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Abstract

Given a weighted, ordered query set Q and a partition ofQ into classes, we study the problem
of computing a minimum-cost decision tree that, given any query q ∈ Q, uses equality tests and
less-than comparisons to determine the class to which q belongs. Such a tree can be much
smaller than a lookup table, and much faster and smaller than a conventional search tree. We
give the first polynomial-time algorithm for the problem. The algorithm extends naturally to
the setting where each query has multiple allowed classes.
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q cls wt

1 A 6
2 B 7
3 C 7
4 A 6
5 D 8
6 B 8
7 E 7
8 F 6
9 A 8
10 G 7
11 H 10
12 H 11
13 H 10
14 H 9
15 H 500
16 H 9
17 H 10

q cls wt

18 I 10
19 I 8
20 I 15
21 I 17
22 H 7
23 H 8
24 H 15
25 H 10
26 J 1
27 J 2
28 J 2
29 J 1
30 J 2
31 J 2
32 J 100
33 J 1
34 J 2

q cls wt

35 J 2
36 J 2
37 J 1
38 J 1
39 J 1
40 J 2
41 J 1
42 K 3
43 K 3
44 K 3
45 K 3
46 K 3
47 K 3
48 K 3
49 K 3
50 K 3

Figure 1: An optimal two-way-comparison decision tree (2wcdt) for the problem instance shown
on the right. The instance (but not the tree) is from [2, 3, Figure 6]. Each leaf (rectangle) is labeled
with the queries that reach it, and below that with the class for the leaf. The table gives the class
and weight of each query q ∈ Q = [50] = {1, 2, . . . , 50}. The tree has cost 2055, about 11% cheaper
than the tree from [2, 3], of cost 2305.

1 Introduction

Given a weighted, ordered query set Q partitioned into classes, we study the problem of computing
a minimum-cost decision tree that uses equality tests (e.g., “q = 4?”) and less-than tests (e.g.,
“q < 7?”) to quickly determine the class of any given query q ∈ Q. (Here the cost of a tree is the
weighted sum of the depths of all queries, where the depth of a given query q ∈ Q is the number of
tests the tree makes when given query q.) We call such a tree a two-way-comparison decision tree
(2wcdt). See Figure 1.

A main use case for 2wcdts is when the number of classes is small relative to the number of
queries. In this case a 2wcdt can be significantly smaller than a lookup table, and, likewise, faster
and smaller than a conventional search tree, because a search tree has to identify a given query
q (or the inter-key interval that q lies in) whereas a decision tree only has to identify q’s class.
Because they can be faster and more compact, 2wcdts are used in applications such as dispatch
trees, which allow compilers and interpreters to quickly resolve method implementations for objects
declared with type inheritance [2, 3]. (Each type is assigned a numeric ID via a depth-first search
of the inheritance digraph. For each method, a 2wcdt maps each ID to the appropriate method
resolution.)

Chambers and Chen give a heuristic to construct low-cost 2wcdts, but leave open whether
minimum-cost 2wcdts can be found in polynomial time [2, 3]. We give the first polynomial-time
algorithm to find minimum-cost 2wcdts. The algorithm runs in time O(n4), where n = |Q| is the
number of distinct query values, matching the best time bound known for a special type of 2wcdts
called two-way-comparison search trees (2wcsts), discussed below. The algorithm extends naturally
to the setting where each query can belong to multiple classes, any one of which is acceptable as
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Figure 2: Tree (a) is a three-way-comparison search tree (3wcst). Tree (b) is a two-way-comparison
search tree (2wcst) for the same instance. The query (or interval of queries) reaching each (rect-
angular) leaf is within the leaf. The weight of the query (or interval) is below the leaf.

an answer for the query. The extended algorithm runs in time O(n3m), where m is the sum of the
sizes of the classes.

Related work. Various types of decision trees are ubiquitous in the areas of artificial intelligence,
machine learning, and data mining, where they are used for data classification, clustering, and
regression.

Here we study decision trees for one-dimensional data sets. In theoretical computer science,
most work on such trees has focussed on search trees, that is, decision trees that must fully identify
the query or the inter-key interval it lies in. Here is a brief summary of relevant work on such
trees. One of our main contributions is to increase the understanding of trees based on two-way
comparisons. These are not yet fully understood.

The tractability of finding a minimum-cost search tree depends heavily on the kind of tests that
the tree can use. For some kinds of tests, the problem is NP-complete [12]. Early works considered
trees in which each test compared the given query value q to some particular comparison key
k, with three possible outcomes: the query value q is less than, equal to, or greater than k [6,
§14.5], [14, §6.2.2]. (See Figure 4 (a).) We call such trees three-way-comparison search trees, or
3wcsts for short. In a 3wcst, the query values that reach any given node form an interval. This
leads to a natural O(n3)-time dynamic-programming algorithm with O(n2) subproblems for finding
minimum-cost 3wcsts [8]. Knuth reduced the time to O(n2) [13].

In practice each three-way comparison is often implemented by doing a less-than test followed
by an equality test. Knuth [14, §6.2.2, Example 33] proposed exploring binary search trees that
use these two tests directly in any combination. Such trees are called two-way-comparison search
trees (2wcsts) [1]. For the so-called successful-queries variant, assuming that the query weights
are normalized to sum to 1, there is always a 2wcst whose cost exceeds the entropy of the weight
distribution by at most 1 [7]. The entropy is a lower bound on the cost of any binary search tree
that uses Boolean tests of any kind. This suggests that restricting to less-than and equality tests
need not be too costly [7].

Stand-alone equality tests introduce a technical obstacle not encountered with 3wcsts. Namely,
while (analogously to 3wcsts) each node of a 2wcst is naturally associated with an interval of
queries, not all queries from this interval necessarily reach the node. For this reason the dynamic-
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programming approach for 3wcsts does not extend easily to 2wcsts. This led early works to
focus on restricted classes of 2wcsts, namely median split trees [16] and binary split trees [11,
15, 9]. These, by definition, constrain the use of equality tests so as to altogether sidestep the
aforementioned technical obstacle. Generalized binary split trees are less restrictive, but the only
algorithm proposed to find them [10] is incorrect [5]. Similarly, the first algorithms proposed
to find minimum-cost 2wcsts (without restrictions) were given without proofs of correctness [17,
18], and the recurrence relations underlying some of those proposed algorithms turned out to be
demonstrably wrong [5].

In 1994, Spuler made a conjecture that leads to a natural dynamic program for 2wcsts. Namely,
that every instance admits a minimum-cost 2wcst with the heaviest-first property: that is, at any
equality-test node 〈 = h〉, the comparison key h is heaviest among keys reaching the node [18]. In
a breakthrough in 2002, Anderson et al proved the conjecture for the so-called successful-queries
variant, leading to an O(n4)-time dynamic-programming algorithm to find minimum-cost 2wcsts
for that variant [1]. In 2021, Chrobak et al simplified their result (in particular, the handling of keys
of equal weights, as discussed later) obtaining an O(n4)-time algorithm for finding minimum-cost
2wcsts [4].

Our contributions. Unfortunately these 2wcst algorithms don’t extend easily to 2wcdts. The
main obstacle is that for some instances (e.g. in Figure 5) no minimum-cost 2wcdt has the crucial
heaviest-first property. To overcome this obstacle we introduce a splitting operation (Definition 7),
a correctness-preserving local rearrangement of the tree that can be viewed as an extension of the
well-studied rotation operation to a more general class of trees, specifically, to trees whose allowed
tests induce a laminar set family (Property 1).

We use splitting to identify an appropriate relaxation of the heaviest-first property that we call
being admissible (Definition 4). Most of the paper is devoted to proving the following theorem:

Theorem 1. If the instance is feasible, then some optimal tree is admissible.

Section 3 gives the proof. Along the way it establishes new structural properties of optimal
2wcsts and 2wcdts. Section 4 shows how Theorem 1 leads to a suitable dynamic program and our
main result:

Theorem 2. There is an O(n3m)-time algorithm for finding a min-cost 2wcdt.

