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Critical infrastructure is the backbone of modern societies. To meet increasing demand
under resource-constrained and multihazard conditions, policy-makers are tapping into
infrastructure resiliency: its capacity to withstand and recover from disruptions. Thus,
resiliency-aware uncertainty quantification is key to identify tipping points, yet it remains
computationally inaccessible. This paper maps resiliency measures to well understood
time-dependent reliability computations, porting insights and methods from reliability theory
to the service of critical infrastructure resiliency and upkeep efforts. For large-scale appli-
cations, we use particle integration methods (PIMs)—a family of sequential Monte Carlo
methods with wide-ranging applications—and propose their optimal tuning in terms of their
variance and number of limit-state function evaluations. We obtain consistent and unbiased
probability estimates in applications to dynamical systems, network reliability, and re-
silience analysis, demonstrating PIMs as practical yet under-appreciated tools. For example,
we obtain probability estimates of order 10~!* in networks with over 10,000 random variables.
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INTRODUCTION Hosseini et al., 2016; Vardi, 2020).

Thus,

Critical infrastructure systems are becoming
more complex and interconnected as the pop-
ulations they serve grow more dependent on
their continuous operation. Uncertainty quan-
tification for such large-scale systems is im-
perative yet computationally prohibitive. For
example, network reliability problems have
no generally efficient solution (Ball, 1986).
Thus, practical approximations continue to
attract attention in engineering.

Alongside  computational  challenges,
catastrophic events and natural disasters
are unavoidable. Hence, engineering de-
sign across fields is expanding its focus
from short-term efficiency to medium- and
long-term resiliency (Ouyang et al., 2012;

there is a need for principled uncertainty
quantification techniques that, in alignment
with the measurement sciences (Ellingwood
et al., 2016), can quantify the tipping points
of socio-technical regional systems and
support decision making under uncertainty.
This paper extends the practicality of re-
liability methods to resiliency problems in
critical infrastructure and beyond. Specifi-
cally, a generalization of the classical sys-
tem reliability problem to the path-dependent
setting makes it possible to treat relevant
stochastic problems, including probabilistic
resiliency, as a special case. Also, we use
particle integration methods (PIM)! to give

"'We spell plural and singular acronyms the same.



IASSAR—

practical and rigorous Monte Carlo approx-
imations (Del Moral, 2013), deepening con-
nections with known methods such as sub-
set simulation (Au & Beck, 2001a). Build-
ing on past work, we put forward optimized
PIM for unbiased uncertainty quantification
and whose worst-case and best-case variances
can be assessed in closed-form, behaving as
crude Monte Carlo in the worst-case but ex-
ponentially more efficient under optimal con-
ditions for practical applications. The unbi-
ased property of estimates enables empirical
verification of their performance in numerical
simulations. The building blocks of PIM also
set a research agenda for engineering prob-
lems, namely developing robust importance
functions and efficient Markov Chain Monte
Carlo (MCMC) samplers (Papaioannou et al.,
2015; Wang et al., 2019).

The rest of the paper is as follows. Sec-
tion 2 states the path-dependent reliability
problem and shows that probabilistic re-
siliency is a special case. Section 3 introduces
particle integration methods, and their opti-
mized application to engineering problems,
while connecting to subset simulation explic-
itly. Section 4 showcases applications to first-
excursion probabilities, network and system
reliability, and probabilistic resiliency. Sec-
tion 5 summarizes our main results and con-
clusions, and outlines future research ideas.

2 PATH-DEPENDENT RELIABILITY

We state the problem of interest as comput-
ing the reliability of a path-dependent system,
and show that it has probabilistic resilience
as a special case. Afterwards, we discuss the
computational complexity of the problem to
motivate its sampling-based approximation.

