
Cross-chain Swaps with Preferences

Eric Chan
University of California at Riverside

Marek Chrobak
University of California at Riverside

Mohsen Lesani
University of California at Riverside

Abstract—Extreme valuation and volatility of cryptocurrencies

require investors to diversify often which demands secure

exchange protocols. A cross-chain swap protocol allows dis-

trusting parties to securely exchange their assets. However,

the current models and protocols assume predefined user

preferences for acceptable outcomes. This paper presents a

generalized model of swaps that allows each party to specify its

preferences on the subsets of its incoming and outgoing assets.

It shows that the existing swap protocols are not necessarily

a strong Nash equilibrium in this model. It characterizes the

class of swap graphs that have protocols that are safe, live and

a strong Nash equilibrium, and presents such a protocol for

this class. Further, it shows that deciding whether a swap is

in this class is NP-hard through a reduction from 3SAT, and

further is ⌃P
2 -complete through a reduction from 98DNF.

1. Introduction

With the rise of a staggering number of cryptocurren-
cies, a challenging technical problem is secure exchange
between them. In particular, the values of these currencies
are extremely volatile; therefore, investors tend to diversify
often and need to exchange their currencies. However, these
currencies are hosted by distinct distributed blockchains and
trading across blockchains is not atomic by default. This
has led to the development of cross-chain swap protocols
[19], [8], [10], [18], [13], [33] to allow parties with mutual
distrust to securely exchange their assets.

In a pioneering work, Herlihy [19] formalizes a cross-
chain swap as a directed graph where vertices represent
parties, and arcs represent assets to be exchanged. An
execution of a swap graph is represented as the subset of
arcs that are triggered in that execution. The outcome for
each party is captured in five predefined classes: DEAL,
NODEAL, DISCOUNT, FREERIDE, and UNDERWATER. The
classes DEAL and NODEAL represent outcomes for a party
where respectively, all and none of the arcs of that party
are triggered. The class DISCOUNT represents outcomes
where some of the outgoing arcs are not triggered, and
FREERIDE represents outcomes where at least one incoming
but no outgoing arc is triggered. All the above classes
are considered acceptable outcomes for every party. The
class UNDERWATER captures all unacceptable outcomes. It
represents the set of outcomes where at least one outgoing
arc is triggered but not all incoming arcs are. Given this
model of outcomes, he presented a protocol based on hashed

time-locks and proved it to be safe, live and a strong Nash
equilibrium.

However, as noted by the original proposal [19], there
are outcomes in the class UNDERWATER that a party may
be interested in accepting. In other words, a party may find
profitable to exchange some of their outgoing assets for some
of their incoming assets, depending on the assets.

As an example, suppose Alina and Bohdan are in the
market for new outfits. Alina has a white shirt and white
pants that she would like to trade for a black shirt and black
pants. Coincidentally, Bohdan has exactly these items and is
interested in the reverse trade. However, both of them would
actually prefer to have one white article of clothing and one
black article of clothing. Thus, it would be preferable for
both parties to only swap the shirts or only swap the pants,
although it is acceptable to swap both.

As another example, suppose Alina has ingredients to
make a carrot cake. However, Alina is in the mood for
vegetable soup, so she finds a transaction to exchange
her carrot cake ingredients for vegetable soup ingredients.
Although Alina finds this entire swap acceptable, she would
actually prefer to forego the offered corn if it means she can
retain her carrots to add to her soup.

The questions are how the preference model can be
generalized so that each party can specify its personal
preference over its outcomes, how should the safety, liveness
and Nash equilibria definitions be adapted, and whether
existing protocols preserve the properties. questions that
were left open [19]. We formally define a general swap
model that allows each party to specify its preference on its
set of possible outcomes, and formally define generalized
properties of swap protocols. We prove that in this model,
Herlihy’s protocol remains safe, live, and a Nash equilibrium
but not necessarily a Strong Nash equilibrium. We present
a characterization of the class of swap graphs that admit
protocols that are safe, live and a Strong Nash equilibrium.
The proof of correctness of the characterization embodies
such a protocol. We further show that it is NP-hard to decide
whether a swap graph is in this class through a reduction from
3SAT, and then further tighten the complexity classification
and and show that it is ⌃P

2 -complete through a reduction
from 98DNF. Although the second result subsumes the first,
the first proof is simpler and we present it for exposition.
The practical implications of these results are that not all
swap graphs are acceptable, and deciding whether a proposed
swap graph is acceptable is of high complexity.

In summary, this paper makes the following contributions.

ar
X

iv
:2

21
0.

11
79

1v
1

 [c
s.D

C
]

21
 O

ct
 2

02
2

• A general swap model with user-defined preferences of
outcomes. (section 2)

• Generalized safety, liveness and Nash equilibria prop-
erties for swap protocols (section 2), and a study
of whether existing protocols satisfy these properties
(section 3).

• A characterization of swap graphs that admit protocols
with these properties, and an instance of such protocols
(section 4).

• NP-hardness and ⌃P
2 -completeness of deciding whether

a swap graph falls into this class (section 5 and sec-
tion 6).

2. Swap Systems

As discussed in the introduction, Herlihy’s model [19]
for cross-chain swaps assumed that the rational behavior
of participating parties is determined by preferences be-
tween five types of outcomes: DEAL, NODEAL, DISCOUNT,
FREERIDE, and UNDERWATER. These preferences were
assumed to be shared by all parties, and can be interpreted as
a simple partial order on all possible outcomes. Some of these
preferences are natural; for example, in DISCOUNT a party
receives all incoming assets without trading all outgoing
assets, making it preferable to DEAL. It is less clear why the
outcomes in FREERIDE should be incomparable to DEAL.
And even some outcomes designated as UNDERWATER
in [19] may well be preferable to DEAL. As an example,
suppose that Alina possesses items A and B that she values
at $10 and $12, and Bohdan possesses items X and Y that
Alina values at $11 and $14. Alina would then accept to join
the swap that allows her to swap both A and B for Bohdan’s
X and Y, but she would be even happier if she could swap
only A for Y instead.

To represent such individual preferences, we now refine
Herlihy’s model by allowing each party to specify a partial
order on all her possible outcomes of a protocol. Our model
is very general in that (unlike in the example above) a
party’s preferences are not determined by numerical values of
individual assets, but rather involve comparing directly whole
sets of assets. Such an approach can capture dependencies
between assets, say when a party may value a set of assets
higher or lower than the sum of their individual values. Say
that Alina owns a power drill and a shovel, while Bohdan is
in possession of a pair of skis. Alina would not swap any of
her items for any single ski, but she may be happy to swap
both of her items for the pair.

Swap Systems. A swap system is specified by a pair S =
(D, P) consisting of a digraph D that represents the pre-
arranged asset transfers and a collection P of posets that
specifies the preferences of each involved party among all
of its potential outcomes. Next, we give a formal definition
of these two components of S .

Digraph D = (V, A) is called a swap digraph. Each
vertex v 2 V represents a party that participates in the swap,
and each arc (u, v) 2 A represents an asset that is to be
transferred from party u to party v. By A

in
v and A

out
v we

will denote the sets of vertex v’s incoming and outgoing
arcs, respectively. If (x, v) 2 A

in
v then x is called an in-

neighbor of v, and if (v, x) 2 A
out
v then x is called an

out-neighbor of v. Throughout the paper we assume that
D does not have multiple arcs1. We also assume that D is
weakly connected (otherwise a swap can be arranged for
each connected component separately). To exclude some
degenerate scenarios, we also assume that |V | � 2 and that
A

in
v 6= ; and A

out
v 6= ; for each v 2 V .

An outcome of a party v 2 V is a pair ! = h!
in

|!
out

i,
where !

in
✓ A

in
v and !

out
✓ A

out
v . An outcome rep-

resents the sets of acquired and traded assets, !in and
!

out respectively. The set of all possible outcomes of v

will be denoted ⌦v. To reduce clutter, instead of arcs, in
h!

in
|!

out
i we will often list only the corresponding in-

neighbors and out-neighbors of v; for example, instead of
h{(x, v), (y, v)} | {v, z}i we will write hx, y | zi.

The collection P = {Pv}v2V consists of preference
posets. The preference poset of a party v 2 V is Pv =
(⌦v, �v), where �v is a partial order on ⌦v . We will write
! �v !

0 if ! �v !
0 and ! 6= !

0. This poset naturally
represents v’s evaluation of its potential outcomes; that is,
relation ! �v !

0 holds if v views outcome !0 to be better
than outcome !. The outcome where v does not participate in
any transfer is NODEALv = h? |?i and the outcome where
all of v’s transfers are realized is DEALv = hA

in
v | A

out
v i.

Each preference poset Pv is assumed to have the following
properties:

(p.1) DEAL is better than NODEAL: NODEALv �v DEALv .
Naturally, each party prefers swapping all assets over being
completely excluded, as otherwise it would not even join
the swap system.
(p.2) Inclusive Monotonicity: (!in

1 ✓ !
in
2 ^ !

out
2 ✓

!
out
1)) !1 �v !2, for every two outcomes !1,!2 2 ⌦v.

That is, it’s better to receive more assets and to trade fewer
assets2.

The preference pairs !1 �v !2 that are determined by rules
(p.1) and (p.2) above will be called generic. The size of the
preference poset may be exponentially large with respect to
the size of the swap digraph D, but it is not necessary for
a party to specify generic preferences as they are implied
from the above rules. Therefore, throughout the paper, we
assume that Pv is specified by its generator set, which is
a subset of its non-generic preference pairs that, together
with the generic pairs and transitivity, generate the whole
poset. A generator set of a poset may not be unique. We use
this convention in our examples and running time bounds.
(This does not affect our hardness results — they hold even
if the preference poset of each party is specified by listing
all preference pairs.)

An outcome ! 2 ⌦v is called acceptable if ! ⌫

1. This assumption is only for convenience – our model and results
trivially extend to multi-digraphs, although this requires more cumbersome
notation and terminology.

2. Duuh.

NODEALv
3. The set of acceptable outcomes of a node v

will be denoted Av .
Throughout the paper, we will often omit subscript v

in the notation for outcomes DEALv and NODEALv (and
others as well) and in relation �v, if v is implicit in the
context or irrelevant. On the other hand, if any ambiguity may
arise, we will sometimes add a superscript to some notations
specifying the digraph under consideration; for example we
will write DEALD

v to specify that outcome DEALD

v is with
respect to digraph D.

Protocols. Given a swap system S = (D, P), a swap
protocol P for S specifies actions of each party over time, in
particular it determines how assets change hands. Initially, an
asset represented by an arc (u, v) 2 A is in the possession of
u, and, when P completes, this asset must be in possession
of either u or v. If (u, v) ends up in the possession of v, we
will say that the arc (u, v) has been triggered. The outcome
of v after executing P is h!

in
|!

out
i, where !in and !out

are the sets of incoming and outgoing arcs of v that are
triggered in this execution. In particular, we write P(v) for
the outcome of v in an execution of protocol P in which all
parties follow P. If some party (possibly v itself) deviates
from P, we assume that v’s outcome is also finalized when
P completes, although this outcome may be different from
P(v).

A protocol may use appropriate cryptographic primitives.
In particular, following [19], we assume the availability of
smart contracts. A smart contract for an arc a = (u, v) allows
u to put asset a in an escrow secured with a suitable collection
of hashed time-locks: each such time-lock is specified by a
pair (h, ⌧), where h = H(s) is a hashed value of a secret s

and ⌧ is a time-out value. In order to unlock this time-lock,
v (and only v) must provide the value of s before time ⌧ .
If all time-locks of (u, v) are unlocked, v can claim a. This
automatically triggers arc (u, v). If any time-lock times out,
a is automatically returned to u.

Properties. For a swap protocol to be useful, it must
guarantee that if all parties follow it then every party ends in
an outcome at least as favorable as trading all their outgoing
for all their incoming assets. Further, every conforming party
should end up with an acceptable outcome, no matter whether
other parties follow the protocol or not. Lastly, rational parties
should have no incentive to deviate from the protocol. These
properties are captured by the concepts of uniformity and
Nash equilibrium, that we define next.

Uniformity. A swap protocol P is called uniform if it
satisfies the following two conditions:
Liveness: If all parties follow P, they all end in outcome

DEAL or better, that is P(v) ⌫ DEALv for all v 2 V .

3. This definition can be relaxed to allow some outcomes incomparable
to NODEAL be acceptable. In this extended model, the set Av of acceptable
outcomes would be part of a swap system specification, and would
have to satisfy three conditions: (i) {! : ! ⌫ NODEALv} ✓ Av , (ii)
{! : ! � NODEALv}\Av = ;, and (iii) ! 2 Av^! � !0) !0 2 Av .
Our results can be extended naturally to this model. We adopted the simpler
definition to streamline the presentation.

Safety: If a party conforms to P, then its outcome will
be acceptable, independently of the behavior of other
parties.

A less restrictive concept of uniformity may also be of
interest: We say that a protocol P is weakly uniform if it
satisfies the safety condition above, but the liveness condition
is replaced by the following weak liveness requirement: if all
parties follow P, then at least one party ends in an outcome
strictly better than NODEAL. The assumptions on preference
posets imply directly that a protocol that is uniform is also
weakly uniform.

Nash equilibria and atomicity. We extend the concept of
outcomes to sets of parties, where an outcome of a set is just a
vector of individual outcomes. On this set we can then define
a preference relation in a standard way, via a coordinate-wise
ordering of outcomes. Formally, for any set of parties C ✓ V ,
an outcome vector of C is a !̄ = (!v)v2C , where !v 2 ⌦v

for all v 2 C. Denote by ⌦̄C the set of all outcome vectors
of C. Given two outcome vectors !̄, !̄

0
2 ⌦̄C , we write

!̄ �C !̄
0 if !v �v !

0

v for all v 2 C. If also !̄ 6= !̄
0 then

we write !̄ �C !̄
0. (In other words, !̄ �C !̄

0 means that
at least one party in C does strictly better in !̄0 than in !̄,
and every party in C does at least as good. In this notation,
if all parties follow a protocol P, then the outcome vector
P(C) of a protocol P for a set of parties C is (P(v))v2C .

We will say that a protocol P is a strong Nash equilibrium
if no coalition of participating parties can improve its vector
outcome by deviating from P; more precisely, for every set
C of parties, if !̄ denotes the outcome vector of C in some
execution of P where all parties in V \ C follow P, then we
cannot have !̄ �C P(C). We will call P atomic if it is both
uniform and a strong Nash equilibrium.

Example 1. Consider a swap system S = (D, P)
whose digraph D is shown in Figure 1. The preference poset
Pu of u is generated by two preference pairs DEALu �

hv | vi � hv | wi, the preference poset Pv of v is generated
by two preference pairs DEALv � hu | ui � hw | ui, and the
preference poset Pw of w is generated by one preference
pair DEALw � hu | vi.

<latexit sha1_base64="GRS/k2NURQKKhlLWAeXz6/04pXw=">AAAB6HicdVDLSsNAFJ3UV62vqktBBovgKiRNsenKghuXLdgHtKFMppN27GQSZiZCCV26cuNCEbd+hd/hzm/QjX/gtFVQ0QMXDufcyz33+jGjUlnWi5FZWFxaXsmu5tbWNza38ts7TRklApMGjlgk2j6ShFFOGooqRtqxICj0GWn5o9Op37okQtKIn6txTLwQDTgNKEZKS/Wkly9YplUsFSsOtEzbcZ1ySZOia5WdCrRNa4bCyfvr1f5T/a3Wyz93+xFOQsIVZkjKjm3FykuRUBQzMsl1E0lihEdoQDqachQS6aWzoBN4qJU+DCKhiys4U79PpCiUchz6ujNEaih/e1PxL6+TqMD1UsrjRBGO54uChEEVwenVsE8FwYqNNUFYUJ0V4iESCCv9m5x+wtel8H/SLJr2sVmq24WqC+bIgj1wAI6ADcqgCs5ADTQABgRcg1twZ1wYN8a98TBvzRifM7vgB4zHD5+3kfM=</latexit>

u
<latexit sha1_base64="x+mhS+CA7qfsf/dCseVSyQPhjAE=">AAAB6HicdVC7SgNBFJ31GeMrainIYBCsltlsMJvKgI1lAuYByRJmJ7PJmNkHM7OBsKS0srFQxNav8Dvs/AZt/AMniYKKHrhwOOde7rnXizmTCqEXY2FxaXllNbOWXd/Y3NrO7ew2ZJQIQusk4pFoeVhSzkJaV0xx2ooFxYHHadMbnk395ogKyaLwQo1j6ga4HzKfEay0VBt1c3lkokKxULYhMi3bsUtFTQoOKtllaJlohvzp++vVwVPtrdrNPXd6EUkCGirCsZRtC8XKTbFQjHA6yXYSSWNMhrhP25qGOKDSTWdBJ/BIKz3oR0JXqOBM/T6R4kDKceDpzgCrgfztTcW/vHaifMdNWRgnioZkvshPOFQRnF4Ne0xQovhYE0wE01khGWCBidK/yeonfF0K/yeNgmmdmMWala84YI4M2AeH4BhYoAQq4BxUQR0QQME1uAV3xqVxY9wbD/PWBeNzZg/8gPH4AaE7kfQ=</latexit>

v

<latexit sha1_base64="lN+M9dwqGXtaNpYmeiESrpSXwNg=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCSQizk7PJmNnZZWZWCUtKKxsLRWx9ilQ+hJ3P4Es4uRSa+MPAx/+fw5xzvIgzpR3ny0otLa+srqXXMxubW9s72d29qgpjSbFCQx7KukcUciawopnmWI8kksDjWPP6V+O8dodSsVDc6EGErYB0BfMZJdpY5ft2NufknYnsRXBnkLv8GJW/Hw5HpXb2s9kJaRyg0JQTpRquE+lWQqRmlOMw04wVRoT2SRcbBgUJULWSyaBD+9g4HdsPpXlC2xP3d0dCAqUGgWcqA6J7aj4bm/9ljVj7hVbCRBRrFHT6kR9zW4f2eGu7wyRSzQcGCJXMzGrTHpGEanObjDmCO7/yIlRP8+55/qzs5ooFmCoNB3AEJ+DCBRThGkpQAQoIj/AML9at9WS9Wm/T0pQ169mHP7LefwCsOZFD</latexit>

w

Figure 1. The digraph D in the example.

Consider also a swap protocol P for S such that if all
parties follow P then all end up with outcome DEAL. Then
P is not a strong Nash equilibrium, because for C = {u, v},
the parties in C can ignore P altogether and simply swap
their assets between themselves, improving their outcomes.
Nevertheless, as we show later in Section 4, S does have
an atomic protocol. Roughly, instead of using the whole
digraph D, in this protocol only assets represented by arcs
(u, w), (w, v) and (v, u) will be swapped. Then the outcome

<latexit sha1_base64="tEYFmYDP6G+S/0/Oa+tQDqm0nDM=">AAAB/nicdVDLSgNBEJz1GeMrRjx5GQyCp2U3CSZ6CnjxqGhUSEKYnXR0cHZ2melVwxLwG/wDETwo4tXv8ObRP3GSKKhoQUNR1U13VxBLYdDz3pyx8YnJqenMTHZ2bn5hMbeUPzJRojnUeSQjfRIwA1IoqKNACSexBhYGEo6D852Bf3wB2ohIHWIvhlbITpXoCs7QSu3cShPhCg1P66oD+pIh6H77op0reK5XLBe3StRz/VK1VClbUqx6ldIW9V1viEIt/759czd5sNfOvTY7EU9CUMglM6bhezG2UqZRcAn9bDMxEDN+zk6hYaliIZhWOjy/T9et0qHdSNtSSIfq94mUhcb0wsB2hgzPzG9vIP7lNRLsVlupUHGCoPhoUTeRFCM6yIJ2hAaOsmcJ41rYWyk/Y5pxm4LJ2hC+PqX/k6Oi62+6/r5fqFXJCBmyStbIBvFJhdTILtkjdcJJSm7JA3l0rp1758l5HrWOOZ8zy+QHnJcPzEOZoA==</latexit>

Underwaterv
<latexit sha1_base64="7S8DvtLOay8yjez8D5MEqyhJ0OQ=">AAAB+nicdVDLSgNBEJz1bXwl8ehlMAielt1ETPQU0IMnUTSJkIQwO+kkg7MPZnrVsOYnvHtRUMSrX+LNo3/iJFFQ0YKGoqqb7i4vkkKj47xZE5NT0zOzc/OphcWl5ZV0JlvVYaw4VHgoQ3XmMQ1SBFBBgRLOIgXM9yTUvPO9oV+7AKVFGJxiP4Kmz7qB6AjO0EitdKaBcIWaJ4fhPjA5aF200jnHdvJb+Z0CdWy3UCoUtwzJl5xiYYe6tjNCrpx93725nz45aqVfG+2Qxz4EyCXTuu46ETYTplBwCYNUI9YQMX7OulA3NGA+6GYyOn1AN4zSpp1QmQqQjtTvEwnzte77nun0Gfb0b28o/uXVY+yUmokIohgh4ONFnVhSDOkwB9oWCjjKviGMK2FupbzHFONo0kqZEL4+pf+Tat52t2332M2VS2SMObJG1skmcUmRlMkBOSIVwskluSUP5NG6tu6sJ+t53Dphfc6skh+wXj4AKmCXig==</latexit>

NoDealv

<latexit sha1_base64="rbSVpVTSKi8y1jAvmoQA1Q7RxBY=">AAAB/HicdVDLSgNBEJyN7/iK8ehlMAielt0kmMRTQBCPvqJCEsLspGOGzD6Y6Q2GJX6EP+BBD4p49UO8efRPnCQKKlrQUFR1093lRVJodJw3KzU1PTM7N7+QXlxaXlnNrGXPdBgrDjUeylBdeEyDFAHUUKCEi0gB8z0J515vb+Sf90FpEQanOIig6bPLQHQEZ2ikVma9gXCFmif7CuBYtGHY6rcyOcd28sV8pUAd2y2UC6WiIfmyUypUqGs7Y+Sq2ffdm7uZk8NW5rXRDnnsQ4BcMq3rrhNhM2EKBZcwTDdiDRHjPXYJdUMD5oNuJuPjh3TLKG3aCZWpAOlY/T6RMF/rge+ZTp9hV//2RuJfXj3GTrmZiCCKEQI+WdSJJcWQjpKgbaGAoxwYwrgS5lbKu0wxjiavtAnh61P6PznL2+6O7R65uWqZTDBPNsgm2SYuKZEqOSCHpEY4GZBb8kAerWvr3nqynietKetzZp38gPXyAcL2mHE=</latexit>

FreeRidev

<latexit sha1_base64="3N2by3Dfu5fBcXHCVcyVpwwSEbM=">AAAB/HicdVDLTgJBEJz1ifhCOHqZSEw8bXaBCHgi0YNHjPJIgJDZYZAJs7ObmV4i2eBH+AMe9KAxXv0Qbx79EwfQRI1W0kmlqjvdXV4ouAbHebMWFpeWV1YTa8n1jc2t7dROuq6DSFFWo4EIVNMjmgkuWQ04CNYMFSO+J1jDGx5P/caIKc0DeQHjkHV8cil5n1MCRuqmMm1gV6BpfMI1DSIJk+6om8o6tpMr5Mp57NhuvpQvFgzJlZxivoxd25khW0m/H93cLZ9Xu6nXdi+gkc8kUEG0brlOCJ2YKOBUsEmyHWkWEjokl6xlqCQ+0514dvwE7xulh/uBMiUBz9TvEzHxtR77nun0CQz0b28q/uW1IuiXOjGXYQRM0vmifiQwBHiaBO5xxSiIsSGEKm5uxXRAFKFg8kqaEL4+xf+Tes52D233zM1WSmiOBNpFe+gAuaiIKugUVVENUTRGt+gBPVrX1r31ZD3PWxesz5kM+gHr5QMpzZi0</latexit>

Discountv

<latexit sha1_base64="kJ0fx3IVSDhZgMiYwvNioR19AkU=">AAAB+HicdVDLSgNBEJz1GeMrxqOXwSB4WnYTMYmngB48RjQPSEKYnXR0cPbBTG8wLvkJr14EFfHqp3jz6J84SRRUtKChqOqmu8uLpNDoOG/WzOzc/MJiaim9vLK6tp7ZyNZ1GCsONR7KUDU9pkGKAGooUEIzUsB8T0LDuzwc+40BKC3C4AyHEXR8dh6IvuAMjdTNrLcRrlDz5AiYHHUH3UzOsZ38Xr5coI7tFkqF4p4h+ZJTLJSpazsT5CrZ94Ob+/nTajfz2u6FPPYhQC6Z1i3XibCTMIWCSxil27GGiPFLdg4tQwPmg+4kk8NHdMcoPdoPlakA6UT9PpEwX+uh75lOn+GF/u2Nxb+8Voz9UicRQRQjBHy6qB9LiiEdp0B7QgFHOTSEcSXMrZRfMMU4mqzSJoSvT+n/pJ633X3bPXFzlRKZIkW2yDbZJS4pkgo5JlVSI5zE5JY8kEfr2rqznqznaeuM9TmzSX7AevkAtTGWuQ==</latexit>

Dealv

Figure 2. The structure of a preference poset of a party v in an h-swap
system. The arrows symbolize the preference relation. The one outcome in
DISCOUNTv \ FREERIDEv is hAin

v |?i.

of each party will be better than DEAL, and u and v will
have no incentive to deviate from this protocol.

3. Herlihy’s Swap Model

In this section, we show that the concept of swap systems
is a generalization of Herlihy’s model [19]. To this end, we
define a simple type of swap system under our model that
we call h-swap systems, and we show that it captures the
model in [19]. In particular we prove that in h-swap systems,
our definition of atomicity is equivalent to the definition
in [19].

h-Swap Systems. Given a swap system S = (D, P) and a
party v 2 V , define three sets of outcomes of v:

DISCOUNTv =
�
! | !

in = A
in
v ^ !

out
6= A

out
v

FREERIDEv =
�
! | !

in
6= ? ^ !

out = ?

UNDERWATERv =
�
! | !

in
6= A

in
v ^ !

out
6= ?

Since A
in
v 6= ; and A

out
v 6= ;, all sets DISCOUNTv,

FREERIDEv and UNDERWATERv are well-defined, none of
them contains NODEALv nor DEALv, UNDERWATERv \

(DISCOUNTv [FREERIDEv) = ;, DISCOUNTv \

FREERIDEv = {hA
in
v |?i}, and

⌦v = {NODEALv} [{DEALv} [DISCOUNTv

[FREERIDEv [UNDERWATERv.

The inclusive monotonicity property (p.2) implies that all
outcomes in FREERIDEv are better than NODEALv , and all
outcomes in DISCOUNTv are better than DEALv .

We will call S an h-swap system if it satisfies the
following conditions for all v 2 V :
(h.1) If ! 2 UNDERWATERv then ! �v NODEALv ,
(h.2) Party v has no other non-generic preferences besides

these in (h.1).
In other words, in an h-swap system all preference posets
are generated by relations ! � NODEAL for outcomes !
in UNDERWATER. Figure 2 illustrates the structure of a
preference poset of an h-swap system4. Note that in an h-
swap system, the set of acceptable outcomes of a node v is
Av = ⌦v \ UNDERWATERv = {NODEALv} [{DEALv} [

DISCOUNTv [FREERIDEv. The preferences of an h-swap
system S = (D, P) are uniquely determined by its digraph
D, so it is not even necessary to specify P .

4. This figure differs slightly from Figure 3 in [19], which mistakenly
showed the sets DISCOUNTv and FREERIDEv as disjoint.

The preference poset structure of h-swap systems, as
defined above, captures the concept of a party’s preferences
assumed in the model from [19], except for the addition of
preferences determined by inclusive monotonicity.

Comment. The model in [19] was not formulated in terms
of posets, raising a question of how to formally capture a
relation for pairs of outcomes between which preferences
were not specified in [19]. In our model, such outcomes are
considered incomparable in the poset (unless they are related
by the inclusive monotonicity). One may try to consider
another option: to allow arbitrary relations between such
pairs, providing that the poset axioms are satisfied and the
condition (h.1) holds. However, with this approach there is
no meaningful way to extend such individual preferences to
collective preferences of sets of parties (see the discussion
later in this section).

h-Uniformity. To distinguish between our and Herlihy’s
definition of uniformity, we will refer to his concept as
h-uniformity. A swap protocol P is called h-uniform if it
satisfies the safety property and the following h-liveness
condition: If all parties follow P, they all end in outcome
DEAL. This condition seems stricter than our definition
of uniformity, but we show that in h-swap systems these
two definitions are in fact equivalent. In fact, they are also
equivalent to weak uniformity, as defined earlier in Section 2.

Lemma 1. Let S = (D, P) be an h-swap system in which
some subset of arcs in D are triggered, and let Q be a path in
D whose all internal nodes are in acceptable outcomes. Then,
along Q, all triggered arcs of Q are before all non-triggered
arcs of Q.

Proof. If all arcs on Q are triggered, except possibly for
the last one, we are done. Otherwise, let (x, y) be the
first non-triggered arc on Q and let z be the successor
of y. Since y’s outcome is acceptable and (x, y) is not
triggered, this outcome must be either NODEALy or in
FREERIDEy . Therefore (y, z) is also not triggered. Repeating
this argument, we obtain that all arcs on Q after (x, y) are
not triggered.

Theorem 1. Let P be a swap protocol for an h-swap system
S = (D, P), where D is strongly connected. Then the
following three conditions are equivalent: (i) P is uniform,
(ii) P is weakly uniform, (iii) P is h-uniform.

Proof. Trivially, h-uniformity implies uniformity, which in
turn implies weak uniformity. Thus it is sufficient to show
that weak uniformity implies h-uniformity.

So assume that P is weakly uniform. As the safety
condition is the same, it is sufficient to show that P satisfies
the h-liveness property. Assume that all parties follow P.
Then, from the assumptions about safety and weak liveness,
all parties will end up in acceptable outcomes, with at least
one party ending in an outcome strictly better than NODEAL.

Suppose, towards contradiction, that there is a party with
outcome other than DEAL. This gives us that some arc (x, y)
is not triggered. Further, since some party has an outcome
other than NODEAL, there must be a triggered arc (x0

, y
0).

By strong connectivity, there is a path P from x to y
0 whose

first arc is (x, y) and the last arc is (x0
, y

0). Then the existence
of this path contradicts Lemma 1.

h-Atomicity. The approach in [19] differs from ours
in the way it formalizes the gain of a coalition (subset)
of parties when they deviate from the protocol. Roughly,
the definition in [19] captures a collective gain, while our
definition views it as a vector of individual outcomes. In
spite of this apparent difference, we show that in h-swap
systems our concept of atomicity is in fact equivalent to the
one in [19].

In the discussion below, let S = (D, P) be a fixed h-
swap system. Following [19], we will define the h-outcome
of a coalition C of parties by, in essence, contracting C

into a single vertex. (The term “h-outcome” is ours, to
better distinguish this concept from our concept of outcome
vectors.) More formally, define C’s incoming and outgoing
arcs in a natural way: A

in
C

=
S

v2C
A

in
v \

S
v2C

A
out
v and

similarly, A
out
C

=
S

v2C
A

out
v \

S
v2C

A
in
v . The h-outcomes for

C are pairs !̂ = h!̂
in

| !̂
out

i where !̂in
✓ A

in
C

and !̂out
✓

A
out
C

. ⌦C is the set of all h-outcomes of C. The preference
poset and acceptable set of C are defined analogously to
that of a single party in an h-swap system. That is, we
define NODEALC , DEALC , DISCOUNTC , FREERIDEC , and
UNDERWATERC in the natural way, and we assume the
analogues of conditions (p.1) and (p.2) for swap systems
(in Section 2) and conditions (h.1) and (h.2) for h-swap
systems. The set of acceptable h-outcomes AC consists of
all h-outcomes of C that are not in UNDERWATERC . (Note
that if C consists of a single party then its h-outcome is
identical to its outcome.)

Define a protocol P to be a strong Nash h-equilibrium if
it satisfies the following condition for every set C of parties:
providing that the parties outside C follow P, the parties in
C cannot end up in an h-outcome better than their outcome
resulting from following P. P is called h-atomic if it is
h-uniform and a strong Nash h-equilibrium.

Culminating the earlier discussion, the following theo-
rem establishes that our model indeed captures the model
introduced in [19].

Theorem 2. Let P be a protocol for an h-swap system
S = (D, P). P is atomic if and only if it is h-atomic.

Proof. ()) Suppose that P is atomic. Theorem 1 implies
that P is h-uniform. Thus, from the definition of h-uniformity,
if all parties follow P then each party’s outcome will be
DEAL.