Remarks. The presentation above glosses over a secondary technical obstacle for 2wcsts. For
2wcst instances with distinct query weights, the heaviest-first property uniquely determines the
key of each equality test, so that the subset of queries that reach any given node in a 2wcst with
the heaviest-first property must be one of O(n4) predetermined subsets. This leads to a natural
dynamic program with O(n4) subproblems. (See Section 3.) But this does not hold for instances
with non-distinct weights. This obstacle turns out to be more challenging than one might expect.
Indeed, there are instances for which, for each of the 2n subsets S of Q, there is a minimum-cost
2wcst, having the heaviest-first property, with a node u such that the set of queries reaching u is
S. It appears that one cannot just break ties arbitrarily: it can be that, for two maximum-weight
keys h and h′ reaching a given node u, there is an optimal subtree in which u does an equality-test
to h, but none in which u does an equality-test to h′ [4, Figure 3]. Similar issues arise in finding
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Figure 3: Three trees for the 2wcdt instance shown in (d). The set of queries reaching each
(rectangular) leaf is shown within the leaf (to save space, there ιi denotes the inter-key open
interval with right boundary i, e.g. ι1 = (−∞, 1), ι2 = (1, 2)). The associated weights are below
the leaf. The optimal tree (a) has cost 36 and is not heaviest-first. Each heaviest-first tree (e.g. (b)
of cost 41 or (c) of cost 56) is not optimal. These properties also hold if each weight is perturbed
to make the weights distinct.

optimal binary split trees—these can be found in time O(n4) if the instance has distinct weights,
while for arbitrary instances the best bound known is O(n5) [9].

Nonetheless, using a perturbation argument Chrobak et al show that an arbitrary 2wcst in-
stance can indeed be handled as if it is a distinct-weights instance just by breaking ties among
equal weights in an appropriate way [4]. We use the same approach here for 2wcdts.

Most search-tree problems come in two flavors: the successful-queries variant and the standard
variant. In the former, the input is an ordered set K of weighted keys, each comparison must
compare the given query value to a particular key in K, and each query must be a value in K.
In the latter, the input is augmented with a weight for each open interval between successive
keys. Queries (called unsuccessful queries) to values in these intervals are also allowed, and must
be answered by returning the interval in which the query falls. Our formal definition of 2wcdts
generalizes both variants.

The tractability of finding a minimum-cost search tree depends heavily on the kind of tests
that the tree must use. For some kinds of tests, the problem is NP-complete [12]. Early works
considered trees in which each test compared the given query value q to some particular comparison
key k, with three possible outcomes: the query value q is less than, equal to, or greater than k [6,
§14.5], [14, §6.2.2]. (See Figure 4 (a).) We call such trees three-way-comparison search trees, or
3wcsts for short. In a 3wcst, the query values that reach any given node form an interval. This
leads to a natural O(n3)-time dynamic-programming algorithm with O(n2) subproblems for finding
minimum-cost 3wcsts [8]. Knuth reduced the time to O(n2) [13].

Often, in practice, each three-way comparison is implemented by doing a less-than test followed
by an equality test. Knuth [14, Section 6.2.2, Example 33] proposed exploring binary search trees
that use these two tests directly. Such trees are called two-way-comparison search trees (2wcsts) [1].
For the so-called successful-queries variant, assuming that the query weights are normalized to sum
to 1, there is always a 2wcst whose cost exceeds the entropy of the weight distribution by at most
1 [7]. The entropy is a lower bound on the cost of a binary search tree that uses Boolean tests of
any kind. This suggests that restricting to less-than and equality tests need not be too costly [7].

But equality tests present a technical obstacle not encountered with 3wcsts. Namely, while
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Figure 4: Tree (a) is a three-way-comparison search tree (3wcst). Tree (b) is a two-way-comparison
search tree (2wcst) for the same instance. The query (or interval of queries) reaching each (rect-
angular) leaf is within the leaf. The weight of the query (or interval) is below the leaf.

(analogously to 3wcsts) with each node of a 2wcst we can naturally associate an interval of
queries, not all queries from this interval necessarily reach the node. For this reason the dynamic-
programming approach for 3wcsts does not extend easily to 2wcsts. This led early works to
focus on restricted classes of 2wcsts, namely median split trees [16] and binary split trees [11,
15, 9]. These, by definition, constrain the use of equality tests so as to altogether sidestep the
aforementioned technical obstacle. Generalized binary split trees are less restrictive, but the only
algorithm proposed to find them [10] is incorrect [5]. Similarly, the first algorithms proposed
to find minimum-cost 2wcsts (without restrictions) were given without proofs of correctness [17,
18], and the recurrence relations underlying some of those proposed algorithms turned out to be
demonstrably wrong [5].

In 1994, Spuler made a conjecture that leads to a natural dynamic program for 2wcsts. Namely,
that every instance admits a minimum-cost 2wcst with the heaviest-first property: that is, at any
equality-test node 〈 = h〉, the comparison key h is heaviest among keys reaching the node [18]. In
a breakthrough in 2002, Anderson et al proved the conjecture for the so-called successful-queries
variant, leading to an O(n4)-time dynamic-programming algorithm to find minimum-cost 2wcsts
for that variant [1]. In 2021, Chrobak et al simplified their result (in particular, the handling of keys
of equal weights, as discussed later) obtaining an O(n4)-time algorithm for finding minimum-cost
2wcsts [4].

Unfortunately these 2wcst algorithms don’t extend easily to 2wcdts. The main obstacle is
that for some instances (e.g. in Figure 5) no minimum-cost 2wcdt has the crucial heaviest-first
property. To overcome this obstacle we develop new machinery for reasoning about 2wcdts. Using
this machinery we identify an appropriate relaxation of the heaviest-first property, one that leads
to the desired algorithm.

2 Definitions and technical overview

For the remainder of the paper, fix a 2wcdt instance (Q,w, C,K), where Q is a totally ordered
finite set of queries, each with a weight w(q) ≥ 0, the set C ⊆ 2Q is a collection of classes of
queries (where each class has a unique identifier), and K ⊆ Q is the set of keys. Let n = |Q|
and m =

∑

c∈C |c|. The problem is to compute a minimum-cost two-way-comparison decision tree
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Figure 5: Three trees for the 2wcdt instance shown in (d). The set of queries reaching each
(rectangular) leaf is shown within the leaf (to save space, there ιi denotes the inter-key open
interval with right boundary i, e.g. ι1 = (−∞, 1), ι2 = (1, 2)). The associated weights are below
the leaf. The optimal tree (a) has cost 36 and is not heaviest-first. Each heaviest-first tree (e.g. (b)
of cost 41 or (c) of cost 56) is not optimal. These properties also hold if each weight is perturbed
by a small amount to make the weights distinct.

(2wcdt) for the instance (as defined below).
To streamline presentation, throughout the paper we restrict attention to the model of decision

trees that allows only less-than and equality tests. Our results extend naturally to decision trees
that also use other inequality comparisons between queries and keys. See the end of Section 4 for
details.

Definition 1 (2wcdt). A two-way-comparison decision tree (2wcdt) is a rooted binary tree T where
each non-leaf node is a test of the form 〈 < k〉 for some k ∈ K such that minQ < k ≤ maxQ,
or of the form 〈 = k〉 for some k ∈ K, and the two children of the node are labeled with the two
possible test outcomes (“yes” or “no”). Each leaf node is labeled with the identifier of one class in
C. This class must contain every query q ∈ Q whose search (as defined next) ends at the leaf.

For each q ∈ Q, the search for q in T starts at the root, then recursively searches for q in the
root’s yes-subtree if q satisfies the root’s test, and otherwise in the no-subtree. The search stops
at a leaf, called the leaf for q. The path from the root to this leaf is called q’s search path. We
say that q reaches each node on this path, and q’s depth in T is defined as the length of this path
(equivalently, the number of comparisons when searching for q). The cost of T is the weighted sum
of the depths of all queries in Q.

A tree T is called irreducible if, for each node u in T , (i) at least one query in Q reaches u,
and (ii) if some class c ∈ C contains all the queries that reach u, then u is a leaf.

For any ", r ∈ Q, let [", r]
Q
and [", r]

K
denote the query interval {q ∈ Q : " ≤ q ≤ r} and key

interval {k ∈ K : " ≤ k ≤ r} = K ∩ [", r]
Q
.

Allowing K and Q to be specified as we do captures both the successful-queries and standard
variants. The successful-queries variant corresponds to the case when K = Q. The standard
variant is modeled by having one non-key query between every pair of consecutive keys, and before
the minimum key and after the maximum key (so |Q \ K| = |K| + 1). Each such non-key query
represents an interval between keys.