2.1 The path-dependent reliability problem

We assume an n-dimensional system mod-
eled as a stochastic process X (1), 0 <7 < T,
that takes values in the state space R”. Let
Z be the set of sample paths, or realizations
of X. Then, we are interested in computing
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Figure 1. Demand (dashed) and capacity (solid) real-
ization showing robustness (Rob) and rapidity (Rap).

the path-dependent system failure probabil-
ity, which is written as an expectation over
the set of sample paths

pr=E{1[g[X] <O} =P{g[x] <0}, (D)

where g: 2 — R is a limit-state functional
(LSF) that maps sample paths to observables,
in contrast to the limit-state function map-
ping system states to observables. Working
with functionals allow us to specify time-
dependent constraints, supporting stochas-
tic problems like first-excursion probabili-
ties (Au & Beck, 2001b) and probabilistic re-
silience (Hosseini et al., 2016). The classic
system failure probability (Melchers & Beck,
2017, Section 1.5.3) applies as the static case
T =0, i.e. X(0) is an n-dimensional vector of
random variables (r.v.).

2.2 Special case: probabilistic resiliency

Consider the two-dimensional system
X(t) =[C(t),D(r)], with time dependent
capacity (C) and demand (D). Fig. 1 gives a
pictorial representation of a sample path, or
realization x(z) = [c(t),d(t)], of X.

Robustness-and-rapidity targets. Kameshwar
et al. (2019) quantify resilience as the joint
cumulative distribution function of robustness
and rapidity

Pr =P{Rob[X] > r,,Rap[X] < r,}, 2)

with robustness as the lowest capacity at-
tained

Rob[x] = [én[gr}]c(t),
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and rapidity the first-time of restoration

Rap[x] =inf{r > 0:¢(t) > co},

with respective targets r;, and r,. For exam-
ple, 7, =co/2andr, =0.7-T.

For a highly-resilient system, with-
out loss of generality, one is interested
in a good approximation of unresiliency
pr = 1 — pr, which is the solution of a
path-dependent reliability problem with LSF
g[x] = min(Rob[x] — r;,r, — Raplx]).

Temporal average resilience. Ouyang et al.
(2012) define the expected resilience ratio of
a system as:

) C(r)ar

E{R[X]) = E JTD(t)dt

3)

with fOTD(t) > 0 for definiteness. Again, for
a highly-resilient system, the expectation of
R[X] is easy to approximate via crude Monte
Carlo and, given a target average resiliency
ratio r, we care for the unresiliency measure
pr with LSF g[x] = R[x] —r.

2.3 Computational intractability

For a polynomial-time LSF, computing pr is
#P-hard in general (Valiant, 1979), i.e. no
generally efficient algorithm or analytical so-
lution is believed to exists. Thus, there is sig-
nificant interest in trustable probabilistic ap-
proximations (Karp et al., 1989) and stochas-
tic simulation methods with variance reduc-
tion (Botev et al., 2012; Zuev et al., 2015;
Vaisman et al., 2016; Cancela et al., 2019).
We focus on the latter group of methods
due to their scalability in real-world applica-
tions, and optimize particle integration meth-
ods (PIM) for engineering practice.

3 PARTICLE INTEGRATION METHODS

This section provides background on the
Feynman-Kac model representation of the
system reliability problem. The former is the
archetypical model used in particle integra-
tion methods (PIM). Also, we give guidelines
for the effective implementation of PIM.
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3.1 Foundations and assumptions

We first layout the foundation to represent the
system reliability problem as a Feynman-Kac
model, which consists of an initial distribu-
tion, a sequence of Markov transition kernels,
and a set of non-negative functions called po-
tentials (more on Subsection 3.2).

For notation, we write ‘0:k’ for ‘0,1,...,k’
and ‘xg.;” for ‘(xp,...,x;).” Recall that a prob-
ability space (£, % ,P) consists of a sample
space 2, a set of events .%, and a probabil-
ity measure P. Also, we use the measure-
theoretic notation ‘P(dx)’ (Vx € Z") instead
of the probability density (or mass) function.

In particle integration methods, sample
paths represent particle states.

Assumption 1 (Initial distribution) We can
draw samples of X from the probability distri-
bution P(dx), and the initial state of particles
has the same distribution My(dx) := P(dx).

This assumption enables crude Monte Carlo
(CMC) simulation, or simulating the initial
state of a particle, denoted as xo € 2. Par-
ticle integration methods consider sequences
of sample paths (xg,x1,...,X), Or particle tra-
jectories, denoted as xo.; € 2 k+1 Hereafter,
the subscript index [ of x; is called the trajec-
tory index (Fig. 2).