It remains to show that P is a strong Nash h-equilibrium.
Let C ✓ V , and consider an execution of P in which
all parties outside C follow P. Since P is a strong Nash
equilibrium, the outcome vector of C is not better than
(DEALv)v2C . Denote by !̂ the h-outcome of C. We need to
show that !̂ is not better than DEALC .

Towards contradiction, suppose that !̂ � DEALC . The
definition of preference posets for h-outcomes gives us that
!̂ 2 DISCOUNTC . Now consider another execution of P

where the parties in C behave just like before, but they also

trigger all arcs connecting two members of C. This will not
affect the execution of P for parties outside C. Then the
outcome vector !̄ of C consists of all arcs between C and
V \C (in both directions) that are triggered in !̂, as well as all
arcs with both endpoints inside C. Since !̂ 2 DISCOUNTC ,
each v 2 C has all its incoming arcs in !̄, and there is at
least one u 2 C that has one arc to V \C that is not in !̄. So
the outcome of each v 2 C is either DEALv or DISCOUNTv ,
and this u’s outcome is DISCOUNTu. But then !̄ is better
than (DEALv)v2C , contradicting the assumption that P is a
strong Nash equilibrium.

(() Now suppose that P is h-atomic; that is, P is h-
uniform and is a strong Nash h-equilibrium. From Theorem 1
we obtain that P is uniform.

It remains to prove that P is a strong Nash equilibrium.
Let C ✓ V , and consider some execution of P in which
all parties outside C follow P. Since P is a strong Nash
h-equilibrium, the h-outcome of C is not better than DEALC .
We need to show that C’s outcome vector is not better than
(DEALv)v2C .

We again argue by contradiction. Suppose that C’s
outcome vector is !̄ � (DEALv)v2C . Then each v 2 C

has outcome in {DEALv} [DISCOUNTv and there is some
u 2 C with outcome in DISCOUNTv. This implies that all
parties in C have their incoming arcs in !̄. Further, some
outgoing arc of u is not in !̄, and this arc must go to
V \ C. We consider the h-outcome of C in the same run
of P, without changing the behavior of any members of
C. (In the h-outcome of C the status of arcs internal to
C is not relevant.) Denote this h-outcome by !̂. Then !̂

will include the same arcs between C and V \ C (in both
directions) as in !̄. The properties of !̄ established earlier
imply that !̂ 2 DISCOUNTC , and thus !̂ � DEALC , which
contradicts our earlier assumption that P is a strong Nash
h-equilibrium.

4. A Characterization of Swap Systems with

Atomic Protocols

In this section, we characterize swap systems that have
atomic protocols. Interestingly enough, we show that if a
swap system admits an atomic protocol, then it also admits
an atomic protocol that is essentially equivalent to running
Herlihy’s protocol on a suitable subgraph.

We denote Herlihy’s protocol [19] as H. Herlihy proved
that H is h-atomic for h-swap systems (in our terminology).

Uniformity and Nash equilibrium of Herlihy’s protocol.
Let S = (D, P) be any swap system with strongly connected
digraph D. If all parties follow H then they all will end
up in outcome DEAL. If v follows H then either it does
not trigger any outgoing arcs, and thus its outcome is in
{NODEALv} [FREERIDEv, or it triggers some, but then
also all its incoming arcs are triggered, so its outcome is
in {DEALv} [DISCOUNTv . In each case, regardless of the
behavior of other parties, this outcome is at least as good
as NODEALv, and thus acceptable. This means that H is
uniform.

We now claim that H is a Nash equilibrium in S, in
the sense that no single party can improve its outcome
by deviating from H, if all other parties follow H. If all
parties follow the protocol, all outcomes are DEAL. If any
party v has outcome ! � DEALv, then in ! there needs
to be an incoming arc (u, v) but some outgoing arc (v, w)
must be missing. (This holds for any preference poset, by
properties (p.1) and (p.2).) In Herlihy’s protocol a vertex
triggers an outgoing arc only if all its incoming arcs are
triggered. So if all parties other than v follow the protocol,
then we get a contradiction by considering a path from w to
u (following an argument similar to the proof of Theorem 1).

<latexit sha1_base64="umEIu5mSyWxdPgcAu1ie/LMuLOU=">AAAB6HicdVC7SgNBFJ31GeMrainIYBCsln0Es6kM2FgmYB6QLGF2MpuMmZ1dZmbFEFJa2VgoYutX+B12foM2/oGTREFFD1w4nHMv99wbJIxKZVkvxtz8wuLScmYlu7q2vrGZ29quyzgVmNRwzGLRDJAkjHJSU1Qx0kwEQVHASCMYnEz8xgURksb8TA0T4keox2lIMVJaql52cnnLtJyCU3KhZdqu5xYLmjieVXRL0DatKfLH769Xe0/Vt0on99zuxjiNCFeYISlbtpUof4SEopiRcbadSpIgPEA90tKUo4hIfzQNOoYHWunCMBa6uIJT9fvECEVSDqNAd0ZI9eVvbyL+5bVSFXr+iPIkVYTj2aIwZVDFcHI17FJBsGJDTRAWVGeFuI8Ewkr/Jquf8HUp/J/UHdM+MgtVO1/2wAwZsAv2wSGwQRGUwSmogBrAgIBrcAvujHPjxrg3Hmatc8bnzA74AePxA6RDkfY=</latexit>

x

<latexit sha1_base64="MWuRrfXySodEPny0R0weq5uBjbo=">AAAB6HicdVC7SgNBFJ2NrxhfUQsLm8EQsFr2EcymC9hYJmAekCxhdjKbjJl9MDMrLEs6OxsLRWz9GD/ATj/AL/ADnCQKKnrgwuGce7nnXi9mVEjDeNFyS8srq2v59cLG5tb2TnF3ry2ihGPSwhGLeNdDgjAakpakkpFuzAkKPEY63uR05ncuCRc0Cs9lGhM3QKOQ+hQjqaRmOiiWDN2wKlbNhoZu2o5drShiOUbVrkFTN+Yo1Q/KV+9Pb6+NQfG5P4xwEpBQYoaE6JlGLN0McUkxI9NCPxEkRniCRqSnaIgCItxsHnQKy0oZQj/iqkIJ5+r3iQwFQqSBpzoDJMfitzcT//J6ifQdN6NhnEgS4sUiP2FQRnB2NRxSTrBkqSIIc6qyQjxGHGGpflNQT/i6FP5P2pZunuiVplmqO2CBPDgER+AYmKAK6uAMNEALYEDANbgFd9qFdqPdaw+L1pz2ObMPfkB7/ABUFpG+</latexit>

y

<latexit sha1_base64="GRS/k2NURQKKhlLWAeXz6/04pXw=">AAAB6HicdVDLSsNAFJ3UV62vqktBBovgKiRNsenKghuXLdgHtKFMppN27GQSZiZCCV26cuNCEbd+hd/hzm/QjX/gtFVQ0QMXDufcyz33+jGjUlnWi5FZWFxaXsmu5tbWNza38ts7TRklApMGjlgk2j6ShFFOGooqRtqxICj0GWn5o9Op37okQtKIn6txTLwQDTgNKEZKS/Wkly9YplUsFSsOtEzbcZ1ySZOia5WdCrRNa4bCyfvr1f5T/a3Wyz93+xFOQsIVZkjKjm3FykuRUBQzMsl1E0lihEdoQDqachQS6aWzoBN4qJU+DCKhiys4U79PpCiUchz6ujNEaih/e1PxL6+TqMD1UsrjRBGO54uChEEVwenVsE8FwYqNNUFYUJ0V4iESCCv9m5x+wtel8H/SLJr2sVmq24WqC+bIgj1wAI6ADcqgCs5ADTQABgRcg1twZ1wYN8a98TBvzRifM7vgB4zHD5+3kfM=</latexit>

u
<latexit sha1_base64="x+mhS+CA7qfsf/dCseVSyQPhjAE=">AAAB6HicdVC7SgNBFJ31GeMrainIYBCsltlsMJvKgI1lAuYByRJmJ7PJmNkHM7OBsKS0srFQxNav8Dvs/AZt/AMniYKKHrhwOOde7rnXizmTCqEXY2FxaXllNbOWXd/Y3NrO7ew2ZJQIQusk4pFoeVhSzkJaV0xx2ooFxYHHadMbnk395ogKyaLwQo1j6ga4HzKfEay0VBt1c3lkokKxULYhMi3bsUtFTQoOKtllaJlohvzp++vVwVPtrdrNPXd6EUkCGirCsZRtC8XKTbFQjHA6yXYSSWNMhrhP25qGOKDSTWdBJ/BIKz3oR0JXqOBM/T6R4kDKceDpzgCrgfztTcW/vHaifMdNWRgnioZkvshPOFQRnF4Ne0xQovhYE0wE01khGWCBidK/yeonfF0K/yeNgmmdmMWala84YI4M2AeH4BhYoAQq4BxUQR0QQME1uAV3xqVxY9wbD/PWBeNzZg/8gPH4AaE7kfQ=</latexit>

v

Figure 3. The example of a swap system in which H is not a strong Nash
equilibrium.

Note that this argument does not work for larger coali-
tions. The reason is that a larger coalition can improve its
outcome even without any arcs from outside being triggered.
As an example, consider a swap system whose digraph is
shown in Figure 3. The only non-generic preferences are:
DEALv � hu | ui for v, and DEALu � hv | vi for u. Then u

and v can cooperatively deviate from H by triggering only
arcs (u, v) and (v, u), each obtaining a better outcome than
if they followed H. This shows that H is not a strong Nash
equilibrium in arbitrary swap systems.

Characterization. Let S = (D, P) be a swap system for
a set of parties V , and let G and H be two subgraphs of
D. G will be called piece-wise strongly connected if every
connected component of G is strongly connected. G is called
spanning if its vertex set is V . If G is spanning, we say
that H dominates G if DEALH

v ⌫ DEALG

v for all vertices v

in H. In other words, if only the arcs in H are triggered,
then all parties in H end in outcomes at least as good
as if all their arcs in G were triggered. Also, H strictly
dominates G if, in addition, there exists a party u of H such
that DEALH

u � DEALG

u . That is, every party in H ends in
an outcome at least as good and at least one party strictly
improves their outcome when triggering the arcs of H instead
of G.

For example, consider the swap system S = (D, P) in
Example 1. The subgraph G1 = D is spanning, and is strictly
dominated by the subgraph H consisting of vertices u, v and
arcs (u, v) and (v, u). On the other hand, the subgraph G2

that has arcs (u, w), (w, v) and (v, u) is spanning, and there
is no subgraph of D that strictly dominates it.

Theorem 3. A swap system S = (D, P) has an atomic swap
protocol if and only if there exists a spanning subgraph G of
D with the following properties: (c.1) G is piece-wise strongly
connected and has no isolated vertices, (c.2) G dominates
D, and (c.3) no subgraph H of D strictly dominates G.

Proof. ()) Let P be an atomic swap protocol for S . Define
G to be the subgraph whose vertex set is V and whose arcs
are the arcs triggered in an execution of P where all parties
follow the protocol. By definition of P’s atomicity, G is
spanning.

We first show property (c.1). First, G cannot have any
isolated vertices, since any isolated vertex v of G would
have outcome NODEALD

v when all parties follow P. This
would contradict the uniformity (the liveness condition)
of P. Second, if G had a connected component B that is
not strongly connected, then B would contain a strongly
connected component C of G that has no arcs of G coming
from V \C but has at least one arc of G going to V \C. We
could then consider another run of P in which the parties
in C ignore P entirely and simply trigger the arcs of G that
are within C. By the inclusive monotonicity property (p.2)
of swap systems, this would strictly improve the outcome
vector of C, contradicting P being a strong Nash equilibrium.
We can thus conclude that such B cannot exist, completing
the proof that G is piece-wise strongly connected.

Next, we consider property (c.2). By the uniformity
(liveness) of P, every party v must end in outcome DEALD

v
or better when all parties follow P. The arcs that are triggered
at the conclusion of P are exactly the arcs in G. Therefore
DEALG

v ⌫ DEALD

v , for all parties v.
Finally, we show property (c.3). Suppose there is a

subgraph H that strictly dominates G, towards contradiction.
Let C be the set of vertices of H. Modify the behavior of the
parties in C to ignore P and instead trigger exactly the arcs
of H, giving C the outcome vector (DEALH

v)v2C . Then,
P(C) = (DEALG

v)v2C �C (DEALH

v)v2C , as H strictly
dominates G. This contradicts the assumption that P is a
strong Nash equilibrium, proving that H does not exists.

(() Suppose that G is a spanning subgraph that satisfies
properties (c.1), (c.2) and (c.3). We show that then there is
an atomic protocol for S .

Let S
G be the h-swap system with digraph G. Our proto-

col, denoted HG , simply executes Herlihy’s protocol H on S
G .

For simplicity, assume that G is strongly connected; otherwise
we can apply our reasoning below to each strongly connected
component of G separately. By the h-liveness condition of
HG , if all parties follow HG then each will end up in outcome
DEALG . Also, any party v that follows HG will not have any
of its arcs outside G triggered and, by the safety property of
HG , will end up in an outcome that is acceptable in S

G , that
is in {NODEALG

v }[FREERIDEG

v [{DEALG

v }[DISCOUNTG

v .
When comparing outcomes in the argument that follows,

we will use notation “�” for the preference relation in the
original swap system S (that is, not in the auxiliary system
S

G). Similarly, unless stated otherwise, the term “acceptable”
also refers to the acceptability of an outcome in S .

We first show that HG is uniform. Suppose that every
party follows HG . Then, by the h-uniformity of HG , the out-
come of each party v will be DEALG

v . Using the assumptions
that G is spanning and that it dominates D, we obtain that
DEALG

v ⌫ DEALD

v for all parties v, so HG indeed satisfies
the liveness condition.

Next, we deal with the safety condition. Using the
properties of HG established above, if a party v conforms
to HG then we have two cases. Either the outcome ! of
v satisfies ! 2 {NODEALG

v } [FREERIDEG

v , in which case
! 2 {NODEALD

v }[FREERIDED

v as well (because no edges
of v outside G are triggered), so ! ⌫ NODEALD

v , that is ! is
acceptable. Or ! 2 {DEALG

v } [DISCOUNTG

v , in which case,
using the monotonicity property (p.2) for S and assump-
tion (c.2), we obtain ! ⌫ DEALG

v ⌫ DEALD

v � NODEALD

v ;
that is ! is acceptable in this case as well. We conclude that
HG satisfies the safety property, completing the proof that
HG is uniform.

It remains to show that HG is a strong Nash equilibrium
for S . Assume that it is not, towards contradiction. Then there
exists a coalition C ✓ V that, by deviating from HG , can
end in an outcome vector !̄ � (DEALG

v)v2C , even though all
parties outside C follow HG . We can assume C is maximal,
in the sense that each party outside of C ends in an outcome
that is not DEALG nor in DISCOUNTG . Otherwise, we can
add those parties to C and the relation !̄ � (DEALG

v)v2C

will be preserved.
We first show that no arc (u, v) 2 A entering C from

outside (that is u 2 V \ C and v 2 C) is triggered. Assume
such an arc is triggered, towards contradiction. Firstly, (u, v)
must be in G, otherwise u would not be following HG

by creating/triggering this arc. By the h-safety property
of H in S

G , HG guarantees that u must end up in an
outcome acceptable in S

G . This means that u’s outcome
is in {DEALG

u} [DISCOUNTG

u , contradicting the assumption
that C is maximal. So, indeed, (u, v) cannot be triggered.

Further, without loss of generality we can assume that
no arc from C to V \ C is triggered. This is because, as we
just showed, for each v 2 C, v only receives arcs from other
parties in C. Then, no member of C can have its outcome
worsened if v changes its behavior and does not trigger any
arc to V \ C.

Thus all arcs that appear in !̄ are between members
of C. Let H be the subgraph with vertex set C and the
arcs that are in !̄, that is !̄ = (DEALH

v)v2C . Since !̄ �

(DEALG

v)v2C , then DEALH

v ⌫ DEALG

v for all v 2 C and
DEALH

w � DEALG

w for some w 2 C. This means that H

strictly dominates G, contradicting (c.3). We conclude that
no such C exists, and thus HG is a strong Nash equilibrium
protocol.

Comment: As some readers may have noticed, the proof
of the ()) implication in Theorem 3 does not use the safety
property of protocol P. What this shows, in essence, is that
in our setting of swap systems, a swap protocol that has
the liveness and strong Nash equilibrium properties can be
modified to also satisfy the safety property.

Example 2. To illustrate Theorem 3, consider again
the swap system S = (D, P) in Example 1. Let G1 = D.
Then G1 is spanning, satisfies conditions (c.1) and (c.2),
but it does not satisfy condition (c.3) because it is strictly
dominated by subgraph H consisting of vertices u, v and
arcs (u, v) and (v, u). We can take instead subgraph G2

that has arcs (u, w), (w, v) and (v, u). Then G2 is spanning,
satisfies (c.1) and (c.2), and there is no subgraph of D that
strictly dominates G2, so (c.3) holds as well. Therefore S

has an atomic swap protocol.

Example 3. We now give a larger example. Consider
the swap system S = (D, P) with digraph D in Figure 4
and with preference posets defined as follows. For i = 1, 2:
• The preference poset of ui is generated by DEALui �

hvi | vii and DEALui � hu3�i | u3�ii.
• The preference poset of vi is generated by DEALvi �

hui | uii and DEALvi � ht3�i | tii � hv3�i | v3�ii.
• The preference poset of ti is generated by DEALti �

hvi | v3�ii and DEALti � ht3�i | t3�ii.
We consider three candidates for the spanning sugraph

G. One candidate is G1 = D. It’s obviously spanning and it
satisfies conditions (c.1) and (c.2) from Theorem 3. However,
it is strictly dominated by several subgraphs including the
following two: subgraph H1 consisting of v1 and v2 with
arcs (v1, v2) and (v2, v1), and subgraph H2 consisting of t1

and t2 with arcs (t1, t2) and (t2, t1).
Another candidate G2 consists of arcs (ui, u3�i), (vi, ti)

and (ti, v3�i). for i = 1, 2. G2 is spanning and it satisfies
condition (c.1). By inspecting the preferences of each vertex,
it also satisfies (c.2). But it is strictly dominated by H1.

The third candidate G3 consists of arcs (ui, vi), (vi, ui),
and (ti, t3�i), for i = 1, 2. It is also spanning and satisfies
conditions (c.1) and (c.2). Also, the outcome of each vertex in
G3 is maximal in its preference poset, so there is no subgraph
of D that strictly dominates G3. Thus, by Theorem 3, S has
an atomic swap protocol. This protocol is obtained by running
H in G3.

5. NP-Hardness

Now that we have characterized the swap systems that
permit an atomic protocol, a natural next question is the
complexity of the corresponding decision problem: given a
swap system, does it permits an atomic protocol? In the next
two sections, we consider this. In this section, we define the
corresponding decision problem and show it is in NP-hard.
In the following section, we tighten this classification to ⌃P

2 -
complete. Although showing the problem is ⌃P

2 -complete
would imply it is NP-hard, we first present the NP-hardness
proof since it is more digestible, and then present the more
involved ⌃P

2 -completeness proof.
Let SwapAtomic be the following decision problem: The

input is a swap system S = (D, P), where D is a (weakly)
connected digraph with no vertices of in-degree or out-degree
0. The objective is to decide whether S has an atomic swap
protocol.

Theorem 4. SwapAtomic is NP-hard, even for swap systems
S = (D, P) in which digraph D is strongly connected.

Proof. The proof is by showing a polynomial-time reduction
from CNF. Recall that in CNF we are given a boolean
expression ↵ in conjunctive normal form, and the objective
is to determine whether there is a truth assignment that

<latexit sha1_base64="8EDKGVqw3tn90i2a11RD0dQaHzA=">AAAB6nicbZDLSsNAFIZP6q1Gq1WXbgZLwVVJRLTLgiAuK9oLtKFMppN26GQS5iKU0Edw40IRt+KD+AjufBunl4W2/jDw8f/nMOecMOVMac/7dnJr6xubW/ltd2e3sLdfPDhsqsRIQhsk4Ylsh1hRzgRtaKY5baeS4jjktBWOrqZ564FKxRJxr8cpDWI8ECxiBGtr3Zme3yuWvIo3E1oFfwGlWuHTlK/dj3qv+NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpbp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQvOs4l9Uzm/9Uq0Kc+XhGE7gFHy4hBrcQB0aQGAAj/AMLw53npxX521emnMWPUfwR877D4zDkDg=</latexit>

u1
<latexit sha1_base64="XAzdpy5WDyRCQ2uSxSXBFcppmmY=">AAAB6nicbZDNSgMxFIXv1L86Wq26dBMsBVdlIqJdFgRxWdG2QjuUTJppQzOZIckUytBHcONCEbfig/gI7nwb05+Fth4IfJxzL7n3Bong2njet5NbW9/Y3Mpvuzu7hb394sFhU8epoqxBYxGrh4BoJrhkDcONYA+JYiQKBGsFw6tp3hoxpXks7804YX5E+pKHnBJjrbtRF3eLJa/izYRWAS+gVCt8puVr96PeLX51ejFNIyYNFUTrNvYS42dEGU4Fm7idVLOE0CHps7ZFSSKm/Ww26gSVrdNDYazskwbN3N8dGYm0HkeBrYyIGejlbGr+l7VTE1b9jMskNUzS+UdhKpCJ0XRv1OOKUSPGFghV3M6K6IAoQo29jmuPgJdXXoXmWQVfVM5vcalWhbnycAwncAoYLqEGN1CHBlDowyM8w4sjnCfn1Xmbl+acRc8R/JHz/gOOSZA5</latexit>

v1
<latexit sha1_base64="OSRgs0fvn10UNzEFICD+ra4lSQY=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCpJEe2yIIjLivYCbSiT6aQdOpmEuQgl9BHcuFDErfggPoI738bpZaGtPwx8/P85zDknTDlT2vO+nbX1jc2t7dyOu7uX3z8oHB41VWIkoQ2S8ES2Q6woZ4I2NNOctlNJcRxy2gpHV9O89UClYom41+OUBjEeCBYxgrW17kyv0isUvbI3E1oFfwHFWv7TlK7dj3qv8NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpZp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQrNS9i/K57d+sVaFuXJwAqdwBj5cQg1uoA4NIDCAR3iGF4c7T86r8zYvXXMWPcfwR877D45HkDk=</latexit>

u2
<latexit sha1_base64="RW7ry5apsnLczL4fuih14wNR62g=">AAAB6nicbZDNSsNAFIVv6l+NVqsu3QyWgquSFNEuC4K4rGh/oA1lMp20QyeTMDMplNBHcONCEbfig/gI7nwbp2kX2npg4OOce5l7rx9zprTjfFu5jc2t7Z38rr23Xzg4LB4dt1SUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj6/neXtCpWKReNDTmHohHgoWMIK1se4n/Wq/WHIqTia0Du4SSvXCZ1K+sT8a/eJXbxCRJKRCE46V6rpOrL0US80IpzO7lygaYzLGQ9o1KHBIlZdmo85Q2TgDFETSPKFR5v7uSHGo1DT0TWWI9UitZnPzv6yb6KDmpUzEiaaCLD4KEo50hOZ7owGTlGg+NYCJZGZWREZYYqLNdWxzBHd15XVoVSvuZeXizi3Va7BQHk7hDM7BhSuowy00oAkEhvAIz/BicevJerXeFqU5a9lzAn9kvf8Aj82QOg==</latexit>

v2

<latexit sha1_base64="L1q+DbVkEr/7noE8ZeQnXcCy4q4=">AAAB6nicbZDLSgNBEEVr4iuORqMu3TSGgKswI6JZBgRxGdE8IBlCT6cnadLzoLtGCEM+wY0LRdyKH+InuPNv7DwWmnih4XBvFV1VfiKFRsf5tnJr6xubW/lte2e3sLdfPDhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOWPrqZ564ErLeLoHscJ90I6iEQgGEVj3WHP7RVLTsWZiayCu4BSrfCZlq/tj3qv+NXtxywNeYRMUq07rpOgl1GFgkk+sbup5gllIzrgHYMRDbn2stmoE1I2Tp8EsTIvQjJzf3dkNNR6HPqmMqQ41MvZ1Pwv66QYVL1MREmKPGLzj4JUEozJdG/SF4ozlGMDlClhZiVsSBVlaK5jmyO4yyuvQvOs4l5Uzm/dUq0Kc+XhGE7gFFy4hBrcQB0awGAAj/AML5a0nqxX621emrMWPUfwR9b7D4s9kDc=</latexit>

t1

<latexit sha1_base64="mUxQMUi0T85Sjh/x3Ic5XjLwGyc=">AAAB6nicbZDLSsNAFIZPvNZoterSTbAUXJWkiHZZEMRlRXuBNpTJdNIOnUzCzIlQQh/BjQtF3IoP4iO4822cXhba+sPAx/+fw5xzgkRwja77ba2tb2xubed27N29/P5B4fCoqeNUUdagsYhVOyCaCS5ZAzkK1k4UI1EgWCsYXU3z1gNTmsfyHscJ8yMykDzklKCx7rBX6RWKbtmdyVkFbwHFWv4zLV3bH/Ve4avbj2kaMYlUEK07npugnxGFnAo2sbupZgmhIzJgHYOSREz72WzUiVMyTt8JY2WeRGfm/u7ISKT1OApMZURwqJezqflf1kkxrPoZl0mKTNL5R2EqHIyd6d5OnytGUYwNEKq4mdWhQ6IIRXMd2xzBW155FZqVsndRPr/1irUqzJWDEziFM/DgEmpwA3VoAIUBPMIzvFjCerJerbd56Zq16DmGP7LefwCMwZA4</latexit>

t2

<latexit sha1_base64="8EDKGVqw3tn90i2a11RD0dQaHzA=">AAAB6nicbZDLSsNAFIZP6q1Gq1WXbgZLwVVJRLTLgiAuK9oLtKFMppN26GQS5iKU0Edw40IRt+KD+AjufBunl4W2/jDw8f/nMOecMOVMac/7dnJr6xubW/ltd2e3sLdfPDhsqsRIQhsk4Ylsh1hRzgRtaKY5baeS4jjktBWOrqZ564FKxRJxr8cpDWI8ECxiBGtr3Zme3yuWvIo3E1oFfwGlWuHTlK/dj3qv+NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpbp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQvOs4l9Uzm/9Uq0Kc+XhGE7gFHy4hBrcQB0aQGAAj/AMLw53npxX521emnMWPUfwR877D4zDkDg=</latexit>

u1
<latexit sha1_base64="XAzdpy5WDyRCQ2uSxSXBFcppmmY=">AAAB6nicbZDNSgMxFIXv1L86Wq26dBMsBVdlIqJdFgRxWdG2QjuUTJppQzOZIckUytBHcONCEbfig/gI7nwb05+Fth4IfJxzL7n3Bong2njet5NbW9/Y3Mpvuzu7hb394sFhU8epoqxBYxGrh4BoJrhkDcONYA+JYiQKBGsFw6tp3hoxpXks7804YX5E+pKHnBJjrbtRF3eLJa/izYRWAS+gVCt8puVr96PeLX51ejFNIyYNFUTrNvYS42dEGU4Fm7idVLOE0CHps7ZFSSKm/Ww26gSVrdNDYazskwbN3N8dGYm0HkeBrYyIGejlbGr+l7VTE1b9jMskNUzS+UdhKpCJ0XRv1OOKUSPGFghV3M6K6IAoQo29jmuPgJdXXoXmWQVfVM5vcalWhbnycAwncAoYLqEGN1CHBlDowyM8w4sjnCfn1Xmbl+acRc8R/JHz/gOOSZA5</latexit>

v1
<latexit sha1_base64="OSRgs0fvn10UNzEFICD+ra4lSQY=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCpJEe2yIIjLivYCbSiT6aQdOpmEuQgl9BHcuFDErfggPoI738bpZaGtPwx8/P85zDknTDlT2vO+nbX1jc2t7dyOu7uX3z8oHB41VWIkoQ2S8ES2Q6woZ4I2NNOctlNJcRxy2gpHV9O89UClYom41+OUBjEeCBYxgrW17kyv0isUvbI3E1oFfwHFWv7TlK7dj3qv8NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpZp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQrNS9i/K57d+sVaFuXJwAqdwBj5cQg1uoA4NIDCAR3iGF4c7T86r8zYvXXMWPcfwR877D45HkDk=</latexit>

u2
<latexit sha1_base64="RW7ry5apsnLczL4fuih14wNR62g=">AAAB6nicbZDNSsNAFIVv6l+NVqsu3QyWgquSFNEuC4K4rGh/oA1lMp20QyeTMDMplNBHcONCEbfig/gI7nwbp2kX2npg4OOce5l7rx9zprTjfFu5jc2t7Z38rr23Xzg4LB4dt1SUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj6/neXtCpWKReNDTmHohHgoWMIK1se4n/Wq/WHIqTia0Du4SSvXCZ1K+sT8a/eJXbxCRJKRCE46V6rpOrL0US80IpzO7lygaYzLGQ9o1KHBIlZdmo85Q2TgDFETSPKFR5v7uSHGo1DT0TWWI9UitZnPzv6yb6KDmpUzEiaaCLD4KEo50hOZ7owGTlGg+NYCJZGZWREZYYqLNdWxzBHd15XVoVSvuZeXizi3Va7BQHk7hDM7BhSuowy00oAkEhvAIz/BicevJerXeFqU5a9lzAn9kvf8Aj82QOg==</latexit>

v2

<latexit sha1_base64="L1q+DbVkEr/7noE8ZeQnXcCy4q4=">AAAB6nicbZDLSgNBEEVr4iuORqMu3TSGgKswI6JZBgRxGdE8IBlCT6cnadLzoLtGCEM+wY0LRdyKH+InuPNv7DwWmnih4XBvFV1VfiKFRsf5tnJr6xubW/lte2e3sLdfPDhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOWPrqZ564ErLeLoHscJ90I6iEQgGEVj3WHP7RVLTsWZiayCu4BSrfCZlq/tj3qv+NXtxywNeYRMUq07rpOgl1GFgkk+sbup5gllIzrgHYMRDbn2stmoE1I2Tp8EsTIvQjJzf3dkNNR6HPqmMqQ41MvZ1Pwv66QYVL1MREmKPGLzj4JUEozJdG/SF4ozlGMDlClhZiVsSBVlaK5jmyO4yyuvQvOs4l5Uzm/dUq0Kc+XhGE7gFFy4hBrcQB0awGAAj/AML5a0nqxX621emrMWPUfwR9b7D4s9kDc=</latexit>

t1

<latexit sha1_base64="mUxQMUi0T85Sjh/x3Ic5XjLwGyc=">AAAB6nicbZDLSsNAFIZPvNZoterSTbAUXJWkiHZZEMRlRXuBNpTJdNIOnUzCzIlQQh/BjQtF3IoP4iO4822cXhba+sPAx/+fw5xzgkRwja77ba2tb2xubed27N29/P5B4fCoqeNUUdagsYhVOyCaCS5ZAzkK1k4UI1EgWCsYXU3z1gNTmsfyHscJ8yMykDzklKCx7rBX6RWKbtmdyVkFbwHFWv4zLV3bH/Ve4avbj2kaMYlUEK07npugnxGFnAo2sbupZgmhIzJgHYOSREz72WzUiVMyTt8JY2WeRGfm/u7ISKT1OApMZURwqJezqflf1kkxrPoZl0mKTNL5R2EqHIyd6d5OnytGUYwNEKq4mdWhQ6IIRXMd2xzBW155FZqVsndRPr/1irUqzJWDEziFM/DgEmpwA3VoAIUBPMIzvFjCerJerbd56Zq16DmGP7LefwCMwZA4</latexit>

t2

<latexit sha1_base64="8EDKGVqw3tn90i2a11RD0dQaHzA=">AAAB6nicbZDLSsNAFIZP6q1Gq1WXbgZLwVVJRLTLgiAuK9oLtKFMppN26GQS5iKU0Edw40IRt+KD+AjufBunl4W2/jDw8f/nMOecMOVMac/7dnJr6xubW/ltd2e3sLdfPDhsqsRIQhsk4Ylsh1hRzgRtaKY5baeS4jjktBWOrqZ564FKxRJxr8cpDWI8ECxiBGtr3Zme3yuWvIo3E1oFfwGlWuHTlK/dj3qv+NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpbp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQvOs4l9Uzm/9Uq0Kc+XhGE7gFHy4hBrcQB0aQGAAj/AMLw53npxX521emnMWPUfwR877D4zDkDg=</latexit>