For ease of exposition, assume without loss of generality that each query belongs to some class,
so m ≥ |Q| and the input size is Θ(n + m) = Θ(m). Note that the instance is not necessarily
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feasible, that is, it might not have a decision tree. (To be feasible, in addition to each query
belonging to some class, each query interval that contains no keys must be contained in some
class.) If the instance is feasible, some optimal tree is irreducible, so we generally restrict attention
to irreducible trees. As we shall see, in an irreducible tree any given test is used in at most one
node.

Definition 2 (ordering queries by weight). For any query subset R ⊆ Q and integer i ≥ 0 define
heaviesti(R) to contain the i heaviest queries in R (or all of R if i ≥ |R|). For q ∈ Q, define
heavier(q) to contain the queries (in Q) that are heavier than q. Define lighter(q) to contain the
queries (in Q) that are lighter than q. Break ties among query weights arbitrarily but consistently
throughout.

Formally, we use the following notation to implement the consistent tie-breaking mentioned
above. Fix an ordering of Q by increasing weight, breaking ties arbitrarily. For q ∈ Q let w̃(q)
denote the rank of q in the sorted order. Throughout, given distinct queries q and q′, define q to be
lighter than q′ if w̃(q) < w̃(q′) and heavier otherwise (w̃(q) > w̃(q′)). So, for example heaviesti(R)
contains the last i elements in the ordering of R by increasing w̃(q). The symbol ⊥ represents the
undefined quantity argmax ∅. Define w̃(⊥) = w(⊥) = −∞, heavier(⊥) = Q, and lighter(⊥) = ∅.

Definition 3 (intervals and holes). Given any non-empty query subset R ⊆ Q, call [minR,maxR]
Q

the query interval of R. Define k∗(R) to be the heaviest key in R, if there is one (that is, k∗(R) =
argmax{w̃(k) : k ∈ K ∩R}). Define also holes(R) = [minR,maxR]

Q
\R to be the set of holes in

R. We say that a hole h ∈ holes(R) is light if w̃(h) < w̃(k∗(R)), and otherwise heavy.
The set of queries reaching a node u in a tree T is called u’s query set, denoted Qu. The query

interval, and light and heavy holes, for u are defined to be those for u’s query set Qu.

Overview. Note that each hole h ∈ holes(Qu) at a node u in a tree T must result from a failed
equality test 〈 = h〉 at a node v on the path from the root to u in T . In particular, h ∈ K. Further,
if the hole is light, then h is not the heaviest key reaching v.

The problem has the following optimal substructure property. Any query subsetR ⊆ Q naturally
defines the subproblem π(R) induced by restricting the query set to R (that is, π(R) = (R,w, CR,K)
where CR = {c ∩ R : c ∈ C}). In any minimum-cost tree T for R, if T is not a leaf, then the yes-
subtree and no-subtree of T must be minimum-cost subtrees for their respective subproblems.

Let cost(R) be the minimum cost of an irreducible tree for π(R). (If R is empty, then cost(R) =
∞, as no tree for R is irreducible.) Then the following recurrence holds:

Observation 1 (recurrence relation). Fix any R ⊆ Q. If R = ∅, then cost(R) =∞. Otherwise, if
(∃c ∈ C)R ⊆ c (that is, R can be handled by a single leaf labeled c), then cost(R) = 0. Otherwise,
for any allowed test u, let (Ryes

u , Rno
u ) be the bipartition of R into those queries that satisfy u and

those that don’t. Then

cost(R) = w(R) + minu
(

cost(Ryes
u ) + cost(Rno

u )
)

, (1)

where the variable u ranges over the allowed tests such that Ryes
u and Rno

u are non-empty. (If there
are no such tests then cost(R) =∞.)

The goal is to compute cost(Q) using a dynamic program that applies recurrence (1) recursively,
memoizing results so that for each distinct query set R the subproblem for R is solved at most
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once. (The algorithm as presented computes only cost(Q). It can be extended in the standard way
to also compute an optimal tree.) The obstacle is that exponentially many distinct subproblems
can arise.

Identity classification without equality tests. For intuition, consider first the variant of our
problem in which C is the identity classification, that is C =

{

{q} : q ∈ Q
}

, and only less-than
tests 〈 < k〉 are allowed (equality tests are not). In the absence of equality tests, there are no
holes. When applying recurrence (1) recursively to cost(Q), each query set R that arises is a query
interval. There are O(n2) such query intervals, and for each the right-hand side of the recurrence
can be evaluated in O(n) time. This yields an O(n3)-time algorithm. This approach mirrors a
classical dynamic-programming algorithm for 3wcsts [8], as discussed in the introduction.

The algorithm extends easily to arbitrary classifications C. Recall that a given query set R can
be handled by a leaf (at zero cost) if and only if R ⊆ c for some c ∈ C. This condition can be
checked in constant time given (", r) such that R = [", r]

Q
(after an appropriate precomputation,

e.g., for each ", precompute the maximum r for which the condition holds).

Identity classification with equality tests allowed. Next consider the variant when C is
the identity classification but both kinds of tests are allowed. This is essentially the problem of
computing a minimum-cost 2wcst. In this variant, each node u in a tree T has query set Qu =
[minQu,maxQu]Q \ holes(Qu). Applying recurrence (1) naively to cost(Q) can yield exponentially
many subproblems because holes(Qu) can be almost any subset of [minQu,maxQu]Q. However, as
mentioned in Section 1, it is known that some optimal tree T has the heaviest-first property [1, 4]:
for each node u in T that does an equality test 〈 = h〉, the test key h is the heaviest key reaching
u. (Our tie-breaking scheme makes h unique.) In such a tree there are no light holes. That is, the
hole set of any given node u is the set of heavy holes at u:

holes(Qu) = [minQu,maxQu]K ∩ heavier(k∗(Qu)).

(Note that, by the definition of k∗(Qu), no keys heavier than k∗(Qu) reach u, so the set
[minQu,maxQu]K ∩ heavier(k∗(Qu)) contains exactly the heavy holes at u.)

A non-empty query set R without light holes is determined by the triple (minR,maxR, k∗(R)),
so there are O(n3) query sets without light holes. This leads naturally to an O(n4)-time algorithm
for instances with distinct weights [1, 4]. (Specifically, redefine cost(R) to be the minimum cost of
any heaviest-first, irreducible tree for π(R). Then cost(R) =∞ if R has at least one light hole. Add
this case as a base case to recurrence (1). Apply the modified recurrence recursively to calculate
cost(Q). Then the number of distinct non-trivial subproblems that arise is O(n3), and each can be
solved in O(n) time.)

Allowing equality tests and an arbitrary classification. The existing results for 2wcsts
don’t extend to 2wcdts because, as shown in Figure 5, there are 2wcdt instances with distinct
weights for which no optimal tree is heaviest-first. But, in some sense, the example in Figure 5 is
as bad as it gets. There is an optimal tree in which an appropriate relaxation of the heaviest-first
property holds, namely, that each node’s query set is admissible. Roughly, this means that there
are at most three light holes, and the light holes must be taken heaviest first from those keys that
don’t belong to some class c ∈ C that contains k∗ (the heaviest key reaching the node). Here’s the
formal definition:
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Definition 4 (admissible). Consider any query subset R ⊆ Q. The set R is called admissible if it
is non-empty and the set of light holes in R is either empty or has the form

heaviestb( [minR,maxR]
K
∩ lighter(k∗(R)) \ c )

for some b ∈ [3] and c ∈ C such that k∗(R) ∈ c.
A tree (or subtree) T is called admissible if the query set of each node in T is admissible.

Above (and within any mathematical expression), for any integer i, the notation [i] denotes the
set {1, 2, . . . , i}.

To gain some intuition for the definition, note that, by definition, for any query set R its holes
must be in [minR,maxR]

K
, and its light holes must be in lighter(k∗(R)).

For the algorithm, roughly, we redefine cost(R) =∞ if R is not admissible, add a corresponding
base case to recurrence (1), and then recursively apply the modified recurrence to compute cost(Q).
Each admissible query set R with no light holes is determined by the triple (minR,maxR, k∗(R)).
Per Definition 4, each admissible query set R with at least one light hole is determined by a
triple (minR,maxR, k∗(R), b, c), where (b, c) ∈ [3] × C with k∗(R) ∈ c. It follows that there are
O(n3 + n2m) = O(n2m) admissible query subsets, so that, in the recursive evaluation of cost(Q),
O(n2m) distinct non-trivial subproblems arise. These are solvable in total time O(n3m). Section 4
gives the detailed proof.

