∗) + (1− α)Λ(πk))
}

≤ min
α∈[0,1]

(1− α)
(

F (Λ(π∗))− F (Λ(πk))
)

+ LDα2 . (I.4)

Note that (I.4) differs from (G.4) by replacing `2θD
2
λ with D. The latter proof of Theorem 4.5 is

almost identical to that of Theorem 4.4 and hence we omit the proof.
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