Assumption 2 (MCMC sampler) We can
sample transitions X; ~ M;(x;_y,-) via
Markov kernels M;, | = 1:k, having P as
invariant measure.

We fulfill this assumption via Markov Chain
Monte Carlo (MCMC) samplers, specially
those that are robust in high-dimensional
spaces (Papaioannou et al., 2015; Wang et al.,
2019). In the theory of Markov processes,
transition matrices can define conditional
distributions in finite state spaces, whereas
Markov kernels apply to more general spaces.

Remark 1 A random trajectory has proba-
bility distribution:

>~

M (dxox) = Mo(dxo) [ [Mi(xi-1,dx),
=1
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Figure 2. (Left) System sample path x € 2~ with probability distribution P(dx) considered in CMC. (Right) Particle
trajectory xo.x € 2 ¥ with probability distribution M(;(dxo.) considered in PIM.

and every kernel having P as invariant mea-
sure means that the initial distribution is pre-
served, i.e. X ~ My(+), [ = O:k.

Thus, in contrast to standard MCMC applica-
tions, no burn-in is needed to reach the tar-
get (initial) distribution, and later we show
this suffices to sample (sequentially) from the
conditional distribution P(-|F), F C 2" (Sub-
section 3.3). However, correlation between
particle transitions can increase the variance
of estimates and ‘burn-in’ can indeed mitigate
it (Cérou et al., 2012).

Assumption 3 (Importance function) We
have access to a functional L : 2~ — R such
that L[x] > 1 if and only if g[x] < 0.

The importance function is also referred to
as the reaction coordinate in molecular dy-
namics (Cérou et al., 2011). In our setting,
the importance function is a smooth analog
of the failure indicator function 1[g[X] < 0].
When the LSF is such that g[X] has a contin-
uous cumulative distribution function (c.d.f.)
we can adopt L[x] = 1 — g[x]. However, for
general cases, choosing the ideal importance
function remains an open problem (Bréhier &
Lelievre, 2019). Subsection 4.3 tackles the
case of a network with discrete random vari-
ables.

We are now ready to map the system relia-
bility problem to the computation of the par-
tition function of a Feynman-Kac model.

3.2 Feynman-Kac model

Given a sequence of nonnegative functions,
Gi: 2 —[0,0), k € [1:K), called potentials,

and a Markov process Xo.x, the Feynman-Kac
model is given by the change of probability
measure from Mg (Del Moral, 2013; Chopin
& Papaspiliopoulos, 2020):

K

Qk (dxo:x) = !

L Mo (dxo.
7 k(dxo:x),

Gk (xk)
1

k=

“4)

with partition function (normalizing con-
stant):

K

[1G(xx)

k=1

Zx = EMK > 0, &)

Intuitively, the product of nonnegative poten-
tials assigns a weight to every particle trajec-
tory, and the partition function Zg is the sum
of all such weights.

To cope with the computational intractabil-
ity of partition functions, an approach dating
back to Kahn & Harris (1951) writes a tele-
scoping product

Zx 71 7 Zx
Zy 2y Zy Zx—1’

(6)

so that every ratio is “easy” to approximate.
Indeed, several independently developed al-
gorithms for approximating ratios, e.g. adap-
tive multilevel splitting (Botev & Kroese,
2012; Turati et al., 2016) and Subset Sim-
ulation (Au & Beck, 2001a), can be inter-
preted as the interacting particle integration
method that follows. Consider an ensem-
ble of particles xi e 2, with trajectory in-
dex k = 0:K, particle index j = 1:N, and ini-
tial state distribution X ~ Mo(-). Then, for
each k = 1:K and j = 1:N, sample the tran-
sition X; ~ My(x{_,,-) choosing p with rate
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Gr(x} )/ XN | Gi(xt_,), which is the key in-
teraction between particles. Finally, use the
ensemble of particles x(l)% to approximate the
partition function Zg.

While most engineering studies build upon
subset simulation (e.g. Wang et al., 2019),
we adopt the super set of particle integration
methods. The latter includes consistent and
unbiased probability estimation algorithms in
terms of the mean and variance (Botev et al.,
2012; Cérou et al., 2012), which we tune to
the practically relevant case of a costly LSF.