3 Some optimal tree is admissible

This section proves Theorem 1: if the instance is feasible, then some optimal tree is admissible.
Along the way we establish quite a bit more about the structure of optimal trees. We start with
some general terminology for how pairs of tests can relate. Recall that (Q,w, C,K) is a problem
instance with at least one correct tree. In any such tree, each edge u→ v from a node to its child
corresponds to one of the two possible outcomes of the test at u. We use u→ v to denote both the
edge and the associated outcome at u. For example, if u is the node 〈 < 3〉, and v is the no-child
of u, then the outcome u→ v means that the queried value is at least 3.

Definition 5. Two such outcomes u → v and x → y are called consistent if Q contains a query
value that satisfies them both. Otherwise they are inconsistent.

Two tests are said to be equivalent if either for all q ∈ Q the two tests give the same outcome
for q, or for all q ∈ Q the two tests give opposite outcomes for q.

For example, assume Q = [4]. The yes-outcome of 〈 < 3〉 is inconsistent with the yes-outcome
of 〈 = 4〉 and with the no-outcome of 〈 < 4〉, but is consistent with both outcomes of 〈 = 2〉, and
with both outcomes of 〈 < 2〉. The tests 〈 < 4〉 and 〈 = 4〉 are equivalent.

Most of the proof requires only the following property of tests:

Property 1 (laminarity). Let u and x be test nodes. If u and x do non-equivalent tests, then,
among the four pairs of outcomes between the two nodes, exactly one pair is inconsistent, while
the other three pairs are consistent. Formally, let u → v, u → v′, x → y, and x → y′ be the two
outcomes from u and the two outcomes from x. Then exactly one pair in {u→ v, u→ v′}× {x→
y, x→ y′} is inconsistent.

If u and x do equivalent tests, each outcome at u is consistent with a distinct outcome at x.
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Property 1 is easily verified. (Note that, by the definition of 2wcdts in Section 2, and assuming
there is more than one test, each outcome of each test is satisfied by at least one query in Q.) We
call Property 1 laminarity because it is equivalent to the laminarity of the collection of sets that
has, for each possible test, one set containing the queries that satisfy the test. In our case this
laminar collection is

{

{q ∈ Q : q < k} : k ∈ K, minQ < k ≤ maxQ
}

∪
{

{q} : q ∈ K
}

.

As an example, consider the query set Q = [4]. Then the yes-outcome of 〈 < 3〉 and the
yes-outcome of 〈 = 4〉 are inconsistent, while every other pair of outcomes is consistent; e.g., the
yes-outcome of 〈 < 3〉 and the no-outcome of 〈 = 4〉 are consistent, as they are both satisfied by
the query value 2.

Throughout most of the rest of this section (including Sections 3.1 and 3.2), fix T to be an
arbitrary irreducible tree.

Property 2. (i) In T , if u is a proper ancestor of a test node v then the outcome of u leading to
v is consistent with both outcomes at v, and the other outcome of u is consistent with exactly one
outcome at v. (ii) No two nodes in T are equivalent.

Property 2 follows quite easily from the irreducibility of T and Property 1: The irreducibility
of T implies directly that the outcome of u leading to v is consistent with both outcomes at v.
This implies that u and v are not equivalent, and then the second part of (i) then follows from
laminarity (Property 1). To justify Property 2(ii), let x and y be two different test nodes in T .
We have already established that if one of x, y is an ancestor of the other then they cannot be
equivalent. Otherwise, let u be the lowest common ancestor of x and y. By (i), the outcome at u
leading to x is consistent with both outcomes at x, but, using (i) and Property 1, it is inconsistent
with one outcome at y. So x and y cannot be equivalent.

3.1 Two weight bounds, via splitting

This section introduces splitting—a correctness-preserving local rearrangement of the tree that can
be viewed as an extension of the well-studied rotation operation to a more general class of trees,
specifically, to trees whose admissible tests form a laminar set as described above. The section uses
splitting to prove two weight bounds (Lemmas 3 and 4) that are used in subsequent sections.

Definition 6. Let u be a node in T , Tu the subtree of T rooted at u, and x any allowed test (not
necessarily in T ). The x-consistent path from u is the maximal downward path from u in Tu such
that each outcome along this path is consistent with both outcomes at x.

The x-consistent path from u is unique because (by laminarity) at most one outcome out of any
given node is consistent with both outcomes at x. In the case that Tu contains a node x̃ that is
equivalent to x, the x-consistent path from u is the path from u to x̃ (using here the irreducibility
of T and that neither outcome at x̃ is consistent with both outcomes at x). In the case that Tu

contains no such node x̃, this x-consistent path from u ends at a leaf.
Fix a node u in T and a test node x, not necessarily in T . Informally, splitting Tu around

x replaces subtree Tu of T by the subtree T ′
x obtained by the following process: initialize T ′

x to
a subtree with root x, whose yes- and no-subtrees are each a copy of Tu, then splice out each
redundant test (that is, each test w such that one of the outcomes at w is inconsistent with the
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Figure 6: Splitting a subtree Tu1
around descendant u4. The figures in this section draw Tu by

drawing ui and u′i as the left and right children of their parent ui−1, so that the u4-consistent path
from u1 is drawn as a prefix of the left spine. Each rounded half-circle represents a subtree, labeled
with its root. Here outcomes u1 → u′2 and u3 → u′4 are consistent with the outcome u4 → u5 at u4
while outcome u2 → u′3 is consistent with the other outcome u4 → u′5. In the notation of Lemma 3
(taking j = 4) δ2 = δ3 = 1 and β = 2, and the lemma gives the bound w(u′2) ≥ w(u5) + 2w(u′5).

outcome at x that leads to w, so that all queries reaching w must satisfy the other outcome at w).
The resulting subtree T ′

x has a particular structure that we’ll need to use. The formal definition,
below, makes this structure explicit.

In this construction, and in the proofs that follow, we will consider and manipulate downward
paths in T . For convenience, we adopt the following convention: If u = u1 → u2 → · · · → uj is
any downward path in T then for each i ∈ [j − 1] by u′i we denote the sibling of ui, so each edge
ui → u′i+1 leaves this path.

Definition 7 (splitting). Splitting Tu around x yields the subtree T ′
x produced by the following

process. Let u = u1 → u2 → · · · → ud be the x-consistent path from u, as defined in Definition 6.
Initialize T ′

x to have root x, with yes- and no-subtrees, denoted T yes
u and T no

u , each a copy of Tu.
For each outcome α ∈ {yes, no} at x, modify Tα

u within T ′
x as follows. For each i ∈ [d − 1],

if outcome ui → u′i+1 is inconsistent with the α-outcome at x, within Tα
u , delete node ui and the

subtree Tu′
i+1

, making ui+1 the child of the current parent of ui in place of ui. For i = d, if ud is a

leaf, stop. Otherwise (ud is a test node), let ud → y′ be the outcome at ud that is inconsistent with
the α-outcome at x. Within Tα

u , delete node ud and the subtree Ty′ , making the other child y of ud
the child of the current parent of ud in place of ud.

Note that, for each α ∈ {yes, no}, by the definition of the x-consistent path from u and Property 1
(laminarity), outcome ui → u′i+1 is inconsistent with exactly one outcome at x. Also, if ud is a
test node then it must be equivalent to x, so exactly one outcome at ud is inconsistent with the
α-outcome at x. (See Lemmas 1 and 2 below for a more detailed characterization of the result of
splitting.) Figures 6 and 7 give examples of splitting. In Figure 6, d = 4 and u4 is a test node (in
fact x = u4). In Figure 7, x is a new node (not equivalent to any node in Tu), d = 5 and u5 is a
leaf.

Lemma 1. For each query q ∈ Qu, the search for q in T ′
x ends at a leaf that is one of the two

copies in T ′
x of the leaf that the search for q in Tu ends at.

