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Abstract

Given a connected graph G = (V,E) and a length function ℓ : E → R we let dv,w denote the shortest
distance between vertex v and vertex w. A t-spanner is a subset E′ ⊆ E such that if d′v,w denotes shortest
distances in the subgraph G′ = (V,E′) then d′v,w ≤ tdv,w for all v, w ∈ V . We show that for a large class
of graphs with suitable degree and expansion properties with independent exponential mean one edge
lengths, there is w.h.p. a 1-spanner that uses ≈ 1

2n log n edges and that this is best possible. In particular,
our result applies to the random graphs Gn,p for np ≫ log n.

1 Introduction

Given a connected graph G = (V,E) and a length function ℓ : E → R we let dv,w denote the shortest distance
between vertex v and vertex w. A t-spanner is a subset E ′ ⊆ E such that if d′v,w denotes shortest distances in
the subgraph G′ = (V,E ′) then d′v,w ≤ tdv,w for all v, w ∈ V . In general, the closer t is to one, the larger we
need E ′ to be relative to E. Spanners have theoretical and practical applications in various network design
problems. For a recent survey on this topic see Ahmed et al [1]. Work in this area has in the main been
restricted to the analysis of the worst-case properties of spanners. In this note, we assume that edge lengths
are random variables and do a probabilistic analysis.

Suppose that G = ([n], E) is almost regular in that

(1− θ)dn ≤ δ(G) ≤ ∆(G) ≤ (1 + θ)dn (1)

where 1 ≥ d≫ log logn

log1/2 n
and θ = 1

log1/2 n
. Here δ,∆ refer to minimum and maximum degree respectively.

We will also assume either that d > 1/2 or

|E(S, T )| ≥ ψ|S| |T | for all |S|, |T | ≥ θn. (2)

Here ψ = ω log logn

log1/2 n
≤ d where ω = ω(n) → ∞ as n → ∞ and E(S, T ) denotes the set of edges of G with one

end in S ⊆ [n] and the other end in T ⊆ [n], S ∩ T = ∅.
Let G(d) denote the set of graphs satisfying the stated conditions, (1) and (2). We observe that Kn ∈ G(1)
and that w.h.p. Gn,p ∈ G(p), as long as np ≫ log n. The weighted perturbed model of Frieze [5] where
randomly weighted edges are added to a randomly weighted dn-regular graph also lies in G(d).
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Suppose that the edges {i, j} of G are given independent lengths ℓi,j, 1 ≤ i < j ≤ n that are distributed as
the exponential mean one random variable, denoted by E(1). In general we let E(λ) denote the exponential
random variable with mean 1/λ.

When G = Kn, Janson [9] proved the following: W.h.p. and in expectation

d1,2 ≈
log n

n
; max

j>1
d1,j ≈

2 log n

n
; max

i,j
di,j ≈

3 log n

n
. (3)

Here (i) An ≈ Bn if An = (1 + o(1))Bn and (ii) An ≫ Bn if An/Bn → ∞, as n→ ∞.

It follows that w.h.p. the length of the longest edge in any shortest path is at most L = (3+o(1)) logn
n

. It follows
further that w.h.p. if we let E ′ denote the set of edges of length at most L then this is a 1-spanner of size
O(n log n). We tighten this and extend it to graphs in the class G(d).

Theorem 1. Let G ∈ G(d) or let G be a dn-regular graph with d > 1/2 where the lengths of edges are
independent exponential mean one. The following holds w.h.p.

(a) The minimum size of a 1-spanner is asymptotically equal to 1
2
n log n.

(b) If 2 ≤ λ = O(1) then a λ-spanner requires at least n logn
601dλ

edges.

A companion paper deals with (1 + ε)-spanners in embeddings of Gn,p in [0, 1]2 as studied by Frieze and
Pegden [7]. Here we choose n random points X = {X1, X2, . . . , Xn} in [0, 1]2 and connect a pair Xi, Xj with
probability p by an edge of length |Xi −Xj|.