u1
<latexit sha1_base64="XAzdpy5WDyRCQ2uSxSXBFcppmmY=">AAAB6nicbZDNSgMxFIXv1L86Wq26dBMsBVdlIqJdFgRxWdG2QjuUTJppQzOZIckUytBHcONCEbfig/gI7nwb05+Fth4IfJxzL7n3Bong2njet5NbW9/Y3Mpvuzu7hb394sFhU8epoqxBYxGrh4BoJrhkDcONYA+JYiQKBGsFw6tp3hoxpXks7804YX5E+pKHnBJjrbtRF3eLJa/izYRWAS+gVCt8puVr96PeLX51ejFNIyYNFUTrNvYS42dEGU4Fm7idVLOE0CHps7ZFSSKm/Ww26gSVrdNDYazskwbN3N8dGYm0HkeBrYyIGejlbGr+l7VTE1b9jMskNUzS+UdhKpCJ0XRv1OOKUSPGFghV3M6K6IAoQo29jmuPgJdXXoXmWQVfVM5vcalWhbnycAwncAoYLqEGN1CHBlDowyM8w4sjnCfn1Xmbl+acRc8R/JHz/gOOSZA5</latexit>

v1
<latexit sha1_base64="OSRgs0fvn10UNzEFICD+ra4lSQY=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCpJEe2yIIjLivYCbSiT6aQdOpmEuQgl9BHcuFDErfggPoI738bpZaGtPwx8/P85zDknTDlT2vO+nbX1jc2t7dyOu7uX3z8oHB41VWIkoQ2S8ES2Q6woZ4I2NNOctlNJcRxy2gpHV9O89UClYom41+OUBjEeCBYxgrW17kyv0isUvbI3E1oFfwHFWv7TlK7dj3qv8NXtJ8TEVGjCsVId30t1kGGpGeF04naNoikmIzygHYsCx1QF2WzUCSpZp4+iRNonNJq5vzsyHCs1jkNbGWM9VMvZ1Pwv6xgdVYOMidRoKsj8o8hwpBM03Rv1maRE87EFTCSzsyIyxBITba/j2iP4yyuvQrNS9i/K57d+sVaFuXJwAqdwBj5cQg1uoA4NIDCAR3iGF4c7T86r8zYvXXMWPcfwR877D45HkDk=</latexit>

u2
<latexit sha1_base64="RW7ry5apsnLczL4fuih14wNR62g=">AAAB6nicbZDNSsNAFIVv6l+NVqsu3QyWgquSFNEuC4K4rGh/oA1lMp20QyeTMDMplNBHcONCEbfig/gI7nwbp2kX2npg4OOce5l7rx9zprTjfFu5jc2t7Z38rr23Xzg4LB4dt1SUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj6/neXtCpWKReNDTmHohHgoWMIK1se4n/Wq/WHIqTia0Du4SSvXCZ1K+sT8a/eJXbxCRJKRCE46V6rpOrL0US80IpzO7lygaYzLGQ9o1KHBIlZdmo85Q2TgDFETSPKFR5v7uSHGo1DT0TWWI9UitZnPzv6yb6KDmpUzEiaaCLD4KEo50hOZ7owGTlGg+NYCJZGZWREZYYqLNdWxzBHd15XVoVSvuZeXizi3Va7BQHk7hDM7BhSuowy00oAkEhvAIz/BicevJerXeFqU5a9lzAn9kvf8Aj82QOg==</latexit>

v2

<latexit sha1_base64="L1q+DbVkEr/7noE8ZeQnXcCy4q4=">AAAB6nicbZDLSgNBEEVr4iuORqMu3TSGgKswI6JZBgRxGdE8IBlCT6cnadLzoLtGCEM+wY0LRdyKH+InuPNv7DwWmnih4XBvFV1VfiKFRsf5tnJr6xubW/lte2e3sLdfPDhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOWPrqZ564ErLeLoHscJ90I6iEQgGEVj3WHP7RVLTsWZiayCu4BSrfCZlq/tj3qv+NXtxywNeYRMUq07rpOgl1GFgkk+sbup5gllIzrgHYMRDbn2stmoE1I2Tp8EsTIvQjJzf3dkNNR6HPqmMqQ41MvZ1Pwv66QYVL1MREmKPGLzj4JUEozJdG/SF4ozlGMDlClhZiVsSBVlaK5jmyO4yyuvQvOs4l5Uzm/dUq0Kc+XhGE7gFFy4hBrcQB0awGAAj/AML5a0nqxX621emrMWPUfwR9b7D4s9kDc=</latexit>

t1

<latexit sha1_base64="mUxQMUi0T85Sjh/x3Ic5XjLwGyc=">AAAB6nicbZDLSsNAFIZPvNZoterSTbAUXJWkiHZZEMRlRXuBNpTJdNIOnUzCzIlQQh/BjQtF3IoP4iO4822cXhba+sPAx/+fw5xzgkRwja77ba2tb2xubed27N29/P5B4fCoqeNUUdagsYhVOyCaCS5ZAzkK1k4UI1EgWCsYXU3z1gNTmsfyHscJ8yMykDzklKCx7rBX6RWKbtmdyVkFbwHFWv4zLV3bH/Ve4avbj2kaMYlUEK07npugnxGFnAo2sbupZgmhIzJgHYOSREz72WzUiVMyTt8JY2WeRGfm/u7ISKT1OApMZURwqJezqflf1kkxrPoZl0mKTNL5R2EqHIyd6d5OnytGUYwNEKq4mdWhQ6IIRXMd2xzBW155FZqVsndRPr/1irUqzJWDEziFM/DgEmpwA3VoAIUBPMIzvFjCerJerbd56Zq16DmGP7LefwCMwZA4</latexit>

t2

<latexit sha1_base64="XAzdpy5WDyRCQ2uSxSXBFcppmmY=">AAAB6nicbZDNSgMxFIXv1L86Wq26dBMsBVdlIqJdFgRxWdG2QjuUTJppQzOZIckUytBHcONCEbfig/gI7nwb05+Fth4IfJxzL7n3Bong2njet5NbW9/Y3Mpvuzu7hb394sFhU8epoqxBYxGrh4BoJrhkDcONYA+JYiQKBGsFw6tp3hoxpXks7804YX5E+pKHnBJjrbtRF3eLJa/izYRWAS+gVCt8puVr96PeLX51ejFNIyYNFUTrNvYS42dEGU4Fm7idVLOE0CHps7ZFSSKm/Ww26gSVrdNDYazskwbN3N8dGYm0HkeBrYyIGejlbGr+l7VTE1b9jMskNUzS+UdhKpCJ0XRv1OOKUSPGFghV3M6K6IAoQo29jmuPgJdXXoXmWQVfVM5vcalWhbnycAwncAoYLqEGN1CHBlDowyM8w4sjnCfn1Xmbl+acRc8R/JHz/gOOSZA5</latexit>

v1
<latexit sha1_base64="RW7ry5apsnLczL4fuih14wNR62g=">AAAB6nicbZDNSsNAFIVv6l+NVqsu3QyWgquSFNEuC4K4rGh/oA1lMp20QyeTMDMplNBHcONCEbfig/gI7nwbp2kX2npg4OOce5l7rx9zprTjfFu5jc2t7Z38rr23Xzg4LB4dt1SUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj6/neXtCpWKReNDTmHohHgoWMIK1se4n/Wq/WHIqTia0Du4SSvXCZ1K+sT8a/eJXbxCRJKRCE46V6rpOrL0US80IpzO7lygaYzLGQ9o1KHBIlZdmo85Q2TgDFETSPKFR5v7uSHGo1DT0TWWI9UitZnPzv6yb6KDmpUzEiaaCLD4KEo50hOZ7owGTlGg+NYCJZGZWREZYYqLNdWxzBHd15XVoVSvuZeXizi3Va7BQHk7hDM7BhSuowy00oAkEhvAIz/BicevJerXeFqU5a9lzAn9kvf8Aj82QOg==</latexit>

v2

<latexit sha1_base64="L1q+DbVkEr/7noE8ZeQnXcCy4q4=">AAAB6nicbZDLSgNBEEVr4iuORqMu3TSGgKswI6JZBgRxGdE8IBlCT6cnadLzoLtGCEM+wY0LRdyKH+InuPNv7DwWmnih4XBvFV1VfiKFRsf5tnJr6xubW/lte2e3sLdfPDhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOWPrqZ564ErLeLoHscJ90I6iEQgGEVj3WHP7RVLTsWZiayCu4BSrfCZlq/tj3qv+NXtxywNeYRMUq07rpOgl1GFgkk+sbup5gllIzrgHYMRDbn2stmoE1I2Tp8EsTIvQjJzf3dkNNR6HPqmMqQ41MvZ1Pwv66QYVL1MREmKPGLzj4JUEozJdG/SF4ozlGMDlClhZiVsSBVlaK5jmyO4yyuvQvOs4l5Uzm/dUq0Kc+XhGE7gFFy4hBrcQB0awGAAj/AML5a0nqxX621emrMWPUfwR9b7D4s9kDc=</latexit>

t1

<latexit sha1_base64="mUxQMUi0T85Sjh/x3Ic5XjLwGyc=">AAAB6nicbZDLSsNAFIZPvNZoterSTbAUXJWkiHZZEMRlRXuBNpTJdNIOnUzCzIlQQh/BjQtF3IoP4iO4822cXhba+sPAx/+fw5xzgkRwja77ba2tb2xubed27N29/P5B4fCoqeNUUdagsYhVOyCaCS5ZAzkK1k4UI1EgWCsYXU3z1gNTmsfyHscJ8yMykDzklKCx7rBX6RWKbtmdyVkFbwHFWv4zLV3bH/Ve4avbj2kaMYlUEK07npugnxGFnAo2sbupZgmhIzJgHYOSREz72WzUiVMyTt8JY2WeRGfm/u7ISKT1OApMZURwqJezqflf1kkxrPoZl0mKTNL5R2EqHIyd6d5OnytGUYwNEKq4mdWhQ6IIRXMd2xzBW155FZqVsndRPr/1irUqzJWDEziFM/DgEmpwA3VoAIUBPMIzvFjCerJerbd56Zq16DmGP7LefwCMwZA4</latexit>

t2

<latexit sha1_base64="MHVmINHnpYkpEamW1fK8Q/JH6nE=">AAACBnicdVDLSgMxFM3UV62vqriQIgSL4GqYmRbbgkJBQZct2FrolJJJ0zY08yDJCGWYlRt/xY0LRdz6BS7c6deYaVVU9EDg5Jx7ufceJ2BUSMN41VIzs3PzC+nFzNLyyupadn2jKfyQY9LAPvN5y0GCMOqRhqSSkVbACXIdRi6c0XHiX1wSLqjvnctxQDouGni0TzGSSupmd2wXySFGLDqJ4RGMvr6ncdw1u9m8oRtW0aoUoKGbhXKhVFTEKhulQgWaujFBvrpl597q28+1bvbF7vk4dIknMUNCtE0jkJ0IcUkxI3HGDgUJEB6hAWkr6iGXiE40OSOGe0rpwb7P1fMknKjfOyLkCjF2HVWZbCl+e4n4l9cOZb/ciagXhJJ4eDqoHzIofZhkAnuUEyzZWBGEOVW7QjxEHGGpksuoED4vhf+TpqWbB7pZN/PVQzBFGuTALtgHJiiBKjgDNdAAGFyBG3AH7rVr7VZ70B6npSnto2cT/ID29A4i55vf</latexit>

D = G1
<latexit sha1_base64="04/McWyuDd8Cx2qhiFjOrYI3v4s=">AAAB+HicdVDLSgMxFM34rPXRqriQboJFcDXMo9gWXBRc6LIF+4DOMGTSTBuaeZBkhDr0S9y4UMStH+LCnX6NaaugogcCh3Pu5Z4cP2FUSMN405aWV1bX1nMb+c2t7Z1CcXevI+KUY9LGMYt5z0eCMBqRtqSSkV7CCQp9Rrr++Hzmd68JFzSOruQkIW6IhhENKEZSSV6xkDkhkiOMWHYxnXqWVywbumFVrLoNDd20a3a1oohVM6p2HZq6MUe5ceCU3luHL02v+OoMYpyGJJKYISH6ppFIN0NcUszINO+kgiQIj9GQ9BWNUEiEm82DT+GxUgYwiLl6kYRz9ftGhkIhJqGvJmcpxW9vJv7l9VMZ1NyMRkkqSYQXh4KUQRnDWQtwQDnBkk0UQZhTlRXiEeIIS9VVXpXw9VP4P+lYunmqmy2z3DgDC+RACRyBE2CCKmiAS9AEbYBBCm7BPXjQbrQ77VF7WowuaZ87++AHtOcPM1uWZQ==</latexit>

G2

<latexit sha1_base64="jbVEW9ZbU8GIYlJqFriHBT/4N98=">AAAB+HicdVDLSgMxFM34rPXRqriQboJFcDXMo9gWXBRc6LIF+4DOMGTSTBuaeZBkhDr0S9y4UMStH+LCnX6NaaugogcCh3Pu5Z4cP2FUSMN405aWV1bX1nMb+c2t7Z1CcXevI+KUY9LGMYt5z0eCMBqRtqSSkV7CCQp9Rrr++Hzmd68JFzSOruQkIW6IhhENKEZSSV6xkDkhkiOMWHYxnXq2VywbumFVrLoNDd20a3a1oohVM6p2HZq6MUe5ceCU3luHL02v+OoMYpyGJJKYISH6ppFIN0NcUszINO+kgiQIj9GQ9BWNUEiEm82DT+GxUgYwiLl6kYRz9ftGhkIhJqGvJmcpxW9vJv7l9VMZ1NyMRkkqSYQXh4KUQRnDWQtwQDnBkk0UQZhTlRXiEeIIS9VVXpXw9VP4P+lYunmqmy2z3DgDC+RACRyBE2CCKmiAS9AEbYBBCm7BPXjQbrQ77VF7WowuaZ87++AHtOcPNN+WZg==</latexit>

G3
<latexit sha1_base64="PqYQsd6EGxFBUbCgkvnpXctZIMM=">AAAB+HicdVDLSgMxFM34rPXRUXEh3QSL4GqYR7EtuCi46bIF+4DOUDJp2oZmHiQZoQ79EjcuFHHrh7hwp19jplVQ0QOBwzn3ck+OHzMqpGm+aSura+sbm7mt/PbO7l5B3z/oiCjhmLRxxCLe85EgjIakLalkpBdzggKfka4/vcz87jXhgkbhlZzFxAvQOKQjipFU0kAvpG6A5AQjljbm84E10EumYdplu+ZA07CcqlMpK2JXzYpTg5ZhLlCqH7nF99bxS3Ogv7rDCCcBCSVmSIi+ZcbSSxGXFDMyz7uJIDHCUzQmfUVDFBDhpYvgc3iqlCEcRVy9UMKF+n0jRYEQs8BXk1lK8dvLxL+8fiJHVS+lYZxIEuLloVHCoIxg1gIcUk6wZDNFEOZUZYV4gjjCUnWVVyV8/RT+Tzq2YZ0bVssq1S/AEjlQBCfgDFigAuqgAZqgDTBIwC24Bw/ajXanPWpPy9EV7XPnEPyA9vwBM1+WZQ==</latexit>

H1
<latexit sha1_base64="xLQIkdknr8T9vj0NDdbxWIhJFFA=">AAAB+HicdVDLSgMxFM34rPXRqriQboJFcDXMo9gWXBTcdNmCfUBbhkyatqGZzJBkhDrMl7hxoYhbP8SFO/0a01ZBRQ8EDufcyz05fsSoVJb1Zqysrq1vbGa2sts7u3u5/P5BW4axwKSFQxaKro8kYZSTlqKKkW4kCAp8Rjr+9HLud66JkDTkV2oWkUGAxpyOKEZKS14+l/QDpCYYsaSepp7j5YuWaTklp+pCy7TdilsuaeJUrLJbhbZpLVCsHfUL783jl4aXf+0PQxwHhCvMkJQ924rUIEFCUcxImu3HkkQIT9GY9DTlKCBykCyCp/BUK0M4CoV+XMGF+n0jQYGUs8DXk/OU8rc3F//yerEaVQYJ5VGsCMfLQ6OYQRXCeQtwSAXBis00QVhQnRXiCRIIK91VVpfw9VP4P2k7pn1u2k27WLsAS2RAAZyAM2CDMqiBOmiAFsAgBrfgHjwYN8ad8Wg8LUdXjM+dQ/ADxvMHNOOWZg==</latexit>

H2

Figure 4. Digraph D in the example illustrating Theorem 3.

satisfies ↵. In our reduction we convert ↵ into a swap system
S = (D, P) such that ↵ is satisfiable if and only if S has
an atomic swap protocol.

Let x1, x2, ..., xn be the variables in ↵. The negation of
xi is denoted x̄i. We will use notation x̃i for an unspecified
literal of variable xi, that is x̃i 2 {xi, x̄i}. Let ↵ = c1 _ c2 _

..._cm, where each cj is a clause. Without loss of generality
we assume that in each clause all literals are different.

We first describe the reduction. Digraph D consists of n

gadgets corresponding to variables, m gadgets corresponding
to clauses, and one more vertex called the core vertex. The
xi-gadget has vertices xi and x̄i, that represent the literals
of variable xi, plus two additional vertices si and ti. Its
internal arcs are (si, xi), (si, x̄i), (si, ti), and (ti, si). The
cj-gadget has two vertices cj and aj , with internal arcs
(cj , aj), (aj , cj). (See Figure 5.) We then add the following
arcs: For each clause cj and each literal x̃i in cj , we add arc
(x̃i, cj). The core vertex, denoted b, is connected by arcs to
and from each vertex in the above gadgets.

Next, we describe the preference posets Pv, for each
vertex v in D. (See Figure 6.) As explained in Section 2, an
outcome h!

in
|!

out
i of a vertex v is specified by lists !in

and !out of its in-neighbors and out-neighbors, respectively,
and any preference poset can be uniquely defined by an
appropriate set of generators.

The center vertex b’s preference poset is generated by
all relations ! � NODEALb, for ! 2 UNDERWATERb. (This
is the same poset as in h-swap systems.) For each vertex si,
its preference poset is generated by relations hb, ti | ti, x̄ii �

hti | tii, hti | tii � hb | b, xii, and hti | tii � hb | b, x̄ii. For
each vertex ti, its generators are DEALti � hb | bi and
hb, si | bi � hsi | sii. Each vertex x̃i 2 {xi, x̄i} has one
generator DEALx̃i � hb | bi. Each vertex cj has generators
DEALcj � hb, x̃i | bi, for each literal x̃i in cj . The only
generator of each vertex aj is DEALaj � hb | bi.

With this, the description of S is complete. The construc-
tion of S clearly takes time that is polynomial in the size of

↵.
Applying Theorem 3, it remains to show that ↵ is

satisfiable if and only if D has a spanning subgraph G

with the following properties: (c.1) G is piece-wise strongly
connected and has no isolated vertices, (c.2) G dominates
D, and (c.3) no subgraph H of D strictly dominates G.

()) Suppose that ↵ is satisfiable, and consider some
satisfying assignment for ↵. Using this assignment, we
construct a spanning subgraph G of D that satisfies the
three conditions (c.1)-(c.3) above.

Graph G will contain all vertices from the above construc-
tion and all arcs that connect b to all other vertices, in both
directions. This makes G spanning and strongly connected,
so (c.1) holds. Other arcs of G are defined as follows. For
each true literal x̃i, add to G arc (si, x̃i). For each clause cj

and each true literal x̃i in cj , add to G arc (x̃i, cj).
Condition (c.2) can be verified through routine inspection,

by observing that DEALD

v � DEALG

v holds for each vertex
v, directly from the above specification of the preference
posets. For example, for a vertex si, if x̃i is the true literal
of xi then we have DEALG

si
= hb | b, x̃ii ⌫ DEALD

si
. For

any x̃i, let C(x̃i) be the set of clauses that contain x̃i. If
x̃i is true then DEALG

x̃i
= hb, si | b, C(x̃i)i = DEALD

x̃i
, and

if x̃i is false then DEALG

x̃i
= hb | bi ⌫ DEALD

x̃i
. For each

clause cj , denote by T (cj) the set of true literals in cj .
Since we use a satisfying assignment, each T (cj) is non-
empty. For a clause cj , for any true literal x̃i 2 T (cj),
applying the inclusive monotonicity property (p.2) we have
DEALG

cj
= hb, T (cj) | bi ⌫ hb, x̃i | bi ⌫ DEALD

cj
.

It remains to verify condition (c.3). Let H be a subgraph
of D, and suppose that H dominates G, that is DEALH

v ⌫

DEALG

v for all vertices v in H.
We claim first that H must contain b. Indeed, otherwise

for any vertex v of H we would have DEALH

v = ! =
h!

in
|!

out
i with b /2 !

in and ! ⌫ DEALG

v . The only vertices
that have such outcomes ! are t

0

is. For any ti, the only

<latexit sha1_base64="RLGq9oaC+uYgwHNP2u36J6zbPMA=">AAAB8XicbZC7SgNBFIbPeo2r0ailzWAIWIVdEU0ZEMQygrlgsoTZyWwyZHZ2mYsYlryFjYUiFja+hY9g59s4uRSa+MPAx/+fw5xzwpQzpT3v21lZXVvf2Mxtuds7+d29wv5BQyVGElonCU9kK8SKciZoXTPNaSuVFMchp81weDnJm/dUKpaIWz1KaRDjvmARI1hb6y7rhFiih3GXdQtFr+xNhZbBn0Oxmv80pSv3vdYtfHV6CTExFZpwrFTb91IdZFhqRjgdux2jaIrJEPdp26LAMVVBNp14jErW6aEokfYJjabu744Mx0qN4tBWxlgP1GI2Mf/L2kZHlSBjIjWaCjL7KDIc6QRN1kc9JinRfGQBE8nsrIgMsMRE2yO59gj+4srL0Dgt++flsxu/WK3ATDk4gmM4AR8uoArXUIM6EBDwCM/w4ijnyXl13malK8685xD+yPn4AQGIk2I=</latexit>

x̄i

<latexit sha1_base64="WIvs1j/RX+gA9wOrLz7IyUZ05Pk=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCqJiHZZEMRlRXuBNpTJdNIOnUzCXMQS+ghuXCjiVnwQH8Gdb+P0stDWHwY+/v8c5pwTppwp7Xnfzsrq2vrGZm7L3d7J7+4V9g8aKjGS0DpJeCJbIVaUM0HrmmlOW6mkOA45bYbDy0nevKdSsUTc6VFKgxj3BYsYwdpatw9d1i0UvbI3FVoGfw7Fav7TlK7cj1q38NXpJcTEVGjCsVJt30t1kGGpGeF07HaMoikmQ9ynbYsCx1QF2XTUMSpZp4eiRNonNJq6vzsyHCs1ikNbGWM9UIvZxPwvaxsdVYKMidRoKsjso8hwpBM02Rv1mKRE85EFTCSzsyIywBITba/j2iP4iysvQ+O07J+Xz278YrUCM+XgCI7hBHy4gCpcQw3qQKAPj/AMLw53npxX521WuuLMew7hj5z3H+Y1kHM=</latexit>

xi

<latexit sha1_base64="P2hEFq6DUT8wj5ImJPtZW2jRDMY=">AAAB6nicbZDLSgMxFIbP1FsdrVZdugmWgqsyI6JdFgRxWdFeoB1KJs20oZlkSDJCGfoIblwo4lZ8EB/BnW9jello6w+Bj/8/h5xzwoQzbTzv28mtrW9sbuW33Z3dwt5+8eCwqWWqCG0QyaVqh1hTzgRtGGY4bSeK4jjktBWOrqZ564EqzaS4N+OEBjEeCBYxgo217nSP9Yolr+LNhFbBX0CpVvhMy9fuR71X/Or2JUljKgzhWOuO7yUmyLAyjHA6cbuppgkmIzygHYsCx1QH2WzUCSpbp48iqewTBs3c3x0ZjrUex6GtjLEZ6uVsav6XdVITVYOMiSQ1VJD5R1HKkZFoujfqM0WJ4WMLmChmZ0VkiBUmxl7HtUfwl1deheZZxb+onN/6pVoV5srDMZzAKfhwCTW4gTo0gMAAHuEZXhzuPDmvztu8NOcseo7gj5z3H96XkG4=</latexit>

si
<latexit sha1_base64="CfzKc+Z4iYrVRs1fcnaihFg4rpw=">AAAB6nicbZDLSgNBEEVr4iuORqMu3TSGgKswI6JZBgRxGdE8IBlCT6cnadLzoLtGCEM+wY0LRdyKH+InuPNv7DwWmnih4XBvFV1VfiKFRsf5tnJr6xubW/lte2e3sLdfPDhs6jhVjDdYLGPV9qnmUkS8gQIlbyeK09CXvOWPrqZ564ErLeLoHscJ90I6iEQgGEVj3WFP9Iolp+LMRFbBXUCpVvhMy9f2R71X/Or2Y5aGPEImqdYd10nQy6hCwSSf2N1U84SyER3wjsGIhlx72WzUCSkbp0+CWJkXIZm5vzsyGmo9Dn1TGVIc6uVsav6XdVIMql4moiRFHrH5R0EqCcZkujfpC8UZyrEBypQwsxI2pIoyNNexzRHc5ZVXoXlWcS8q57duqVaFufJwDCdwCi5cQg1uoA4NYDCAR3iGF0taT9ar9TYvzVmLniP4I+v9B+AdkG8=</latexit>

ti

<latexit sha1_base64="MpBgc5DiIFcrFvtSMKrWKcSzUeM=">AAAB6nicdVDLSsNAFJ3UR2vro+rShYNFcBWSpth0V3TjsqJ9QBvKZDppx04mYWYilNA/0I0LRdz6Re78DdcunLYKKnrgwuGce7nnXj9mVCrLejUyS8srq9ncWr6wvrG5VdzeackoEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH5/O/PY1EZJG/FJNYuKFaMhpQDFSWrpA/at+sWSZVrlSrjnQMm3HdaoVTcquVXVq0DatOUr1/beTbOHmvdEvvvQGEU5CwhVmSMqubcXKS5FQFDMyzfcSSWKEx2hIuppyFBLppfOoU3iolQEMIqGLKzhXv0+kKJRyEvq6M0RqJH97M/Evr5uowPVSyuNEEY4Xi4KEQRXB2d1wQAXBik00QVhQnRXiERIIK/2dvH7C16Xwf9Iqm/axaZ/bpboLFsiBPXAAjoANqqAOzkADNAEGQ3AL7sGDwYw749F4WrRmjM+ZXfADxvMH7UGRMw==</latexit>

aj
<latexit sha1_base64="ZshF04kz+mhoby7mLW4f7vJKyhw=">AAAB6nicdVDLSsNAFJ3UR2vro+rShYNFcBWSpth0V3TjsqJ9QBvKZDppx04mYWYilNA/0I0LRdz6Re78DdcunLYKKnrgwuGce7nnXj9mVCrLejUyS8srq9ncWr6wvrG5VdzeackoEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH5/O/PY1EZJG/FJNYuKFaMhpQDFSWrrA/at+sWSZVrlSrjnQMm3HdaoVTcquVXVq0DatOUr1/beTbOHmvdEvvvQGEU5CwhVmSMqubcXKS5FQFDMyzfcSSWKEx2hIuppyFBLppfOoU3iolQEMIqGLKzhXv0+kKJRyEvq6M0RqJH97M/Evr5uowPVSyuNEEY4Xi4KEQRXB2d1wQAXBik00QVhQnRXiERIIK/2dvH7C16Xwf9Iqm/axaZ/bpboLFsiBPXAAjoANqqAOzkADNAEGQ3AL7sGDwYw749F4WrRmjM+ZXfADxvMH8E2RNQ==</latexit>

cj

<latexit sha1_base64="DP6UB4OFGzbpwZey/LPCNv/8TLM=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUt3r5QvIRMVSsWJDZFq2Y5dLmhQdVLYr0DLRDIWT99er/af6W62Xf+72I5IENFSEYyk7FoqVm2KhGOF0kusmksaYjPCAdjQNcUClm86CTuChVvrQj4SuUMGZ+n0ixYGU48DTnQFWQ/nbm4p/eZ1E+Y6bsjBOFA3JfJGfcKgiOL0a9pmgRPGxJpgIprNCMsQCE6V/k9NP+LoU/k+aRdM6Nq26Vag6YI4s2AMH4AhYoAyq4AzUQAMQQME1uAV3xoVxY9wbD/PWjPE5swt+wHj8AIH1kd0=</latexit>

b

Figure 5. The variable and clause gadgets in the proof of Theorem 4. The arcs to and from the core vertex b are shown as bi-directional arcs.

