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Abstract. We consider the localization game played on graphs in which a cop tries
to determine the exact location of an invisible robber by exploiting distance probes.
The corresponding graph parameter ζ(G) for a given graph G is called the localization
number. In this paper, we improve the bounds for dense random graphs determining
an asymptotic behaviour of ζ(G). Moreover, we extend the argument to sparse graphs.

1. Introduction

Graph searching focuses on the analysis of games and graph processes that model
some form of intrusion in a network and efforts to eliminate or contain that intrusion.
One of the best known examples of graph searching is the game of Cops and Robbers,
wherein a robber is loose on the network and a set of cops attempts to capture the
robber. For a book on graph searching see [4].

In this paper we consider the Localization Game that is related to the well studied
Cops and Robbers game. A robber is located at a vertex v of a graph G. In each round,
a cop can ask for the graph distance between v and vertices W = {w1, w2, . . . , wk},
where a new set of vertices W can be chosen at the start of each round. The cops win
immediately if the W -signature of v, that is, the vector of distances (d1, d2, . . . , dk),
where di = d(si, v) is the distance between si and vi, is sufficient to determine v.
Otherwise, the robber will move to a neighbour of v and the cop will try again with a
(possibly) different test set W .

Given G, the localization number, written ζ(G), is the minimum k so that the cop
can eventually locate the robber using sets W of size k. The localization game was
introduced for one probe (k = 1) in [11, 12] and was further studied in [6, 7, 5, 9, 3].
The localization number is related to the metric dimension of a graph, in a way that
is analogous to how the cop number is related to the domination number. The metric
dimension of a graph G, written β(G), is the minimum number of probes needed in the
localization game so that the cop can win in one round. It follows that ζ(G) ≤ β(G),
but in many cases this inequality is far from tight.

In this paper we present results obtained for the binomial random graph G(n, p).
More precisely, G(n, p) is a distribution over the class of graphs with vertex set [n] in

which every pair {i, j} ∈
(

[n]
2

)

appears independently as an edge in G with probability p.
Note that p = p(n) may (and usually does) tend to zero as n tends to infinity. We say
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that G(n, p) has some property asymptotically almost surely or a.a.s. if the probability
that G(n, p) has this property tends to 1 as n goes to infinity.

The localization number for dense random graphs (diameter two case) was studied
in [8]. The results obtained in [8] can be summarized as follows. (See Section 3.1 for
asymptotic notation that we use below.) If d := pn = nx+o(1) for some x ∈ (1/2, 1),
then the following holds a.a.s. for G ∈ G(n, p):

(1 + o(1))(2x− 1)
n log n

d
≤ ζ(G) ≤ (1 + o(1))f(x)

n log n

d
,

where

f(x) :=

{

x if 2/3 < x < 1

1− x/2 otherwise.

Hence, the order of ζ(G) is determined for this range of d. If d = pn = n1+o(1) and
p ≤ 1− 3 log log n/ log n, then the following holds a.a.s. for G ∈ G(n, p):

ζ(G) ∼ 2 log n

log(1/ρ)
,

where

ρ := p2 + (1− p)2.

The asymptotic behaviour of ζ(G) is determined for such dense graphs.

In this paper, we improve the bounds for dense graphs showing that if d := pn =
nx+o(1) for some x ∈ (1/2, 1), then a.a.s. ζ(G(n, p)) ∼ xn log n/d. Our proofs can be
easily generalized so we extend our results to cover sparser graphs. The main results
are stated in Section 2. Notation and some auxiliary observations are presented in
Section 3. Section 4 provides a convenient reformulation of the game so that it can
be viewed as a combinatorial game. Finally, lower and upper bounds are proved in
Section 5 and, respectively, Section 6.

2. Results

Recall that the asymptotic behaviour of the localization number is already determined
for very dense graphs and so we may concentrate on d = o(n). Our results are slightly
stronger than what is stated below but our goal is to summarize the most important
consequences. The reader is directed to Sections 5 and 6 for more details. The first
theorem below concentrates on random graphs with diameter i + 1 and the average
degree not too close to the threshold where the diameter drops to i. This result follows
immediately from Theorem 5.1 and Theorem 6.1.

Theorem 2.1. Suppose that d := pn is such that log n � d � n. Suppose that
i = i(n) ∈ N is such that di � n and di+1/n− 2 log n → ∞. Then, the following holds
a.a.s. for G ∈ G(n, p):

(log d− 3 log log n)
n

di
≤ ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)

n

di
.
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As a result, if d ≥ (log n)ω for some ω = ω(n) → ∞ as n → ∞, then

ζ(G) ∼ n log d

di
.

In particular, if there exists i ∈ N such that d = nx+o(1) for some x ∈ ( 1
i+1

, 1
i
), then

ζ(G) ∼ xn log n

di
.

Before we move to our next result, let us mention about the relationship between
ζ(G) and β(G). The bounds for β(G) obtained in [2] are quite technical but for the
range of d covered by Theorem 2.1 we see that the following holds a.a.s. for G ∈ G(n, p):

(1 + o(1))
n log(di)

di
≤ β(G) ≤ (1 + o(1))

n log n

di
.