2 Proof of Theorem 1

The proof of Theorem 1 uses a few parameters. We will list some of them here for easy reference:

θ =
1

log1/2 n
; k0 = log n; k1 = θn; α = 1− 2θ.

ℓ0 =
(1 +

√
θ) log n

dn
; ℓ1 =

5 log n

dn
; ℓ2 = ℓ0 −

(log log n)2

dn
; ℓ3 =

log n

200λdn
.

We also use the Chernoff bounds for the binomial B(n, p): for 0 ≤ ε ≤ 1,

P(B(n, p) ≤ (1− ε)np) ≤ e−ε2np/2.

P(B(n, p) ≥ (1 + ε)np) ≤ e−ε2np/3.

P(B(n, p) ≥ αnp) ≤
( e
α

)αnp
.

It will only be in Section 2.2 that we will need to use condition (2).

2.1 Lower bound for part (a)

We identify sets Xv (defined below) of size ≈ log n such that w.h.p. a 1-spanner must contain Xv for n− o(n)
vertices v. The sets Xv are the edges from v to its nearest neighbors. If an edge {v, x} is missing from a set
S ⊆ E(Kn) then a path from v to x must go to a neighbor y of v and then traverse Kn − v to reach x. Such
a path is likely to have length at least the distance promised by (3), scaled by d−1.

We first prove the following:

2



Lemma 2. Fix v, w1, w2, . . . , wℓ for ℓ = O(log n) and let α = 1− 2θ. Then,

P

(
∃1 ≤ i ≤ ℓ : dv,wi

≤ α log n

dn

)
= o(1).

Proof. There are at most ((1 + θ)dn)k−1 paths using k edges that go from vertex v to vertex wi, 1 ≤ i ≤ ℓ.
The random variable E(1) dominates the uniform [0, 1] random variable U1. We write this as E(1) ≻ U1. As
such we can couple each edge weight with a lower bound given by a copy of U1. The length of one of these
k-edge paths is then at least the sum of k independent copies of U1. The fraction xk/k! is an upper bound
on the probability that this sum is at most x (tight if x ≤ 1). Therefore,

P

(
∃1 ≤ i ≤ ℓ : dv,wi

≤ x =
α log n

dn

)
≤ ℓ

n−1∑

k=1

((1 + θ)dn)k−1x
k

k!
(4)

≤ ℓ

dn

n−1∑

k=1

(
e1+θα log n

k

)k

=
ℓ

dn

10 logn∑

k=1

(
e1+θα log n

k

)k

+O(n−10)

≤ 10ℓ log n

dn1−αeθ
+ o(1) = o(1).

For a vertex v ∈ [n], let

Av =

{
w ̸= v : ℓv,w ≤ log n

dn

}
.

Lemma 3. W.h.p. |Av| ≤ 4 log n for all v ∈ [n].

Proof. We have, from the Chernoff bounds and E(1) ≻ U1 that

P(|Av| ≥ 4 log n) ≤ P

(
Bin

(
(1 + θ)dn,

log n

dn

)
≥ 4 log n

)
≤
(
e(1 + θ)

4

)4 logn

= o(n−1). (5)

The lemma follows from the union bound, after multiplying the RHS of (5) by n.

For v ∈ [n], let δv be the distance from v to its nearest neighbor. Let

B =

{
v : δv ≥

log1/2 n

dn

}
.

Lemma 4. |B| ≤ ne− log1/3 n w.h.p.

Proof. We have

E(|B|) ≤ n

(
exp

{
− log1/2 n

dn

})(1−θ)dn

= ne−(1−θ) log1/2 n.

The lemma follows from the Markov inequality.

Let

Xv =

{
e = {v, x} : ℓ(e) ≤ δv +

α log n

dn

}
.
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Lemma 5. Let S ⊆ E(Kn) define a 1-spanner. Then w.h.p. S ⊇ Xv for all but o(n) vertices v.

Proof. Let GS = ([n], S) and suppose that v /∈ B. Then

δv +
α log n

dn
<

log1/2 n

dn
+
α log n

dn
<

log n

dn
(6)

and so Xv ⊆ {v} × Av and in particular |Xv| ≤ 4 log n w.h.p. by Lemma 3.