<latexit sha1_base64="clNtTdbz+aYxCyhVOTNlQ1An4Ns=">AAAB/HicdVDLSgNBEJz1GeMr6lEPg0HwtOwmwSS3gB48KphESMIyO+no4OyDmV4xLvEP/AYvHhTx6neoNz/Cf3CSKKhoQUNR1U13lx9LodFx3qyJyanpmdnMXHZ+YXFpObey2tBRojjUeSQjdewzDVKEUEeBEo5jBSzwJTT9s92h3zwHpUUUHmE/hk7ATkLRE5yhkbzcWhvhAjVP94DJgZeiJwZeLu/YTqFUqBapY7vFSrFcMqRQccrFKnVtZ4R8bePy5Xrr/fnAy722uxFPAgiRS6Z1y3Vi7KRMoeASBtl2oiFm/IydQMvQkAWgO+no+AHdMkqX9iJlKkQ6Ur9PpCzQuh/4pjNgeKp/e0PxL6+VYK/SSUUYJwghHy/qJZJiRIdJ0K5QwFH2DWFcCXMr5adMMY4mr6wJ4etT+j9pFGx3x3YP3XytQsbIkHWySbaJS8qkRvbJAakTTvrkhtyRe+vKurUerMdx64T1ObNGfsB6+gCEOZm7</latexit>

Dealti

<latexit sha1_base64="uuhYtUlsrTZjKpukmm4F8pdLYPU=">AAACCnicdVC7SgNBFJ31mcTXqqUWo0GwCMtuEkzSBW0sI5gHZEOYnUySIbOzy8ysEGPAzsZfsUmhiK1fYCf4MU42Kip64MLhnHu59x4vZFQq23415uYXFpeWE8nUyura+oa5uVWTQSQwqeKABaLhIUkY5aSqqGKkEQqCfI+Rujc4mfr1CyIkDfi5Goak5aMep12KkdJS29xzGeI9RtwMlG0K3czVF3NF7LTNtG3Z2Xy2lIO25eSKuUJek2zRLuRK0LHsGOny7uVb8npyXGmbL24nwJFPuMIMSdl07FC1RkgoihkZp9xIkhDhAeqRpqYc+US2RvErY3iglQ7sBkIXVzBWv0+MkC/l0Pd0p49UX/72puJfXjNS3WJrRHkYKcLxbFE3YlAFcJoL7FBBsGJDTRAWVN8KcR8JhJVOL6VD+PwU/k9qWcs5spwzJ10ughkSYAfsg0PggAIog1NQAVWAwQ24A/fgwbg1Jsaj8TRrnTM+ZrbBDxjP768SnJ4=</latexit>

h si | si i
<latexit sha1_base64="99IPi8wObSTVabvgTWzitQS8hWs=">AAACBnicdVDLSgMxFM34bOur6lKFYBFclGGmLXa6K7pxWcE+oFNKJk3b0ExmSDJCHQuCG3/FjYuKuPUb3Al+jOlDUNEDl3s4516Se7yQUaks691YWFxaXllNJFNr6xubW+ntnZoMIoFJFQcsEA0PScIoJ1VFFSONUBDke4zUvcHZxK9fESFpwC/VMCQtH/U47VKMlJba6QOXId5jxM1CD7rZm3l3xVRtpzOWaeUKuVIeWqadd/LFgiY5xyrmS9A2rSky5f3rj+Tt+LTSTr+5nQBHPuEKMyRl07ZC1YqRUBQzMkq5kSQhwgPUI01NOfKJbMXTM0bwSCsd2A2ELq7gVP2+ESNfyqHv6Ukfqb787U3Ev7xmpLpOK6Y8jBThePZQN2JQBXCSCexQQbBiQ00QFlT/FeI+EggrnVxKh/B1Kfyf1HKmfWLaF3am7IAZEmAPHIJjYIMiKINzUAFVgMEdeABj8GTcG4/Gs/EyG10w5ju74AeM109Z9ZrE</latexit>

h b | b i
<latexit sha1_base64="qYIAUojnQsdeIyws8A/qgLIVsx4=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqAcPAS8eI5gHJOsyO5lNhsw+mOlVwrL/4cWDIl79F2/+jZNkD5pY0FBUddPd5SdSaLTtb6u0srq2vlHerGxt7+zuVfcP2jpOFeMtFstYdX2quRQRb6FAybuJ4jT0Je/445up33nkSos4usdJwt2QDiMRCEbRSA9Zn1FJmrmXoSdyr1qz6/YMZJk4BalBgaZX/eoPYpaGPEImqdY9x07QzahCwSTPK/1U84SyMR3ynqERDbl2s9nVOTkxyoAEsTIVIZmpvycyGmo9CX3TGVIc6UVvKv7n9VIMrtxMREmKPGLzRUEqCcZkGgEZCMUZyokhlClhbiVsRBVlaIKqmBCcxZeXSfus7lzUz+/Oa43rIo4yHMExnIIDl9CAW2hCCxgoeIZXeLOerBfr3fqYt5asYuYQ/sD6/AGVqZKQ</latexit>

Pti

<latexit sha1_base64="GcCvu15oHwqIOthFiLY60a5zMDU=">AAACB3icbZDLSsNAFIYnXtt6i7pUZLAILkJJRLTLohuXFewFmhAm00k7dDIJMxOh1oILN76KG0FF3PoK7gQfxmnahbb+MPDxn3M4c/4gYVQq2/4y5uYXFpeWc/nCyura+oa5uVWXcSowqeGYxaIZIEkY5aSmqGKkmQiCooCRRtA7H9Ub10RIGvMr1U+IF6EOpyHFSGnLN/dchniHEdcKLOlT17rVBF3LFZntm0W7ZGeCs+BMoFjZvfnO3z2fVX3z023HOI0IV5ghKVuOnShvgISimJFhwU0lSRDuoQ5paeQoItIbZHcM4YF22jCMhX5cwcz9PTFAkZT9KNCdEVJdOV0bmf/VWqkKy96A8iRVhOPxojBlUMVwFApsU0GwYn0NCAuq/wpxFwmElY6uoENwpk+ehfpRyTkpHV86xUoZjJUDO2AfHAIHnIIKuABVUAMY3INH8AJejQfjyXgz3setc8ZkZhv8kfHxA7eom40=</latexit>

h b, si | b i
<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�
<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�
<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�

<latexit sha1_base64="ZcNzIcUZNgzG/JzIdcPweSqrJ4s=">AAACBnicdVDLSgNBEJz1bXxFPaowGARPy24STLwF9OBRwaiQhGV20tHB2QczvWJc9uTFix/ixYMiXv0E9eZH+A9OEgUVLWgoqrrp7vJjKTQ6zps1NDwyOjY+MZmbmp6ZncvPLxzoKFEc6jySkTrymQYpQqijQAlHsQIW+BIO/dOtnn94BkqLKNzHbgytgB2HoiM4QyN5+ZUmwjlqnm4Dk5mXpk0Usg3peeaJLPPyBcd2iuXiZok6tluqliplQ4pVp1LapK7t9FGoLV+8XK+9P+96+ddmO+JJACFyybRuuE6MrZQpFFxClmsmGmLGT9kxNAwNWQC6lfbfyOiaUdq0EylTIdK++n0iZYHW3cA3nQHDE/3b64l/eY0EO9VWKsI4QQj5YFEnkRQj2suEtoUCjrJrCONKmFspP2GKcTTJ5UwIX5/S/8lB0XY3bHfPLdSqZIAJskRWyTpxSYXUyA7ZJXXCySW5IXfk3rqybq0H63HQOmR9ziySH7CePgAACZ6B</latexit>

Dealx̃i

<latexit sha1_base64="99IPi8wObSTVabvgTWzitQS8hWs=">AAACBnicdVDLSgMxFM34bOur6lKFYBFclGGmLXa6K7pxWcE+oFNKJk3b0ExmSDJCHQuCG3/FjYuKuPUb3Al+jOlDUNEDl3s4516Se7yQUaks691YWFxaXllNJFNr6xubW+ntnZoMIoFJFQcsEA0PScIoJ1VFFSONUBDke4zUvcHZxK9fESFpwC/VMCQtH/U47VKMlJba6QOXId5jxM1CD7rZm3l3xVRtpzOWaeUKuVIeWqadd/LFgiY5xyrmS9A2rSky5f3rj+Tt+LTSTr+5nQBHPuEKMyRl07ZC1YqRUBQzMkq5kSQhwgPUI01NOfKJbMXTM0bwSCsd2A2ELq7gVP2+ESNfyqHv6Ukfqb787U3Ev7xmpLpOK6Y8jBThePZQN2JQBXCSCexQQbBiQ00QFlT/FeI+EggrnVxKh/B1Kfyf1HKmfWLaF3am7IAZEmAPHIJjYIMiKINzUAFVgMEdeABj8GTcG4/Gs/EyG10w5ju74AeM109Z9ZrE</latexit>

h b | b i
<latexit sha1_base64="zTs4dSwoEjaD3ymzzkZiJiKCll0=">AAACAHicbVDLSsNAFL2pr1pfURcu3AwWwVVJpKgLFwU3LivYBzQhTCaTdujkwcxELCEbf8WNC0Xc+hnu/BunbRbaeuDC4Zx7ufceP+VMKsv6Niorq2vrG9XN2tb2zu6euX/QlUkmCO2QhCei72NJOYtpRzHFaT8VFEc+pz1/fDP1ew9USJbE92qSUjfCw5iFjGClJc88yh2COWoXXp47ivGAosfCY4Vn1q2GNQNaJnZJ6lCi7ZlfTpCQLKKxIhxLObCtVLk5FooRTouak0maYjLGQzrQNMYRlW4+e6BAp1oJUJgIXbFCM/X3RI4jKSeRrzsjrEZy0ZuK/3mDTIVXbs7iNFM0JvNFYcaRStA0DRQwQYniE00wEUzfisgIC0yUzqymQ7AXX14m3fOGfdFo3jXrresyjiocwwmcgQ2X0IJbaEMHCBTwDK/wZjwZL8a78TFvrRjlzCH8gfH5A/hhlqU=</latexit>

Px̃i

<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�

<latexit sha1_base64="HG2P/rQXRz/Gn6DEE5jUqFN2SZc=">AAAB/nicdVDLSgNBEJz1bXytiicvg0HwtOwmYuItoAcvQgSjQhKW2UlHR2cfzPSKYVnwV7x4UMSr35Gbf+DZL3CSKKhoQUNR1U13V5BIodF1X62x8YnJqemZ2cLc/MLikr28cqLjVHFo8FjG6ixgGqSIoIECJZwlClgYSDgNrvYG/uk1KC3i6Bh7CbRDdh6JruAMjeTbay2EG9Q82wcmcz/LmH+Z575ddB23tF3aLVPX8crVcmXbkFLVrZR3qee4QxRrG292cNh/r/t2v9WJeRpChFwyrZuem2A7YwoFl5AXWqmGhPErdg5NQyMWgm5nw/NzummUDu3GylSEdKh+n8hYqHUvDExnyPBC//YG4l9eM8VutZ2JKEkRIj5a1E0lxZgOsqAdoYCj7BnCuBLmVsovmGIcTWIFE8LXp/R/clJyvB3HO/KKtSoZYYaskw2yRTxSITVyQOqkQTjJyB15II/WrXVvPVnPo9Yx63NmlfyA9fIB2UGabA==</latexit>

Dealaj

<latexit sha1_base64="99IPi8wObSTVabvgTWzitQS8hWs=">AAACBnicdVDLSgMxFM34bOur6lKFYBFclGGmLXa6K7pxWcE+oFNKJk3b0ExmSDJCHQuCG3/FjYuKuPUb3Al+jOlDUNEDl3s4516Se7yQUaks691YWFxaXllNJFNr6xubW+ntnZoMIoFJFQcsEA0PScIoJ1VFFSONUBDke4zUvcHZxK9fESFpwC/VMCQtH/U47VKMlJba6QOXId5jxM1CD7rZm3l3xVRtpzOWaeUKuVIeWqadd/LFgiY5xyrmS9A2rSky5f3rj+Tt+LTSTr+5nQBHPuEKMyRl07ZC1YqRUBQzMkq5kSQhwgPUI01NOfKJbMXTM0bwSCsd2A2ELq7gVP2+ESNfyqHv6Ukfqb787U3Ev7xmpLpOK6Y8jBThePZQN2JQBXCSCexQQbBiQ00QFlT/FeI+EggrnVxKh/B1Kfyf1HKmfWLaF3am7IAZEmAPHIJjYIMiKINzUAFVgMEdeABj8GTcG4/Gs/EyG10w5ju74AeM109Z9ZrE</latexit>

h b | b i

<latexit sha1_base64="Wd5xmNGfmLh+fRbVofbSkhYomDU=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUA8eAl48RjAPSNaldzJJxsw+mJlVwrL/4cWDIl79F2/+jZNkD5pY0FBUddPd5ceCK23b31ZhZXVtfaO4Wdra3tndK+8ftFSUSMqaNBKR7PiomOAha2quBevEkmHgC9b2x9dTv/3IpOJReKcnMXMDHIZ8wClqI92nPYqCNDIvRe8h88oVu2rPQJaJk5MK5Gh45a9eP6JJwEJNBSrVdexYuylKzalgWamXKBYjHeOQdQ0NMWDKTWdXZ+TEKH0yiKSpUJOZ+nsixUCpSeCbzgD1SC16U/E/r5vowaWb8jBONAvpfNEgEURHZBoB6XPJqBYTQ5BKbm4ldIQSqTZBlUwIzuLLy6R1VnXOq7XbWqV+lcdRhCM4hlNw4ALqcAMNaAIFCc/wCm/Wk/VivVsf89aClc8cwh9Ynz96KZJ+</latexit>

Paj

<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�

<latexit sha1_base64="RMlivwptzlzF8n+K2609l0BSxsg=">AAAB/nicdVDLSgNBEJz1bXytiicvg0HwtOwmYuItoAcvQgSjQhKW2UlHR2cfzPSKYVnwV7x4UMSr35Gbf+DZL3CSKKhoQUNR1U13V5BIodF1X62x8YnJqemZ2cLc/MLikr28cqLjVHFo8FjG6ixgGqSIoIECJZwlClgYSDgNrvYG/uk1KC3i6Bh7CbRDdh6JruAMjeTbay2EG9Q82wcmcz/LuH+Z575ddB23tF3aLVPX8crVcmXbkFLVrZR3qee4QxRrG292cNh/r/t2v9WJeRpChFwyrZuem2A7YwoFl5AXWqmGhPErdg5NQyMWgm5nw/NzummUDu3GylSEdKh+n8hYqHUvDExnyPBC//YG4l9eM8VutZ2JKEkRIj5a1E0lxZgOsqAdoYCj7BnCuBLmVsovmGIcTWIFE8LXp/R/clJyvB3HO/KKtSoZYYaskw2yRTxSITVyQOqkQTjJyB15II/WrXVvPVnPo9Yx63NmlfyA9fIB3FGabg==</latexit>

Dealcj

<latexit sha1_base64="XbzuvBv7Ur8L9CGGiNwIQGfqS+I=">AAACE3icdVDLSgMxFM34tr6qLnURLIJIGWZasXVXdONSwT6gU0omvW2DmcyQZMQ6FvwEN/6ICzcuFHHrxp3gx5i2Cip6IORwzrkk9/gRZ0o7zps1Nj4xOTU9M5uam19YXEovr1RUGEsKZRryUNZ8ooAzAWXNNIdaJIEEPoeqf3ow8KtnIBULxYnuRdAISEewNqNEG6mZ3vY4ER0OXhb7WU8z3oLkvN9kGHvZy4Fobk8OI810xrGd3E5uL48d280X84UdQ3JFp5Dfw67tDJEprV+8z17d7h81069eK6RxAEJTTpSqu06kGwmRmlEO/ZQXK4gIPSUdqBsqSACqkQx36uNNo7RwO5TmCI2H6veJhARK9QLfJAOiu+q3NxD/8uqxbhcbCRNRrEHQ0UPtmGMd4kFBuMUkUM17hhAqmfkrpl0iCdWmxpQp4WtT/D+p5Gx313aP3UypiEaYQWtoA20hFxVQCR2iI1RGFF2jO/SAHq0b6956sp5H0THrc2YV/YD18gFmk6A4</latexit>

h b, x̃i | b i
<latexit sha1_base64="yaY1cOxLkahAeojdDe7MfbodMBA=">AAAB9XicbVBNS8NAEJ3Ur1q/oh69LBbBU0mkqAcPBS8eK9gPaGPYbDft2s0m7G6UEvI/vHhQxKv/xZv/xm2bg7Y+GHi8N8PMvCDhTGnH+bZKK6tr6xvlzcrW9s7unr1/0FZxKgltkZjHshtgRTkTtKWZ5rSbSIqjgNNOML6e+p1HKhWLxZ2eJNSL8FCwkBGsjXSf9QnmqJn7GfEfct+uOjVnBrRM3IJUoUDTt7/6g5ikERWacKxUz3US7WVYakY4zSv9VNEEkzEe0p6hAkdUedns6hydGGWAwliaEhrN1N8TGY6UmkSB6YywHqlFbyr+5/VSHV56GRNJqqkg80VhypGO0TQCNGCSEs0nhmAimbkVkRGWmGgTVMWE4C6+vEzaZzX3vFa/rVcbV0UcZTiCYzgFFy6gATfQhBYQkPAMr/BmPVkv1rv1MW8tWcXMIfyB9fkDfTeSgA==</latexit>

Pcj

<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�
<latexit sha1_base64="7Cfa9OqNUkk2NGFAk84cGKF4XWU=">AAACA3icdVC7SgNBFJ31lZj4iNpp4WAQrJbdTTBJF7SxjGAekA3L7GSSjJmdXWZmxbAEbOz8DhsLRWz9CTt/w9rCSaKgogcuHM65l3vv8SNGpbKsV2NufmFxKZVezmRXVtfWcxubDRnGApM6DlkoWj6ShFFO6ooqRlqRICjwGWn6w+OJ37wgQtKQn6lRRDoB6nPaoxgpLXm5bbcXCsQYdBVlXZJcjj3qUg6xd+7l8pZpOUWnUoCWaRfKhVJRE6dslQoVaJvWFPnq7ttRKnvzXvNyL243xHFAuMIMSdm2rUh1EiQUxYyMM24sSYTwEPVJW1OOAiI7yfSHMdzXShfqY3RxBafq94kEBVKOAl93BkgN5G9vIv7ltWPVK3cSyqNYEY5ni3oxgyqEk0BglwqCFRtpgrCg+laIB0ggrHRsGR3C16fwf9JwTPvQtE/tfLUMZkiDHbAHDoANSqAKTkAN1AEGV+AW3IMH49q4Mx6Np1nrnPE5swV+wHj+AM9Cm0E=</latexit>

8x̃i 2 cj

<latexit sha1_base64="SQgO/LxgAVfZQw6+oa8XTkZTP/E=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1IOHghePFewHtDFstpt26WY37G6UEvI/vHhQxKv/xZv/xm2bg7Y+GHi8N8PMvDDhTBvX/XZKK6tr6xvlzcrW9s7uXnX/oK1lqghtEcml6oZYU84EbRlmOO0miuI45LQTjm+mfueRKs2kuDeThPoxHgoWMYKNlR6yPsEcNfMg0wHLg2rNrbszoGXiFaQGBZpB9as/kCSNqTCEY617npsYP8PKMMJpXumnmiaYjPGQ9iwVOKbaz2ZX5+jEKgMUSWVLGDRTf09kONZ6Eoe2M8ZmpBe9qfif10tNdOVnTCSpoYLMF0UpR0aiaQRowBQlhk8swUQxeysiI6wwMTaoig3BW3x5mbTP6t5F/fzuvNa4LuIowxEcwyl4cAkNuIUmtICAgmd4hTfnyXlx3p2PeWvJKWYO4Q+czx+UIpKP</latexit>

Psi

<latexit sha1_base64="mHdivdZ04HSS77/CsUVq5Fvnpxw=">AAAB/HicdVDLSgNBEJz1GeMr6lEPg0HwtOwmwSS3gB48KphESMIyO+no4OyDmV4xLvEP/AYvHhTx6neoNz/Cf3CSKKhoQUNR1U13lx9LodFx3qyJyanpmdnMXHZ+YXFpObey2tBRojjUeSQjdewzDVKEUEeBEo5jBSzwJTT9s92h3zwHpUUUHmE/hk7ATkLRE5yhkbzcWhvhAjVP94DJgZdqTwy8XN6xnUKpUC1Sx3aLlWK5ZEih4pSLVerazgj52sbly/XW+/OBl3ttdyOeBBAil0zrluvE2EmZQsElDLLtREPM+Bk7gZahIQtAd9LR8QO6ZZQu7UXKVIh0pH6fSFmgdT/wTWfA8FT/9obiX14rwV6lk4owThBCPl7USyTFiA6ToF2hgKPsG8K4EuZWyk+ZYhxNXlkTwten9H/SKNjuju0euvlahYyRIetkk2wTl5RJjeyTA1InnPTJDbkj99aVdWs9WI/j1gnrc2aN/ID19AGCspm6</latexit>

Dealsi

<latexit sha1_base64="66mbfo06VGMfZLz3I4eas9Pv6TQ=">AAACCnicdVC7SgNBFJ31mcTXqqUWo0GwCMtuEkzSBW0sI5gHZEOYnUySIbOzy8ysEGPAzsZfsUmhiK1fYCf4MU42Kip64MLhnHu59x4vZFQq23415uYXFpeWE8nUyura+oa5uVWTQSQwqeKABaLhIUkY5aSqqGKkEQqCfI+Rujc4mfr1CyIkDfi5Goak5aMep12KkdJS29xzGeI9RtwMVG0K3czVF3NF7LTNtG3Z2Xy2lIO25eSKuUJek2zRLuRK0LHsGOny7uVb8npyXGmbL24nwJFPuMIMSdl07FC1RkgoihkZp9xIkhDhAeqRpqYc+US2RvErY3iglQ7sBkIXVzBWv0+MkC/l0Pd0p49UX/72puJfXjNS3WJrRHkYKcLxbFE3YlAFcJoL7FBBsGJDTRAWVN8KcR8JhJVOL6VD+PwU/k9qWcs5spwzJ10ughkSYAfsg0PggAIog1NQAVWAwQ24A/fgwbg1Jsaj8TRrnTM+ZrbBDxjP77I8nKA=</latexit>

h ti | ti i

<latexit sha1_base64="kFircEaE55ZsqAQr9Te0cW7soxY=">AAACC3icdVDLSgMxFM34bOur6lIXoUVwUYaZtth2V3TjsoJ9QKeUTJq2oZnMkGTEOhZcuvFXXOhCEbf+gDvBjzHTKqjogZCTc+7l5h43YFQqy3oz5uYXFpeWE8nUyura+kZ6c6sh/VBgUsc+80XLRZIwykldUcVIKxAEeS4jTXd0FPvNMyIk9fmpGgek46EBp32KkdJSN51xGOIDRpwcdKGTu4zvHDzvUv1wxNTqprOWaeWL+UoBWqZdKBdKRU3yZatUqEDbtKbIVncv3pNXd4e1bvrV6fk49AhXmCEp27YVqE6EhKKYkUnKCSUJEB6hAWlrypFHZCea7jKBe1rpwb4v9OEKTtXvHRHypBx7rq70kBrK314s/uW1Q9UvdyLKg1ARjmeD+iGDyodxMLBHBcGKjTVBWFD9V4iHSCCsdHwpHcLXpvB/0sib9oFpn9jZahnMkAA7IAP2gQ1KoAqOQQ3UAQbX4BY8gEfjxrg3noznWemc8dmzDX7AePkAnIecgg==</latexit>

h b | b, xi i

<latexit sha1_base64="xeTt3UAW01SCPVW99h94nxJd44Q=">AAACEXicdVBLSwMxGMz6bOur6lEPwSL0UJbdbbHtrejFYwX7gG4p2TRtQ7PZJcmKdS34C7z4T8SLB0W8evMm+GNMWwUVHQgZZuYj+cYLGZXKst6MufmFxaXlRDK1srq2vpHe3KrLIBKY1HDAAtH0kCSMclJTVDHSDAVBvsdIwxseTfzGGRGSBvxUjULS9lGf0x7FSGmpk866DPE+I24OetDNXU7uHHQ9JOLzcYdqyRXTQCedsUzLKTjlPLRMO1/KFwuaOCWrmC9D27SmyFR2L96TV7eH1U761e0GOPIJV5ghKVu2Fap2jISimJFxyo0kCREeoj5pacqRT2Q7nm40hvta6cJeIPThCk7V7xMx8qUc+Z5O+kgN5G9vIv7ltSLVK7VjysNIEY5nD/UiBlUAJ/XALhUEKzbSBGFB9V8hHiCBsNIlpnQJX5vC/0ndMe0D0z6xM5USmCEBdsAeyAIbFEEFHIMqqAEMrsEdeACPxo1xbzwZz7PonPE5sw1+wHj5AKDqn0c=</latexit>

h b | b, x̄i i

<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

� <latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�

<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�<latexit sha1_base64="qznydOSCkHVp206Hqhc0lFPYeQs=">AAACE3icbVDLSgMxFM34bOur6kZwEyyCyFBmRLTLohuXFewDOmXIpJk2NJMZkoy0jgU/wY0/4sKNC0XcunEn+DFm2i609UDgcM653NzjRYxKZVlfxtz8wuLSciabW1ldW9/Ib27VZBgLTKo4ZKFoeEgSRjmpKqoYaUSCoMBjpO71zlO/fk2EpCG/UoOItALU4dSnGCktuflDhyHeYcQxoWcqlzrmrWP2XWo6HhJJf5gqjhhF3HzBKlojwFliT0ihvHPznb17PKu4+U+nHeI4IFxhhqRs2lakWgkSimJGhjknliRCuIc6pKkpRwGRrWR00xDua6UN/VDoxxUcqb8nEhRIOQg8nQyQ6sppLxX/85qx8kuthPIoVoTj8SI/ZlCFMC0ItqkgWLGBJggLqv8KcRcJhJWuMadLsKdPniW1o6J9Ujy+tAvlEhgjA3bBHjgANjgFZXABKqAKMLgHT+AFvBoPxrPxZryPo3PGZGYb/IHx8QNcWaDV</latexit>

h b, ti | xi, x̄i i
<latexit sha1_base64="owDNx/rEJIWeGW67em9V3lkru3s=">AAAB7HicdVBNS8NAFHypX7V+VT16WSyCp5C0xaa3gBePFUwrtKFstpt26WYTshulhv4GLx4U6dUf5M0/4tltq6CiAwvDzDz2zQsSzqSyrDejsLK6tr5R3Cxtbe/s7pX3D9oyzlJCPRLzOL0OsKScCeoppji9TlKKo4DTTjA+n/udG5pKFosrNUmoH+GhYCEjWGnJ6+kw6ZcrlmlV69VmDVmmXXNqjbomVcdq1JrINq0FKi7c3r27ZNbql197g5hkERWKcCxl17YS5ec4VYxwOi31MkkTTMZ4SLuaChxR6eeLZafoRCsDFMapfkKhhfp9IseRlJMo0MkIq5H87c3Fv7xupkLHz5lIMkUFWX4UZhypGM2bowHTXRWfaIJJyvSuiIxwionS9ynpI3w1Rf+TdtW0z0z70q64DixRhCM4hlOwoQEuXEALPCDA4B4e4ckQxoPxbMyW0YLxOXMIP2C8fADVmJJd</latexit>

�

Figure 6. The specifications of preference posets in the reduction. We include in the figure some generic preferences for si and ti, to illustrate the
relationship of some outcomes to the corresponding DEAL outcome.

outcome ! that has these properties is hsi | sii. But then
H would also have to contain si contradicting the earlier
statement. (We note that DEALG

si
= hb | b, x̃ii where x̃i is

the true literal of xi, and there is no strictly better outcome
for si.)

So we can assume from now on that H contains b. The
idea of the remaining argument is to show that the assumption
that H dominates G implies that in fact H = G — so H

cannot strictly dominate G. To this end, we examine the arcs
of D one by one. For each arc (u, v), we use the relation
DEALH

z ⌫ DEALG

z for some z 2 {u, v}, to show that (u, v)
belongs to H if and only if it belongs to G. We will divide
this argument into a sequence of claims.

Claim 1: H contains all arcs (v, b) and (b, v), for v 6= b.
From the definition of the preference poset of b, H must
contain all incoming arcs of b. This gives us that H is
spanning. For each v 6= b, any outcome ! ⌫ DEALG

v that
has outgoing arc (v, b) must also have incoming arc (b, v).
This proves the claim.

Claim 2: H does not contain any arc (aj , cj) or (cj , aj).
Indeed, no outcome of aj that has arc (aj , cj) is better
than hb | bi = DEALG

aj
, so H cannot contain (aj , cj). Simi-

larly, no outcome of cj that has arc (cj , aj) is better than
hb, T (cj) | bi = DEALG

cj
, so H cannot contain (cj , aj).

Claim 3: For each literal x̃i in clause cj , H contains (x̃i, cj)
iff x̃i is true. Suppose first that x̃i is a literal in cj that is true.
There is no outcome of cj that does not contain (x̃i, cj) and
is better than hb, T (cj) | bi = DEALG

cj
, so H must contain

(x̃i, cj). Next, suppose that x̃i is false. Then no outcome
of x̃i that contains (x̃i, cj) is better than hb | bi = DEALG

x̃i
.

Thus H cannot contain (x̃i, cj).

Claim 4: For each literal x̃i, H contains arc (si, x̃i) iff
x̃i is true. Suppose first that literal x̃i is true. From the
previous claim, we have that the outgoing arcs to C(x̃i)
are in H. There is no outcome of x̃i that contains the arcs
to C(x̃i), does not contain arc (si, x̃i), and is better than
hb, si | b, C(x̃i)i = DEALG

x̃i
. Thus H must contain (si, x̃i).

Next, suppose that x̃i is false, and let ¯̃xi be the negation of
x̃i (that is, the true literal of xi). Then there is no outcome
of si that contains arc (si, x̃i) and is better than hb | b, ¯̃xii =
DEALG

si
. Thus H cannot contain (si, x̃i).

Claim 5: H does not contain any arc (si, ti) or (ti, si). There
is no outcome of si that has an arc (si, ti) and is better than
hb | b, x̃ii = DEALG

si
, where x̃i is the true literal of xi. So

H cannot contain (si, ti). Also, there is no outcome of ti

that has arc (ti, si), does not have arc (si, ti), and is better
than hb | bi = DEALG

ti
. So H cannot contain (ti, si).

(() Assume now that D has a spanning subgraph G that
satisfies properties (c.1)-(c.3). From G we will construct a
satisfying assignment for ↵.

Since DEALG

b ⌫ DEALD

b , G must contain incoming arcs
of b from all other vertices. For each v 6= b, any outcome of
v that is at least as good as DEALD

v and contains arc (v, b)
must also contain arc (b, v). So G contains all outgoing arcs
of b.

Next, we claim that, for each variable xi, G contains at
most one of arcs (si, xi) and (si, x̄i). Indeed, towards contra-
diction, suppose that G contains both arcs (si, xi) and (si, x̄i).
The best possible outcome of si with both arcs (si, xi) and
(si, x̄i) is hb, ti | xi, x̄ii, and using the preferences of si, we
obtain hti | tii � hb, ti | xi, x̄ii ⌫ DEALG

si
. Regarding ti, we

have already established that ti has arcs to and from b, and
the best such outcome for ti is hb, si | bi. Thus, using the
preferences of ti we obtain hsi | sii � hb, si | bi ⌫ DEALG

ti
.

So we could take H to consist of si, ti, and arcs (si, ti) and
(ti, si), and this H would strictly dominate G, contradicting
our assumption that G satisfies condition (c.3).

Using the claim in the previous paragraph, we construct
a satisfying assignment for ↵ as follows: For each variable
xi, set it to true if G contains (si, xi); otherwise set it to
false. (Note that G may not contain any arc (si, xi), (si, x̄i),
in which case we could set the value of xi arbitrarily.) This
truth assignment is well defined.

We now argue that this truth assignment satisfies ↵.
Consider any clause cj . Vertex cj must have at least one
incoming arc (x̃i, cj) in G, because otherwise we couldn’t
have DEALG

cj
⌫ DEALD

cj
. Similarly, if G contains this

arc (x̃i, cj) then it must also contain arc (si, x̃i), because
otherwise we couldn’t have DEALG

x̃i
⌫ DEALD

x̃i
. This implies

that literal x̃i is true in our truth assignment, so clause cj is
true as well. As this holds for each clause, we can conclude
that ↵ is satisfied.

6. ⌃2-Completeness

In the previous section, we showed that SwapAtomic
is NP-hard. In this section, we tighten the complexity
classification of SwapAtomic, and show that it is in fact ⌃P

2 -
complete. Recall that ⌃P

2 = NPNP is the class of problems
at the 2nd level of the polynomial hierarchy that consists of
problems solvable non-deterministically in polynomial time
with an NP oracle.

Our proof is based on a reduction from a restricted variant
of the 98DNF problem. An instance of 98DNF is a boolean
expression ↵ = 9x8y�(x,y), where x = (x1, ..., xk) and
y = (y1, ..., yl) are vectors of boolean variables and �(x,y)
is a quantifier-free boolean expression in disjunctive normal
form, that is �(x,y) = ⌧1 _ ⌧2 _ ... _ ⌧m, and each term ⌧g

is a conjunction of literals involving different variables. The
goal is to determine whether ↵ is true. 98DNF is a canonical
⌃P

2 -complete problem [29], [26]. The restriction of 98DNF
that we use in our proof, denoted 98DNF1x, consists of
instances ↵ = 9x8y�(x,y) where each term of � includes
exactly one x-literal and one or more y-literals that involve
different variables.

Lemma 2. 98DNF1x is ⌃P
2 -complete.

The proof can be found in the appendix.
We remember that SwapAtomic is the decision problem

of deciding whether a swap system has an atomic protocol.

Theorem 5. SwapAtomic is ⌃P
2 -complete.

The complete proof can be found in the appendix. In
the remainder of this section, we briefly present a high-level
description of our reduction and the accompanying proof.

According to Theorem 3, a swap system S = (D, P) has
an atomic swap protocol if and only if D has a spanning sub-
graph G with the following properties: (c.1) G is piece-wise
strongly connected and has no isolated vertices, (c.2) G dom-
inates D, and (c.3) no subgraph H of D strictly dominates
G. This characterization is of the form 9G. ¬9H.⇡(G, H),

where ⇡(G, H) is a polynomial-time decidable predicate, so
it immediately implies that SwapAtomic is in ⌃P

2 . Thus it
remains to show that SwapAtomic is ⌃P

2 -hard.
To prove ⌃P

2 -hardness, we present a polynomial-time re-
duction from the above-defined decision problem 98DNF1x.
Let the given instance of 98DNF1x be ↵ = 9x8y�(x,y),
where x = (x1, ..., xk) and y = (y1, ..., yl) are vectors of
boolean variables and �(x,y) = ⌧1_⌧2_..._⌧m, where each
⌧g is a conjunction of one x-literal and one or more y-literals.
Our reduction converts ↵ into a swap system S = (D, P)
such that ↵ is true if and only if D has a spanning subgraph
G that satisfies conditions (c.1)-(c.3) from Theorem 3.

The following informal interpretation of 98DNF1x will
be helpful in understanding our reduction. Say that a truth
assignment to some variables “kills” a term ⌧g if it sets one
of its literals to false. A truth assignment � to the x-variables
will kill some terms, while others will survive. Thus ↵ will be
true for assignment � iff there is no assignment for the y-
variables that kills all terms that survived �. In our reduction,
the existence of this assignment � will be represented by
the existence of subgraph G. The non-existence of that
kills all terms that survived � will be represented by the
non-existence of a subgraph H that strictly dominates G.

Throughout this section, the negation of a boolean
variable xi will be denoted x̄i. We will also use notation x̃i

for an unspecified literal of xi, that is x̃i 2 {xi, x̄i}. The
same conventions apply to the variables yj .

We now give an overview of our reduction. The digraph
D consists of several “gadgets”. There will be 9-gadgets,
which correspond to the variables xi and will be used to
set their values, through the choice of subgraphs that G

includes. Then there is the 8-gadget, that contains “sub-
gadgets” representing the literals ỹj and the terms ⌧g . These
gadgets will allow for the values of the variables yj to admit
all possible assignments. If any setting of these values kills
all terms not yet killed by the variables xi, this gadget will
contain a subgraph H that strictly dominates G. Figure 7
shows a single 9-gadget and Figure 8 shows the 8-gadget.
As we explain the high-level intuition, we gradually visit
vertices and explain their purpose.