An upper bound for ζ(G) obtained in [8] when d = nx+o(1) for some x ∈ (2/3, 1) was
matching a lower bound for β(G) (and their lower bound for ζ(G) was much smaller).
Hence, they conjectured that for this range of d we have ζ(G) < β(G). Of course, it is
still plausible but we showed that their upper bound for ζ(G) was correct and so the
two graph parameters are not separated. On the other hand, for sparser graphs (of
diameter at least 3; i ≥ 2) they are clearly separated; it follows that ζ(G) < β(G). In
fact, for very sparse graphs, say for d = log6 n, a.a.s. ζ(G) = Θ(n log log n/di) whereas
β(G) = Θ(n log n/di). The ratio ζ(G)/β(G) = Θ(log log n/ log n) → 0 as n → ∞.

We are less precise once we get closer to the threshold where the diameter drops
from i + 1 to i. If c = c(n) := di/n = Θ(1), then we only determine the order of
ζ(G). When c → ∞ as n → ∞, then the upper bound for ζ(G) does not match the
corresponding lower bound. Thus, determining the behaviour of the localization number
when c = Ω(1) remains an open problem. Below, we state the result for c = Θ(1) and
we direct the reader for more details on the case when c → ∞ to Sections 5 and 6. This
result follows immediately from Theorem 5.1 and Theorem 6.2.

Theorem 2.2. Suppose that d := pn is such that log3 n � d � n. Suppose that
i = i(n) ∈ N is such that c = c(n) := di/n → A ∈ R+. Then, the following holds a.a.s.
for G ∈ G(n, p):

(log d− 3 log log n)
1

A
≤ ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)

eA

1− e−A
.

As a result, if d ≥ (log n)3+ε for some ε > 0, then

ζ(G) = Θ

(

n log d

di

)

.

3. Notation and Probabilistic Preliminaries

In this section we give a few preliminary results that will be useful for the proof of
our main result. First, we introduce standard asymptotic notation, then we state a
specific instance of Chernoff’s bound that we will find useful. Finally, we mention some
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specific expansion properties that G(n, p) has and state the well-known result about the
diameter of G(n, p).

3.1. Notation and Convention. Given two functions f = f(n) and g = g(n), we
will write f = O(g) if there exists an absolute constant c such that f ≤ cg for all n,
f = Ω(g) if g = O(f), f = Θ(g) if f = O(g) and f = Ω(g), and we write f = o(g)
or f � g if the limit limn→∞ f/g = 0. In addition, we write f = ω(g) or f � g if
g = o(f), and unless otherwise specified, ω will denote an arbitrary function that is
ω(1), assumed to grow slowly. We also will write f ∼ g if f = (1 + o(1))g.

For a vertex v ∈ V of some graph G = (V,E), let S(v, i) and N (v, i) denote the set
of vertices at distance i from v and the set of vertices at distance at most i from v,
respectively. For any V ′ ⊆ V , let S(V ′, i) =

⋃

v∈V ′ S(v, i) and N (V ′, i) =
⋃

v∈V ′ N (v, i).
Through the paper, all logarithms with no subscript denoting the base will be taken

to be natural. Finally, as typical in the field of random graphs, for expressions that
clearly have to be an integer, we round up or down but do not specify which: the choice
of which does not affect the argument.

3.2. Concentration inequalities. Throughout the paper, we will be using the follow-
ing concentration inequality. Let X ∈ Bin(n, p) be a random variable with the binomial
distribution with parameters n and p. Then, a consequence of Chernoff’s bound (see
e.g. [10, Corollary 2.3]) is that

P(|X − EX| ≥ εEX)) ≤ 2 exp

(

−ε2EX

3

)

(1)

for 0 < ε < 3/2.

3.3. Expansion properties. In this paper, we focus on dense random graphs, that
is, graphs with average degree asymptotic to d := pn � log n. Such dense random
graphs will have some useful expansion properties that hold a.a.s. We will use the
following two technical lemmas. The first one is proved in [2] but we include the proof
for completeness.

Lemma 3.1 ([2]). Let ω = ω(n) be a function tending to infinity with n such that ω ≤
(log n)4(log log n)2. Then the following properties hold a.a.s. for G = (V,E) ∈ G(n, p).
Suppose that ω log n ≤ d := pn = o(n). Let V ′ ⊆ V with |V ′| ≤ 2 and let i = i(n) ∈ N

be such that di = o(n). Then,

|S(V ′, i)| =
(

1 +O

(

1√
ω

)

+O

(

di

n

))

di|V ′|.

In particular, for every x, y ∈ V (x 6= y) we have

|S(x, i) \ S(y, i)| =
(

1 +O

(

1√
ω

)

+O

(

di

n

))

di.

For the next lemma we need to assume that our random graph is slightly denser,
namely, that d := pn � log3 n.
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Lemma 3.2. Let ω′ = ω′(n) be a function tending to infinity with n such that ω′ ≤
(log n)2(log log n)2. Then the following properties hold a.a.s. for G = (V,E) ∈ G(n, p).
Suppose that ω′ log3 n ≤ d := pn = o(n). Suppose that i = i(n) ∈ N is such that
c = c(n) := di/n = Ω(1) and c ≤ 3 log n. Then, for every x, y ∈ V (x 6= y) we have

|S(x, i) \ S(y, i)| =
(

1 +O

(

1√
ω′

))

n(1− e−c)e−c,

provided that c ≤ log n− 4 log log n. For log n− 4 log log n ≤ c ≤ 3 log n, we have

|S(x, i) \ S(y, i)| = O
(

log4 n
)

.