If GS does not contain an edge e = {v, x} ∈ Xv, then the GS-distance from v to x is then w.h.p. at least

δv +
α log n

dn
> dv,x. (7)

To obtain (7) we have used Lemma 2 applied to Kn − v with x replacing v and w1, w2, . . . , wℓ being the
remaining neighbors of v in Kn.

So, if
C = {v /∈ B : ∃1-spanner S ̸⊇ Xv} ,

then E(|C|) = o(n).

Any 1-spanner must contain Xv, v ∈ [n] \ (B ∪ C) and the lemma follows from the Markov inequality.

Now |Xv| dominates Bin
(
(1− θ)dn, 1− exp

{
−α logn

dn

})
and so by the Chernoff bounds

P

(
|Xv| ≤ (1− ε)α log n+O

(
log2 n

n

))
≤ e−ε2α logn/(2+o(1)) = o(1) for ε = log−1/3 n.

Applying Lemma 5 we see that w.h.p. a 1-spanner contains at least 1−o(1)
2

n log n edges. The factor 2 comes
from the fact that {v, w} can be in Xv ∩ Xw. (In this case the edge {v, w} contributes twice to the sum of
the |A|v|’s.) Note that we do not need (2) to prove the lower bound.

2.2 Upper bound for part (a)

Let ℓ0 =
(1+

√
θ) logn
dn

and ℓ1 =
5 logn
dn

and E0 = {e : ℓ(e) ≤ ℓ0}. Now |E(G)| ∈ (1± θ)dn2/2 and so the Chernoff
bounds imply that w.h.p. |E0| ≈ 1

2
n log n and our task is to show that adding o(n log n) edges to E0 gives us

a 1-spanner w.h.p. We will do this by showing that w.h.p. there are only o(n log n) edges e with ℓ(e) > ℓ0
that are the shortest path between their endpoints. Adding these o(n log n) edges to E0 creates a 1-spanner,
since every edge on a shortest path in a graph is itself a shortest path between its endpoints.

Janson [9] analysed the performance of Dijkstra’s [4] algorithm on the complete graph Kn with exponential
edge-weights; we will adapt his argument to our setting on a graph G satisfying conditions (1) and (2).

In particular, we analyze Dijkstra’s algorithm for shortest paths from vertex 1 where edges have exponential
weights. Recall that after i steps of the algorithm we have a tree Ti and a set of values dv, v ∈ [n] such that
for u ∈ Ti, du is the length of the shortest path from 1 to u. For v /∈ Ti, dv is the length of the shortest path
from 1 to v that follows a path from 1 to u ∈ Ti and then uses the edge {u, v}. Let δi = max {v ∈ Ti : dv}.
The constraints on the length l(u, v) of the edge {u, v} for u ∈ Ti, v /∈ Ti are that du + l(u, v) ≥ δi or
equivalently that l(u, v) ≥ δi − du. Fixing Ti and the lengths of edges within Ti or its complement, every set
of lengths {l(u, v)}u∈Ti

v/∈Ti

satisfying these constraints would give the same history of the algorithm to this point.

Due to the memoryless property of the exponential distribution we then have that l(u, v) = δi − du + Eu,v

where Eu,v is a mean-1 exponential, independent of all other E(u′, v′).

Thus the Dijkstra algorithm is equivalent in distribution to the following discrete-time process:
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• Set v1 = 1, T1 = {1}.

• Having defined Ti, associate a mean-1 exponential Eu,v to each edge {u, v} ∈ E(Ti, T̄i) that is indepen-
dent of the process to this point. Define ei+1 to be the edge {u, v} ∈ E(Ti, T̄i) minimizing δi + Eu,v,
and define vi+1 to be the vertex for which ei+1 = {vj, vi+1} for some vj ∈ Ti. Finally define dvi+1

by
δi + Evi,vj .