The argument is based on several ideas. One, we design
the preference posets of x̃i’s so that G is forced to choose
between two possible subsets of arcs within the 9-gadget.
The choice between these two subsets of arcs corresponds
to choosing a truth assignment for variable xi. We focus on
the literals x̃i that are set to false, since these kill the terms
where they appear. If x̃i is set to false, its arcs to the terms
⌧g’s in which the literal appears will be included in G (the
first subset), otherwise its arc to z̃i will be included in G

(the second subset).
Another idea is that vertices outside of the 8-gadget have

their preference posets defined in such a way that their arcs
in G define an outcome that is already the best for them.
Therefore, if a subgraph H that strictly dominates G does
indeed exist, we know it must appear in the 8-gadget. This
leads into the key idea of the 8-gadget. The vertices in this
gadget can have outcomes that are better than their outcomes

<latexit sha1_base64="WIvs1j/RX+gA9wOrLz7IyUZ05Pk=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCqJiHZZEMRlRXuBNpTJdNIOnUzCXMQS+ghuXCjiVnwQH8Gdb+P0stDWHwY+/v8c5pwTppwp7Xnfzsrq2vrGZm7L3d7J7+4V9g8aKjGS0DpJeCJbIVaUM0HrmmlOW6mkOA45bYbDy0nevKdSsUTc6VFKgxj3BYsYwdpatw9d1i0UvbI3FVoGfw7Fav7TlK7cj1q38NXpJcTEVGjCsVJt30t1kGGpGeF07HaMoikmQ9ynbYsCx1QF2XTUMSpZp4eiRNonNJq6vzsyHCs1ikNbGWM9UIvZxPwvaxsdVYKMidRoKsjso8hwpBM02Rv1mKRE85EFTCSzsyIywBITba/j2iP4iysvQ+O07J+Xz278YrUCM+XgCI7hBHy4gCpcQw3qQKAPj/AMLw53npxX521WuuLMew7hj5z3H+Y1kHM=</latexit>

xi

<latexit sha1_base64="q+rIxGsAFVbDMWzy/XbF+ZQJaAk=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUh338gVkomKpWLEhMi3bscslTYoOKtsVaJlohsLJ++vV/lP9rdbLP3f7EUkCGirCsZQdC8XKTbFQjHA6yXUTSWNMRnhAO5qGOKDSTWdBJ/BQK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vE6ifMdNWRgnioZkvshPOFQRnF4N+0xQovhYE0wE01khGWKBidK/yeknfF0K/yfNomkdm1bdKlQdMEcW7IEDcAQsUAZVcAZqoAEIoOAa3II748K4Me6Nh3lrxvic2QU/YDx+AIBxkdw=</latexit>

a
<latexit sha1_base64="JHR2OIiE1V8H/HjJJma4idSY+Yw=">AAAB6XicdVC7SgNBFJ31GeMrainIYBCtltndYDaVARvLRMwDkiXMTmaTIbMPZmaFEFLa2VgoYutP+B12foM2/oGTREFFD1w4nHMv99zrJ5xJhdCLMTe/sLi0nFnJrq6tb2zmtrbrMk4FoTUS81g0fSwpZxGtKaY4bSaC4tDntOEPTid+45IKyeLoQg0T6oW4F7GAEay0dI4PO7k8MpFdsEsORKbluE6xoIntoqJTgpaJpsifvL9e7T1V3yqd3HO7G5M0pJEiHEvZslCivBEWihFOx9l2KmmCyQD3aEvTCIdUeqNp0jE80EoXBrHQFSk4Vb9PjHAo5TD0dWeIVV/+9ibiX14rVYHrjViUpIpGZLYoSDlUMZycDbtMUKL4UBNMBNNZIeljgYnSz8nqJ3xdCv8nddu0jk2rauXLLpghA3bBPjgCFiiCMjgDFVADBATgGtyCO2Ng3Bj3xsOsdc74nNkBP2A8fgDg0pIN</latexit>

a
0

<latexit sha1_base64="4uY6yz4oc+JTvd61ajs8OqW1n6M=">AAAB6nicdVDLSgMxFM1Uq7W+al26CRbB1ZCZFjt1VXDjslL7gHYomTTThmYeJBmhDv0EN10o4lK/yJ1L/8S0VVDRAxcO59zLPfd6MWdSIfRmZNbWsxubua389s7u3n7hoNiWUSIIbZGIR6LrYUk5C2lLMcVpNxYUBx6nHW9ysfA7N1RIFoXXahpTN8CjkPmMYKWl5u2ADQolZCK7YtfKEJlW2SlXK5rYDqqWa9Ay0RKlevH9fP6cbTYGhdf+MCJJQENFOJayZ6FYuSkWihFOZ/l+ImmMyQSPaE/TEAdUuuky6gyeaGUI/UjoChVcqt8nUhxIOQ083RlgNZa/vYX4l9dLlO+4KQvjRNGQrBb5CYcqgou74ZAJShSfaoKJYDorJGMsMFH6O3n9hK9L4f+kbZvWmWldWaW6A1bIgSNwDE6BBaqgDi5BA7QAASNwB+7Bg8GNufFoPK1aM8bnzCH4AePlA89rkRg=</latexit>

zi
<latexit sha1_base64="4Tucop1eRTUrlFBlILHIkkkfIRc=">AAAB8HicdVBNS8NAEN1Uq7V+1Xr0slgETyFJi009Fbx4rGg/pA1ls920SzebsLsRauif0IsHRcSbP8ebR/+J21ZBRR8MPN6bYd6MHzMqlWW9GZml5ezKam4tv76xubVd2Cm2ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2PT2Z++4oISSN+oSYx8UI05DSgGCktXfZ8JNLraZ/2CyXLtJyKUytDy7TLbrla0cRxrWq5Bm3TmqNUL74f3zxnzxv9wmtvEOEkJFxhhqTs2lasvBQJRTEj03wvkSRGeIyGpKspRyGRXjoPPIUHWhnAIBK6uIJz9ftEikIpJ6GvO0OkRvK3NxP/8rqJClwvpTxOFOF4sShIGFQRnF0PB1QQrNhEE4QF1VkhHiGBsNI/yusnfF0K/yctx7SPTPvMLtVdsEAO7IF9cAhsUAV1cAoaoAkwCMEtuAcPhjDujEfjadGaMT5ndsEPGC8fklaT3Q==</latexit>

z̄i
<latexit sha1_base64="RLGq9oaC+uYgwHNP2u36J6zbPMA=">AAAB8XicbZC7SgNBFIbPeo2r0ailzWAIWIVdEU0ZEMQygrlgsoTZyWwyZHZ2mYsYlryFjYUiFja+hY9g59s4uRSa+MPAx/+fw5xzwpQzpT3v21lZXVvf2Mxtuds7+d29wv5BQyVGElonCU9kK8SKciZoXTPNaSuVFMchp81weDnJm/dUKpaIWz1KaRDjvmARI1hb6y7rhFiih3GXdQtFr+xNhZbBn0Oxmv80pSv3vdYtfHV6CTExFZpwrFTb91IdZFhqRjgdux2jaIrJEPdp26LAMVVBNp14jErW6aEokfYJjabu744Mx0qN4tBWxlgP1GI2Mf/L2kZHlSBjIjWaCjL7KDIc6QRN1kc9JinRfGQBE8nsrIgMsMRE2yO59gj+4srL0Dgt++flsxu/WK3ATDk4gmM4AR8uoArXUIM6EBDwCM/w4ijnyXl13malK8685xD+yPn4AQGIk2I=</latexit>

x̄i

<latexit sha1_base64="W+WwYHbKuQ4w5UNc7gWBU7hM9iI=">AAACEnicdVBNSyNBFOyJq5uNX9E95tJsIuplmEnCJt4Ce3FvChsVkjC+6XSSJj09Q/cbMQz5DV78K8uCB2XZqydv/oE97m/YjlFQ0YKGouo9+lWFiRQGPe/eyS18WFz6mP9UWF5ZXVsvbmwemTjVjLdZLGN9EoLhUijeRoGSnySaQxRKfhyOv8384zOujYjVD5wkvBfBUImBYIBWCoq7XeTnqKMMY1rpIqTBsLJtKI4AKYsVglC0ch6IyjQolj3Xq9arezXquX6tWWvULak2vUZtj/qu94Byq/T9779fudODoHjX7ccsjbhCJsGYju8l2MtAo2CSTwvd1PAE2BiGvGOpgoibXvYQaUq3rNKng1jbp2anWPX5RgaRMZMotJMR4Mi89mbiW14nxUGzlwmVpMgVm380SCW1+Wf90L7QnKGcWAJMC3srZSPQwNC2WLAlPCWl75Ojqut/deuHfrlVJ3PkSYl8ITvEJw3SIvvkgLQJIxfkJ7kmN86lc+X8dv7MR3PO485n8gLO7X9O2KDn</latexit>

to ⌧g’s that contain xi
<latexit sha1_base64="8NE/2vOhr0a/Ynd3I91sCuu43cQ=">AAACGHicdVCxThtBEN0zBIhJwEBJs8JGSXW5sy1sOks0pAMJA5JtHXPrtb3y3t5pdw7ZOvkzaPiRFGkoQFFad/wAJd/A2k4kEsGTRnp6b0Yz88JECoOe9+jklpY/rKyufcyvf/q8sVnY2j43caoZb7JYxvoyBMOlULyJAiW/TDSHKJT8IhwezfyLa66NiNUZjhPeiaCvRE8wQCsFhW9t5CPUUYYxLbUR0qBf+mIoDgApixWCUFYPQWejSSBKk6BQ9FyvXC0fVqjn+pV6pVa1pFz3apVD6rveHMXG7ven5x+5q5OgMG13Y5ZGXCGTYEzL9xLsZKBRMMkn+XZqeAJsCH3eslRBxE0nmz82oftW6dJerG2p2UFWfT2RQWTMOAptZwQ4MP97M/Etr5Vir97JhEpS5IotFvVSSW0Ks5RoV2jOUI4tAaaFvZWyAWhgaLPM2xD+fkrfJ+dl1z9wq6d+sVElC6yRXbJHvhKf1EiDHJMT0iSM3JCf5J48OLfOnfPL+b1ozTl/ZnbIP3CmL2bjo6w=</latexit>

to ⌧g’s that contain x̄i

<latexit sha1_base64="wteq9uI/OBEtDRWPXzPV1yQaPQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCyRJmJ2eTMbOzy8ysEJaUVjYWitj6FKl8CDufwZdwcik0+sPAx/+fw5xz/JgzpR3n08osLa+srmXXcxubW9s7+d29uooSSbFGIx7Jpk8Uciawppnm2IwlktDn2PAHV5O8cYdSsUjc6GGMXkh6ggWMEm2sqt/JF5yiM5X9F9w5FC7fx9Wv+8NxpZP/aHcjmoQoNOVEqZbrxNpLidSMchzl2onCmNAB6WHLoCAhKi+dDjqyj43TtYNImie0PXV/dqQkVGoY+qYyJLqvFrOJ+V/WSnRQ8lIm4kSjoLOPgoTbOrInW9tdJpFqPjRAqGRmVpv2iSRUm9vkzBHcxZX/Qv206J4Xz6puoVyCmbJwAEdwAi5cQBmuoQI1oIDwAE/wbN1aj9aL9TorzVjznn34JevtG4xlkS4=</latexit>

b

<latexit sha1_base64="GbsOITiX9skRMM2hkzMRWxWQxZs=">AAACLHicdVBNa1NBFJ1XP1rjV2qXbgYT0dXjvSSYdBfopssKpi3kPcJ9k5t26Hw8Zu4rDY8s+w/cC+7c+FeE4sIibv0F/gAniQUVvcPA4ZxzufeeolTSU5JcRxu3bt+5u7l1r3H/wcNHj5vbTw69rZzAkbDKuuMCPCppcESSFB6XDkEXCo+Ks72lfnSOzktr3tC8xFzDiZEzKYACNWnuZYQX5HRNloOZ8pmzmoNSiyxr3EgZXz5jp+g5XggsibehvbK34UV7MWm2kjjp9Dq7XZ7EaXfQ7fcC6AySfneXp3GyqtZw58e7t5f5+4NJ8yqbWlFpNCQUeD9Ok5LyGhxJoXDRyCqPJYgzOMFxgAY0+rxeHbvgzwMT9rQufEN8xf7eUYP2fq6L4NRAp/5vbUn+SxtXNBvktTRlRWjEetCsUjwks0yOT6VDQWoeAAgnw65cnIIDQSHfRgjh5lL+f3DYidNXcfo6bQ17bF1b7Cl7xl6ylPXZkO2zAzZign1gn9gXdh19jD5HX6Nva+tG9Ktnh/1R0fefohyq3g==</latexit>

to and from all
nodes except a and a

0

Figure 7. The construction of digraph D in the proof of ⌃P
2 -hardness. This figure shows vertices a, a0, b, and an 9-gadget for variable xi. The arcs to and

from b are shown as bi-directional arrows at b.

<latexit sha1_base64="wteq9uI/OBEtDRWPXzPV1yQaPQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCyRJmJ2eTMbOzy8ysEJaUVjYWitj6FKl8CDufwZdwcik0+sPAx/+fw5xz/JgzpR3n08osLa+srmXXcxubW9s7+d29uooSSbFGIx7Jpk8Uciawppnm2IwlktDn2PAHV5O8cYdSsUjc6GGMXkh6ggWMEm2sqt/JF5yiM5X9F9w5FC7fx9Wv+8NxpZP/aHcjmoQoNOVEqZbrxNpLidSMchzl2onCmNAB6WHLoCAhKi+dDjqyj43TtYNImie0PXV/dqQkVGoY+qYyJLqvFrOJ+V/WSnRQ8lIm4kSjoLOPgoTbOrInW9tdJpFqPjRAqGRmVpv2iSRUm9vkzBHcxZX/Qv206J4Xz6puoVyCmbJwAEdwAi5cQBmuoQI1oIDwAE/wbN1aj9aL9TorzVjznn34JevtG4xlkS4=</latexit>

b

<latexit sha1_base64="Gm05VTJwpWdkBgf3ADqFt0h4qkA=">AAAB6nicdVC7SgNBFJ2Nj8TER9TSwsEgWC37CGbTBW0sI5oHJEuYncwmY2YfzMwKy5I/0MZCEVu/yM7fsLZwkiio6IELh3Pu5Z57vZhRIQ3jVcstLa+s5gtrxdL6xuZWeXunLaKEY9LCEYt410OCMBqSlqSSkW7MCQo8Rjre5HTmd64JFzQKL2UaEzdAo5D6FCOppIt0cDUoVwzdsKpW3YaGbtqOXasqYjlGza5DUzfmqDT2307ypZv35qD80h9GOAlIKDFDQvRMI5ZuhrikmJFpsZ8IEiM8QSPSUzREARFuNo86hYdKGUI/4qpCCefq94kMBUKkgac6AyTH4rc3E//yeon0HTejYZxIEuLFIj9hUEZwdjccUk6wZKkiCHOqskI8Rhxhqb5TVE/4uhT+T9qWbh7r1XOz0nDAAgWwBw7AETBBDTTAGWiCFsBgBG7BPXjQmHanPWpPi9ac9jmzC35Ae/4AEtaRTg==</latexit>

yj

<latexit sha1_base64="fUbSYdymmiPtjZVRU7stznUdRuM=">AAAB8XicdVDLSsNAFJ3UR2vro+rShYNFcBWSpth0V3TjsoJ9YBvKZDptx04mYWYihNA/cOnGhSJu/Rt3/oZrF05bBRU9cOFwzr3cc68fMSqVZb0amaXlldVsbi1fWN/Y3Cpu77RkGAtMmjhkoej4SBJGOWkqqhjpRIKgwGek7U9OZ377mghJQ36hkoh4ARpxOqQYKS1dpj0fCZhM+1f9YskyrXKlXHOgZdqO61QrmpRdq+rUoG1ac5Tq+28n2cLNe6NffOkNQhwHhCvMkJRd24qUlyKhKGZkmu/FkkQIT9CIdDXlKCDSS+eJp/BQKwM4DIUuruBc/T6RokDKJPB1Z4DUWP72ZuJfXjdWQ9dLKY9iRTheLBrGDKoQzs6HAyoIVizRBGFBdVaIx0ggrPST8voJX5fC/0mrbNrHZuXcLtVdsEAO7IEDcARsUAV1cAYaoAkw4OAW3IMHQxp3xqPxtGjNGJ8zu+AHjOcPLhuUPQ==</latexit>

ȳj

<latexit sha1_base64="7/3vhp0mu5nEMsWnlq2ORCRfasU=">AAAB6nicdVDLSsNAFJ34am19VF26cLAIrkLSFJvuim5cVrQPaEOZTCft2MkkzkyEEvoHunGhiFu/yJ2/4dqF01ZBRQ9cOJxzL/fc68eMSmVZr8bC4tLySia7msuvrW9sFra2mzJKBCYNHLFItH0kCaOcNBRVjLRjQVDoM9LyRydTv3VNhKQRv1DjmHghGnAaUIyUls6vepe9QtEyrVK5VHWgZdqO61TKmpRcq+JUoW1aMxRre2/HmfzNe71XeOn2I5yEhCvMkJQd24qVlyKhKGZkkusmksQIj9CAdDTlKCTSS2dRJ/BAK30YREIXV3Cmfp9IUSjlOPR1Z4jUUP72puJfXidRgeullMeJIhzPFwUJgyqC07thnwqCFRtrgrCgOivEQyQQVvo7Of2Er0vh/6RZMu0js3xmF2sumCMLdsE+OAQ2qIAaOAV10AAYDMAtuAcPBjPujEfjad66YHzO7IAfMJ4/AAamkUY=</latexit>

qj
<latexit sha1_base64="XqLyTWfRmy1H2ZvVRxQWzu3nnAQ=">AAAB7nicdVC7SgNBFJ31lZj4iFpaOBgEG5fZ3WCSLmhjGcE8IFnC7GQ2GTP7cGZWCEv+wMbGQhFbv8fO37C2cJIoqOiBC4dz7uWee72YM6kQejUWFpeWVzLZ1Vx+bX1js7C13ZRRIghtkIhHou1hSTkLaUMxxWk7FhQHHqctb3Q69VvXVEgWhRdqHFM3wIOQ+YxgpaXWVS+9PLImvUIRmcgu2VUHItNyKk65pIldQWWnCi0TzVCs7b2dZPI37/Ve4aXbj0gS0FARjqXsWChWboqFYoTTSa6bSBpjMsID2tE0xAGVbjqLO4EHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5VfclIVxomhI5ov8hEMVwentsM8EJYqPNcFEMJ0VkiEWmCj9oZx+wtel8H/StE3r2CydW8VaBcyRBbtgHxwCC5RBDZyBOmgAAkbgFtyDByM27oxH42neumB8zuyAHzCePwCnvZLE</latexit>

qj�1

<latexit sha1_base64="x0zyuUV2hMUzZS+QakPCu3pe6SY=">AAAB7XicdVC7SgNBFJ31lZj4iFpaOBgEq2UfwWy6oI1lBPOAZAmzk9lkzOzOMjMrhCV/YGFjoYit/2Pnb1hbOEkUVPTAhcM593LPvUHCqFSW9WosLa+sruXy64XixubWdmlntyV5KjBpYs646ARIEkZj0lRUMdJJBEFRwEg7GJ/N/PY1EZLy+FJNEuJHaBjTkGKktNTqKZT2h/1S2TItp+LUXGiZtuu51YomjmdV3Rq0TWuOcv3g7TRXvHlv9EsvvQHHaURihRmSsmtbifIzJBTFjEwLvVSSBOExGpKupjGKiPSzedopPNLKAIZc6IoVnKvfJzIUSTmJAt0ZITWSv72Z+JfXTVXo+RmNk1SRGC8WhSmDisPZ6XBABcGKTTRBWFCdFeIREggr/aCCfsLXpfB/0nJM+8SsXNjlugcWyIN9cAiOgQ2qoA7OQQM0AQZX4BbcgweDG3fGo/G0aF0yPmf2wA8Yzx9KEZKW</latexit>

⌧g
<latexit sha1_base64="R5Pgu/zYUlrTHBV9c38R6qBHUQM=">AAAB6nicdVC7SgNBFJ31lZj4iFpaOBgEq2UfwWy6oI1lRPOAZAmzk9nNkNnZZWZWCCF/oI2FIrZ+kZ2/YW3hJFFQ0QMXDufcyz33BimjUlnWq7G0vLK6lsuvF4obm1vbpZ3dlkwygUkTJywRnQBJwignTUUVI51UEBQHjLSD0dnMb18TIWnCr9Q4JX6MIk5DipHS0mXaj/qlsmVaTsWpudAybddzqxVNHM+qujVom9Yc5frB22muePPe6JdeeoMEZzHhCjMkZde2UuVPkFAUMzIt9DJJUoRHKCJdTTmKifQn86hTeKSVAQwToYsrOFe/T0xQLOU4DnRnjNRQ/vZm4l9eN1Oh508oTzNFOF4sCjMGVQJnd8MBFQQrNtYEYUF1VoiHSCCs9HcK+glfl8L/Scsx7ROzcmGX6x5YIA/2wSE4Bjaogjo4Bw3QBBhE4BbcgweDGXfGo/G0aF0yPmf2wA8Yzx8AlJFC</latexit>

pg
<latexit sha1_base64="5Z2qOCdSr23th/lfCu6M1yP7Kww=">AAAB7nicdVC7SgNBFJ31lZj4iFpaOBgEG5d9BLPpgjaWEcwDkiXMTmaTIbO7w8ysEJb8gY2NhSK2fo+dv2Ft4SRRUNEDFw7n3Ms99wacUaks69VYWl5ZXcvl1wvFjc2t7dLObksmqcCkiROWiE6AJGE0Jk1FFSMdLgiKAkbawfh85reviZA0ia/UhBM/QsOYhhQjpaU272fDE3vaL5Ut03IqTs2Flmm7nlutaOJ4VtWtQdu05ijXD97OcsWb90a/9NIbJDiNSKwwQ1J2bYsrP0NCUczItNBLJeEIj9GQdDWNUUSkn83jTuGRVgYwTISuWMG5+n0iQ5GUkyjQnRFSI/nbm4l/ed1UhZ6f0ZinisR4sShMGVQJnN0OB1QQrNhEE4QF1VkhHiGBsNIfKugnfF0K/yctx7RPzcqlXa57YIE82AeH4BjYoArq4AI0QBNgMAa34B48GNy4Mx6Np0XrkvE5swd+wHj+AKGeksA=</latexit>

pg�1.

. <latexit sha1_base64="lOySS1Tl2w2OcHTzy1DMY8TtHJ4=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAUkIs5PZZMjsw5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee72YM6kQejEyC4tLyyvZ1dza+sbmVn57pyGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3uh46jcvqZAsCs/VOKbdAA9C5jOClZbOLnqoly8gE9klu+JAZFqO65RLmtguKjsVaJlohkJ1r3j1/vT2Wuvlnzv9iCQBDRXhWMq2hWLVTbFQjHA6yXUSSWNMRnhA25qGOKCym86iTmBRK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vHaifLebsjBOFA3JfJGfcKgiOL0b9pmgRPGxJpgIprNCMsQCE6W/k9NP+LoU/k8atmkdmaVTq1B1wRxZsA8OwCGwQBlUwQmogTogYACuwS24M7hxY9wbD/PWjPE5swt+wHj8AGvMklk=</latexit>

q0

<latexit sha1_base64="RowmHRmaWhIhWnMGuIHRHGCxJzQ=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFr2EcymC9hYRjQPiEuYncwmQ2Znl5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee4OEUaks68XILSwuLa/kVwtr6xubW8XtnZaMU4FJE8csFp0AScIoJ01FFSOdRBAUBYy0g9Hx1G9fEiFpzM/VOCF+hAachhQjpaWzpBf1iiXLtJyKU3OhZdqu51YrmjieVXVr0DatGUr1vfLV+9Pba6NXfL7oxziNCFeYISm7tpUoP0NCUczIpHCRSpIgPEID0tWUo4hIP5tFncCyVvowjIUuruBM/T6RoUjKcRTozgipofztTcW/vG6qQs/PKE9SRTieLwpTBlUMp3fDPhUEKzbWBGFBdVaIh0ggrPR3CvoJX5fC/0nLMe0js3Jql+oemCMP9sEBOAQ2qII6OAEN0AQYDMA1uAV3BjNujHvjYd6aMz5ndsEPGI8fxrqSlQ==</latexit>

pm
<latexit sha1_base64="o/uZ3XBP6boVrYZCkhD6XCNxLjA=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAXEJs5PZZMjsg5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee/2EM6kQejFyC4tLyyv51cLa+sbmVnF7pyXjVBDaJDGPRcfHknIW0aZiitNOIigOfU7b/uh46rcvqZAsjs7VOKFeiAcRCxjBSktnSQ/1iiVkIrti1xyITMtxnWpFE9tFVacGLRPNUKrvla/en95eG73i80U/JmlII0U4lrJroUR5GRaKEU4nhYtU0gSTER7QrqYRDqn0slnUCSxrpQ+DWOiKFJyp3ycyHEo5Dn3dGWI1lL+9qfiX101V4HoZi5JU0YjMFwUphyqG07thnwlKFB9rgolgOiskQywwUfo7Bf2Er0vh/6Rlm9aRWTm1SnUXzJEH++AAHAILVEEdnIAGaAICBuAa3II7gxs3xr3xMG/NGZ8zu+AHjMcPakaSWA==</latexit>

p0

<latexit sha1_base64="p3gi7n3qjENhZ8FNC9Wp602hXvE=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAUkIs5PZZMjsw5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee72YM6kQejEyC4tLyyvZ1dza+sbmVn57pyGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3uh46jcvqZAsCs/VOKbdAA9C5jOClZbOLnq8ly8gE9klu+JAZFqO65RLmtguKjsVaJlohkJ1r3j1/vT2Wuvlnzv9iCQBDRXhWMq2hWLVTbFQjHA6yXUSSWNMRnhA25qGOKCym86iTmBRK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vHaifLebsjBOFA3JfJGfcKgiOL0b9pmgRPGxJpgIprNCMsQCE6W/k9NP+LoU/k8atmkdmaVTq1B1wRxZsA8OwCGwQBlUwQmogTogYACuwS24M7hxY9wbD/PWjPE5swt+wHj8AMa8kpU=</latexit>

ql

<latexit sha1_base64="RDooi039C9/xCVezAzW+dSn28JU=">AAACGXicdZDPahRBEMZ7YtRk/bfRo5cmS8CLQ8/u4m5OCXjxGMFNArvL0tNTkzTpP0N3jWQzzGsE1Ffx4kERj/GUx8gbpGc3ARXzQcPHr6qori8tlPTI2GW0cm/1/oOHa+utR4+fPH3W3ni+723pBIyEVdYdptyDkgZGKFHBYeGA61TBQXrytqkffATnpTUfcF7AVPMjI3MpOAY0a7MJwik6XeXOalpN0rw6revXxmbgKTfZEp3doro1a3dYzLr97naPsjjpDXuDfjDdIRv0tmkSs4U6O1efGn3em7UvJpkVpQaDQnHvxwkrcFpxh1IoqFuT0kPBxQk/gnGwhmvw02pxWU23Aslobl14BumC/jlRce39XKehU3M89v/WGvi/2rjEfDitpClKBCOWi/JSUbS0iYlm0oFANQ+GCyfDX6k45o4LDGE2IdxeSu82+904eRMn75PObp8stUZekk3yiiRkQHbJO7JHRkSQc/KVfCc/oi/Rt+hn9GvZuhLdzLwgfyn6fQ3NqKaB</latexit>

from x-nodes and z-nodes

<latexit sha1_base64="EoOANfQTKtizyUOMMhULwPUY0Ww=">AAACBnicdVBNSxtRFH2jttr0w7QuS+HRILjpMJMEk+wC3bi00KiQDOHNyx19+D6G9+5IwzArEfoD3BfcuXHRUtz6G7rr//AH+JJY0NIeuHA4517uvSfNpXAYRb+DpeWVJ09X157Vnr94+Wq9/vrNnjOF5TDgRhp7kDIHUmgYoEAJB7kFplIJ++nxx5m/fwLWCaM/4zSHRLFDLTLBGXppXH83QviCVpWZNYqWozQrp1X1QZsJuKo2rjeiMGq2m70WjcK41W112p40u1Gn1aNxGM3R6G/cfjs/Sy52x/Vfo4nhhQKNXDLnhnGUY1Iyi4JLqGqjwkHO+DE7hKGnmilwSTl/o6KbXpnQzFhfGulcfThRMuXcVKW+UzE8cn97M/Ff3rDArJuUQucFguaLRVkhKRo6y4ROhAWOcuoJ41b4Wyk/YpZx9MnNQvjzKf0/2WuG8XYYf4ob/TZZYI28Je/JFolJh/TJDtklA8LJKbkk38mP4GtwFfwMrhetS8H9zAZ5hODmDtL3nbQ=</latexit>

from y-nodes

<latexit sha1_base64="m4/ez8rgsjsNnW6T7Mlb1vi1ay0=">AAACR3icdVA9bxNBEN0zX8F8OaSkWbARVKc728JOZ4mGMkg4ieQ7rLn1OFllP067cyjWyWX+AT0Sv4WGlo6/QENBhChZ24kEiLzVSk/vzczuvKJU0lOSfI0a167fuHlr63bzzt179x+0th/ue1s5gWNhlXWHBXhU0uCYJCk8LB2CLhQeFCcvV/7BO3ReWvOGFiXmGo6MnEsBFKRp621GeEpO12Q5mBmfO6uXWda8lDN+cR5zUIobO0N/hY+nAkviHeisJ3XgWWc5bbWTOOn2u7s9nsRpb9gb9APpDpNBb5encbJGe7Rz/uH9Wf5xb9r6ks2sqDQaEgq8n6RJSXkNjqRQuGxmlccSxAkc4SRQAxp9Xq9zWPKnQQkrWBeuIb5W/+yoQXu/0EWo1EDH/l9vJf7Pm1Q0H+a1NGVFaMTmoXmleAhtFSqfSYeC1CIQEE6Gv3JxDA4EheibIYTLTfnVZL8bpy/i9HXaHvXZBlvsEXvCnrOUDdiIvWJ7bMwE+8S+sR/sPPocfY9+Rr82pY3oomeH/YVG9Bv/J7Mt</latexit>

to and from
all nodes
except a and a

0

Figure 8. The construction of digraph D in the proof of ⌃P
2 -hardness. This figures shows the 8-gadget, namely the part of D that contains the vertices that

simulate setting the values of the yj -variables and the terms ⌧g . The arcs to and from b are shown as bi-directional arrows at b.

in G. All the arcs in these better outcomes together form the
cycle

C = q0 ! ỹ1 ! ... ! ỹl ! ql !

p0 ! ⌧1 ! ...⌧m ! pm !

q0

(1)

for some choice of the literals ỹ1, ..., ỹl. We design the
preference posets of each ⌧g so that its outcome in G can
only be improved (specifically, towards C) only if it receives
an arc from one of its literals — in other words, if it is killed
by that literal. This way, G will have a strictly dominating
subgraph H (namely cycle C) only if all terms are killed, i.e.
when ↵ is false.

Next, we provide brief insight to the important vertices
and how they help capture the ideas above. Firstly, we want
to simulate a truth assignment for variable xi, which we
represent by having G choose between two subsets of arcs
in the corresponding 9-gadget for xi. Intuitively, one subset
corresponds to assigning xi to true while the other subset
corresponds to assigning xi to false. These two subsets of
arcs are established by how we define the preference posets
of xi and x̄i. In order to force G to make a choice (instead
of taking all the arcs), we introduce the auxiliary vertex a,
which has arcs to every literal x̃i. The graph D has two
strongly connected components: (1) a and a

0, and (2) all
the other vertices. We claim graph G cannot include any
arcs from a to the literal vertices. Otherwise, since there is
no edge from the second component to the first, dropping
those arcs always results in a better outcome for the first
component. However, that contradicts condition (c.3). Then,
for G to satisfy condition (c.2), G is forced to make a choice

between the two subsets of arcs. Specifically, G must choose
to include all arcs from xi to its terms (corresponds to setting
xi to be false) or all arcs from x̄i to its terms (corresponds
to setting xi to be true).

Next, we want to simulate a term ⌧g being killed. We
achieve this by designing the preference poset of each ⌧g so
that if it receives its arc from its x-literal, it would prefer
its outcome in the cycle C over its outcome in G. A term ⌧g

can also be killed by one of its y-literals, which we describe
later.

Now, we want to simulate checking whether there is a
truth assignment for the y-variables that make 8y�(�,y)
false, where � is a truth assignment over the x variables. In
other words, G’s assignment of the x variables have killed
some terms and now we want to see if H can give an
assignment of the y variables that kill the surviving terms.