Proof of Lemma 3.1. We will show that a.a.s. for every V ′ ⊆ V with |V ′| ≤ 2 and i ∈ N

we have the desired concentration for |S(V ′, i)|, provided that di = o(n). The statement
for any pair of vertices x, y will follow immediately (deterministically) from this.

In order to investigate the expansion property of neighbourhoods, let Z ⊆ V , z =
|Z| = o(n/d), and consider the random variable X = X(Z) = |N (Z, 1)|. We will bound
X in a stochastic sense. There are two things that need to be estimated: the expected
value of X, and the concentration of X around its expectation.
Since for x = o(1) we have (1− x)z = e−xz(1+O(x)) and also e−x = 1− x+O(x2), it is

clear that

E[X] = n−
(

1− d

n

)z

(n− z)

= n− exp

(

−dz

n
(1 +O(d/n))

)

(n− z)

= dz(1 +O(dz/n)), (2)

provided dz = o(n). It follows from Chernoff’s bound (1), applied with ε = 2/
√
ω, that

the expected number of sets V ′ with |V ′| ≤ 2 satisfying
∣

∣|N (V ′, 1)| − E [ |N (V ′, 1)| ]
∣

∣ > εd|V ′|
is at most

∑

z∈{1,2}

2nz exp

(

− ε2zd

3 + o(1)

)

≤
∑

z∈{1,2}

2nz exp

(

−ε2zω log n

3 + o(1)

)

= o(1),

since d ≥ ω log n. Hence the statement holds for i = 1 a.a.s.
Now, we will estimate the cardinalities of N (V ′, i) up to the i’th iterated neighbour-

hood, provided di = o(n) and thus i = O(log n/ log log n). It follows from (2) and (1)
(with ε = 4(ω|Z|)−1/2) that in the case ω log n/2 ≤ |Z| = o(n/d) with probability at
least 1− n−3

|N (Z, 1)| = d|Z|
(

1 +O (d|Z|/n) +O
(

(ω|Z|)−1/2
))

,

where the bounds in O() are uniform. As we want a result that holds a.a.s., we may
assume this statement holds deterministically, since there are only O(n2 log n) choices
for V ′ and i. Given this assumption, we have good bounds on the ratios of the cardinal-
ities of N (V ′, 1), N (N (V ′, 1), 1) = N (V ′, 2), and so on. Since i = O(log n/ log log n)
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and
√
ω ≤ (log n)2(log log n), the cumulative multiplicative error term is

(1+O(d/n) +O(1/
√
ω))

i
∏

j=2

(

1 +O
(

dj/n
)

+O
(

ω−1/2d−(j−1)/2
))

= (1 +O(1/
√
ω) +O(di/n))

i−3
∏

j=7

(

1 +O
(

log−3 n
))

= (1 +O(1/
√
ω) +O(di/n)),

and the proof is complete. �

Proof of Lemma 3.2. Fix any x, y ∈ V (x 6= y). Since d = o(n) and di = Ω(n), it
follows that i ≥ 2. We expose edges around vertices x and y to get N ({x, y}, i − 1).
Note that di−1 = di/d = cn/d = O(n log n/d) = O(n/(ω′ log2 n)) = o(n). Hence, by
Lemma 3.1 applied with ω = ω′ log2 n, we may assume that

|S(x, i− 1) \ S(y, i− 1)| =

(

1 +O

(

1√
ω

)

+O

(

di−1

n

))

di−1

=

(

1 +O

(

1√
ω′ log n

)

+O

(

1

ω′ log n

))

di−1

=

(

1 +O

(

1√
ω′ log n

))

di−1.

Similarly,

|S(y, i− 1)| =
(

1 +O

(

1√
ω′ log n

))

di−1.

Let X = X(x, y) = |S(x, i) \ S(y, i)|. It is clear that v ∈ V \ N ({x, y}, i − 1) belongs
to S(x, i) \ S(y, i) if and only if v has a neighbour in S(x, i− 1) \ S(y, i− 1) but has no
neighbour in S(y, i− 1). It follows that

E[X] =
(

n− |N ({x, y}, i− 1)|
)

(

1− (1− p)|S(x,i−1)\S(y,i−1)|
)

(1− p)|S(y,i−1)|.

Since

(1− p)

(

1+O
(

1√
ω′ logn

))

di−1

= exp

(

−
(

1 +O

(

1√
ω′ log n

))

di

n

)

= exp

(

−c+O

(

c√
ω′ log n

))

= e−c exp

(

O

(

1√
ω′

))

= e−c

(

1 +O

(

1√
ω′

))

,
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we get that

E[X] =

(

1 +O

(

di−1

n

))

n(1− e−c)e−c

(

1 +O

(

1√
ω′

))

=

(

1 +O

(

1√
ω′

))

n(1− e−c)e−c.