Proof. The process that produces T ′
x maintains this property as an invariant. The invariant holds

initially when the yes- and no-subtrees of x in T ′
x are each copies of Tu. Suppose the invariant holds
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Figure 7: Splitting a subtree Tu1
around a new node x (not equivalent to any node in Tu). The

x-consistent path from u1 is u1 → · · · → u5. Here u1 → u′2 and u3 → u′4 are consistent with
the yes-outcome at x, while u2 → u′3 and u4 → u′5 are consistent with the no-outcome at x. In
the notation of Lemma 4 (taking j = 4) δ2 = δ3 = 1 and β′ = 2. The lemma gives the bound
w(u′2) ≥ w(u4).

just before the process deletes a test node v and its subtree Ty′ from a subtree Tα
u of the current

T ′
x. The α-outcome at x is inconsistent with the v → y′ outcome at v, and all queries that reach v

in the current tree have outcome α at x, and therefore they all satisfy the opposite outcome v → y
at v. So deleting v and Ty′ (replacing v by y) doesn’t change the leaf that any search ends at, thus
maintaining the invariant.

Lemma 1 implies that T ′
x is a correct subtree for query set Qu.

Lemma 2. (i) For each i ∈ [d− 1], outcome ui → u′i+1 is inconsistent with exactly one outcome
α ∈ {yes, no} at x. For this outcome α, node ui and subtree Tu′

i+1
are deleted from the α-

subtree Tα
u of x, and are not deleted from the other subtree Tα′

u , where outcome α′ is the
opposite of α.

(ii) If ud is a test node, one outcome at ud, say ud → y, is inconsistent with the yes-outcome at
x, while the other outcome ud → y′ is inconsistent with the no-outcome at x. Then within
T yes
u node ud and subtree Ty are deleted, while within T no

u node ud and subtree Ty′ are deleted.

(iii) For each leaf z in Tu except ud (if ud is a leaf), only one of the two copies of z remains in
T ′
x, and the query set of the remaining copy in T ′

x is the same as the query set of z in Tu.

Proof. For i < d, by the definition of the x-consistent path from u, each outcome ui → ui+1 is
consistent with both outcomes at x, so, by laminarity, the outcome ui → u′i+1 is inconsistent with
exactly one outcome α at x. Inspecting the construction of T ′

x, we obtain that ui and its subtree
Tu′

i+1
are deleted from Tα

u but not from Tα′

u . This implies Part (i).
Recall that if the final node ud on the x-consistent path from u is a test node, then by the

definition of this path, ud must be equivalent to x. So one outcome at ud, say ud → y, is inconsistent
with the yes-outcome at x, while the other outcome ud → y′ at ud is inconsistent with the no-
outcome at x. This and the definition of T ′

x imply Part (ii).
To prove Part (iii), first consider the case that ud is a test node. Each leaf in Tu is in one of

the subtrees Tu′
i
(2 ≤ i ≤ d) or in the yes- or no-subtree of Tud

. (Note that all these subtrees are
disjoint.) In T ′

x, for each of these d + 1 subtrees, one of the two copies of the subtree is deleted
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from T ′
x. So only one copy of each leaf remains in T ′

x. In the case that ud is a leaf, for each leaf
other than ud, the same reasoning applies (minus the subtrees of Tud

), to show that only one copy
of each leaf other than ud remains in T ′

x. Part (iii) then follows from Lemma 1.

If ud is a leaf in Tu, then both copies of ud remain in T ′
x, although one can have an empty query

set. (In general, T ′
x might not be irreducible, but this does not affect the proofs below.)

Now we prove the weight bounds that are used in later sections. The proofs of these bounds
takes advantage of laminarity. Specifically, as T is irreducible, Property 2(i) implies that if ui is a
proper ancestor of uj then outcome ui → u′i+1 is consistent with one outcome at uj and inconsistent
with the other.

Lemma 3. Suppose T is optimal. Let u1 → · · · → uj+1 be any downward path in T . For 1 ≤ i ≤
j − 1, let δi be the number of ancestors us of ui on the path such that outcomes us → u′s+1 and
ui → u′i+1 are consistent with opposite outcomes at uj. Let β be the number of ancestors us of uj−1

whose outcome us → u′s+1 is consistent with outcome uj → uj+1 (so 0 ≤ β ≤ j − 1). Then

w(u′2) ≥ (j − 1− β)w(uj+1) + βw(u′j+1) +
∑j

i=3(δi−1 − 1 )w(u′i).

Proof. Consider splitting subtree Tu1
around uj . Because T is irreducible, both outcomes at uj are

consistent with each outcome along the path u1 → · · ·→ uj , so this path is the uj-consistent path
from u1 used in splitting. By Lemma 2, for each i with 2 ≤ i ≤ j, each descendant of u′i gains one
new ancestor (uj) and loses δi−1 ancestors, namely those ancestors us of ui−1 such that outcomes
ui−1 → u′i and us → u′s+1 are consistent with opposite outcomes at uj . Each descendant of uj+1

loses j− 1−β ancestors, namely the ancestors us of uj−1 whose outcome us → u′s+1 is inconsistent
with uj → uj+1. Each descendant of u′j+1 loses β ancestors, namely the ancestors us of uj−1 whose
outcome us → u′s+1 is inconsistent with uj → u′j+1. (Here we use that descendants of uj already
had uj as an ancestor in Tu.) So (using Lemma 2 (iii) and that uj is not a leaf) splitting increases

the cost by −(j − 1− β)w(uj+1)− βw(u′j+1) +
∑j

i=2(1− δi−1)w(u′i). By the optimality of T , this
quantity must be non-negative. Substituting δ1 = 0 and rearranging gives the desired bound.

Lemma 4. Suppose T is optimal. Let x be any test node, not necessarily in T . Let u1 → · · ·→ uj+1

be a prefix of the x-consistent path from u1. For 1 ≤ i ≤ j − 1, let δi be the number of ancestors
us of ui on the path such that outcomes us → u′s+1 and ui → u′i+1 are consistent with opposite
outcomes at uj . Let β′ be the number of ancestors us of uj whose outcome us → u′s+1 is consistent
with the yes-outcome of x (so 0 ≤ β′ ≤ j). Then

w(u′2) ≥ min(j − 1− β′,β′ − 1)w(uj) +
∑j

i=3(δi−1 − 1)w(u′i).

Proof. Consider splitting subtree Tu1
around x. By Lemma 2, for each i with 2 ≤ i ≤ j, each

descendant of u′i gains one new ancestor (x) and loses δi−1 ancestors, namely those ancestors us
such that outcomes ui−1 → u′i and us → u′s+1 are consistent with opposite outcomes at x. Each
proper descendant of uj in the yes-subtree of T ′

x gains one new ancestor (x) and loses at least j−β′

ancestors, namely the ancestors us of uj on the path whose outcome us → u′s+1 is inconsistent with
the yes-outcome at x. Each proper descendant of uj in the no-subtree of T ′

x gains one new ancestor
(x) and loses at least β′ ancestors, namely the ancestors us of uj on the path whose outcome
us → u′s+1 is inconsistent with the no-outcome at x. So the search depth of each proper descendant
of uj increases by at most max(1+β′−j, 1−β′). So (using Lemmas 1 and 2 (iii)) splitting increases

the cost by at most max(1 + β′ − j, 1 − β′)w(uj) +
∑j

i=2(1 − δi−1)w(u′i). By the optimality of T ,
this quantity must be non-negative. Substituting δ1 = 0 and rearranging gives the bound.
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3.2 Structural theorem

This section proves the following theorem. The next section uses it to prove Theorem 1. As in the
previous section, for any downward path u1 → u2 → · · · → uj , by u′i we will denote ui’s sibling
(2 ≤ i ≤ j).

Theorem 3. Suppose T is optimal. Let u1 → u2 → · · · → ud be any downward path in T (not
necessarily starting at the root) such that w(u′2) < w(ud). Then, for all different nodes ui, uj on
the path, with i, j < d, both outcomes at ui are consistent with outcome uj → uj+1.

Consider the following example for intuition. Suppose that some node u in T does an equality
test 〈 = h〉, and, in the no-subtree of u, some node x has w(x) > w(h). By the theorem, then, the
query value q = h satisfies all outcomes along the path from the no-child of u to x.

The only property of the admissible tests that Theorem 3 relies on is laminarity.

Proof of Theorem 3. If i > j then the theorem follows directly from Property 2(i). So for the rest
of the proof we assume that i < j < d, and we only need to prove that outcomes ui → u′i+1 and
uj → uj+1 are consistent (since we already know that outcomes ui → ui+1 and uj → uj+1 are
consistent).