Finally, note that, as the minimum of r rate-1 exponentials is an exponential of rate r, this is equivalent in
distribution to the following process:

• Set v1 = 1, T1 = {1}.

• Having defined vi, Ti, define a vertex vi+1 by choosing an edge ei+1 = {vj, vi+1} (j ≤ i) uniformly
at random from E(Ti, T̄i), set Ti+1 = Ti ∪ {vi+1}, and define d1,vi+1

= d1,vi + Eγi
i where Eγi

i is an
(independent) exponential random variable of rate γi = E(Ti, T̄i).

It follows that

E(d1,m) = Sm :=
m−1∑

i=1

E

(
1

γi

)
and Var(d1,m) =

m−1∑

i=1

E

(
1

γ2i

)
.

Observe that we have
(1− θ)i(dn− i) ≤ γi ≤ (1 + θ)idn w.h.p.

and so for 1 ≤ i ≤ θn we have

γi = idn(1 + ζi) where |ζi| = O(θ), w.h.p.

Also, we have
γi = (n− i)dn(1 + ζi) where |ζi| = O(θ) w.h.p.

for n− θn ≤ i ≤ n.

It follows that

Sθn = (1 +O(θ))
θn∑

i=1

1

dni
=

log n

dn
+O

(
log1/2 n

n

)
w.h.p. (8)

Lemma 6. W.h.p. maxi,j di,j ≤ ℓ1 =
5 logn
dn

.

Proof. Following [9], let k1 = θn and Yi = Eγi
i , 1 ≤ i < n so that Z1 = d1,k1 = Y1 + Y2 + · · · + Yk1−1. For

t < 1− 1+o(1)
dn

we have implies that w.h.p. for m = k1 − 1,

E(etdnZ1) = E

(
m∏

i=1

etdnYi

)
=
∑

x

E

(
m∏

i=1

etdnYi | γm = x

)
P(γm = x)

= E

(
m−1∏

i=1

etdnYi

)
∑

x

E(etdYm | γm = x)P(γm = x) (9)

= E

(
m−1∏

i=1

etdnYi

)
∑

x

x

x− tdn
P(γm = x) = E

(
m−1∏

i=1

etdnYi

)(
1− (1 + o(1))t

i

)−1

.

Here the term in (9) stems from the fact that given γm, Ym is independent of Y1, Y2, . . . , Ym−1.

Then for any β > 0 we have
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P

(
Z1 ≥

β log n

dn

)
≤ E(etdnZ1−tβ logn) ≤ e−tβ logn

k1−1∏

i=1

(
1− (1 + o(1))t

i

)−1

= e−tβ logn exp

{
k1−1∑

i=1

(
(1 + o(1))t

i
+O

(
1

i2

))}
= exp {(1 + o(1)− β) t log n} .

It follows, on taking β = 2 + o(1) that w.h.p.

dj,k1 ≤
(2 + o(1)) log n

dn
for all j ∈ [n].

Letting T̂k1 be the set corresponding to Tk1 when we execute Dijkstra’s algorithm starting at vertex 2. First

consider the case where d ≤ 1/2 and (2) holds. Then, using (2), we have that either Tk1 ∩ T̂k1 ̸= ∅ or,

P

(
̸ ∃e ∈ Tk1 : T̂k1 : X(e) ≤ 1

n

)
≤ exp

{
−ψθ

2n2

n

}
= o(n−2) (10)

This shows that we fail to find a path of length ≤ (4+o(1)) logn
dn

+ 1
n
between a fixed pair of vertices with

probability o(n2). In particular, taking a union bound over all pairs of vertices, we obtain that w.h.p.

maxi,j di,j ≤ (4+o(1)) logn
dn

+ 1
n
.

If G has δ(G) ≥ (1− τ)dn with d = 1/2 + ε, ε > 0 constant, then any pair of vertices has at least (2ε− 2θ)n
common neighbors. We pair up the vertices of Tk1 Tk2 and bound the probabibility that we cannot find a
path of length 2 whose endpoints consist of one of our pairs, and which uses only edges of length at most

logn
n log logn

, as
(
e−( logn

n log logn
)2
)−θn(2εn−2θn)

= o(n−2).