Suppose first that c ≤ log n − 4 log log n so that E[X] ≥ (1 + o(1)) log4 n. It follows
from Chernoff’s bound (1), applied with ε = 1/

√
ω′ ≥ (log n)−1(log log n)−1, that

X =

(

1 +O

(

1√
ω′

))

n(1− e−c)e−c

with probability at least

1− exp
(

−Θ(ε2E[X])
)

= 1− exp
(

− Ω((log n)2/(log log n)2)
)

= 1− o(n−2).

The desired property holds by the union bound taken over all pairs x, y.
For log n−4 log log n < c ≤ 3 log n, we have E[X] ≤ (1+o(1)) log4 n. We may couple

the binomial random variable X with another random variable Y ≥ X with expectation
equal to (1 + o(1)) log4 n. Then, we may use Chernoff’s bound (1) with, say, ε = 1 to
get that with the desired probability X ≤ Y ≤ (2 + o(1)) log4 n. (Alternatively, one
could use a more general version of Chernoff’s bound that allows ε ≥ 3/2.) The desired
bound for X = X(x, y) holds a.a.s. for all pairs of x, y. �

Remark 3.3. Let us mention how we are going to apply Lemma 3.1 (or other properties
that hold a.a.s.) in the paper. This is a standard technique in the theory of random
graphs but it is quite delicate. We wish to use the expansion properties guaranteed
a.a.s. by Lemma 3.1, but we also wish to avoid working in a conditional probability
space. Thus, we will use an unconditioned probability space, but we will provide an
argument that assumes we have the expansion properties of Lemma 3.1. Since these
properties hold a.a.s., the measure of the set of outcomes in which our argument does
not apply to is o(1), and thus can be safely excised at the end of the argument.

More succinctly, suppose that we have two events A,B where we have already shown
that P(B) = 1 − o(1) and we wish to argue that P(A | B) = o(1). Because P(A | B) ≤
P(A)/P(B), it suffices now to show that P(A) = o(1).

3.4. Diameter of G(n, p). We will use the following well-known result.

Lemma 3.4 ([1], Corollary 10.12). Suppose that d := pn � log n and

di+1/n− 2 log n → ∞ and di/n− 2 log n → −∞.

Then the diameter of G ∈ G(n, p) is equal to i+ 1 a.a.s.

4. Reformulation of the Game

The localization game we investigate in this paper involves an invisible robber but
it can be reformulated so that it becomes a complete information combinatorial game.
After such reformulation, it will be easier to analyze the game.
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LetG = (V,E) be a connected graph. Given a set S ⊆ V of size k, S = {s1, s2, . . . , sk},
and a vertex v ∈ V , we say the S-signature of v is the vector d = d(S, v) = (d1, d2, . . . , dk)
where di = d(si, v) for each 1 ≤ i ≤ k is the distance from si to v. Then the localization
game with k sensors is a game played with two players, the cops and the robber. In the
first round, the cops choose a set S1 ⊆ V , |S1| = k (called the sensor locations), the
robber chooses any vertex v1 ∈ V , and then the cops receive the S1-signature of v1, say
d1. If the S1-signature of v1 is sufficient to determine the location of the robber, the
cops win, otherwise the game continues to the next round. Then, in round i, the cops
choose a new set Si ⊆ V , and the robber chooses a vertex vi ∈ N (vi−1, 1) as her new
location, and the cops learn the Si-signature of vi, say di.

We call the sequence (d1,d2, . . . ,di) the info trail of the walk (v1, v2, . . . , vi) with
respect to sensor locations (S1, S2, . . . , Si). Then the cops win in round i if the info trail
of the robber is sufficient to determine the location of the robber, and otherwise the
game proceeds to round i+ 1. More precisely, the cops win in round i if for every two
walks W = (w1, w2, . . . , wi), X = (x1, x2, . . . , xi), both with info trail (d1,d2, . . . ,di)
with respect to (S1, S2, . . . , Si), we have wi = xi.

The localization number of the graph G, denoted ζ(G) is defined to be the least
integer k such that the cops can win the localization game with k sensors in finite time,
regardless of the strategy of the robber.

Since the definition of localization number requires the cops to be able to win in finite
time regardless of the strategy of the robber, we can view this problem equivalently as
follows: when the cops choose S1, we partition the vertex set V into R1,1∪R1,2∪. . .∪R1,`1

such that the sets R1,j are the equivalence classes of vertices in V that have the same
S1-signature for 1 ≤ j ≤ `1. Then, instead of choosing a specific location, the robber
can choose some equivalence class R1,j1 . Then once the cops choose S2, we partition the
set N (R1,j1 , 1) into equivalence classes R2,1∪R2,2∪. . .∪R2,`2 so that every vertex in R2,j

has the same S2-signature. Then the robber chooses a set R2,j2 . Iteratively, in round i,
once the cops choose Si, this gives the partition N (Ri−1,ji−1

, 1) = Ri,1 ∪Ri,2 ∪ . . .∪Ri,`i

with every vertex in Ri,j having the same Si signature, then the robber chooses some
Ri,ji . In this version of the game, the cops win in round i if the robber is forced to
choose a set Ri,ji with only one vertex, that is, |Ri,ji | = 1.
It can be seen that these two formulations of the localization game are equivalent in

the sense that if the robber performs the walk (v1, v2, . . . , vi) in response to sensor loca-
tions (S1, S2, . . . , Si), this is equivalent to the robber choosing sets (R1,j1 , R2,j2 , . . . , Ri,ji),
and if there is enough information to determine that the robber is at vi at time i, it must
be because Ri,ji = {vi} has only one element. Conversely, if the robber chooses sets
(R1,j1 , R2,j2 , . . . , Ri,ji) in response to the cop choosing sensor locations (S1, S2, . . . , Si),
then there exists at least one walk (v1, v2, . . . , vi) with vk ∈ Rk,jk for each 1 ≤ k ≤ i,
and if |Ri,ji | = 1, we must have Ri,ji = {vi} and every walk that shares an info trail
with (v1, v2, . . . , vi) must have terminal vertex vi, so the cops locate the robber. Thus,
the two formulations are equivalent.