3.3 Back to path-dependent reliability

To express the failure probability pr [Eq. (1)]
as the partition function Zg, introduce a
sequence of nested sets Fy D --- D Fg,
with F, = {L[X] > Ly} and importance
scores —oo =Ly < ---<Lg=1. Note that
pr = P(Fk). Then, setting the potentials Gy
equal to 15, gives the sought after Feynman-
Kac model, with partition function Zx = pr.

For the case of a binary potential, a particle
transitions from x;_; € F; to x; obeying the
‘conditional’ kernel

M (xg—1,dxg) = My (xg—1, Fr) 1 (k1 = xy)
+ My (x—1,dxi) 1 5 (xx),
@)

having P(-|Fy) as invariant measure, and mir-
roring the final “accept or reject” step in
MCMC samplers for reliability analysis (Pa-
paioannou et al., 2015, Section 3). Also, from
Bayes rule, the ratios become

Zy P(Fy)

Zie P(F_y) =P(FelFi1) =2 pk, ()

showing that subset simulation (Au & Beck,
2001a) is a special case of the partition func-
tion ratios of a Feynman-Kac model.

In practice, we encounter highly reliable
and resilient systems (pr < 10™%), making
crude Monte Carlo impractical. Thus, the im-
portance scores Lg.x are chosen so that the
conditional probabilities p; are easy to ap-
proximate. When LSF evaluations are com-
putationally intensive, Subsection 3.5 gives
evidence in support of p; ~ 0.2032.
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The success of particle integration methods
hinges on their effective implementation.

3.4 Computer implementations

The next algorithms differ from typical
implementations in two aspects, they use
‘conditional’ transition kernels M, [Eq. (7)]
and avoid bootstrap resampling of parti-
cles.  This choice improves algorithmic
performance when the kernels M) have slow
mixing time (Botev & Kroese, 2012), while
having no impact on the theoretical best-case
performance of PIM.

Annealed PIM. We call the first algorithm due
to Botev & Kroese (2012) the annealed par-
ticle integration method (aPIM, Algorithm 1)
in analogy to the process of controlled heating
and cooling of materials. Importantly, aPIM
returns an unbiased estimate of pr assuming
the importance scores (inverse temperatures)
Ly.x are known. In practice, we run Algo-
rithm 2 (introduced later), but return Lg.g.

Algorithm 1 aPIM (Botev & Kroese, 2012)

Input: Scores L.k, initial distribution My, kernels
M., and splitting factor s = 5 (recommended).
Set Xy + 0,k = 1:K,
Set Xp + {X ~My(-)}.
for k € [1:K) do
for Yo € X;_; : L[Yo] > L, do
for j=1:sdo
Sample Y; ~ M (Y;—1,-).
Set X + XU {Y,}
end for
end for
end for
o Set Xg {x € Xg_1 ZL[X] > 1}
: return pr™™ = |Xg|/sK- 1.

AN A i

—— —
R — o0

Using N iterations of aPIM we get the
next unbiased approximations of the mean
and variance of the failure probability estima-
tor (adapted from Botev & Kroese, 2012):

—(K-1) —(K-1) N .
S S
(iny = = X/
N N Nk N ]2:1" %l )
—2(K-1) N ) 2
A0 N Jj K
= X — 1
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with splitting factor s = 1/p;. Also, we have
the next bounds on the relative variance® of
aPIM (Botev & Kroese, 2012):
f 1 —pi < O b1 <i_1

i—1 Pk B (pF)2 23 ,
where the upper bound matches the per-
formance of crude Monte Carlo and holds
for perfectly correlated particle transitions,
whereas the lower bound holds for a perfectly
mixing kernel, i.e. independent transitions.

(11)

Interacting PIM. The second algorithm,
called the interacting particle integration
method (iPIM, Algorithm 2), computes the
importance scores Lo.x on-the-fly, but returns
a biased failure probability estimate (Cérou
et al., 2012). The key interaction among par-
ticles is through the importance scores Lg.g
(Lines 4 and 14).