Again we are done by a union bound over possible pairs.

We now consider the probability that a fixed edge e satisfies that ℓ(e) > ℓ0 and that e is a shortest path from
1 to n.

Lemma 7. Let E(e) denote the event that ℓ(e) > ℓ0 and e is a shortest path from 1 to n.

P

(
E
⏐⏐⏐⏐max

j
d1,j ≤ ℓ1

)
= o

(
log n

n

)
.

Proof. Without loss of generality we write e = {1, n}. If E = E(e) occurs then we have the occurence of the
event F where

F = {d1,m + ℓ(fm) ≥ ℓ(e), m = 2, 3, . . . , n− 1}
and fm denotes the edge joining vertex n to the vertex whose shortest distance from vertex 1 (in G−{n}) is
the mth smallest. (If the edge does not exist then ℓ(fm) = ∞ in the calculation below.) Indeed this follows
from Dijkstra’s algorithm; the event F indicates that at every step of the algorithm, no path shorter than
the edge {1, n} is found.

Let n0 = n(1− d/2). We need ℓ(fm) + dm ≥ ξ = ℓ(e) for all m in order that F occurs. If d1,n0
= x then this

is implied by
⋂n0

m=1 {ℓ(fm) ≥ ξ − x}. Using the independence of the ℓ(fm) and d1,i, i = 2, . . . , n0, we bound

P(F | max
1,j

d1,j ≤ ℓ1) ≤
1

P(maxj d1,j ≤ ℓ1)

∫ ℓ1

ξ=ℓ0

e−ξ

∫ ∞

x=0

P

(
n0⋂

m=1

{ℓ(fm) ≥ ξ − x}
)
dP {d1,n0

= x} dξ (11)

and using the fact that there are at least dn/2− 1 indices m for which ℓ(fm) <∞ we bound
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P(F | max
1,j

d1,j ≤ ℓ1) ≤ (1 + o(1))

∫ ℓ1

ξ=ℓ0

∫ ∞

x=0

min
{
1, e−dn(ξ−x)/3

}
dP {d1,n0

= x} dξ. (12)

Now, if ℓ2 = ℓ0 − (log logn)2

dn
then

∫ ℓ1

ξ=ℓ0

∫ ℓ2

x=0

min
{
1, e−dn(ξ−x)/3

}
dP (d1,n0

= x) dξ ≤ ℓ1 exp

{
−(log log n)2

3

}
= o

(
log n

n

)
. (13)

It remains to bound the same expression where the second integral goes from x = ℓ2 to ∞.

First consider the case where d ≤ 1/2 and (2) holds. We have from (8) that

E(d1,n0
) = Sn0

≤ (1 +O(θ))
θn∑

i=1

1

dni
+

n0∑

i=θn+1

1

ψi(n− i)
(14)

≤ (1 +O(θ)) log n

dn
+

1

ψn

n0∑

i=θn+1

(
1

i
+

1

n− i

)
=

(1 +O(θ)) log n

dn
+O

(
log log n

ψn

)

=
log n

dn
+O

(
log1/2 n

n

)
< ℓ2 −

√
θ

2dn

and

Var(d1,n0
) ≤ (1 +O(θ))

θn∑

i=1

1

d2n2i2
+

n0∑

i=θn+1

1

ψ2i2(n− i)2
≤ π2

3d2n2
. (15)

Chebychev’s inequality then gives that

P(d1,n0
≥ Sn0

+ x) ≤ π2

3d2x2n2
.

As a consequence of this we see that

∫ ℓ1

ξ=ℓ0

∫ ∞

x=ℓ2

min
{
1, e−dn(ξ−x)/3

}
dP (d1,n0

= x) dξ ≤ ℓ1π
2

3d2(ℓ2 − Sn0
)2n2

≤ 2ℓ1π
2

θ log2 n
= O

(
1

n log1/2 n

)
. (16)

The lemma follows for d ≤ 1/2, from (13) and (16) and the Markov inequality.