5. Lower Bound
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In this section, we will prove a lower bound. Our upper bound of o(n log log n) for
di is not best possible. For di = Ω(n) we do not manage to determine the asymptotic
behaviour of ζ(G) and so we content ourselves with a slightly weaker bound.

Theorem 5.1. Suppose that d := pn is such that log n � d � n. Let i = i(n) ∈ N

be the largest integer i such that di � n log log n. Suppose that di+1/n − 2 log n → ∞.
Then the following holds a.a.s. for G ∈ G(n, p):

ζ(G) ≥ (log d− 3 log log n)
n

di
.

We begin by bounding the number of vertices that are diametrically opposed to all
the vertices in the set of sensors. (Two vertices v, w are diametrically opposed if the
distance between them equals the diameter.) Recall that by Lemma 3.4, G has diameter
at least i+ 1 a.a.s. but the lemma below provides a stronger result.

Lemma 5.2. Suppose that d := pn is such that log n � d � n. Let i = i(n) ∈ N be
the largest integer i such that di � n log log n. Let

s :=
(

log d− 3 log log n
) n

di
and r :=

n log3 n

d
.

Then the following holds a.a.s. for G = (V,E) ∈ G(n, p): for every set S ⊆ V with
|S| = s, we have

|V \ N (S, i)| = n− |N (S, i)| ≥ r/2.

Proof. Let S ⊆ V be a set of size s. We will expose edges incident to S in order to
determineN (S, i−1). Note that for each v ∈ S, we haveN (v, i−1) = {v}∪⋃i−1

j=1 S(v, j),
so that by Lemma 3.1, we may assume that

|N (v, i− 1)| = 1 +
i−1
∑

j=1

|S(v, j)|

= 1 +
i−1
∑

j=1

(

1 + o

(

1

log n

))

dj

=

(

1 + o

(

1

log n

))

di−1,

where the last equality follows from the fact that dj = o(dj+1/ log n) for all 1 ≤ j < i−1.
(See Remark 3.3 to see how we apply the lemma.) Thus

|N (S, i− 1)| =
∣

∣

∣

∣

∣

⋃

v∈S

N (v, i− 1)

∣

∣

∣

∣

∣

≤
(

1 + o

(

1

log n

))

di−1s.

Our goal is to determine the size of set R = R(S) := V \ N (S, i), the set of vertices
that are at distance at least i + 1 from every vertex of S. Note that at this point
edges within N (S, i − 1) as well as edges between N (S, i − 2) and V \ N (S, i − 1)
have been exposed. However, of greater importance is the fact that the edges between
N (S, i − 1) \ N (S, i − 2) and V \ N (S, i − 1) have not as yet been exposed. R is
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exactly the set of vertices in V \ N (S, i − 1) that are not adjacent to any vertex in
N (S, i− 1) \ N (S, i− 2). It follows that

E

[

|R|
]

= |V \ N (S, i− 1)| · (1− p)|N (S,i−1)\N (S,i−2)|

≥ (n− 2di−1s) ·
(

1− d

n

)(1+o(1/ logn))di−1s

∼ n exp
(

− (1 + o (1/ log n)) dis/n
)

∼ n exp (− log d+ 3 log log n) = n log3 n/d = r.

Then by the Chernoff bound, we have

Pr(|R| ≤ r/2) ≤ exp(−Θ(r)) = exp(−Θ(n log3 n/d)).

We wish to say that a.a.s. for any set S, we have R(S) ≥ r/2, so we will take the union
bound over all sets S. The probability that there exists a set R(S) does not satisfy the
desired bound for its size is at most

(

n

s

)

exp(−Θ(n log3 n/d)) ≤
(ne

s

)s

exp(−Θ(n log3 n/d))

≤ exp(s log n−Θ(n log3 n/d))

= exp(Θ(n log2 n/di)−Θ(n log3 n/d))

= exp(Θ(−Θ(n log3 n/d)) = o(1).

It follows that, a.a.s. R(S) ≥ r/2 for all sets S ∈
(

V
s

)

. �

The next lemma will allow us to bound the number of vertices that are not reachable
by the robber.

Lemma 5.3. Suppose that d := pn is such that log n � d � n. Let

r :=
n log3 n

d
.