First, we need to simulate a truth assignment for each
variable yj . This is simple: we flank yj and ȳj by vertices
qj�1 and qj as seen in Figure 8. We define the preference
posets of qj�1 and qj in a way that only one of yj or ȳj

can be included in the cycle C, thus forcing H to choose
between them. If H selects a vertex ỹj , then ỹj will send an
arc to every term it appears in. This corresponds to assigning
ỹj to false.

We additionally define ⌧g’s poset so that if it receives an
arc from any of its y-literals, it wants to join C. At this point,
we have represented ⌧g being killed if it receives either its
x-literal arc or any of its y-literal arcs. (The z̃i vertices are
actually used for this purpose. They help distinguish between
when a term is killed by their x-literal and when a term

survived in which it needs to be killed by a y-literal.)

The 8-gadget is designed in the following manner: the
preference posets of the qj , ỹj , and pg vertices are such that
if every ⌧g prefers C, so will they; otherwise, if any ⌧g does
not prefer C, then none of the vertices can cooperatively
deviate to improve their outcomes. In other words, each ⌧g
acts as a bottleneck for the cycle C, thus we focus only on
the ⌧g’s.

We give an analogy to better understand the remainder
of the reduction. Each ⌧g is given a vote to whether or not
they want to participate in cycle C. In order for C to pass,
it must receive a unanimous vote from every ⌧g. Vertex ⌧g
only casts its vote to join C if it receives an arc from either
its x-literal arc or any of its y-literal arcs (corresponds to
being killed). Then, G’s selection in each 9-gadget (truth
assignment over x variables) caused some ⌧g’s to vote for
C. Now, H is tasked with selecting vertices ỹ1, ..., ỹl (truth
assignment over y variables) so that the remaining ⌧g’s also
vote for C. At the end of this, if the ⌧g’s unanimously voted
for C, then there is an H that strictly dominates G, namely
the subgraph induced by C. (This corresponds to giving an
assignment y 7! such that �(�,) is false.) Otherwise, if
H cannot give such a selection over ỹ1, ..., ỹl, then there is no
H that strictly dominates G. (This corresponds to 8y�(�,y)
being true, i.e. ↵ is true.)

The remaining vertices are primarily used for convenience
and to influence the behavior/preference posets of their
neighbors. In other words, they make the topology of G

and H predictable, holding them to a particular form. For
example, vertex b is used to guarantee condition (c.1), the
piece-wise strong connectivity condition. Also, it is used
where vertices would otherwise have no incoming or outgoing
arcs.

To conclude the section, we provide some brief insight to
both directions of the proof. In the ()) implication, we show
that if ↵ is true, then the swap graph D has a subgraph G

that satisfies the properties of Theorem 3. We begin by fixing
some truth assignment x 7! � that makes ↵ true. We convert
� into a graph G that satisfies the properties of Theorem 3
using the ideas described above. Conditions (c.1) and (c.2)
can be verified by routine inspection, leaving condition (c.3)
that G does not have a strictly dominating subgraph H. The
idea is, towards contradiction, if such an H existed, we could
convert it into an assignment of the y variables so that
�(�,) is false. This contradicts the fact that ↵ is true.

In the (() implication, we show that if D has a subgraph
G that satisfies the properties of theorem 3, then ↵ is true. We
begin by showing that the topology of G must have a certain
form; specifically, it is representative of the graph G we
constructed in the proof of the ()) implication. This allows
us to reconstruct an assignment of the x variables. We then
show, again by contradiction, that 8y�(�,y) must be true.
If it were not, we can take a falsifying assignment y 7!
and convert it into a subgraph H that strictly dominates G.
However, this contradicts condition (c.3) of G.

7. Related Works

The fair exchange problem [23], [16], [7], [4], [5] was of
interest even before the blockchain technology. It arises when
two parties want to exchange their assets, and the outcome
must be either that the two parties end up trading their assets,
or that they both keep their assets. However, in contrast to the
swap problem, some trust in a third party is often assumed.
The optimistic fair exchange protocol [23] relies on invisible
trusted parties: parties that work as a background service
and intervene only in case of a misbehaviour. Similarly, the
secure group barter protocol [16] studies multi-party barter
with semi-trusted agents.

To the best of our knowledge, it was back in 2013 when
the notion of cross-chain swaps first emerged in an online
forum [34]. Atomic cross-chain swap is since an active
problem for the blockchain community [8], [34], [9], [10].
The two wiki pages [8] and [34] and later platforms such
as deCRED [13] proposed protocols for bilateral swaps.
However, these projects offer only two-party transactions.
Later, protocols for cross-chain swaps and transactions [19],
[20], [18], [33] emerged that can work for an arbitrary
number of parties; however, they assumed the predefined
preference relation that we saw earlier for all the parties.

These protocols motivated a host of follow-up research.
The time and space complexity [21] and privacy guarantees
[14] of the protocol were improved. The former [21] uses
a model in which each arc has explicit numeric values
perceived by both sender and recipient. This implicitly
induces a preference structure over each user’s possible
outcomes. Furthermore, it is used to restrict the type of swap
graphs that permit atomic protocols. Further, extensions to
support off-chain steps [30] and reduce the asset lock-up time
[36] appeared. Others presented hardness and impossibility
results [38], [12] formal verification [25], and protocols
with all-or-nothing guarantees [37] and success guarantees
under synchrony assumptions [35]. Others proposed moving
assets [31] and smart contracts [17] across blockchains, and
executing code that spans multiple blockchains [28], and
presented implementations for industrial blockchains [3], [2],
[11], [32].

Payment channel networks process multi-hop payments
in the same blockchain through a sequence of channels using
Hash Timelock Contracts [27], [1] or adaptor signatures [22].
Recent protocols such as AMCU [15], Sprites [24] and Thora
[6] support more general topologies for transactions.

In contrast to previous work, this paper presented a
generalized model of swaps where each party can specify a
personalized preference on their set of incoming and outgoing
assets in a finer manner, e.g. dependencies between subsets
of acquired and traded assets.

8. Conclusion

We presented a general swap model that allows each
party to specify their preference on their possible outcomes.
We saw that Herlihy’s pioneering protocol is a uniform and
Nash strategy in this model; however, it is not a strong

Nash strategy. We presented a characterization of the class
of swap graphs that have uniform and Strong Nash protocols.
Interestingly, Herlihy’s protocol is such a strategy when
executed on a particular subgraph of the swap graphs in
this class. We further presented reductions that shows the
NP-harness and ⌃P

2 -completeness of the decision problem
for this class.

Acknowledgements. I would like to thank Annie Semb for
her unconditional love and support over the years. I will
remember you always. I miss you dearly. Eric.

References

[1] Raiden network. https://raiden.network/.

[2] Submarine swap in lightning network. https://wiki.ion.radar.tech/tech/
research/submarine-swap.

[3] What is atomic swap and how to implement it. https://www.axiomadev.
com/blog/what-is-atomic-swap-and-how-to-implement-it/.

[4] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic
protocols for fair exchange. In Proceedings of the 4th ACM Conference
on Computer and Communications Security, CCS ’97, pages 7–17,
New York, NY, USA, 1997. ACM. URL: http://doi.acm.org/10.1145/
266420.266426, doi:10.1145/266420.266426.

[5] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair
exchange of digital signatures. IEEE Journal on Selected Areas in
Communications, 18:593–610, 1997.

[6] Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maffei. Thora: Atomic
and privacy-preserving multi-channel updates. Cryptology ePrint
Archive, 2022.

[7] Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L.
Rivest. A fair protocol for signing contracts. In Wilfried Brauer,
editor, Automata, Languages and Programming, pages 43–52, Berlin,
Heidelberg, 1985. Springer Berlin Heidelberg.

[8] bitcoinwiki. Atomic swap. https://en.bitcoin.it/wiki/Atomic swap.
[Online; accessed 23-January-2021].

[9] bitcoinwiki. Hashed timelock contracts. https://en.bitcoin.it/wiki/
Hashed Timelock Contracts. [Online; accessed 23-January-2021].

[10] Sean Bowe and Daira Hopwood. Hashed time-locked contract transac-
tions. https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki.
[Online; accessed 23-January-2021].

[11] Gewu Bu, Riane Haouara, Thanh-Son-Lam Nguyen, and Maria Potop-
Butucaru. Cross hyperledger fabric transactions. In Proceedings of the
3rd Workshop on Cryptocurrencies and Blockchains for Distributed
Systems, pages 35–40, 2020.

[12] Eric Chan and Mohsen Lesani. Brief announcement: Brokering with
hashed timelock contracts is np-hard. In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, pages 199–202,
2021.

[13] deCRED. On-chain atomic swaps for decred and other cryptocur-
rencies. https://github.com/decred/atomicswap. [Online; accessed
27-January-2019].

[14] Apoorvaa Deshpande and Maurice Herlihy. Privacy-preserving cross-
chain atomic swaps. In International Conference on Financial
Cryptography and Data Security, pages 540–549. Springer, 2020.

[15] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. Atomic
multi-channel updates with constant collateral in bitcoin-compatible
payment-channel networks. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 801–
815, 2019.

[16] Matt Franklin and Gene Tsudik. Secure group barter: Multi-party
fair exchange with semi-trusted neutral parties. In Rafael Hirchfeld,
editor, Financial Cryptography, pages 90–102, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[17] Enrique Fynn, Alysson Bessani, and Fernando Pedone. Smart contracts
on the move. In 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 233–244. IEEE,
2020.

[18] Ethan Heilman, Sebastien Lipmann, and Sharon Goldberg. The
arwen trading protocols. In International Conference on Financial
Cryptography and Data Security, pages 156–173. Springer, 2020.

[19] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the
2018 ACM Symposium on Principles of Distributed Computing, PODC
’18, pages 245–254, New York, NY, USA, 2018. ACM. URL: http:
//doi.acm.org/10.1145/3212734.3212736, doi:10.1145/3212734.
3212736.

[20] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. Cross-chain
deals and adversarial commerce. Proc. VLDB Endow., 13(2):100–113,
October 2019.

[21] Soichiro Imoto, Yuichi Sudo, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Atomic cross-chain swaps with improved space and local
time complexity. In International Symposium on Stabilizing, Safety,
and Security of Distributed Systems, pages 194–208. Springer, 2019.

[22] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket
Kate, and Matteo Maffei. Anonymous multi-hop locks for blockchain
scalability and interoperability. Cryptology ePrint Archive, 2018.

[23] Silvio Micali. Simple and fast optimistic protocols for fair electronic
exchange. In Proceedings of the Twenty-second Annual Symposium
on Principles of Distributed Computing, PODC ’03, pages 12–19,
New York, NY, USA, 2003. ACM. URL: http://doi.acm.org/10.1145/
872035.872038, doi:10.1145/872035.872038.

[24] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and
Patrick McCorry. Sprites and state channels: Payment networks that
go faster than lightning. In International Conference on Financial
Cryptography and Data Security, pages 508–526. Springer, 2019.

[25] Zeinab Nehaı̈, François Bobot, Sara Tucci-Piergiovanni, Carole
Delporte-Gallet, and Hugues Fauconnier. A tla+ formal proof of
a cross-chain swap. In 23rd International Conference on Distributed
Computing and Networking, pages 148–159, 2022.

[26] Christos Papadimitriou. Computational Complexity. Addison-Wesley
Publishing Company, 1994.

[27] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network:
Scalable off-chain instant payments, 2016.

[28] Peter Robinson and Raghavendra Ramesh. General purpose atomic
crosschain transactions. In IEEE International Conference on
Blockchain and Cryptocurrency, ICBC 2021, Sydney, Australia, May
3-6, 2021, pages 1–3. IEEE, 2021. doi:10.1109/ICBC51069.
2021.9461132.

[29] Marcus Schaefer and Christopher Umans. Completeness in the
polynomial-time hierarchy: a compendium. Sigact News, 33(3):32–49,
2002.

[30] Narges Shadab, Farzin Houshmand, and Mohsen Lesani. Cross-chain
transactions. In 2020 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pages 1–9. IEEE, 2020.

[31] Marten Sigwart, Philipp Frauenthaler, Christof Spanring, and Stefan
Schulte. Decentralized cross-blockchain asset transfers. arXiv preprint
arXiv:2004.10488, 2020.

[32] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro
Moreno-Sánchez. Universal atomic swaps: Secure exchange of coins
across all blockchains. Cryptology ePrint Archive, 2021.

[33] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro
Moreno-Sanchez. Universal atomic swaps: Secure exchange of coins
across all blockchains. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 1299–1316. IEEE, 2022.

https://raiden.network/
https://wiki.ion.radar.tech/tech/research/submarine-swap
https://wiki.ion.radar.tech/tech/research/submarine-swap
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
http://doi.acm.org/10.1145/266420.266426
http://doi.acm.org/10.1145/266420.266426
https://doi.org/10.1145/266420.266426
https://en.bitcoin.it/wiki/Atomic_swap
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/decred/atomicswap
http://doi.acm.org/10.1145/3212734.3212736
http://doi.acm.org/10.1145/3212734.3212736
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3212734.3212736
http://doi.acm.org/10.1145/872035.872038
http://doi.acm.org/10.1145/872035.872038
https://doi.org/10.1145/872035.872038
https://doi.org/10.1109/ICBC51069.2021.9461132
https://doi.org/10.1109/ICBC51069.2021.9461132

[34] Tier Nolan. Alt chains and atomic transfers. https://bitcointalk.org/
index.php?topic=193281.msg2224949#msg2224949, 2013. [Online;
accessed 23-January-2021].

[35] Rob van Glabbeek, Vincent Gramoli, and Pierre Tholoniat. Feasibility
of cross-chain payment with success guarantees. In Proceedings of the
32nd ACM Symposium on Parallelism in Algorithms and Architectures,
pages 579–581, 2020.

[36] Yingjie Xue and Maurice Herlihy. Hedging against sore loser attacks in
cross-chain transactions. In Proceedings of the 2021 ACM Symposium
on Principles of Distributed Computing, PODC’21, page 155–164,
New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3465084.3467904.

[37] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. Atomic
commitment across blockchains. Proceedings of the VLDB Endowment,
13(9).

[38] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Elefthe-
rios Kokoris-Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and
William J Knottenbelt. Sok: Communication across distributed ledgers.
In International Conference on Financial Cryptography and Data
Security, pages 3–36. Springer, 2021.

https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://doi.org/10.1145/3465084.3467904

Appendix
9. ⌃2-Completeness

In this section, we give the complete, detailed proof
described in 6. That is, we consider the complexity of
determining whether a swap system has an atomic swap
protocol, showing that this problem is ⌃P

2 -complete. Recall
that ⌃P

2 = NPNP is the class of problems at the 2nd level of
the polynomial hierarchy that consists of problems solvable
non-deterministically in polynomial time with an NP oracle.

Our proof is based on a reduction from a restricted variant
of the 98DNF problem. An instance of 98DNF is a boolean
expression ↵ = 9x8y�(x,y), where x = (x1, ..., xk) and
y = (y1, ..., yl) are vectors of boolean variables and �(x,y)
is a quantifier-free boolean expression in disjunctive normal
form, that is �(x,y) = ⌧1 _ ⌧2 _ ... _ ⌧m, and each term
⌧g is a conjunction of literals involving different variables.
The goal is to determine whether ↵ is true. 98DNF is a
canonical ⌃P

2 -complete problem [29], [26]5. The problem
remains ⌃P

2 -complete even restricted to instances where each
term in � has only three literals. We denote this variant by
983DNF.

Throughout this section, the negation of a boolean
variable xi will be denoted x̄i. We will also use notation x̃i

for an unspecified literal of xi, that is x̃i 2 {xi, x̄i}. The
same conventions apply to the variables yj .

The restriction of 98DNF that we use in our proof,
denoted 98DNF1x, consists of instances ↵ = 9x8y�(x,y)
where each term of � includes exactly one x-literal and one
or more y-literals that ifnvolve different variables.

We first prove the following lemma:

Lemma 3. 98DNF1x is ⌃P
2 -complete.

Proof. We show how to convert a given instance ↵ =
9x8y�(x,y) of 983DNF into an instance ↵0 of 98DNF1x

such that ↵ is true iff ↵0 is true.
First, we can assume that � does not have terms with

only x-literals, since such formulas ↵ are trivially true. All
terms that have exactly one x-literal will remain unchanged.

Consider a term with two x-literals, say ⌧g = x̃p^x̃q^ỹr.
Add another variable y

0 and replace ⌧g by (x̃p ^ ỹr ^ y
0) _

(ȳ0
^ x̃q ^ ỹr). Let �0 be the boolean expression obtained

from � by this replacement, and ↵0 = 9x8y8y
0
�

0(x,y, y
0).

Then, by straightforward verification, ↵ is true for a given
truth assignment for x if and only if ↵0 is true for the same
assignment for x.

By applying these replacements, we will eventually
eliminate all terms that have two or zero x-literals, thus
converting ↵ into the 98DNF1x form.

Theorem 6. Let SwapAtomic be the decision problem of
deciding whether a swap system has an atomic protocol.
SwapAtomic is ⌃P

2 -complete.

5. Notations for this problem and its variants vary across the literature.
Our notations use the convention in [29].

Proof. According to Theorem 3, a swap system S = (D, P)
has an atomic swap protocol if and only if D has a spanning
subgraph G with the following properties: (c.1) G is piece-
wise strongly connected and has no isolated vertices, (c.2)
G dominates D, and (c.3) no subgraph H of D strictly
dominates G. This characterization is of the form 9G (¬9H :
⇡(G, H)), where ⇡(G, H) is a polynomial-time decidable
predicate, so it immediately implies that SwapAtomic is in
⌃P

2 . Thus it remains to show that SwapAtomic is ⌃P
2 -hard.

To prove ⌃P
2 -hardness, we give a polynomial-time reduc-

tion from the above-defined decision problem 98DNF1x. Let
the given instance of 98DNF1x be ↵ = 9x8y�(x,y), where
x = (x1, ..., xk) and y = (y1, ..., yl) are vectors of boolean
variables and �(x,y) = ⌧1 _⌧2 _ ..._⌧m, with each ⌧g being
a conjunction of one x-literal and one or more y-literals.
Our reduction converts ↵ into a swap system S = (D, P)
such that ↵ is true if and only if D has a spanning subgraph
G that satisfies conditions (c.1)-(c.3) from Theorem 3.

The following informal interpretation of 98DNF1x will
be helpful in understanding our reduction. Say that a truth
assignment to some variables kills a term ⌧g if it sets one of
its literals to false. A truth assignment � to the x-variables
will kill some terms, while other will survive. Thus ↵ will be
true for assigment � iff there is no assignment for the y-
variables that kills all terms that survived �. In our reduction,
the existence of this assigment � will be represented by the
existence of subgraph G. The non-existence of that kills
all terms that survived � will be represented by the non-
existence of a subgraph H that strictly dominates G.

We now describe our reduction. The digraph D will
consists of several “gadgets”. There will be 9-gadgets, which
correspond to the variables xi and will be used to set their
values, through an appropriate choices of subgraph G. Then
there is the 8-gadget, that contains “sub-gadgets” representing
the literals ỹj and the terms ⌧g . These gadgets will allow for
the values of the variables yj to be set in all possible ways.
If any setting of these values kills all terms not yet killed
by the variables xi, this gadget will contain a subgraph H

that strictly dominates G.
In addition to these gadgets, digraph D has three auxiliary

vertices a, a
0 and b. Vertices a and a

0 are connected by arcs
(a, a

0) and (a0
, a). Vertex a also has some outgoing arcs that

will be described later. Vertex b is connected by arcs to and
from all other vertices of D except a and a

0.
Next, we describe the gadgets (for now, we specify only

their vertices and arcs — the preference posets will be defined
later). The 9-gadget corresponding to xi is shown in Figure 9.
It’s constructed as follows:
— For i = 1, ..., k, create vertices xi, x̄i, zi and z̄i, with arcs

(a, xi), (a, x̄i), (a, zi), (a, z̄i), (xi, x̄i), (x̄i, xi), (xi, zi),
and (x̄i, z̄i). Throughout the proof we will use notation
z̃i for the vertex corresponding to x̃i, that is z̃i = zi if
x̃i = xi, and z̃i = z̄i if x̃i = x̄i.
The 8-gadget is shown in Figure 10. It’s constructed as

follows:
— For j = 0, ..., l, create vertices qj . For j = 1, ..., l, create

vertices yj and ȳj and arcs (qj�1, yj), (qj�1, ȳj), (yj , qj),

<latexit sha1_base64="WIvs1j/RX+gA9wOrLz7IyUZ05Pk=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCqJiHZZEMRlRXuBNpTJdNIOnUzCXMQS+ghuXCjiVnwQH8Gdb+P0stDWHwY+/v8c5pwTppwp7Xnfzsrq2vrGZm7L3d7J7+4V9g8aKjGS0DpJeCJbIVaUM0HrmmlOW6mkOA45bYbDy0nevKdSsUTc6VFKgxj3BYsYwdpatw9d1i0UvbI3FVoGfw7Fav7TlK7cj1q38NXpJcTEVGjCsVJt30t1kGGpGeF07HaMoikmQ9ynbYsCx1QF2XTUMSpZp4eiRNonNJq6vzsyHCs1ikNbGWM9UIvZxPwvaxsdVYKMidRoKsjso8hwpBM02Rv1mKRE85EFTCSzsyIywBITba/j2iP4iysvQ+O07J+Xz278YrUCM+XgCI7hBHy4gCpcQw3qQKAPj/AMLw53npxX521WuuLMew7hj5z3H+Y1kHM=</latexit>

xi

<latexit sha1_base64="q+rIxGsAFVbDMWzy/XbF+ZQJaAk=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUh338gVkomKpWLEhMi3bscslTYoOKtsVaJlohsLJ++vV/lP9rdbLP3f7EUkCGirCsZQdC8XKTbFQjHA6yXUTSWNMRnhAO5qGOKDSTWdBJ/BQK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vE6ifMdNWRgnioZkvshPOFQRnF4N+0xQovhYE0wE01khGWKBidK/yeknfF0K/yfNomkdm1bdKlQdMEcW7IEDcAQsUAZVcAZqoAEIoOAa3II748K4Me6Nh3lrxvic2QU/YDx+AIBxkdw=</latexit>

a
<latexit sha1_base64="JHR2OIiE1V8H/HjJJma4idSY+Yw=">AAAB6XicdVC7SgNBFJ31GeMrainIYBCtltndYDaVARvLRMwDkiXMTmaTIbMPZmaFEFLa2VgoYutP+B12foM2/oGTREFFD1w4nHMv99zrJ5xJhdCLMTe/sLi0nFnJrq6tb2zmtrbrMk4FoTUS81g0fSwpZxGtKaY4bSaC4tDntOEPTid+45IKyeLoQg0T6oW4F7GAEay0dI4PO7k8MpFdsEsORKbluE6xoIntoqJTgpaJpsifvL9e7T1V3yqd3HO7G5M0pJEiHEvZslCivBEWihFOx9l2KmmCyQD3aEvTCIdUeqNp0jE80EoXBrHQFSk4Vb9PjHAo5TD0dWeIVV/+9ibiX14rVYHrjViUpIpGZLYoSDlUMZycDbtMUKL4UBNMBNNZIeljgYnSz8nqJ3xdCv8nddu0jk2rauXLLpghA3bBPjgCFiiCMjgDFVADBATgGtyCO2Ng3Bj3xsOsdc74nNkBP2A8fgDg0pIN</latexit>

a
0

<latexit sha1_base64="4uY6yz4oc+JTvd61ajs8OqW1n6M=">AAAB6nicdVDLSgMxFM1Uq7W+al26CRbB1ZCZFjt1VXDjslL7gHYomTTThmYeJBmhDv0EN10o4lK/yJ1L/8S0VVDRAxcO59zLPfd6MWdSIfRmZNbWsxubua389s7u3n7hoNiWUSIIbZGIR6LrYUk5C2lLMcVpNxYUBx6nHW9ysfA7N1RIFoXXahpTN8CjkPmMYKWl5u2ADQolZCK7YtfKEJlW2SlXK5rYDqqWa9Ay0RKlevH9fP6cbTYGhdf+MCJJQENFOJayZ6FYuSkWihFOZ/l+ImmMyQSPaE/TEAdUuuky6gyeaGUI/UjoChVcqt8nUhxIOQ083RlgNZa/vYX4l9dLlO+4KQvjRNGQrBb5CYcqgou74ZAJShSfaoKJYDorJGMsMFH6O3n9hK9L4f+kbZvWmWldWaW6A1bIgSNwDE6BBaqgDi5BA7QAASNwB+7Bg8GNufFoPK1aM8bnzCH4AePlA89rkRg=</latexit>

zi
<latexit sha1_base64="4Tucop1eRTUrlFBlILHIkkkfIRc=">AAAB8HicdVBNS8NAEN1Uq7V+1Xr0slgETyFJi009Fbx4rGg/pA1ls920SzebsLsRauif0IsHRcSbP8ebR/+J21ZBRR8MPN6bYd6MHzMqlWW9GZml5ezKam4tv76xubVd2Cm2ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2PT2Z++4oISSN+oSYx8UI05DSgGCktXfZ8JNLraZ/2CyXLtJyKUytDy7TLbrla0cRxrWq5Bm3TmqNUL74f3zxnzxv9wmtvEOEkJFxhhqTs2lasvBQJRTEj03wvkSRGeIyGpKspRyGRXjoPPIUHWhnAIBK6uIJz9ftEikIpJ6GvO0OkRvK3NxP/8rqJClwvpTxOFOF4sShIGFQRnF0PB1QQrNhEE4QF1VkhHiGBsNI/yusnfF0K/yctx7SPTPvMLtVdsEAO7IF9cAhsUAV1cAoaoAkwCMEtuAcPhjDujEfjadGaMT5ndsEPGC8fklaT3Q==</latexit>

z̄i
<latexit sha1_base64="RLGq9oaC+uYgwHNP2u36J6zbPMA=">AAAB8XicbZC7SgNBFIbPeo2r0ailzWAIWIVdEU0ZEMQygrlgsoTZyWwyZHZ2mYsYlryFjYUiFja+hY9g59s4uRSa+MPAx/+fw5xzwpQzpT3v21lZXVvf2Mxtuds7+d29wv5BQyVGElonCU9kK8SKciZoXTPNaSuVFMchp81weDnJm/dUKpaIWz1KaRDjvmARI1hb6y7rhFiih3GXdQtFr+xNhZbBn0Oxmv80pSv3vdYtfHV6CTExFZpwrFTb91IdZFhqRjgdux2jaIrJEPdp26LAMVVBNp14jErW6aEokfYJjabu744Mx0qN4tBWxlgP1GI2Mf/L2kZHlSBjIjWaCjL7KDIc6QRN1kc9JinRfGQBE8nsrIgMsMRE2yO59gj+4srL0Dgt++flsxu/WK3ATDk4gmM4AR8uoArXUIM6EBDwCM/w4ijnyXl13malK8685xD+yPn4AQGIk2I=</latexit>

x̄i

<latexit sha1_base64="W+WwYHbKuQ4w5UNc7gWBU7hM9iI=">AAACEnicdVBNSyNBFOyJq5uNX9E95tJsIuplmEnCJt4Ce3FvChsVkjC+6XSSJj09Q/cbMQz5DV78K8uCB2XZqydv/oE97m/YjlFQ0YKGouo9+lWFiRQGPe/eyS18WFz6mP9UWF5ZXVsvbmwemTjVjLdZLGN9EoLhUijeRoGSnySaQxRKfhyOv8384zOujYjVD5wkvBfBUImBYIBWCoq7XeTnqKMMY1rpIqTBsLJtKI4AKYsVglC0ch6IyjQolj3Xq9arezXquX6tWWvULak2vUZtj/qu94Byq/T9779fudODoHjX7ccsjbhCJsGYju8l2MtAo2CSTwvd1PAE2BiGvGOpgoibXvYQaUq3rNKng1jbp2anWPX5RgaRMZMotJMR4Mi89mbiW14nxUGzlwmVpMgVm380SCW1+Wf90L7QnKGcWAJMC3srZSPQwNC2WLAlPCWl75Ojqut/deuHfrlVJ3PkSYl8ITvEJw3SIvvkgLQJIxfkJ7kmN86lc+X8dv7MR3PO485n8gLO7X9O2KDn</latexit>

to ⌧g’s that contain xi
<latexit sha1_base64="8NE/2vOhr0a/Ynd3I91sCuu43cQ=">AAACGHicdVCxThtBEN0zBIhJwEBJs8JGSXW5sy1sOks0pAMJA5JtHXPrtb3y3t5pdw7ZOvkzaPiRFGkoQFFad/wAJd/A2k4kEsGTRnp6b0Yz88JECoOe9+jklpY/rKyufcyvf/q8sVnY2j43caoZb7JYxvoyBMOlULyJAiW/TDSHKJT8IhwezfyLa66NiNUZjhPeiaCvRE8wQCsFhW9t5CPUUYYxLbUR0qBf+mIoDgApixWCUFYPQWejSSBKk6BQ9FyvXC0fVqjn+pV6pVa1pFz3apVD6rveHMXG7ven5x+5q5OgMG13Y5ZGXCGTYEzL9xLsZKBRMMkn+XZqeAJsCH3eslRBxE0nmz82oftW6dJerG2p2UFWfT2RQWTMOAptZwQ4MP97M/Etr5Vir97JhEpS5IotFvVSSW0Ks5RoV2jOUI4tAaaFvZWyAWhgaLPM2xD+fkrfJ+dl1z9wq6d+sVElC6yRXbJHvhKf1EiDHJMT0iSM3JCf5J48OLfOnfPL+b1ozTl/ZnbIP3CmL2bjo6w=</latexit>

to ⌧g’s that contain x̄i

<latexit sha1_base64="wteq9uI/OBEtDRWPXzPV1yQaPQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCyRJmJ2eTMbOzy8ysEJaUVjYWitj6FKl8CDufwZdwcik0+sPAx/+fw5xz/JgzpR3n08osLa+srmXXcxubW9s7+d29uooSSbFGIx7Jpk8Uciawppnm2IwlktDn2PAHV5O8cYdSsUjc6GGMXkh6ggWMEm2sqt/JF5yiM5X9F9w5FC7fx9Wv+8NxpZP/aHcjmoQoNOVEqZbrxNpLidSMchzl2onCmNAB6WHLoCAhKi+dDjqyj43TtYNImie0PXV/dqQkVGoY+qYyJLqvFrOJ+V/WSnRQ8lIm4kSjoLOPgoTbOrInW9tdJpFqPjRAqGRmVpv2iSRUm9vkzBHcxZX/Qv206J4Xz6puoVyCmbJwAEdwAi5cQBmuoQI1oIDwAE/wbN1aj9aL9TorzVjznn34JevtG4xlkS4=</latexit>

b

<latexit sha1_base64="GbsOITiX9skRMM2hkzMRWxWQxZs=">AAACLHicdVBNa1NBFJ1XP1rjV2qXbgYT0dXjvSSYdBfopssKpi3kPcJ9k5t26Hw8Zu4rDY8s+w/cC+7c+FeE4sIibv0F/gAniQUVvcPA4ZxzufeeolTSU5JcRxu3bt+5u7l1r3H/wcNHj5vbTw69rZzAkbDKuuMCPCppcESSFB6XDkEXCo+Ks72lfnSOzktr3tC8xFzDiZEzKYACNWnuZYQX5HRNloOZ8pmzmoNSiyxr3EgZXz5jp+g5XggsibehvbK34UV7MWm2kjjp9Dq7XZ7EaXfQ7fcC6AySfneXp3GyqtZw58e7t5f5+4NJ8yqbWlFpNCQUeD9Ok5LyGhxJoXDRyCqPJYgzOMFxgAY0+rxeHbvgzwMT9rQufEN8xf7eUYP2fq6L4NRAp/5vbUn+SxtXNBvktTRlRWjEetCsUjwks0yOT6VDQWoeAAgnw65cnIIDQSHfRgjh5lL+f3DYidNXcfo6bQ17bF1b7Cl7xl6ylPXZkO2zAzZign1gn9gXdh19jD5HX6Nva+tG9Ktnh/1R0fefohyq3g==</latexit>

to and from all
nodes except a and a

0

Figure 9. The construction of digraph D in the proof of ⌃P
2 -hardness. This figure shows vertices a, a0, b, and an 9-gadget for variable xi. The arcs to and

from b are shown as bi-directional arrows at b.