When d > 1/2 we can replace the second sum in (14) by

n0∑

i=θn+1

1

εnmin {i, n− i} = O

(
1

n log n

)
, where ε = d− 1

2
.

By the same token, the second sum in (15) will be o(n−2). The remainder of the proof will go as for the case
d ≤ 1/2.

Together with Lemma 6, Lemma 7 implies that w.h.p. the number of edges e for which E(e) occurs is
o(n log n). Adding these to E0 gives us a 1-spanner of size ≈ 1

2
n log n.

2.3 Lower bound for part (b)

Lemma 8. Fix a set A such that |A| ≤ a0 = O(log n). Let P be the event that there exists a path P of length
at most ℓ4 =

logn
200dn

joining two distinct vertices of A. Then P(P) = O(no(1)−199/200).
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Proof.

P(P) ≤ a20

n∑

k=0

((1 + θ)dn)k
ℓk+1
4

k!
≤ a20ℓ4

n∑

k=0

(
e1+θ log n

200k

)k

≤

a20ℓ4

logn∑

k=0

(
e1+θ log n

200k

)k

+O(n−2) ≤ 2a20ℓ4n
(1+o(1))/200 = O(no(1)−199/200).

Lemma 9. Let B1 denote the set of vertices whose incident edges of length smaller than ℓ3 = ℓ4/λ do not
number in the range I =

[
logn
300dλ

, logn
100dλ

]
. Then, w.h.p. |B1| ≤ n1−1/5000λ. (Recall that we are bounding the size

of a λ-spanner from below.)

Proof. The Chernoff bounds imply that

P(v ∈ B1) ≤ P

(
Bin

(
(1± θ)dn, 1− exp

{
− log n

200λdn

})
/∈ I

)
=

P

(
Bin

(
(1± θ)dn,

log n

200λdn
+O

(
log2 n

n2

))
/∈ I

)
≤ 2 exp

{
−(1 + o(1)) log n

2× 9× 200λ

}
≤ n−1/4000λ.

The result follows from the Markov inequality.

Lemma 10. Let B2 denote the set of vertices v for which | {w : ℓv,w ≤ ℓ4} | ≥ log n. Then B2 = ∅ w.h.p.

Proof. The Chernoff bounds imply that

P(B2 ̸= ∅) ≤ nP

(
Bin

(
(1± θ)dn, 1− exp

{
− log n

200dn

})
≥ log n

)
= o(1).

Let B3 denote the set of vertices v for which there is a path of length at most ℓ4 joining neighbors w1, w2

such that ℓv,wi
≤ ℓ3, i = 1, 2. Lemma 8 with A equal to the set of neighbors w of vertex v such that ℓv,w ≤ ℓ3

shows that |B3| = o(n) w.h.p. (The fact that we can take |A| = O(log n) follows from Lemma 3.) Lemmas
9 and 10 then imply that if v /∈ B1 ∪ B3 then a λ-spanner has to include the at least log n/(300dλ) edges
incident to v that are of length at most ℓ3. This completes the proof of part (b) of Theorem 1.

3 Summary and open questions

We have determined the asymptotic size of the smallest 1-spanner when the edges of a dense (asymptotically)
regular graph G are given independent lengths distributed as E2, modulo the truth of (2) or the degree being
dn, d > 1/2.

There are a number of related questions one can tackle:

1. We could replace edge lengths by Es
2 where s < 1. This would allow us to generalise edge lengths to

distributions with a density f for which f(x) ≈ x1/s as x → 0. This is a more difficult case than s = 1
and it was considered by Bahmidi and van der Hofstadt [3]. They prove that w.h.p. d1,2 grows like

ns

Γ(1+1/s)s
where Γ denotes Euler’s Gamma function. The analysis is more complex than that of [9] and

it is not clear that our proof ideas can be generalised to handle this situation.

2. The results of Theorem 1 apply to Gn,p. It would be of some interest to consider other models of random
or quasi-random graphs.
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