Then the following holds a.a.s. for G = (V,E) ∈ G(n, p): for every set R ⊆ V with
|R| = r/4, we have

|V \ N (R, 1)| ≤ r/4.
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Proof. Fix R ∈
(

V
r/4

)

. Our goal is to estimate the size of set U = U(R) := V \ N (R, 1),

that is, the set of vertices of V \R that are not adjacent to any vertex in R. Clearly,

Pr(|U | ≥ r/4) ≤
(|V \R|

r/4

)

(

(1− p)|R|
)r/4

≤
(

n

r/4

)

(

(1− p)r/4
)r/4

≤
(

4ne

r

)r/4

· exp
(

−d

n
· r
4
· r
4

)

≤ exp
(r

4
log n− r

16
log3 n

)

= exp
(

−Θ(r log3 n)
)

.

By the union bound, the probability that some set U(R) does not satisfy the desired
bound for its size is at most
(

n

r/4

)

exp
(

−Θ(r log3 n)
)

≤ exp
(

Θ(r log n)−Θ(r log3 n)
)

= exp
(

−Θ(r log3 n)
)

= o(1).

It follows that a.a.s. |U(R)| ≤ r/4 for all sets R ∈
(

V
r/4

)

. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Since we aim for a statement that holds a.a.s. we may assume
that we have a deterministic graph G that satisfies the properties in the conclusions of
Lemmas 5.2, 5.3 and 3.4. The strategy for the robber is simple; he always stays in the
equivalence class of vertices whose Sj-signature is (i+ 1, i+ 1, . . . , i+ 1).

Let r := n log3 n/d. Assume the cops first choose set S1 of size s as the sensor
locations. Combining Lemma 5.2 and Lemma 3.4 we see that the equivalence class of
vertices with S1-signature (i + 1, i + 1, . . . , i + 1), call it X1 = V1 is of size at least
r/2 ≥ r/4. Indeed, Lemma 5.2 provides a upper bound for the size of all equivalence
classes with at least one value at most i in their signatures. Lemma 3.4 guarantees
that the only other equivalence class is the class with signature (i+ 1, i+ 1, . . . , i+ 1).
The robber will choose this equivalence class. We can continue iteratively: for j ∈ N,
assume that the robber has chosen a set Vj of size at least r/4, and the cops respond
with sensors at set Sj+1. Then let Xj+1 be the set of all vertices with Sj+1-signature
(i+1, i+1, . . . , i+1). By Lemma 5.2 and Lemma 3.4, |Xj+1| ≥ r/2, and by Lemma 5.3,
Vj+1 := N(Vj, 1) ∩Xj+1 is of size at least r/4. Thus the robber can always choose the
equivalence class of vertices with signature (i + 1, i + 1, . . . , i + 1), and this class will
always be of size at least r/4. This shows that the cops will never be able to locate the
robber. �

6. Upper Bound

In this section, we will prove two upper bounds. The first one will apply to random
graphs with pn � log n, the diameter equal to i + 1, and when di = o(n). The second
bound will cover the remaining cases, provided that pn � log3 n.
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Theorem 6.1. Suppose that d := pn is such that log n � d � n. Let i = i(n) ∈ N

be the largest integer i such that di � n. If di+1/n − 2 log n → ∞, then the following
holds a.a.s. for G ∈ G(n, p):

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)
n

di
.

Proof. In fact, we will prove something slightly stronger. Let

ω = ω(n) := min

{

d

log n
,
n

di
, (log n)4(log log n)2

}

.

Since d � log and di � n, we get that ω → ∞ as n → ∞. Suppose that Gn = (Vn, En)
is a family of graphs that satisfies the following properties: for each n ∈ N

(a) |Vn| = n,
(b) for every x, y ∈ Vn (x 6= y) and j ∈ N such that 1 ≤ j ≤ i we have

|S(x, j) \ S(y, j)| = (1 +O(1/
√
ω))dj,

(c) the diameter of Gn is i+ 1,
(d) the maximum degree of Gn is (1 + o(1))d.

Then, there exists some N ∈ N (that depends only on the bounds in (b) and (d), and
not on the family Gn) such that for all n ≥ N , (deterministically!)

ζ(Gn) ≤ k :=

(

1 +
1

ω1/3

)

(log d+ 2 log log n)
n

di
∼ (log d+ 2 log log n)

n

di
.

The result will follow from Lemma 3.1 (that shows that G(n, p) satisfies property (b)
and (d) a.a.s. with a uniform choice of error function) and Lemma 3.4 (that shows that
property (c) is satisfied a.a.s.). Indeed, Lemma 3.1 can be applied as d ≥ ω log n, di/n ≤
1/ω = O(1/

√
ω), and ω ≤ (log n)4(log log n)2—see the definition of ω. Lemma 3.4 can

be applied as di/n − 2 log n = o(1) − 2 log n → −∞ and, by assumption, di+1/n −
2 log n → ∞.

Let us then concentrate on a deterministic family of graphs Gn = (Vn, En) satisfying
(a)-(d). Recall that in Section 4 we reformulated the game so that it can be viewed
as a perfect information game, and so we may assume that the moves of the robber
are guided by a perfect player that has a fixed strategy for a given deterministic graph
Gn. In particular, the robber chooses sets (R1,j1 , R2,j2 , . . . , Ri,ji) in response to the cop
choosing sensor locations (S1, S2, . . . , Si). Such responses are predetermined before the
game actually starts. See Section 4 for more details.