<latexit sha1_base64="wteq9uI/OBEtDRWPXzPV1yQaPQ0=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBsAq7IprOgI1lAuYCyRJmJ2eTMbOzy8ysEJaUVjYWitj6FKl8CDufwZdwcik0+sPAx/+fw5xz/JgzpR3n08osLa+srmXXcxubW9s7+d29uooSSbFGIx7Jpk8Uciawppnm2IwlktDn2PAHV5O8cYdSsUjc6GGMXkh6ggWMEm2sqt/JF5yiM5X9F9w5FC7fx9Wv+8NxpZP/aHcjmoQoNOVEqZbrxNpLidSMchzl2onCmNAB6WHLoCAhKi+dDjqyj43TtYNImie0PXV/dqQkVGoY+qYyJLqvFrOJ+V/WSnRQ8lIm4kSjoLOPgoTbOrInW9tdJpFqPjRAqGRmVpv2iSRUm9vkzBHcxZX/Qv206J4Xz6puoVyCmbJwAEdwAi5cQBmuoQI1oIDwAE/wbN1aj9aL9TorzVjznn34JevtG4xlkS4=</latexit>

b

<latexit sha1_base64="Gm05VTJwpWdkBgf3ADqFt0h4qkA=">AAAB6nicdVC7SgNBFJ2Nj8TER9TSwsEgWC37CGbTBW0sI5oHJEuYncwmY2YfzMwKy5I/0MZCEVu/yM7fsLZwkiio6IELh3Pu5Z57vZhRIQ3jVcstLa+s5gtrxdL6xuZWeXunLaKEY9LCEYt410OCMBqSlqSSkW7MCQo8Rjre5HTmd64JFzQKL2UaEzdAo5D6FCOppIt0cDUoVwzdsKpW3YaGbtqOXasqYjlGza5DUzfmqDT2307ypZv35qD80h9GOAlIKDFDQvRMI5ZuhrikmJFpsZ8IEiM8QSPSUzREARFuNo86hYdKGUI/4qpCCefq94kMBUKkgac6AyTH4rc3E//yeon0HTejYZxIEuLFIj9hUEZwdjccUk6wZKkiCHOqskI8Rhxhqb5TVE/4uhT+T9qWbh7r1XOz0nDAAgWwBw7AETBBDTTAGWiCFsBgBG7BPXjQmHanPWpPi9ac9jmzC35Ae/4AEtaRTg==</latexit>

yj

<latexit sha1_base64="fUbSYdymmiPtjZVRU7stznUdRuM=">AAAB8XicdVDLSsNAFJ3UR2vro+rShYNFcBWSpth0V3TjsoJ9YBvKZDptx04mYWYihNA/cOnGhSJu/Rt3/oZrF05bBRU9cOFwzr3cc68fMSqVZb0amaXlldVsbi1fWN/Y3Cpu77RkGAtMmjhkoej4SBJGOWkqqhjpRIKgwGek7U9OZ377mghJQ36hkoh4ARpxOqQYKS1dpj0fCZhM+1f9YskyrXKlXHOgZdqO61QrmpRdq+rUoG1ac5Tq+28n2cLNe6NffOkNQhwHhCvMkJRd24qUlyKhKGZkmu/FkkQIT9CIdDXlKCDSS+eJp/BQKwM4DIUuruBc/T6RokDKJPB1Z4DUWP72ZuJfXjdWQ9dLKY9iRTheLBrGDKoQzs6HAyoIVizRBGFBdVaIx0ggrPST8voJX5fC/0mrbNrHZuXcLtVdsEAO7IEDcARsUAV1cAYaoAkw4OAW3IMHQxp3xqPxtGjNGJ8zu+AHjOcPLhuUPQ==</latexit>

ȳj

<latexit sha1_base64="7/3vhp0mu5nEMsWnlq2ORCRfasU=">AAAB6nicdVDLSsNAFJ34am19VF26cLAIrkLSFJvuim5cVrQPaEOZTCft2MkkzkyEEvoHunGhiFu/yJ2/4dqF01ZBRQ9cOJxzL/fc68eMSmVZr8bC4tLySia7msuvrW9sFra2mzJKBCYNHLFItH0kCaOcNBRVjLRjQVDoM9LyRydTv3VNhKQRv1DjmHghGnAaUIyUls6vepe9QtEyrVK5VHWgZdqO61TKmpRcq+JUoW1aMxRre2/HmfzNe71XeOn2I5yEhCvMkJQd24qVlyKhKGZkkusmksQIj9CAdDTlKCTSS2dRJ/BAK30YREIXV3Cmfp9IUSjlOPR1Z4jUUP72puJfXidRgeullMeJIhzPFwUJgyqC07thnwqCFRtrgrCgOivEQyQQVvo7Of2Er0vh/6RZMu0js3xmF2sumCMLdsE+OAQ2qIAaOAV10AAYDMAtuAcPBjPujEfjad66YHzO7IAfMJ4/AAamkUY=</latexit>

qj
<latexit sha1_base64="XqLyTWfRmy1H2ZvVRxQWzu3nnAQ=">AAAB7nicdVC7SgNBFJ31lZj4iFpaOBgEG5fZ3WCSLmhjGcE8IFnC7GQ2GTP7cGZWCEv+wMbGQhFbv8fO37C2cJIoqOiBC4dz7uWee72YM6kQejUWFpeWVzLZ1Vx+bX1js7C13ZRRIghtkIhHou1hSTkLaUMxxWk7FhQHHqctb3Q69VvXVEgWhRdqHFM3wIOQ+YxgpaXWVS+9PLImvUIRmcgu2VUHItNyKk65pIldQWWnCi0TzVCs7b2dZPI37/Ve4aXbj0gS0FARjqXsWChWboqFYoTTSa6bSBpjMsID2tE0xAGVbjqLO4EHWulDPxK6QgVn6veJFAdSjgNPdwZYDeVvbyr+5XUS5VfclIVxomhI5ov8hEMVwentsM8EJYqPNcFEMJ0VkiEWmCj9oZx+wtel8H/StE3r2CydW8VaBcyRBbtgHxwCC5RBDZyBOmgAAkbgFtyDByM27oxH42neumB8zuyAHzCePwCnvZLE</latexit>

qj�1

<latexit sha1_base64="x0zyuUV2hMUzZS+QakPCu3pe6SY=">AAAB7XicdVC7SgNBFJ31lZj4iFpaOBgEq2UfwWy6oI1lBPOAZAmzk9lkzOzOMjMrhCV/YGFjoYit/2Pnb1hbOEkUVPTAhcM593LPvUHCqFSW9WosLa+sruXy64XixubWdmlntyV5KjBpYs646ARIEkZj0lRUMdJJBEFRwEg7GJ/N/PY1EZLy+FJNEuJHaBjTkGKktNTqKZT2h/1S2TItp+LUXGiZtuu51YomjmdV3Rq0TWuOcv3g7TRXvHlv9EsvvQHHaURihRmSsmtbifIzJBTFjEwLvVSSBOExGpKupjGKiPSzedopPNLKAIZc6IoVnKvfJzIUSTmJAt0ZITWSv72Z+JfXTVXo+RmNk1SRGC8WhSmDisPZ6XBABcGKTTRBWFCdFeIREggr/aCCfsLXpfB/0nJM+8SsXNjlugcWyIN9cAiOgQ2qoA7OQQM0AQZX4BbcgweDG3fGo/G0aF0yPmf2wA8Yzx9KEZKW</latexit>

⌧g
<latexit sha1_base64="R5Pgu/zYUlrTHBV9c38R6qBHUQM=">AAAB6nicdVC7SgNBFJ31lZj4iFpaOBgEq2UfwWy6oI1lRPOAZAmzk9nNkNnZZWZWCCF/oI2FIrZ+kZ2/YW3hJFFQ0QMXDufcyz33BimjUlnWq7G0vLK6lsuvF4obm1vbpZ3dlkwygUkTJywRnQBJwignTUUVI51UEBQHjLSD0dnMb18TIWnCr9Q4JX6MIk5DipHS0mXaj/qlsmVaTsWpudAybddzqxVNHM+qujVom9Yc5frB22muePPe6JdeeoMEZzHhCjMkZde2UuVPkFAUMzIt9DJJUoRHKCJdTTmKifQn86hTeKSVAQwToYsrOFe/T0xQLOU4DnRnjNRQ/vZm4l9eN1Oh508oTzNFOF4sCjMGVQJnd8MBFQQrNtYEYUF1VoiHSCCs9HcK+glfl8L/Scsx7ROzcmGX6x5YIA/2wSE4Bjaogjo4Bw3QBBhE4BbcgweDGXfGo/G0aF0yPmf2wA8Yzx8AlJFC</latexit>

pg
<latexit sha1_base64="5Z2qOCdSr23th/lfCu6M1yP7Kww=">AAAB7nicdVC7SgNBFJ31lZj4iFpaOBgEG5d9BLPpgjaWEcwDkiXMTmaTIbO7w8ysEJb8gY2NhSK2fo+dv2Ft4SRRUNEDFw7n3Ms99wacUaks69VYWl5ZXcvl1wvFjc2t7dLObksmqcCkiROWiE6AJGE0Jk1FFSMdLgiKAkbawfh85reviZA0ia/UhBM/QsOYhhQjpaU272fDE3vaL5Ut03IqTs2Flmm7nlutaOJ4VtWtQdu05ijXD97OcsWb90a/9NIbJDiNSKwwQ1J2bYsrP0NCUczItNBLJeEIj9GQdDWNUUSkn83jTuGRVgYwTISuWMG5+n0iQ5GUkyjQnRFSI/nbm4l/ed1UhZ6f0ZinisR4sShMGVQJnN0OB1QQrNhEE4QF1VkhHiGBsNIfKugnfF0K/yctx7RPzcqlXa57YIE82AeH4BjYoArq4AI0QBNgMAa34B48GNy4Mx6Np0XrkvE5swd+wHj+AKGeksA=</latexit>

pg�1.

. <latexit sha1_base64="lOySS1Tl2w2OcHTzy1DMY8TtHJ4=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAUkIs5PZZMjsw5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee72YM6kQejEyC4tLyyvZ1dza+sbmVn57pyGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3uh46jcvqZAsCs/VOKbdAA9C5jOClZbOLnqoly8gE9klu+JAZFqO65RLmtguKjsVaJlohkJ1r3j1/vT2Wuvlnzv9iCQBDRXhWMq2hWLVTbFQjHA6yXUSSWNMRnhA25qGOKCym86iTmBRK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vHaifLebsjBOFA3JfJGfcKgiOL0b9pmgRPGxJpgIprNCMsQCE6W/k9NP+LoU/k8atmkdmaVTq1B1wRxZsA8OwCGwQBlUwQmogTogYACuwS24M7hxY9wbD/PWjPE5swt+wHj8AGvMklk=</latexit>

q0

<latexit sha1_base64="RowmHRmaWhIhWnMGuIHRHGCxJzQ=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFr2EcymC9hYRjQPiEuYncwmQ2Znl5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee4OEUaks68XILSwuLa/kVwtr6xubW8XtnZaMU4FJE8csFp0AScIoJ01FFSOdRBAUBYy0g9Hx1G9fEiFpzM/VOCF+hAachhQjpaWzpBf1iiXLtJyKU3OhZdqu51YrmjieVXVr0DatGUr1vfLV+9Pba6NXfL7oxziNCFeYISm7tpUoP0NCUczIpHCRSpIgPEID0tWUo4hIP5tFncCyVvowjIUuruBM/T6RoUjKcRTozgipofztTcW/vG6qQs/PKE9SRTieLwpTBlUMp3fDPhUEKzbWBGFBdVaIh0ggrPR3CvoJX5fC/0nLMe0js3Jql+oemCMP9sEBOAQ2qII6OAEN0AQYDMA1uAV3BjNujHvjYd6aMz5ndsEPGI8fxrqSlQ==</latexit>

pm
<latexit sha1_base64="o/uZ3XBP6boVrYZCkhD6XCNxLjA=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAXEJs5PZZMjsg5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee/2EM6kQejFyC4tLyyv51cLa+sbmVnF7pyXjVBDaJDGPRcfHknIW0aZiitNOIigOfU7b/uh46rcvqZAsjs7VOKFeiAcRCxjBSktnSQ/1iiVkIrti1xyITMtxnWpFE9tFVacGLRPNUKrvla/en95eG73i80U/JmlII0U4lrJroUR5GRaKEU4nhYtU0gSTER7QrqYRDqn0slnUCSxrpQ+DWOiKFJyp3ycyHEo5Dn3dGWI1lL+9qfiX101V4HoZi5JU0YjMFwUphyqG07thnwlKFB9rgolgOiskQywwUfo7Bf2Er0vh/6Rlm9aRWTm1SnUXzJEH++AAHAILVEEdnIAGaAICBuAa3II7gxs3xr3xMG/NGZ8zu+AHjMcPakaSWA==</latexit>

p0

<latexit sha1_base64="p3gi7n3qjENhZ8FNC9Wp602hXvE=">AAAB6nicdVC7SgNBFJ2NrxhfUQsLm8EQsFpmd4PZdAEby4jmAUkIs5PZZMjsw5lZISzpbG0sFLH1W/wAO/0Av8APcJIoqOiBC4dz7uWee72YM6kQejEyC4tLyyvZ1dza+sbmVn57pyGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3uh46jcvqZAsCs/VOKbdAA9C5jOClZbOLnq8ly8gE9klu+JAZFqO65RLmtguKjsVaJlohkJ1r3j1/vT2Wuvlnzv9iCQBDRXhWMq2hWLVTbFQjHA6yXUSSWNMRnhA25qGOKCym86iTmBRK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vHaifLebsjBOFA3JfJGfcKgiOL0b9pmgRPGxJpgIprNCMsQCE6W/k9NP+LoU/k8atmkdmaVTq1B1wRxZsA8OwCGwQBlUwQmogTogYACuwS24M7hxY9wbD/PWjPE5swt+wHj8AMa8kpU=</latexit>

ql

<latexit sha1_base64="RDooi039C9/xCVezAzW+dSn28JU=">AAACGXicdZDPahRBEMZ7YtRk/bfRo5cmS8CLQ8/u4m5OCXjxGMFNArvL0tNTkzTpP0N3jWQzzGsE1Ffx4kERj/GUx8gbpGc3ARXzQcPHr6qori8tlPTI2GW0cm/1/oOHa+utR4+fPH3W3ni+723pBIyEVdYdptyDkgZGKFHBYeGA61TBQXrytqkffATnpTUfcF7AVPMjI3MpOAY0a7MJwik6XeXOalpN0rw6revXxmbgKTfZEp3doro1a3dYzLr97naPsjjpDXuDfjDdIRv0tmkSs4U6O1efGn3em7UvJpkVpQaDQnHvxwkrcFpxh1IoqFuT0kPBxQk/gnGwhmvw02pxWU23Aslobl14BumC/jlRce39XKehU3M89v/WGvi/2rjEfDitpClKBCOWi/JSUbS0iYlm0oFANQ+GCyfDX6k45o4LDGE2IdxeSu82+904eRMn75PObp8stUZekk3yiiRkQHbJO7JHRkSQc/KVfCc/oi/Rt+hn9GvZuhLdzLwgfyn6fQ3NqKaB</latexit>

from x-nodes and z-nodes

<latexit sha1_base64="EoOANfQTKtizyUOMMhULwPUY0Ww=">AAACBnicdVBNSxtRFH2jttr0w7QuS+HRILjpMJMEk+wC3bi00KiQDOHNyx19+D6G9+5IwzArEfoD3BfcuXHRUtz6G7rr//AH+JJY0NIeuHA4517uvSfNpXAYRb+DpeWVJ09X157Vnr94+Wq9/vrNnjOF5TDgRhp7kDIHUmgYoEAJB7kFplIJ++nxx5m/fwLWCaM/4zSHRLFDLTLBGXppXH83QviCVpWZNYqWozQrp1X1QZsJuKo2rjeiMGq2m70WjcK41W112p40u1Gn1aNxGM3R6G/cfjs/Sy52x/Vfo4nhhQKNXDLnhnGUY1Iyi4JLqGqjwkHO+DE7hKGnmilwSTl/o6KbXpnQzFhfGulcfThRMuXcVKW+UzE8cn97M/Ff3rDArJuUQucFguaLRVkhKRo6y4ROhAWOcuoJ41b4Wyk/YpZx9MnNQvjzKf0/2WuG8XYYf4ob/TZZYI28Je/JFolJh/TJDtklA8LJKbkk38mP4GtwFfwMrhetS8H9zAZ5hODmDtL3nbQ=</latexit>

from y-nodes

<latexit sha1_base64="m4/ez8rgsjsNnW6T7Mlb1vi1ay0=">AAACR3icdVA9bxNBEN0zX8F8OaSkWbARVKc728JOZ4mGMkg4ieQ7rLn1OFllP067cyjWyWX+AT0Sv4WGlo6/QENBhChZ24kEiLzVSk/vzczuvKJU0lOSfI0a167fuHlr63bzzt179x+0th/ue1s5gWNhlXWHBXhU0uCYJCk8LB2CLhQeFCcvV/7BO3ReWvOGFiXmGo6MnEsBFKRp621GeEpO12Q5mBmfO6uXWda8lDN+cR5zUIobO0N/hY+nAkviHeisJ3XgWWc5bbWTOOn2u7s9nsRpb9gb9APpDpNBb5encbJGe7Rz/uH9Wf5xb9r6ks2sqDQaEgq8n6RJSXkNjqRQuGxmlccSxAkc4SRQAxp9Xq9zWPKnQQkrWBeuIb5W/+yoQXu/0EWo1EDH/l9vJf7Pm1Q0H+a1NGVFaMTmoXmleAhtFSqfSYeC1CIQEE6Gv3JxDA4EheibIYTLTfnVZL8bpy/i9HXaHvXZBlvsEXvCnrOUDdiIvWJ7bMwE+8S+sR/sPPocfY9+Rr82pY3oomeH/YVG9Bv/J7Mt</latexit>

to and from
all nodes
except a and a

0

Figure 10. The construction of digraph D in the proof of ⌃P
2 -hardness. This figures shows the 8-gadget, namely the part of D that contains the vertices

that simulate setting the values of the yj -variables and the terms ⌧g . The arcs to and from b are shown as bi-directional arrows at b.

and (ȳj , qj).
— For g = 0, ..., m, create vertices pg. For g = 1, ..., m,

create vertices ⌧g and arcs (pg�1, ⌧g) and (⌧g, pg).
— Create arcs (ql, p0) and (pm, q0).
— For each g = 1, ..., m, and for each literal ỹj in ⌧g , create

arc (ỹj , ⌧g).
To complete the construction of D, we add arcs between

9-gadgets and the 8-gadget:
— For each g = 1, ..., m, if x̃i is the x-literal in ⌧g (there is

exactly one, by the definition of 98DNF1x), create arcs
(x̃i, ⌧g) and (z̃i, ⌧g).
Next, we need to define preference posets for all vertices.

As explained in Section 2, all preference posets are specified
by their list of generators. An outcome h!

in
|!

out
i of each

vertex v is specified by lists !in and !out of its in-neighbors
and out-neighbors, respectively. With this convention, the
generators of all preference posets are:
— Vertices a, a

0, and b do not have any generators.
— The generators for the 9-gadget corresponding to variable

xi are as follows. For each literal x̃i, its generators are
DEALx̃i � hb | b, ¯̃xi, T (x̃i)i and DEALx̃i � hb, ¯̃xi | b, z̃ii,
where ¯̃xi is the negation of x̃i and T (x̃i) is the set of
terms that contain literal x̃i. The generators of z̃i are
DEALz̃i � hb | bi and DEALz̃ � hb, x̃i | b, T (x̃i)i.

— For each literal ỹj , its generators are DEALỹj � hb | bi

and hb | bi � hqj�1 | qj , T (ỹj)i. The generators of qj ,
where j /2 {0, l}, are DEALqj � hb | bi and hb | bi �

hỹj | ỹj+1i, for all literals ỹj 2 {yj , ȳj} and ỹj+1 2

{yj+1, ȳj+1}.

— The generators of q0 are DEALq0 � hb | bi and hb | bi �

hpm | ỹ1i, for all ỹ1 2 {y1, ȳ1}. The generators of ql

are DEALql � hb | bi and hb | bi � hỹl | p0i, for all ỹl 2

{yl, ȳl}.
— For each term ⌧g, letting x̃i be the unique x-literal in

⌧g, its generators are: DEAL⌧g � hb, x̃i | bi, hb, x̃i | bi �

hpg�1, L | pgi for any subset L of the y-literals in ⌧g,
DEAL⌧g � hb, z̃i | bi, and hb, z̃i | bi � hpg�1, L

0
| pgi for

any non-empty subset L
0 of the y-literals in ⌧g . For each

pg, where g /2 {0, m}, its generators are DEALpg �

hb | bi and hb | bi � h⌧g | ⌧g+1i.
— The generators of p0 are DEALp0 � hb | bi and hb | bi �

hql | ⌧1i. The generators of pm are DEALpm � hb | bi and
hb | bi � h⌧m | q0i.
With this, the description of S is complete. The construc-

tion of S clearly takes time that is polynomial in the size of
↵. Applying Theorem 3, it remains to show that ↵ is true
if and only if D has a spanning subgraph G with properties
(c.1)-(c.3).

The argument is based on several ideas. One, We design
the preference posets of x̃i’s so that G is forced to choose
between two possible subsets of arcs within the 9-gadget.
The choice between these two subsets of arcs corresponds
to choosing a truth assignment for variable xi. We focus on
the literals x̃i that are set to false, since these kill the terms
where they appear. If x̃i is set to false, its arcs to the terms
⌧g’s in which the literal appears will be included in G (the
first subset), otherwise its arc to z̃i will be included in G

(the second subset).
Another idea is that vertices outside of the 8-gadget have

their preference posets defined in such a way that their arcs
in G define an outcome that is already the best for them.
Therefore, if a subgraph H that strictly dominates G does
indeed exist, we know it must appear in the 8-gadget. This
leads into the key idea of the 8-gadget. The vertices in this
gadget can have outcomes that are better than their outcomes
in G. All the arcs in these better outcomes together form the
cycle

C = q0 ! ỹ1 ! ... ! ỹl ! ql !

p0 ! ⌧1 ! ...⌧m ! pm ! q0
(2)

for some choice of the literals ỹ1, ..., ỹl. We design the
preference posets of each ⌧g so that its outcome in G can
only be improved (specifically, towards C) only if it receives
an arc from one of its literals — in other words, if it is killed
by that literal. This way, G will have a strictly dominating
subgraph H (namely cycle C) only if all terms are killed, i.e.
when ↵ is false. The formal proof follows.

()) Suppose ↵ is true. Fix some truth assignments
x 7! � for which 8y�(�,y) is true. This means that for each
truth assignment y 7! the boolean expression �(�,) is
true. For each truth assignment y 7! we can thus choose
an index h() for which term ⌧h() is true.

Using this assignment x 7! �, we construct a spanning
subgraph G of D that satisfies the three conditions (c.1)-(c.3).
G will contain all vertices from the above construction and
all arcs that connect b to all other vertices except a and a

0, in
both directions. Vertices a and a

0 will be connected by arcs
(a, a

0) and (a0
, a). This makes G spanning and piece-wise

strongly connected, with one strongly connected component
consisting of vertices a and a

0 and the other consisting of
all other vertices. So (c.1) holds.

Next, we define the arcs of G for the vertices in the
9-gadgets. For any given i, if �(xi) = 1, add to G the
following arcs: (xi, zi), (x̄i, xi), all arcs (zi, ⌧j) for terms
⌧j 2 T (xi), and all arcs (x̄i, ⌧j) for terms ⌧j 2 T (x̄i).
Symmetrically, if �(xi) = 0, add to G the following arcs:
(x̄i, z̄i), (xi, x̄i), all arcs (z̄i, ⌧j) for terms ⌧j 2 T (x̄i), and
all arcs (xi, ⌧j) for terms ⌧j 2 T (xi). (Note that we add the
arcs from false literals to the terms that they kill, and from
true literals to the corresponding nodes z̃i.) We now need to
verify conditions (c.2) and (c.3).

Condition (c.2) can be verified by routine inspection of
all nodes. For each vertex v we need to check that DEALG

v ⌫

DEALD

v . For v 2 {a
0
, b}, we have DEALG

v = DEALD

v . For
v = a, DEALG

a = ha
0
| a

0
i � DEALD

v . For v = x̃i there
are two cases: either DEALG

x̃i
= hb, ¯̃xi | b, z̃ii (if �(x̃i) =

1) or DEALG

x̃i
= hb | b, ¯̃xi, T (x̃i)i (if �(x̃i) = 0); in both

cases DEALG

x̃i
⌫ DEALD

x̃i
. For v = z̃i, similarly, either

DEALG

z̃i
= hb, x̃i | b, T (x̃i)i (if �(x̃i) = 1) or DEALG

z̃i
=

hb | bi (if �(x̃i) = 0); in both cases DEALG

z̃i
⌫ DEALD

z̃i
.

Finally, we examine the vertices in the 8-gadget. If v 2

{pg}
m
g=0 [{yj , ȳj}

l
j=1 [{qj}

l
j=0 then DEALG

v = hb | bi ⌫

DEALD

v . Consider a vertex v = ⌧g, for some g, and let x̃i

be the x-literal in ⌧g . If �(x̃i) = 1 then DEALG

⌧g
= hb, z̃i | bi,

and if �(x̃i) = 0 then DEALG

⌧g
= hb, x̃i | bi. In both cases,

DEALG

⌧j
⌫ DEALD

⌧j
.

It remains to verify condition (c.3). Let H be a subgraph
of D, and suppose that H dominates G, that is DEALH

v ⌫

DEALG

v for all vertices v in H. We will show that is possible
only if H is either equal to G or to one of the two strongly
connected components of G.

H cannot contain any arcs from a to literals x̃i, because
then it would not dominate G at vertex a. There is also no
subgraph consisting of a and a

0 that strictly dominates G. We
can thus assume that H is a subgraph of D

0 = D \ {a, a
0
}.

Let also G
0 = G\{a, a

0
}. The rest of the argument is divided

into two cases, depending on whether H includes vertex b

or not.
Suppose first that H includes vertex b. In this case, we

claim that H = G
0, and therefore H does not strictly dominate

G. To show this, observe first that since DEALH

b ⌫ DEALG

b ,
H must contain all incoming arcs of b. So H must in fact
contain all vertices of D

0. And each vertex v 2 D
0
\ {b}

does not have any outcome better than DEALG

v that does not
have arc (b, v). Therefore H must also contain all outgoing
arcs of b.

The idea now is to show that for each vertex v 2 D
0
\{b},

the outcome of v in G
0 is already best possible among the

outcomes that have incoming and outgoing arcs from b. A
more formal argument actually focuses on arcs rather than
vertices, and involves two observations: (i) For each arc
(u, v) 2 G

0, vertex v does not have any outcome that does
not include incoming arc (u, v) and is better than DEALG

v .
(ii) For each arc (u, v) 2 D

0
\G

0, vertex u does not have any
outcome that includes outgoing arc (u, v) and is better than
DEALG

u . These observations imply that DEALH

v ⌫ DEALG

v
for all v 2 D

0, implying in turn that H = G
0, as claimed.

Both observations (i) and (ii) can be established through
routine although a bit tedious inspection of all arcs in D

0.
(The process here is the same as in the NP-hardness proof
in Section 10.)

We start with the vertices in the 9-gadgets. Consider some
x̃i and suppose �(x̃i) = 1 (symmetric for when �(x̃i) = 0).
There is no outcome of x̃i better than DEALG

x̃i
= hb, ¯̃xi | b, z̃ii

that does not include the incoming arc (¯̃xi, x̃i). Also, there
is no better outcome that includes arc (x̃i, ⌧j), for each
term ⌧j 2 T (x̃i). For ¯̃xi, DEALG

¯̃xi
= hb | b, x̃i, T (¯̃xi)i. There

is no outcome of ¯̃xi better than DEALG

¯̃xi
that includes arc

(¯̃xi,
¯̃zi). For a vertex z̃i (still assuming that �(x̃i) = 1),

DEALG

z̃i
= DEALD

z̃i
= hb, x̃i | b, T (x̃i)i; there is no better

outcome that does not include (x̃i, z̃i). Lastly, there is no
outcome of ¯̃zi better than DEALG

¯̃zi
= hb | bi.

We move on to the vertices in the 8-gadget. For any vertex
v 2 {pg}

m
g=0 [{ỹj}

l
j=1 [{qj}

l
j=0 we have DEALG

v = hb | bi

and, by the earlier argument, H contains arc (v, b). But
this v does not have any outcome with outgoing arc (v, b)
that is better than DEALG

v . The argument when v = ⌧g, for
some g, is similar. If the unique x-literal in ⌧g is x̃i, then
DEALG

⌧g
= hb, z̃i | bi (if �(x̃i) = 1) or DEALG

⌧g
= hb, x̃i | bi

(if �(x̃i) = 0). In either case, as before, there is no outcome

better than DEALG

⌧g
among the outcomes of ⌧g that contain

an outgoing arc to b.
Next, we consider the case when H does not include

vertex b. First, we observe that H cannot contain any vertices
in the 9-gadgets (namely vertices x̃i and z̃i). This is because
for these vertices v there is no outcome that is better than
DEALG

v and does not include the incoming arc from b.
We can thus assume that H is a subgraph of the 8-

gadget. (This is actually the most crucial case.) Let D
00

be the subgraph of D induced by the vertices in the 8-
gadget. Observe that every vertex v in D

00 has at least
one outcome better than DEALG

v that does not include arcs
to and from b, so now we need a more subtle argument
than the one we used earlier. For v = ⌧g, there are two
cases. The first is when ⌧g has an incoming arc from its
unique x-literal x̃i (which means �(x̃i) = 0), in which
case DEALG

⌧g
= hb, x̃i | bi. By the preference poset of ⌧g,

⌧g can improve this outcome by switching to hpg�1, L | pgi,
for any set L of the y-literals in ⌧g. That is, this ⌧g can
improve its outcome regardless of whether it receives any
arcs from its y-literals. The second case is when ⌧g does
not have an incoming arc from its x-literal x̃i (which means
�(x̃i) = 1), in which case DEALG

⌧g
= hb, z̃i | bi. By the

preference poset of ⌧g, ⌧g can improve its outcome by
switching to hpg�1, L

0
| pgi for any non-empty subset L

0 of
the y-literals in ⌧g . That is, this ⌧g can improve its outcome
only if it receives an arc from at least one of its y-literals. For
v = ỹj , DEALG

ỹj
= hb | bi. By the preference poset of ỹj , ỹj

can improve its outcome by switching to hqj�1 | qj , T (ỹj)i,
which results in creating arcs to the terms in T (ỹj). For
v = qj , DEALG

qj
= hb | bi. By the preference poset of qj ,

where j /2 {0, l}, the following outcomes of qj are better than
DEALG

qj
: hyj | yj+1i, hȳj | yj+1i, hyj | ȳj+1i or hȳj | ȳj+1i.

This means the preference posets of qj�1 and qj allow only
one of yj or ȳj to make the switch described above. (This
corresponds to choosing which of these two literals is false.)
The same reasoning holds for q0 and ql, except their improved
outcomes are hpm | ỹ1i and hỹl | p0i respectively. For v = pg ,
DEALG

pg
= hb | bi. By the preference poset of pg, where

g /2 {0, m}, pg can improve its outcome by switching to
h⌧g | ⌧g+1i. This means pg can only switch given that ⌧g
makes one of switches described above (either from hb, x̃i | bi

to hpg�1, L | pgi or from hb, z̃i | bi to hpg�1, L
0
| pgi). The

same reasoning holds for p0 and pm, except their improved
outcomes are hql | ⌧1i and h⌧m | q0i respectively.

Importantly, the outcome improvements in the above
paragraph are possible only if all the vertices in D

00 together
switch their outcomes as described in the above paragraph.
This would correspond to choosing a subgraph H that strictly
dominates G (namely the cycle given in (2)). We now show
this subgraph H cannot exist, by way of contradiction.
Suppose such a subgraph H that strictly dominates G does
exist. Since H strictly dominates G, and all vertices must
improve together, we know every vertex v 2 H strictly
improves their outcome from DEALG

v . We focus on the
outcome improvements made by the term vertices ⌧1...⌧m.
Let us fix some term vertex ⌧g and let x̃i be the unique

x-literal of ⌧g .
As described above, ⌧g can improves its outcome in one

of two ways, depending on DEALG

⌧g
; specifically whether

or not (x̃i, ⌧g) 2 G. If (x̃i, ⌧g) 2 G, then ⌧g can improve its
outcome from DEALG

⌧g
by simply “switching”. Otherwise,

if (x̃i, ⌧g) 62 G, then ⌧g can only switch to an improved
outcome if it receives an arc from any of its y-literals in
H. In other words, each ⌧g must have either received its
incoming arc from its x-literal in G or received an incoming
arc from any of its y-literals in H.