Applying Lemma 3 to the path u1 → u2 → u3 (so j = 2) gives w(u′2) ≥ (1−β)w(u3)+βw(u′3),
where β is 1 if u1 → u′2 is consistent with u2 → u3 and zero otherwise. But w(u′2) < w(ud) ≤ w(u3),
so β = 1. So w(u′2) ≥ w(u′3) and u1 → u′2 is consistent with u2 → u3.

With w(u′2) < w(ud), this implies w(u′3) < w(ud). Applying the theorem inductively to the
(shorter) path u2 → · · · → ud, we have that, for all i and j with 2 ≤ i < j < d, ui → u′i+1 is
consistent with uj → uj+1.

Then the only remaining case is for i = 1 and 3 ≤ j < d. That is, we need to prove that u1 → u′2
is consistent with uj → uj+1, for all j with 3 ≤ j < d. Suppose otherwise for contradiction. Fix j
with 3 ≤ j < d such that u1 → u′2 is not consistent with uj → uj+1. Then, by laminarity and the
irreducibility of T , u1 → u′2 is consistent with uj → u′j+1. By the previous paragraph u2 → u′3 is
consistent with uj → uj+1. So u1 → u′2 and u2 → u′3 are consistent with different outcomes at uj.

Apply Lemma 3 to the path u1 → · · · → uj+1. Let δi and β be as defined in the lemma.
As u1 → u′2 and u2 → u′3 are consistent with different outcomes at uj , we have δi ≥ 1 for
all 2 ≤ i ≤ j − 1. Likewise we have 1 ≤ β ≤ j − 2, so the bound from the lemma implies
w(u′2) ≥ w(uj+1) + w(u′j+1) = w(uj) ≥ w(ud), contradicting w(u′2) < w(ud).

3.3 Proof of Theorem 1 (some optimal tree is admissible)

The proofs above rely only on laminarity. The proofs below use the particular structure of less-than
and equality tests, and the properties of u-consistent paths. In particular, in the special case when
u is an equality test, say u is 〈 = h〉, the u-consistent path from x is the path that the search for h
would take if started at x.

Lemma 5. Suppose the instance has distinct weights and T is optimal. Consider any equality-test
node 〈 = h〉 and a key k with w(k) > w(h) reaching this node. Then a search for h from the
no-child of 〈 = h〉 would end at the leaf Lk for k, and the path from 〈 = h〉 to Lk has at most four
nodes (including 〈 = h〉 and Lk). Also, h is not in the class that T assigns to k.
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Figure 8: (Lemma 6) Inserting a new node 〈 = k〉 above u3 to pull k out of Qu5
.

Proof. Let u1 → u2 → · · · → ud be the path from 〈 = h〉 to Lk. Note that u1, u2, and ud are
〈 = h〉, the no-child of 〈 = h〉, and Lk. We have w(ud) = w(Lk) ≥ w(k) > w(h) = w(u′2). (Recall
that u′2 denotes the yes-child of u1.) So, by Theorem 3, we obtain

(∗) For any two different test nodes ui, uj along the path with i, j < d, both outcomes at ui are
consistent with uj → uj+1.

Applying this to i = 1, we obtain that the 〈 = h〉-consistent path from u2 ends at Lk. So
the yes-outcome of 〈 = h〉 is consistent with all outcomes along this path, and thus a search for h
starting from u2 would end in Lk, as claimed.

To see that h cannot be in the class that T assigns to k, suppose for contradiction that it
is. A search for h starting at u2 would end at Lk, so changing the test key at 〈 = h〉 to k (and
relabeling u′2 with a class containing k) gives a correct tree. The modification decreases the cost
by (w(k) − w(h))(d− 2). By assumption w(k) > w(h). By the irreducibility of T , the node 〈 = h〉
cannot be replaced by a leaf, so d ≥ 3. So the modification gives a correct tree that is cheaper than
T , contradicting the optimality of T .

It remains only to show that the length d of the path from 〈 = h〉 to Lk is at most four. The
argument uses the following claim:

Claim 1. 2w(h) ≥ w(u3).

We postpone the proof of Claim 1, and show first how the bound d ≤ 4 follows from this
claim. Assume towards contradiction that d ≥ 5, and consider the modification to Tu1

illustrated
in Figure 8. Namely, replace Tu3

by a new equality test 〈 = k〉 (for the key k from the lemma)
whose yes-child is a new leaf labeled with any answer that k accepts, and whose no-subtree is a copy
of Tu3

. This increases the search depth of every query reaching u3, except key k, by 1. It decreases
the search depth of k by at least 1. Thus, the increase in cost is at most (w(u3) − w(k)) − w(k).
The optimality of T implies w(u3) ≥ 2w(k) > 2w(h), contradicting Claim 1. So we must have
d ≤ 4.

To complete the proof of the lemma, it remains to prove Claim 1. The basic idea is to consider
splitting Tu1

around a suitably choosen test node x, and to apply the bound from Lemma 4 to
derive the inequality in Claim 1.

For any two less-than tests along the path, the yes-outcome of the test with smaller key is
inconsistent with the no-outcome of the other test, so, using Property (∗), the outcomes on the
path must be the no-outcome of the test with smaller key and the yes-outcome of the test with
larger key. It follows that the path has at most two less-than tests.

For any equality test, its yes-outcome is inconsistent with one outcome of every test. By this
and Property (∗), for each equality test 〈 = ki〉 on the path, its outcome along the path is the
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no-outcome, and the yes-outcome at 〈 = ki〉 is consistent with every other outcome along the path.
That is, the value ki satisfies every outcome along the path except the no-outcome at 〈 = ki〉.

Let ki be the key of test node ui (1 ≤ i ≤ 4). Let k∗1 , k
∗
2 , k

∗
3 , k

∗
4 be a permutation of k1, k2, k3, k4

such that k∗1 ≤ k∗2 ≤ k∗3 ≤ k∗4 . Let u∗1, u
∗
2, u

∗
3, u

∗
4 be the corresponding permutation of u1, u2, u3, u4.

Break ties when choosing the permutation so that u∗2 and u∗3 do equality tests and k∗1 ≤ k∗2 <
k∗3 ≤ k∗4 . (This is possible by the conclusions of the previous two paragraphs.) The only possible
less-than tests are at u∗1 and at u∗4: node u∗1 could be 〈 < k∗1〉 whose outcome along the path is
negative, and node u∗4 could be 〈 < k∗4〉 whose outcome along the path is positive.

Now create a new node x = 〈 < k∗3〉. For each equality-test on the path, the outcome on the
path is the no-outcome, which is consistent with both outcomes at x. By the previous paragraph
and using the key ordering, k∗1 ≤ k∗2 < k∗3 ≤ k∗4 , for each of the two possible less-than tests on the
path, its outcome along the path is consistent with both outcomes of x. So both outcomes at x
are consistent with all outcomes along the path. Therefore path u1 → · · · → u5 is a prefix of the
x-consistent path from u1, satisfying the assumptions of Lemma 4 with j = 4. The rest of the
argument relies on this lemma.

The following observation will be useful: among the four nodes on u1 → u2 → u3 → u4, two
have both outcomes consistent with the yes-outcome at x, while the other two have both outcomes
consistent with the no-outcome at x. (Indeed, by the ordering of the keys and routine inspection, the
yes-outcome at x is consistent with both outcomes at u∗1 and with both outcomes at u∗2. Similarly,
the no-outcome at x is consistent with both outcomes at u∗3 and with both outcomes at u∗4.)

Next, we claim that outcomes u1 → u′2 and u2 → u′3 are consistent with the same outcome
at x. Towards contradiction, suppose that u1 → u′2 and u2 → u′3 are consistent with opposite
outcomes at x, so, in the notation from Lemma 4, δ2 = 1. The observation above implies that
outcomes u3 → u′4 and u4 → u′5 are also consistent with opposite outcomes at x, so δ3 = 1. But
then (recalling j = 4) Lemma 4 gives the bound w(u′2) ≥ w(u4), contradicting w(u′2) < w(ud), and
proving the claim.

Since u1 → u′2 and u2 → u′3 are consistent with the same outcome at x, the earlier observation
implies that u3 → u′4 and u4 → u′5 are consistent with the other outcome at x. In this case (again
in the notation of Lemma 4) δ2 = 0, δ3 = 2, and (as before) β′ = 2 and j = 4, so the lemma gives
the bound w(u′2) ≥ w(u4)− w(u′3) +w(u′4) = w(u3)− w(u′3). That is, w(u

′
2) + w(u′3) ≥ w(u3).