On the other hand, to get an upper bound for the localization number, the cops are
going to use a simple strategy, namely, at each round t of the game, the cops choose
a random set St ⊆ Vn of cardinality k for the sensor locations (regardless of anything
that happened during the game thus far). Clearly, this is a sub-optimal strategy but,
perhaps surprisingly, it turns out that it works very well.

Trivially, |N (R1,j1 , 1)| ≤ n. Our goal is to show that with high probability, for each
round t, we have

|N (Rt+1,jt+1
, 1)| ≤ |N (Rt,jt , 1)|/ log n.
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As a result, this bound will hold a.a.s. for 1 ≤ t ≤ tF := log n/ log log n, and so
|N (Rt+1,jt+1

, 1)| ≤ n/ logt n. In particular, we will get that |N (RtF+1,jtF+1
, 1)| ≤ 1 and

so the cops win before the end of round tF + 1.
Suppose that at some round t, the robber “occupies” set Rt,jt in response to the

cop choosing sensor locations (S1, S2, . . . , St). As mentioned above, the cops choose
set St+1 at random. It would be convenient to generate this random set as follows:
select k vertices to form St+1 one by one, each time choose a random vertex with
uniform probability from the set of vertices not selected yet. Once St+1 is fixed, the set
N (Rt,jt , 1) is partitioned into sets having the same St+1-signatures. The robber then
has to pick Rt+1,jt+1

, one of the equivalence classes. We will show that, regardless of
her choice, |N (Rt+1,jt+1

, 1)| ≤ |N (Rt,jt , 1)|/ log n will hold with high probability.
There are

(|N (Rt.jt , 1)|
2

)

≤ |N (Rt,jt , 1)|2

pairs of vertices. Let us focus on one such pair, x, y, and suppose that the cops put a
sensor on some vertex v ∈ Vn. Note that this pair is distinguished by v if and only if v
belongs to the set

D(x, y) :=
⋃

j≥0

(

S(x, j) \ S(y, j)
)

∪
(

S(y, j) \ S(x, j)
)

=
i
⋃

j=0

(

S(x, j) \ S(y, j)
)

∪
(

S(y, j) \ S(x, j)
)

.

Indeed, if v ∈ S(x, j) \ S(y, j), then the distance between v and x is j but the distance
between v and y is not. Moreover, since the diameter of Gn is i + 1 (property (c)), in
order to distinguish the pair x, y, the distance from v to at least one of x, y has to be
at most i. This justifies the equality above. By property (b), we may estimate the size
of the distinguishing set as follows:

|D(x, y)| =
i

∑

j=0

(1 +O(1/
√
ω))2dj = (1 +O(1/

√
ω))2di.

The probability that the pair cannot be distinguished by any of the sensors in St+1 is
at most

(

1− |D(x, y)|/n
)k

=
(

1− (1 +O(1/
√
ω))2di/n

)k

= exp
(

− (1 +O(1/
√
ω))2dik/n

)

= exp
(

− (1 + 1/ω1/3)(1 +O(1/
√
ω))2(log d+ 2 log log n)

)

≤ exp
(

− 2(log d+ 2 log log n)
)

=
1

d2 log4 n
.

Let Xt+1 be the number of pairs in N (Rt.jt , 1) with the same signature in St+1. Since
E[Xt+1] ≤ |N (Rt,jt , 1)|2d−2 log−4 n, it follows immediately from Markov’s inequality
that Xt+1 ≤ |N (Rt,jt , 1)|2d−2 log−3 n with probability at least 1 − 1/ log n. If this
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bound holds, then we say the round is good. If this is the case, then, regardless which
equivalence class of the partition of N (Rt,jt , 1) = Rt+1,1 ∪ Rt+1,2 ∪ . . . ∪ Rt+1,`t+1

the
robber selects as her response, the selected set Rt+1,jt+1

is of size at most 2
√
Xt+1 ≤

2|N (Rt,jt , 1)|d−1 log−3/2 n. Indeed, note that

Xt+1 =

`t+1
∑

j=1

(|Rt+1,j|
2

)

≥
(|Rt+1,jt+1

|
2

)

≥ |Rt+1,jt+1
|2/4.

Finally, since the maximum degree of Gn is asymptotic to d (property (d)), the closed
neighbourhood of Rt+1,jt+1

has the size at most

(2 + o(1))|N (Rt,jt , 1)| log−3/2 n ≤ |N (Rt,jt , 1)| log−1 n,

as required.
It remains to show that a.a.s. the first tF = log n/ log log n rounds are good. Since

each round is not good with probability at most 1/ log n, the probability that some
round is not good is at most tF/ log n = o(1), and the proof is finished. We get that
this randomized strategy for k cops works a.a.s. and so the probability it works is larger
than, say, 1/2 for n sufficiently large. It follows that the cops have a winning strategy
and so the claimed bound for ζ(Gn) holds deterministically. �

Before we move to the upper bound that covers the remaining cases, let us briefly
discuss why the bound changes. The size of the set D(x, y) defined in the proof above
that distinguishes the pair of vertices (x, y) plays an important role in the proof—the
larger the set, the smaller the upper bound we get. We noticed that

s = s(n) := |D(x, y)| =
∑

j≥0

sj,

where

sj :=
∣

∣

∣

(

S(x, j) \ S(y, j)
)

∪
(

S(y, j) \ S(x, j)
)
∣

∣

∣
.