Recall though that ⌧g receives an arc from one of its
literals only if that literal is set to false. This implies that
each term ⌧g is killed, either by its x-literal or one of its y-
literals, depending on how it improves its outcome. However,
if each term is killed under the assignments x 7! � and
y 7! , we know �(�,) is false, contradicting our original
assumption.

We show this more formally, starting with the terms being
killed by the assignment of the x variables. In graph G, for
each variable xi, if �(xi) = 1, then for each term ⌧g that
contains x̄i, (x̄i, ⌧g) 2 G. On the other hand, if �(xi) = 0,
then for each term ⌧g that contains xi, (xi, ⌧g) 2 G. In
both cases, ⌧g is killed. Within the swap system, this is
signified by vertex ⌧g’s preference to switch from DEALG

⌧g

to hpg�1, L | pgi.
Now we address the terms survived by the assignment

x 7! �. The surviving term vertices are those that did not
receive their incoming arcs from their x-literals in G. Since
we know each surviving term vertex ⌧g strictly improves
their outcome in H, the only remaining option is that each
⌧g has an incoming arc from one of their y-literals in H.

We use this to construct the assignment y 7! so that
�(�,) is false. This is quite simple: for each y-literal ỹj

that has an outgoing arc to a surviving term vertex in H,
we assign (ỹj) = 0. We know that must be a consistent
assignment, i.e. it cannot be the case that ỹj and ¯̃yj are both
assigned to true/false. This is because only either ỹj or ¯̃yj
are in H, by design of the preference posets of vertices qj�1

and qj . Thus, since we can construct a consistent assignment
y 7! , given the assignment x 7! �, so that every term
is killed, we know that �(�,) is false, contradicting our
original assumption.

(() Assume now that D has a spanning subgraph G that
satisfies properties (c.1) and (c.2). From G we will construct
an assignment � for the x-variables that makes 8y�(�,y)
true. Condition (c.1) implies that G cannot have any arcs
(a, x̃i) nor (a, z̃i), so vertices {a, a

0
} will form one strongly

connected component of G. As before, let D
0 = D \ {a, a

0
}

and G
0 = G \ {a, a

0
}. We focus on G

0.
We first argue that G

0 is in fact strongly connected and
it contains b. This is quite simple. Condition (c.2) states that
the outcome of b in G is at least as good as its outcome in
D, so G

0 must contain all incoming arcs of b. On the other
hand, each vertex v 2 G

0
\ {b} does not have an outcome

better than DEALD

v that includes outgoing arc (v, b) but does
not include incoming arc (b, v). Thus, G

0 must also contain

all outgoing arcs of b, which is already sufficient to make
G

0 strongly connected.
For each literal vertex x̃i, we will refer to any outcome

that contains T (x̃i) in its set of outgoing arcs as a 0-outcome
of x̃i, and to the exact outcome hb, ¯̃xi | b, z̃ii as the 1-outcome
x̃i. We start with the following claim:

Claim 1: For each i and each literal x̃i 2 {xi, x̄i}, outcome
DEALG

x̃i
is either a 0-outcome or the 1-outcome of x̃i. Further,

for at least one of xi and x̄i this outcome is a 0-outcome.

Proof. Let us fix a single 9-gadget. We first show that
for literal x̃i 2 {xi, x̄i}, the outcome DEALG

x̃i
is either a

0-outcome or the 1-outcome of x̃i. Firstly, we know the
incoming and outgoing arcs between x̃i and vertex b are
included in G

0. Next, consider any term vertex ⌧g in which
term ⌧g contains literal x̃i. If we examine the generators of
vertex ⌧g , limiting ourselves only to the outcomes that include
the arcs to and from vertex b, we see that ⌧g must receive
either an arc from x̃i or z̃i in order to satisfy condition (c.2).

We now have two cases: when ⌧g receives an arc from
x̃i and when ⌧g receives an arc from z̃i. We start with the
latter case. If ⌧g receives arc (z̃i, ⌧g), then by z̃i’s generators,
we know that z̃i must have received arc (x̃i, z̃i). This then
implies that x̃i received arc (¯̃xi, x̃i). At this point, x̃i is
exactly in the 1-outcome. We reason similarly about ¯̃xi:
starting from some vertex ⌧g for which term ⌧g contains
¯̃xi, we know that ⌧g must receive either an arc from ¯̃xi or
¯̃zi. We know ⌧g cannot receive an arc from ¯̃zi because for
¯̃zi to pay arc (¯̃zi, ⌧g), it must receive arc (¯̃xi,

¯̃zi). However,
there is no outcome for ¯̃xi that satisfies condition (c.2) in
which ¯̃xi pays both arcs (¯̃xi, x̃i) and (¯̃xi,

¯̃zi). Thus, we can
conclude that ¯̃xi is the one to pay ⌧g . We can reason about
each ⌧g 2 T (¯̃xi) in the same manner, implying that ¯̃xi in
fact pays every ⌧g 2 T (¯̃xi). This allows us to conclude that
¯̃xi is in a 0-outcome.

We move on to the former case, when ⌧g receives an
arc from x̃i. It is easy to see that if x̃i pays any term vertex
⌧g 2 T (x̃i), it must pay all term vertices in T (x̃i). This is
because each term vertex ⌧g 2 T (x̃i) must receive an arc
from either x̃i or z̃i, as previously stated. However, there
is no outcome for x̃i that satisfies condition (c.2) in which
x̃i pays ⌧g and z̃i, thus x̃i is responsible for paying all
term vertices ⌧g 2 T (x̃i). This is sufficient to show that
x̃i is in a 0-outcome. We move onto vertex ¯̃xi. Unlike the
previous case, the outcome of ¯̃xi is not directly influenced
by the outcome of x̃i. When we consider some term vertex
⌧g 2 T (¯̃xi), it is possible for ⌧g to receive an arc from
either ¯̃xi or ¯̃zi. We show that ¯̃xi ends in a 0-outcome or
the 1-outcome, respectively. The first possibility is that ⌧g
receives arc (¯̃xi, ⌧g). We apply the same reasoning as we
did for x̃i: if any ⌧g 2 T (¯̃xi) receives its arc from ¯̃xi, then
every ⌧g 2 T (¯̃xi) also receives its arc from ¯̃xi. This is again
sufficient to show that ¯̃xi is in a 0-outcome. The second
possibility is that ⌧g receives arc (¯̃zi, ⌧g). For ¯̃zi to pay this
arc, it must receive arc (¯̃xi,

¯̃zi). For ¯̃xi to pay this arc, it
must receive arc (x̃i,

¯̃xi). However, this is exactly the 1-
outcome for ¯̃xi. We note that this requires x̃i to pay arc

(x̃i,
¯̃xi), changing the outcome of x̃i. Importantly though, x̃i

remains in a 0-outcome and still satisfies condition (c.2) as
DEALx̃i � hb | b, ¯̃xi, T (x̃i)i

It is easy to see that these two cases are exhaustive by
inspection of the preference posets of ⌧g . With this, we have
shown both parts of claim (1): firstly, for each i, x̃i and ¯̃xi

are either in a 0-outcome or the 1-outcome, and secondly,
at least one of x̃i or ¯̃xi are in a 0-outcome, regardless of
which case.

For convenience, we now introduce the concept of a
pseudo-truth assignment. A pseudo-truth assignment is an
assignment ⇠ of boolean values to the x-literals (not just
variables) such that for each variable xi at most one of
⇠(xi) and ⇠(x̄i) is 1. The value of 8y�(⇠,y), for such a
pseudo-truth assignment ⇠, can be computed just like for
standard truth assignments. If ↵ has a satisfying pseudo-
truth assignment ⇠ then it also has a satisfying standard truth
assignment �: simply let �(xi) = ⇠(xi) for all i. This works
because if a term ⌧g of � is not killed by ⇠ then it is also
not killed by �.

Thus it suffices to show how we can convert G into a
pseudo-truth assignment ⇠ for the x-variables that satisfies
↵. We define ⇠ as follows: for each i, if DEALG

x̃i
is a 0-

outcome then ⇠(x̃i) = 0, and if DEALG

x̃i
is the 1-outcome

then ⇠(x̃i) = 1.

Claim 2: ⇠ is a satisfying pseudo-truth assignment for the
x-variables that satisfies ↵.

Proof. We begin by supposing the pseudo-truth assignment
⇠ is not a satisfying assignment for ↵, towards contradic-
tion. This would mean that 8y�(⇠,y) is false. We fix an
assignment of the y-variables such that �(⇠,) is false.
The idea is to now take and construct a subgraph H that
strictly dominates G, contradicting our original assumption.
Actually, H will be a subgraph of the 8-gadget of the form
given in (2), as before.

We now construct H as follows: add all vertices v 2

{pg}
m
g=0[{qj}

l
j=0[{⌧g}

m
g=1 to H. For each j, if (yj) = 1,

add ȳj , otherwise, if (yj) = 0, add yj (we include the
literal that is false). Now that we have all the vertices, we
must define the arcs. Again, H will have the form of the
cycle given in (2). For each ỹj 2 H, add arcs (qj�1, ỹj) and
(ỹj , qj). Add arcs (ql, p0) and (pm, q0). For each ⌧g 2 H,
add arcs (pg�1, ⌧g) and (⌧g, pg). Lastly, for each ỹj 2 H,
add arcs (ỹj , ⌧g) for ⌧g 2 T (ỹj).

The next step is to show that H indeed strictly dominates
G. It is easy to see that for vertices v 2 {pg}

m
g=0 [{ỹj}

l
j=1 [

{qj}
l
j=0, DEALG

v � DEALH

v holds by simple inspection of
each vertex’s preference poset. Thus, we focus on the term
vertices ⌧1, .., ⌧m. For each term vertex ⌧g , outcome DEALH

⌧g

is an improvement in comparison to DEALG

⌧g
only if (at

least) one of the two following conditions are satisfied: (1)
⌧g received its incoming arc from its x-literal in G, or (2)
⌧g receives an incoming arc from any of its y-literals in H.

We claim that one of these two conditions holds for every
term ⌧g . Suppose this is not true, towards contradiction, and

there is a term vertex ⌧g that does not satisfy either condition.
Specifically, ⌧g does not receive its incoming arc from its
x-literal in G, nor does ⌧g receive any of its incoming arcs
from any of its y-literals in H. If this were the case, then ⌧g
is actually true, contradicting the fact that �(⇠,) is false.
Let x̃i be the x-literal of ⌧g . If (x̃i, ⌧g) 62 G, then DEALG

x̃i
is

actually the 1-outcome for x̃i. This implies that ⇠(x̃i) = 1.
Since ⌧g does not satisfy the second condition, we know
it does not receive a single arc from any of its y-literals.
However, recall how we used to construct H; a y-literal
is added to H only if that literal is false in . This means
each of these y-literals of ⌧g are actually true in the original
assignment of . This implies that the term ⌧g is actually
true, contradicting �(⇠,) being false.

This contradiction gives us the fact that every term vertex
⌧g indeed improves their outcome from DEALG

⌧g
. With this,

we have proven every vertex v 2 H improves their outcome
from DEALG

v , meaning H strictly dominates G. However,
the existence of such an H contradicts our condition (c.3),
implying claim (2), that the pseudo-truth assignment ⇠ is
indeed a satisfying assignment of the x-variables for ↵.

With the truth assignment � defined, we need to show
that the non-existence of an H that strictly dominates G

implies that the expression 8y�(�,y) is true. For this, it’s
easier to show the contrapositive, namely if there existed
some assignment for the y-variables for which 8y�(�,)
is false, we could convert into a subgraph H that strictly
dominates G.

We simply employ the exact same argument we saw in
the proof for claim (2). We convert the assignment in the
exact same manner: for each yj , if (yj) = 1, add ȳj to
H, otherwise, if (yj) = 0, add yj . The remainder of H is
constructed in the exact same way as previously described.
Likewise, the proof that H indeed strictly dominates G is
the same. Since this contradicts condition (c.3), we know
that the expression 8y�(�, y) is in fact true.

10. Another Proof of NP-Hardness

In this section we give a proof of NP-hardness of
SwapAtomic that is simpler than the one in Section 5.

Theorem 7. SwapAtomic is NP-hard. It remains NP-hard
even for strongly connected digraphs.

Proof. The proof is by showing a polynomial-time reduction
from CNF. Recall that in CNF we are given a boolean
expression ↵ in conjunctive normal form, and the objective
is to determine whether there is a truth assignment that
satisfies ↵. In our reduction we convert ↵ into a swap system
S = (D, P) such that ↵ is satisfiable if and only if S has
an atomic swap protocol.

Let x1, x2, ..., xn be the variables in ↵. The negation of
xi is denoted x̄i. We will use notation x̃i for an unspecified
literal of variable xi, that is x̃i 2 {xi, x̄i}. Let ↵ = c1 _

c2 _ ... _ cm, where each cj is a clause. Without loss of

generality we assume that each literal appears in at least one
clause and that in each clause no two literals are equal or
are negations of each other.

We first describe a reduction that uses a digraph D that
is not strongly connected. Later we will show how to modify
our construction to make D strongly connected. Digraph D

is constructed as follows (see Figure 11) :
— For i = 1, ..., n, create vertices xi and x̄i, connected by

arcs (xi, x̄i) and (x̄i, xi).
— Create two vertices a, a

0 with arcs (a, a
0), (a0

, a), and
(a, xi), (a, x̄i) for all i = 1, ..., n.

— For j = 1, ..., m, create vertices cj . For each clause cj

and each literal x̃i in cj , create arc (x̃i, cj).
— Create three vertices d, d

0
, d

00 with arcs (d, d
0), (d0

, d),
(d, d

00), (d00
, d), (d0

, d
00) and (d00

, d
0). Create also arcs

(cj , d) for all j = 1, ..., m.
— Create vertex b, with arcs (cj , b) for all j = 1, ..., m and

(b, xi), (b, x̄i) for all i = 1, ..., n.
Next, we describe the preference posets Pv, for each

vertex v in D. As explained in Section 2, an outcome
h!

in
|!

out
i of a vertex v is specified by lists !in and !out

of its in-neighbors and out-neighbors. The preference posets
of the vertices in D are specified by their generators:
— Vertices a,a0, and b do not have any generators.
— For each literal x̃i, its generators are DEALx̃i �

hb, ¯̃xi | C(x̃i)i and DEALx̃i � hb | ¯̃xii, where ¯̃xi is the
negation of x̃i and C(x̃i) is the set of clauses that contain
literal x̃i.

— For each j, the generators of cj are DEALcj � hx̃i | bi

for each literal x̃i in cj .
— Vertices d, d

0
, d

00 have one generator each: DEALd �

hd
00

| d
0
i, DEALd0 � hd | d

00
i, DEALd00 � hd

0
| di.

The construction of S clearly takes time that is polyno-
mial in the size of ↵.

Applying Theorem 3, it remains to show that ↵ is
satisfiable if and only if D has a spanning subgraph G

with the following properties: (c.1) G is piece-wise strongly
connected and has no isolated vertices, (c.2) G dominates
D, and (c.3) no subgraph H of D strictly dominates G.

()) Suppose that ↵ is satisfiable, and fix some satisfying
assignment for ↵. Using this assignment, we construct a
spanning subgraph G of D that satisfies conditions (c.1)-
(c.3).

Digraph G will contain all vertices of D. For vertices
a and a

0 it will include arcs (a, a
0) and (a0

, a). For vertex
b, it will include all arcs (b, xi), (b, x̄i) and all arcs (cj , b).
Vertices d, d

0
, d

00 are connected by arcs (d, d
0), (d0

, d
00) and

(d00
, d). The remaining arcs are determined based on the

satisfying assignment. Suppose that literal x̃i is true. Then
G includes the arcs: (¯̃xi, x̃i) and (x̃i, cj) for all clauses
cj that contain literal x̃i. (Intuitively, the truth assignment
corresponds to the direction of the arc between xi and x̄i in
G.)

Digraph G is spanning and has three strongly connected
components: one is the cycle a ! a

0
! a, another one

is the cycle d ! d
0
! d

00
! d, and the third consists of

<latexit sha1_base64="RLGq9oaC+uYgwHNP2u36J6zbPMA=">AAAB8XicbZC7SgNBFIbPeo2r0ailzWAIWIVdEU0ZEMQygrlgsoTZyWwyZHZ2mYsYlryFjYUiFja+hY9g59s4uRSa+MPAx/+fw5xzwpQzpT3v21lZXVvf2Mxtuds7+d29wv5BQyVGElonCU9kK8SKciZoXTPNaSuVFMchp81weDnJm/dUKpaIWz1KaRDjvmARI1hb6y7rhFiih3GXdQtFr+xNhZbBn0Oxmv80pSv3vdYtfHV6CTExFZpwrFTb91IdZFhqRjgdux2jaIrJEPdp26LAMVVBNp14jErW6aEokfYJjabu744Mx0qN4tBWxlgP1GI2Mf/L2kZHlSBjIjWaCjL7KDIc6QRN1kc9JinRfGQBE8nsrIgMsMRE2yO59gj+4srL0Dgt++flsxu/WK3ATDk4gmM4AR8uoArXUIM6EBDwCM/w4ijnyXl13malK8685xD+yPn4AQGIk2I=</latexit>

x̄i

<latexit sha1_base64="WIvs1j/RX+gA9wOrLz7IyUZ05Pk=">AAAB6nicbZDLSsNAFIZPvNZoterSzWApuCqJiHZZEMRlRXuBNpTJdNIOnUzCXMQS+ghuXCjiVnwQH8Gdb+P0stDWHwY+/v8c5pwTppwp7Xnfzsrq2vrGZm7L3d7J7+4V9g8aKjGS0DpJeCJbIVaUM0HrmmlOW6mkOA45bYbDy0nevKdSsUTc6VFKgxj3BYsYwdpatw9d1i0UvbI3FVoGfw7Fav7TlK7cj1q38NXpJcTEVGjCsVJt30t1kGGpGeF07HaMoikmQ9ynbYsCx1QF2XTUMSpZp4eiRNonNJq6vzsyHCs1ikNbGWM9UIvZxPwvaxsdVYKMidRoKsjso8hwpBM02Rv1mKRE85EFTCSzsyIywBITba/j2iP4iysvQ+O07J+Xz278YrUCM+XgCI7hBHy4gCpcQw3qQKAPj/AMLw53npxX521WuuLMew7hj5z3H+Y1kHM=</latexit>

xi

<latexit sha1_base64="8j/yX3kT1yoNp45o/TlvMyWcDm8=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtewjmE1lwMYyAfOAZAmzs7PJmNkHM7NCWFJa2VgoYutX+B12foM2/oGTREFFD1w4nHMv99zrJYwKaRgvWm5hcWl5Jb9aWFvf2Nwqbu+0RJxyTJo4ZjHveEgQRiPSlFQy0kk4QaHHSNsbnU799iXhgsbRuRwnxA3RIKIBxUgqqeH3iyVDN6yyVbWhoZu2Y1fKiliOUbGr0NSNGUon769X+0+Nt3q/+NzzY5yGJJKYISG6ppFIN0NcUszIpNBLBUkQHqEB6SoaoZAIN5sFncBDpfgwiLmqSMKZ+n0iQ6EQ49BTnSGSQ/Hbm4p/ed1UBo6b0ShJJYnwfFGQMihjOL0a+pQTLNlYEYQ5VVkhHiKOsFS/KagnfF0K/yctSzeP9XLDLNUcMEce7IEDcARMUAE1cAbqoAkwIOAa3II77UK70e61h3lrTvuc2QU/oD1+AIXzkeI=</latexit>

d
<latexit sha1_base64="C7wdBiz2LjMWyfRH4sRPQEV9A7c=">AAAB6XicdVC7SgNBFJ31GeMrainIYBCtln0Es6kM2FgmYh6QLGF2djYZMvtgZlYIS0o7GwtFbP0Jv8POb9DGP3CSKKjogQuHc+7lnnu9hFEhDeNFm5tfWFxazq3kV9fWNzYLW9tNEacckwaOWczbHhKE0Yg0JJWMtBNOUOgx0vKGpxO/dUm4oHF0IUcJcUPUj2hAMZJKOvcPe4WioRtWyarY0NBN27HLJUUsxyjbFWjqxhTFk/fXq72n+lutV3ju+jFOQxJJzJAQHdNIpJshLilmZJzvpoIkCA9Rn3QUjVBIhJtNk47hgVJ8GMRcVSThVP0+kaFQiFHoqc4QyYH47U3Ev7xOKgPHzWiUpJJEeLYoSBmUMZycDX3KCZZspAjCnKqsEA8QR1iq5+TVE74uhf+TpqWbx3qpbharDpghB3bBPjgCJiiDKjgDNdAAGATgGtyCO22o3Wj32sOsdU77nNkBP6A9fgDmV5IT</latexit>

d
0

<latexit sha1_base64="nSvw685T0w1jWn4WnPxWOjW7VZM=">AAAB6nicbZDLSgMxFIbPeGttvVRddhMsgqsyI6JdFt24rGgv0A4lk2ba2EwyJBmhDH0D3bhQxK1P5M7XcO3C9LLQ1h8CH/9/DjnnBDFn2rjup7Oyura+kclu5vJb2zu7hb39hpaJIrROJJeqFWBNORO0bpjhtBUriqOA02YwvJzkzXuqNJPi1oxi6ke4L1jICDbWuiHdu26h5JbdqdAyeHMoVYtfF5n8w3etW/jo9CRJIioM4VjrtufGxk+xMoxwOs51Ek1jTIa4T9sWBY6o9tPpqGN0ZJ0eCqWyTxg0dX93pDjSehQFtjLCZqAXs4n5X9ZOTFjxUybixFBBZh+FCUdGosneqMcUJYaPLGCimJ0VkQFWmBh7nZw9gre48jI0TsreWfn02itVKzBTFopwCMfgwTlU4QpqUAcCfXiEZ3hxuPPkvDpvs9IVZ95zAH/kvP8Af8aQ6Q==</latexit>

cj

<latexit sha1_base64="DP6UB4OFGzbpwZey/LPCNv/8TLM=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUt3r5QvIRMVSsWJDZFq2Y5dLmhQdVLYr0DLRDIWT99er/af6W62Xf+72I5IENFSEYyk7FoqVm2KhGOF0kusmksaYjPCAdjQNcUClm86CTuChVvrQj4SuUMGZ+n0ixYGU48DTnQFWQ/nbm4p/eZ1E+Y6bsjBOFA3JfJGfcKgiOL0a9pmgRPGxJpgIprNCMsQCE6V/k9NP+LoU/k+aRdM6Nq26Vag6YI4s2AMH4AhYoAyq4AzUQAMQQME1uAV3xoVxY9wbD/PWjPE5swt+wHj8AIH1kd0=</latexit>

b

<latexit sha1_base64="q+rIxGsAFVbDMWzy/XbF+ZQJaAk=">AAAB6HicdVC7SgNBFJ2NrxhfUUtBBoNgtcxmg9lUBmwsEzAPSJYwO5lNxsw+mJkVwpLSysZCEVu/wu+w8xu08Q+cJAoqeuDC4Zx7uedeL+ZMKoRejMzC4tLySnY1t7a+sbmV395pyigRhDZIxCPR9rCknIW0oZjitB0LigOP05Y3Op36rUsqJIvCczWOqRvgQch8RrDSUh338gVkomKpWLEhMi3bscslTYoOKtsVaJlohsLJ++vV/lP9rdbLP3f7EUkCGirCsZQdC8XKTbFQjHA6yXUTSWNMRnhAO5qGOKDSTWdBJ/BQK33oR0JXqOBM/T6R4kDKceDpzgCrofztTcW/vE6ifMdNWRgnioZkvshPOFQRnF4N+0xQovhYE0wE01khGWKBidK/yeknfF0K/yfNomkdm1bdKlQdMEcW7IEDcAQsUAZVcAZqoAEIoOAa3II748K4Me6Nh3lrxvic2QU/YDx+AIBxkdw=</latexit>

a
<latexit sha1_base64="JHR2OIiE1V8H/HjJJma4idSY+Yw=">AAAB6XicdVC7SgNBFJ31GeMrainIYBCtltndYDaVARvLRMwDkiXMTmaTIbMPZmaFEFLa2VgoYutP+B12foM2/oGTREFFD1w4nHMv99zrJ5xJhdCLMTe/sLi0nFnJrq6tb2zmtrbrMk4FoTUS81g0fSwpZxGtKaY4bSaC4tDntOEPTid+45IKyeLoQg0T6oW4F7GAEay0dI4PO7k8MpFdsEsORKbluE6xoIntoqJTgpaJpsifvL9e7T1V3yqd3HO7G5M0pJEiHEvZslCivBEWihFOx9l2KmmCyQD3aEvTCIdUeqNp0jE80EoXBrHQFSk4Vb9PjHAo5TD0dWeIVV/+9ibiX14rVYHrjViUpIpGZLYoSDlUMZycDbtMUKL4UBNMBNNZIeljgYnSz8nqJ3xdCv8nddu0jk2rauXLLpghA3bBPjgCFiiCMjgDFVADBATgGtyCO2Ng3Bj3xsOsdc74nNkBP2A8fgDg0pIN</latexit>

a
0

<latexit sha1_base64="4Ng0+BFDOEN3lbr+eOZ8Hog7FXQ=">AAAB6nicdVC7SgNBFJ2NrxhfUUtBBoPEatlHMJvKgI1lguYByRJmZ2eTIbMPZmaFEFJa2lgoYutH+B12foM2/oGTREFFD1w4nHMv99zrJYwKaRgvWmZhcWl5JbuaW1vf2NzKb+80RZxyTBo4ZjFve0gQRiPSkFQy0k44QaHHSMsbnk791iXhgsbRhRwlxA1RP6IBxUgq6dwvFnv5gqEbVsmq2NDQTduxyyVFLMco2xVo6sYMhZP316v9p/pbrZd/7voxTkMSScyQEB3TSKQ7RlxSzMgk100FSRAeoj7pKBqhkAh3PIs6gYdK8WEQc1WRhDP1+8QYhUKMQk91hkgOxG9vKv7ldVIZOO6YRkkqSYTni4KUQRnD6d3Qp5xgyUaKIMypygrxAHGEpfpOTj3h61L4P2launmsm3WzUHXAHFmwBw7AETBBGVTBGaiBBsCgD67BLbjTmHaj3WsP89aM9jmzC35Ae/wARf2SQQ==</latexit>

d
00

Figure 11. The variable and clause gadgets in the proof of Theorem 7.

all other vertices. This third component is indeed strongly
connected because each clause cj has a true literal, say x̃i,
so its corresponding vertex has incoming edge (x̃i, cj). We
then have arcs from all vertices cj to b and from b to each
pair xi and x̄i. For each i, among xi and x̄i, the true literal
x̃i is connected to all clauses where it appears (and it must
appear at least once, by our assumption), and its negation
¯̃xi is connected to x̃i. So (c.1) holds.

Condition (c.2) can be verified by inspection, namely
checking that DEALD

v � DEALG

v holds for each vertex
v. For example, consider some variable xi and assume
that xi is true (the case when xi is false is symmet-
ric). Then DEALG

xi
= hb, x̄i | C(xi)i � DEALD

xi
, and

DEALG

x̄i
= hb | xii � DEALD

x̄i
. Next, consider some clause

cj . Since our truth assignment satisfies cj , cj has some
true literal x̃i. Then G will have arc (x̃i, cj). Denoting
by T (cj) the set of true literals in cj , we then have
DEALG

cj
= hT (cj) | bi ⌫ hx̃i | bi � DEALD

cj
. Checking

that DEALD

v � DEALG

v holds for v 2 {a, a
0
, b, d, d

0
, d

00
}

is straighforward. Thus, condition (c.2) is verified.
To establish condition (c.3), let H be a subgraph of

D that dominates G, that is DEALH

v ⌫ DEALG

v for each
vertex v 2 H. We claim that then in fact we must have
H = G, which will imply (c.3). This claim follows from
the following two observations: (i) For each arc (u, v) 2 G,
vertex v does not have any outcome that does not include
incoming arc (u, v) and is better than DEALG

v . (ii) For each
arc (u, v) 2 D \ G, vertex u does not have any outcome that
includes outgoing arc (u, v) and is better than DEALG

u .
These observations can be verified by inspection. Starting

with a, for each literal x̃i, there is no outcome of a that
is better than DEALG

a that includes arc (a, x̃i) or does
not include arc (a0

, a). For a
0, there is no outcome better

than DEALG

a = ha | ai that does not include arc (a, a
0).

Consider some xi, and suppose that xi is true in our
truth assignment. There is no outcome of xi better than
DEALG

xi
= hb, x̄i | C(xi)i that does not include arcs (b, xi)

and (x̄i, xi), or that includes arc (xi, x̄i). Regarding x̄i, there
is no outcome of x̄i better than DEALG

x̄i
that does not have

arc (b, x̄i) or that has any arc (x̄i, cj), for some clause cj .
Next, consider arcs between literals and clauses. For a clause
cj we have DEALG

cj
= hT (cj) | bi. There is no outcome of

cj that misses one of the arcs from T (cj) or includes arc
(cj , d) and is better than hT (cj) | bi. (And we have already

showed that in H, vertex cj cannot have arcs from its false
literals.) There is also no outcome of b without arc (cj , b)
better than DEALG

b . The verification of the two observations
for the arcs between d, d

0 and d
00 can be carried out in the

same manner.
(() Assume now that D has a spanning subgraph G that
satisfies properties (c.1) and (c.2). (We will not use (c.3) for
now). From G we will construct a satisfying assignment for ↵.
Condition (c.1) implies that G cannot have any arcs (a, x̃i),
so vertices a, a

0 will form one strongly connected component
of G. Similarly, G cannot have any arcs (cj , d), so vertices
d, d

0
, d

00 will also form a strongly connected component. In
the rest of the argument we focus on the remaining vertices.

For each literal x̃i, since DEALG

x̃i
⌫ DEALD

x̃i
, and also

using the preferences of x̃i, we obtain that G must have arc
(b, x̃i). Similarly, using the preferences of b, G must contain
all arcs (cj , b). (This also follows from the fact that cj’s
cannot be singleton strongly connected components of G.)
This means that all vertices b, x̃i and cj are in the same
connected component of G which, by property (c.1), must
be strongly connected.

From the above paragraph, by strong connectivity, for
each i either xi or x̄i must have an arc to some clause vertex.
Also, since DEALG

xi
⌫ DEALD

xi
, if xi has an arc to a clause

vertex then G must have arc (x̄i, xi) and G cannot have arc
(xi, x̄i). In turn, since DEALG

x̄i
⌫ DEALD

x̄i
, x̄i has no arcs in

G to any clause vertices. Summarizing, we have this: exactly
one of arcs (xi, x̄i) or (x̄i, xi) is in G, and if (x̃i,

¯̃xi) is in
G then x̃i does not have any arcs to clause vertices. This
allows us to define a satisfying assignment, as follows. If
G has arc (x̄i, xi), set xi to true, and if G has arc (xi, x̄i),
then set xi to false.

Using condition (c.1), in G each vertex cj must have at
least one incoming arc from some literal x̃i in cj . By the
previous paragraph, this literal is true in our truth assignment,
so it satisfies cj . This establishes that all clauses are satisfied.

To prove the second statement in the lemma, we modify
our construction. Note that in the above proof we did not
use property (c.3) in the (() implication. If D is strongly
connected, then it’s itself a candidate for G, so the modified
construction will need to rely on property (c.3) somehow.

This modification is in fact quite simple. Add arcs from
all literal vertices x̃i to a, and set the preferences of a so that
it prefers to drop the arcs to and from these literal vertices to

form a coalition with a
0. We apply the same trick to vertex d:

it will have arcs going back to all cj’s, but it will be happy
to drop these arcs, as well as the arc from d

00, in exchange
for dropping the arc to d

0. Then in the proof for implication
(() we use condition (c.3) to argue that the arcs from a

to all x̃i’s will not be in G, for otherwise a subgraph D

consisting of a, a
0 and the arcs between them would strictly

dominate G. For the same reason, G will not have arcs from
d to any cj .

Comment: The NP-hardness result in Theorem 7 holds
even if we require that preference posets are specified by
listing all preference pairs (including the generic ones). This
can be shown by modifying the construction so that all
vertices in D have constant degree, and thus all preference
posets will have constant size. To this end, we can use a
variant of CNF where each clause has three literals and each
variable appears at most three times. Then the only vertices
of unbounded degree will be a, b, and d. For a, its set of
outgoing arcs can be replaced by a chain of vertices each
with one outgiong arc to one outneighbor of a. The same
trick applies to the arcs of b and d.

	1 Introduction
	2 Swap Systems
	3 Herlihy's Swap Model
	4 A Characterization of Swap Systems with Atomic Protocols
	5 NP-Hardness
	6 2-Completeness
	7 Related Works
	8 Conclusion
	References
	9 2-Completeness
	10 Another Proof of NP-Hardness