It must be that w(u′2) ≥ w(u′3). (Otherwise, by Theorem 3 applied to path u1 → u2 → u′3, the
u1-consistent path from u2 would include u′3, contradicting that it includes u3.) With the previous
inequality this implies 2w(u′2) ≥ w(u3). Since w(u′2) = w(h), this completes the proof of Claim 1,
and the whole lemma.

Lemma 6. If the instance has distinct weights, every irreducible optimal tree is admissible.

Proof. Let T be any irreducible optimal tree. Consider any node u in T . To prove the lemma
we show that u’s query set is admissible. If Qu has no light holes, then we are done, so assume
otherwise. Let k∗ = k∗(Qu) be the heaviest key reaching u. Let Hu = holes(Qu) ∩ lighter(k∗)
be the set of light holes at u and b = |Hu|. Let c be the class that T assigns to k∗ and S =
[minQu,maxQu]K ∩ lighter(k∗) \ c. We want to show Hu = heaviestb(S) and b ∈ [3].

First we show Hu ⊆ S. By definition, Hu ⊆ [minQu,maxQu]K ∩ lighter(k
∗). For any light hole

h ∈ Hu, key k∗ is heavier than h and reaches the ancestor 〈 = h〉 of u. Applying Lemma 5 to that
ancestor, hole h is not in c. It follows that Hu ⊆ S.
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Next we show Hu = heaviestb(S). Suppose otherwise for contradiction. That is, there are
k ∈ S \ Hu ⊆ Qu and h ∈ Hu such that k is heavier than h. Keys k∗ and k reach the ancestor
〈 = h〉 of u. Applying Lemma 5 (twice) to that ancestor, the search path for h starting from the
no-child of 〈 = h〉 ends both at Lk∗ and at the leaf Lk for k. So Lk = Lk∗ , which implies that k is
in c, contradicting k ∈ S. Therefore Hu = heaviestb(S).

Finally, we show that b ≤ 3. Let h ∈ Hu be the light hole whose test node 〈 = h〉 is closest to
the root. Key k∗ reaches 〈 = h〉 and weighs more than h. Applying Lemma 5 to that ancestor, the
path from 〈 = h〉 to Lk∗ has at most four nodes (including the leaf). Each light hole has a unique
equality-test node on that path. So there are at most three light holes.

Finally we prove Theorem 1:

Theorem 1. If the instance is feasible, then some optimal tree is admissible.

Proof. We use a perturbation argument to extend Lemma 6. Assume the instance I = (Q,w, C,K)
is feasible (otherwise we are done). Recall that w̃(q) is the rank of q in the sorting of Q by weight,
breaking ties arbitrarily but consistently, as defined at the beginning of Section 2.

Let I∗ = (Q,w∗, C,K) be an instance obtained from I by perturbing the query weights infinites-
imally so that (i) the perturbed weights are distinct and (ii) sorting Q by w∗ gives the same order
as sorting by w̃. (Specifically, take w∗(q) = w(q) + ε w̃(q), for ε such that 0 < ε < δ/n3, where
δ > 0 is less than the absolute difference in cost between any two irreducible trees with distinct
costs, and less than the absolute difference between any two distinct weights.) Note that the sets of
valid trees for I and for I∗ are the same and finite, and that I∗ is a feasible instance with distinct
weights.

Let T ∗ be an optimal, irreducible tree for I∗. Applying Lemma 6 to T ∗ and I∗, tree T ∗ is
admissible for I∗. By inspection of Definition 1, whether or not a tree is irreducible for I is
independent of w. So T ∗ is also irreducible for I. By inspection of Definition 4, whether or not
a tree is admissible for I depends only on the tree and the set of query pairs (h, k) such that
w̃(h) < w̃(k). This and w̃(h) < w̃(k) ⇐⇒ w̃∗(h) < w̃∗(k) imply that T ∗ is also admissible for I.
To finish we observe that T ∗ is also optimal for I.

Recall that T is an optimal, irreducible tree for I. Letting cost(T ) and cost∗(T ) be the costs of
T under weight functions w and w∗, we have cost(T ∗) ≤ cost∗(T ∗) ≤ cost∗(T ) ≤ cost(T ) + n3ε <
cost(T ) + δ. So by the choice of δ we have cost(T ∗) ≤ cost(T ). So T ∗ is optimal for I as well.

4 Algorithm

This section proves Theorem 2, that the problem admits an O(n3m)-time algorithm. The input
is an arbitrary 2wcdt instance (Q,w, C,K). In this section, for any R ⊆ Q redefine cost(R) to
be the minimum cost of any admissible tree for the subproblem π(R) = (R,w, C,K) obtained by
restricting the query set to R. (Take cost(R) = ∞ if there is no admissible tree for π(R).) The
algorithm returns cost(Q), the minimum cost of any admissible tree for (Q,w, C,K). By Theorem 1,
this equals the minimum cost of any tree.

The algorithm computes cost(Q) by using memoized recursion on the following recurrence re-
lation:
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Recurrence 1. For any R ⊆ Q,

cost(R) =











∞ (R 4∈ A)

0 (R ∈ A ∧ (∃c ∈ C)R ⊆ c)

w(R) + minu
(

cost(Ryes
u ) + cost(Rno

u )
)

, (otherwise)

where above A denotes the set of admissible query subsets of Q (per Definition 4), (Ryes
u , Rno

u ) is
the bipartition of R into those values that satisfy test u and those that don’t, and u ranges over the
allowed tests such that Ryes

u and Rno
u are admissible. (If there are no such tests then the minimum

is infinite.)

There are O(n2m) admissible query sets. (Indeed, each admissible set R with no light holes is
determined by the triple (minR,maxR, k∗(R)). Per Definition 4, each admissible set R with light
holes is determined by a triple (minR,maxR, k∗(R), b, c), where (b, c) ∈ [3]×C with k∗(R) ∈ c.) So
O(n2m) subproblems arise in recursively evaluating cost(Q). To finish we describe how to evaluate
the right-hand side of Recurrence 1 for a given R in O(n) amortized time.

Assume (by renaming elements in Q in a preprocessing step) that Q = [n]. Given a non-empty
query set R ⊆ Q, define the signature of R to be

τ(R) = (minR,maxR, k∗(R),H(R)),

where H(R) = holes(R) ∩ lighter(k∗(R)) is the set of light holes in R.
For any R, its signature is easily computable in O(n) time (for example, bucket-sort R and then

enumerate the hole set [", r]
Q
\R to find H(R)). Each signature is in the set

S = Q×Q× (K ∪ {⊥})× 2Q

of potential signatures. Conversely, given any potential signature t = (", r, k,H ′) ∈ S, the set
τ−1(t) with signature t, if any, is unique and computable from t in O(n) time. (Specifically, τ−1(t)
is Qt = [", r]

Q
\ ((K ∩ heavier(k)) ∪H ′) provided Qt is non-empty and has signature t.)

Lemma 7. After an O(n3m)-time preprocessing step, given the signature τ(R) of any R ∈ A, the
right-hand of Recurrence 1 can be computed in amortized time O(n).

Proof. Note that the admissible sets can be enumerated in O(n3m) time as follows. First do the
O(n3) admissible sets without light holes: for each (", r, k) ∈ Q×Q×(K∪{⊥}), output τ−1(", r, k, ∅)
if it exists. Next do the O(n2m) admissible sets with at least one light hole, following Definition 4:
for each (", r, k, b, c) ∈ Q×Q×K× [3]×C with k ∈ c, letting H ′ = heaviestb([", r]K ∩ lighter(k) \ c),
if H ′ is well-defined then output τ−1(", r, k,H ′) if it exists.

First we describe the preprocessing step.

Initialize a dictionary A holding a record A[τ(R)] for each set R in A. To be able to determine
whether a given query set R is in A, and to store information (including the memoized cost) for
each admissible set R, build a dictionary A that holds a record A[τ(R)] for each R ∈ A, indexed by
the signature τ(R). For now, assume the dictionary A supports constant-time access to the record
A[τ(R)] for each R ∈ A given the signature τ(R) of R. (We describe a suitable implementation
later.) Initialize A to hold an empty record A[τ(R)] for each R ∈ A by enumerating all R ∈ A as
described above. This takes O(n3m) time.
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Identify the leaves. To identify the sets R ∈ A that are leaves (that is, such that (∃c ∈ C) R ⊆ c)
in O(n3m) time, for each triple (", r, k) ∈ Q×Q× (K ∪ {⊥}), do the following steps.