Suppose that d � log3 n. Let i = i(n) ∈ N be the largest integer i such that
di ≤ 3 log n, and let c = c(n) = di/n. The previous bound, Theorem 6.1, applies to
the case when c = o(1); in particular, the diameter is equal to i + 1 a.a.s. For this
case, si is the dominating term in the sum: s ∼ si ∼ 2di. If c → A ∈ (0,∞), then
s ∼ si ∼ 2n(1 − e−A)e−A; in particular, s increases when A ∈ (0, log 2) reaching its
maximum at (1/2 + o(1))n but then it starts decreasing when A ∈ (log 2,∞). When
c → ∞ but

c− (log d− log log d) → B ∈ R,

then s is dominated by two terms: si−1 ∼ 2di−1, and

si ∼ 2ne−c ∼ 2n(log d)e−B

d
∼ 2nce−B

d
= 2di−1e−B.
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It follows that s ∼ si−1+ si ∼ 2di−1(1+ e−B) ∼ 2ne−c(eB +1). In particular, s ∼ 2ne−c

when B → −∞ and s ∼ 2di−1 when B → ∞. Here is the summary of our observations:

s ∼



























2di if c = o(1)

2n(1− e−A)e−A if c → A ∈ R+

2ne−c if c → ∞ and c− (log d− log log d) → −∞
2di−1(1 + e−B) = 2ne−c(eB + 1) if c− (log d− log log d) → B ∈ R

2di−1 if c− (log d− log log d) → ∞ and c ≤ 3 log n.

We are now ready to cover the remaining cases that Theorem 6.1 did not cover, and
finalize the upper bound.

Theorem 6.2. Suppose that d := pn is such that log3 n � d � n. Let i = i(n) ∈ N be
the largest integer i such that di ≤ 3 log n, and c = c(n) = di/n. Then, the following
holds a.a.s. for G ∈ G(n, p).

(i) if c → A ∈ R+, then

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)
eA

1− e−A
.

(ii) if c → ∞ and c− (log d− log log d) → −∞, then

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n) ec .

(iii) if c− (log d− log log d) → B ∈ R, then

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)
ec

eB + 1

∼ (log d+ 2 log log n)
n

di−1(1 + e−B)
.

(iv) if c− (log d− log log d) → ∞ and c ≤ 3 log n, then

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)
n

di−1
.

Proof. The proof of this theorem is almost identical to the one of Theorem 6.1, and
so we will only highlight differences. We will use the definitions of s and sj that we
introduced right before the statement of this theorem. We used Lemma 3.1 to estimate
s in Theorem 6.1 but this time we will also need Lemma 3.2. As the asymptotic
behaviour of s changes, we will need to adjust k accordingly. However, in each case,
k ∼ 2n(log d+ 2 log log n)/s. We will deal with each case independently.

For part (i), after setting

ω′ = ω′(n) = min

{

d

log3 n
,

log2 n

(log log n)2

}

,



16ANDRZEJ DUDEK, SEAN ENGLISH, ALAN FRIEZE, CALUM MACRURY, AND PAWE L PRA LAT

we get that

s =
i

∑

j=0

sj =
i−1
∑

j=0

sj + si = (1 + o(1))2di−1 + (1 +O(1/
√
ω′))2n(1− e−A)e−A

= (1 +O(1/
√
ω′))2n(1− e−A)e−A,

and so the upper bound has to be adjusted to

k :=

(

1 +
1

ω′1/3

)

(log d+ 2 log log n)
eA

1− e−A
.

For part (iii), we set

ω′ = ω′(n) = min

{

d

log3 n
, log log n

}

,

and observe that

si = (1 +O(1/
√
ω′))2n(1− e−c)e−c

= (1 +O(1/
√
ω′))2n(1 +O(1/c))e−c

= (1 +O(1/
√
ω′))2ne−c

= (1 +O(1/
√
ω′))2nd−1(log d)e−B

= (1 +O(1/
√
ω′))2nd−1c(1 +O(log log d/ log d))e−B

= (1 +O(1/
√
ω′))2cnd−1e−B

= (1 +O(1/
√
ω′))2di−1e−B.

On the other hand,
i−1
∑

j=0

sj = (1 +O(1/d))si−1 = (1 +O(1/(
√
ω′ log n)))2di−1 = (1 +O(1/

√
ω′))2di−1.

It follows that s = (1 + O(1/
√
ω′))2di−1(1 + e−B), and so the upper bound has to be

adjusted to

k :=

(

1 +
1

ω′1/3

)

(log d+ 2 log log n)
n

di−1(1− e−B)
.

For part (ii), we observe that si/si−1 = e−B → ∞. One can apply a trivial bound
s ≥ si = (1+O(1/

√
ω′))2di−1e−B and adjust the definition of k to get the desired bound.

Similarly, for part (iv), we observe that si/si−1 = e−B → 0. (In fact, if c−2 log n → ∞,
then a.a.s. the diameter of a random graph is i and so there is no need to consider si
anymore.) This time we use the fact that s ≥ si−1 = (1+O(1/

√
ω′))2di−1. The claimed

bound holds and the proof is finished. �
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