1. Let R contain the admissible sets R such that τ(R) = (", r, k,H ′) for some H ′. Assume R
is non-empty (otherwise move on to the next triple). Let R∅ be the set with signature (", r, k, ∅),
so that R = R∅ \H(R) for R ∈ R. Let C" contain the classes c ∈ C such that " ∈ c. Observe that
|R| ≤ 4|C"|, because R∅ is unique for the triple (", r, k), and then R is determined from R∅ by the
class c ∈ C and the number b ∈ [3] of light holes, per Definition 4.

2. Each set R ∈ R contains ", so R is a leaf if and only if R ⊆ c for some c ∈ C". The condition
R ⊆ c is equivalent to R∅ \ H(R) ⊆ c, which is equivalent to R∅ \ c ⊆ H(R). So, any given set
R ∈ R is a leaf if and only if some subset of H(R) equals R∅ \ c for some c ∈ C". Identify all such
R in time O(n|R| + n|C"|). (Recalling that |H(R)| ≤ 3 for each R ∈ R, this is straightforward.
One way is to construct the collection H =

⋃

R∈R 2H(R) of subsets of the light-hole sets. Order the
elements within each subset in H by increasing value, then radix sort H into lexicographic order.
Do the same for the collection L = {R∅ \ c : c ∈ C", |R∅ \ c| ≤ 3}. Then merge the two collections
to find the elements common to both. A given R ∈ R is a leaf if and only if some subset of H(R)
in H also occurs in L.)

As noted above, we have |R| ≤ 4|C"|, so the time spent above on a given triple (", r, k) is
O(n|C"|). Summing over all triples (", r, k), the total time is O(n2

∑

"∈K n|C"|) = O(n3m).
In O(n3m) time, identify the O(n2m) leaves R ∈ A as described above. For each, record in its

entry A[τ(R)] that R is a leaf and cost(R) = 0.

Implementing Recurrence 1. Next we describe how to compute cost(R), given the signature τ(R) =
(", r, k,H ′) of any set R ⊆ Q, in O(n) time.

If A contains no record A[τ(R)], then R is not admissible, so cost(R) = ∞ and we are done.
(Checking this takes constant time, using that if |H ′| ≥ 4 then no lookup is necessary.) So assume
A contains a record A[τ(R)].

If the record A[τ(R)] already holds a memoized cost for R, then we are done, so assume oth-
erwise. (This implies that R is not a leaf.) In O(n) time, build R from τ(R) and calculate the
sum w(R). Then calculate cost(R) in O(n) time by evaluating the right-hand side of Recurrence 1,
in two stages. In the first stage enumerate all less-than tests that the root u in Recurrence 1 for
cost(R) can be, using the following steps:

1. Using bucket sort, compute R = (q1, q2, . . . , qj) in sorted order. For 0 ≤ i ≤ j define
Ri = (q1, q2, . . . , qi) and Ri = (qi+1, qi+2, . . . , qj).

2. Compute k∗(Ri) for 0 ≤ i ≤ j in constant time per i as follows. Start with k∗(R0) = ⊥.
Then, for i ← 1, . . . , j, compute k∗(Ri) by using k∗(Ri) = qi if qi ∈ K and qi is heavier than
k∗(Ri−1), and otherwise k∗(Ri) = k∗(Ri−1).

3. Compute the light-hole set H(Ri) for 0 ≤ i ≤ j from H(R) in constant time per i, using
H(Ri) = {h ∈ H(R) : h ≤ qi} (recall that |H(R)| ≤ 3).

4. Using the results of Steps 2 and 3, for 0 ≤ i ≤ j, in constant time per i compute and store
the signature (q1, qi, k∗(Ri),H(Ri)) of Ri.

5. Similarly, compute and store the signature (qi+1, qj, k∗(Ri),H(Ri)) of Ri for each i.
6. By “merging” R and K (each sorted), identify for each h ∈ K the i such that (Ryes

〈<h〉, R
no
〈<h〉) =

(Ri, Ri), thereby determining τ(Ryes

〈<h〉) and τ(Rno
〈<h〉). Then there is a term for u = 〈 < h〉 in the

recurrence for each h such that the corresponding i satisfies 1 ≤ i < j (that is, Ri and Ri are not
empty).
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In the second stage, enumerate all the equality-tests 〈 = h〉 for h ∈ K ∩ R that the root
u can be. For each such test u, we have Ryes

u = {h}, so τ(Ryes
u ) = (h, h, h, ∅). For all h 4∈

{minR,maxR, k∗(R)} (using that |R| ≥ 2, as R is not a leaf, so Rno
u 4= ∅) use that τ(Rno

u ) is
(minR,maxR, k∗(R),H(R)∪{h}), which (as |H(R)∪{h}| ≤ 4) is computable from τ(R) in constant
time. For each of the (at most three) values h ∈ {minR,maxR, k∗(R)}, using Rno

u = R \ {h},
explicitly compute Rno

u and its signature in O(n) time. This completes the second stage.

For all tests u considered above, the values of cost(Ryes
u ) and cost(Rno

u ) are computed recursively
from their signatures τ(Ryes

u ) and τ(Rno
u ).

Finally, for cost(R), return (and memoize in A[τ(R)]) w(R) plus the minimum of cost(Ryes
u ) +

cost(Rno
u ), over all such u.

In this way, for each R ∈ A, the time to evaluate the right-hand side of the recurrence is O(n).
There are O(n2m) sets in A, so the total time is O(n3m). (Note that cost(R) = ∞ may also be
computed for O(n3m) non-admissible sets R 4∈ A, but each of these takes constant time.)

How to implement the dictionary A. For each admissible query set R ∈ A, the set H(R) of light
holes has size at most three, so the signature τ(R) = (", r, k,H(R)) has size O(1). So one way to
implement the dictionary A (so as to support constant-time lookup) is to use a hash table with
universal hashing. Then the algorithm uses space O(n2m), but is randomized. If a deterministic
implementation is needed, one can implement the dictionary by storing an n × n × n matrix T of
buckets such that a given bucket T [", r, k] holds the records for the admissible query sets R with
signatures of the form τ(R) = (", r, k,H ′) for some H ′. Organize the records in this bucket using
a trie (prefix tree) of depth 3 keyed by the (sorted) keys in H ′. This still supports constant-time
access, but increases the space to O(n3m). More generally, for any d ≥ 1, one can represent each
element k ∈ [n] within each set H ′ as a sequence of 7log2(n)/d8 d-bit words, then use a trie with
alphabet {0, 1, . . . , 2d − 1} and depth at most 37log2(n)/d8. Then space is Θ(2dn2m) while the
access time is Θ(log(n)/d). For example, we can take d = 7ε log2 n8 for any constant ε to achieve
space O(n2+εm) and access time Θ(1/ε) = Θ(1). Or we can take d = 1 and achieve space O(n2m)
and access time Θ(log n), increasing the total time to O(n3m log n).

Remarks. Theorem 2 follows from Lemma 7.
We note without proof that there is a deterministic variant of the algorithm that uses space

O(n2m) and time O(n3m). This variant is more complicated so we chose not to present it.
In the common case that C partitions Q, so each query q ∈ Q is contained in just one class

c ∈ C, our algorithm can be implemented in time and space O(n2m) = O(n3). To do this, in the
above implementation of the dictionary using a matrix T of buckets, each bucket T [", r, k] stores
the records of at most four sets, so no prefix tree is needed to achieve constant access time and
space.

Extending the algorithm to other inequality tests. Our model considers decision trees
that use less-than and equality tests. Allowing the negations of these tests is a trivial extension.
(E.g., every greater-than-or-equal test 〈 ≥ k〉 is equivalent by swapping the children to the less-
than test 〈 < k〉.) We note without proof that our results also extend easily to the model that
allows less-than-or-equal tests (of the form 〈 ≤ k〉): the proof of Theorem 3 requires only a minor
adjustment—specifically, such tests need to be taken into account when proving Claim 1 in the
proof of Lemma 5; the extended algorithm then allows such tests in Recurrence 1.
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