Adaptive-levels methods such as Algo-
rithm 2 (iPIM) and subset simulation present
challenges. For example, Botev & Kroese
(2012) observe bias accompanied by underes-
timation of the relative variance in large scale
problems. However, PriP™ s positively bi-
ased and of order 1/N, which partially miti-
gates the issue, and Cérou et al. (2012) give
a correction of the bias for the ideal case of
a perfectly mixing kernel, where the relative
variance becomes (N — )

2
NOiPM _ 1 - po

(pr)? Po r0

. ! -
with po =1/s, ng = ngi’;gj and ro = prp, no_

Next, we empirically show that the ideal
performance of the previous algorithms con-
verges asymptotically. This insight motivates
tuning algorithms to the practical case of a
computationally expensive LSF, as in critical
infrastructure systems.

1—rg

; (12)

3.5 Annealed or interacting? Better to-

gether

For perfectly mixing kernels and conditional
failure probabilities pp = 1/s, k € [1:K),

ZProportional to the number of samples to rigor-
ously approximate pr (Paredes et al., 2019).
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Algorithm 2 iPIM (Cérou et al., 2012)

Input: Initial distribution My, kernels M/j>0’ number
of particles N, and splitting factor s = 5 (recom-
mended) multiple of N.
Setg <+ N(1—1/s)
Sample Xo = {X] ~ My(-) : j= 1:N}
Sort X increasing in L = L[X{]
Set Ly + (L& + L&) /2 and k + 0
while ;.| < 1do

Setk < k-+1and X; <0

for Y, € X,?f\]' do

for j=1:sdo
Sample Y; ~ M (Y;_1,)
X+ XU {Yj}
end for

end for ' .

Sort L] ' < L] =L[X/], j = 2:N.

Set Ly (LI +L1)/2.
: end while
: Lk+l +—1
D Xp1 {Xk] e Xy ZLi > 1}
: return pr™™ = s Xg, (|/N

A A ol >

—_ = = = = e =
QL k YO0

> Need for aPIM

—_ =
0

aPIM and iPIM have asymptotically the same
variance [Eq. (12)] and make the same num-
ber of LSF evaluations in expectation, de-
noted #g. We verified this empirically in one
dimension and found that, while py = 1/2 re-
sults in the smallest variance [Fig. 3(left)],
the choice p; ~ 0.2032 minimizes the inef-
ficiency, defined as A? = 62 /p% x #g, which
can be interpreted as the expected number of
LSF evaluations required to produce an esti-
mate with ‘unit coefficient-of-variation” (Au
et al., 2007). Specifically, assuming integer
K = log(pr)/log(pk), the minimization of
A? = K*(1 — pi)/ px has a closed-form solu-
tion in terms of the Lambert W function when
pris equal to —W (—2/e?) /2 ~0.2032. Thus,
we choose s = 5, and pursue efficient impor-
tance functions and kernels approaching the
ideal performance of iPIM.

The similar asymptotic behavior of iPIM
and aPIM motivates our dual approach. First,
run iPIM choosing N as large as possible to
obtain importance scores Lo.x that minimize
the variance of aPIM. Then, use aPIM to ob-
tain a consistent and unbiased variance esti-
mate 65 whose true value is equal or greater
than the variance of iPIM.
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Figure 3. Idealized one-dimensional example. Plots show analytical and empirical values of the (left) relative
variance, (center) expected number of LSF calls, and (right) inefficiency. Dotted lines show predicted values for
iPIM and markers show aPIM results; which are in stark agreement.

4 NUMERICAL EVALUATION

We fix N = 10° and s = 5 for all experi-
ments (Algorithms 1 and 2). Typically, sub-
set simulation studies need independent runs
to obtain a sample mean (biased) and vari-
ance. Instead, we use N samples of aPIM
and a single run of iPIM and obtain un-
biased estimates fly (mean) and 6]%, (vari-
ance). Thus, like with crude Monte Carlo, we
can compute approximate 99% normal con-
fidence intervals, denoted Cly(99%), which
are asymptotically correct (N — o0); however,
they do not guarantee correct approximations
in the finite sample regime (e.g. Paredes et al.,
2019). For the conditional kernels M, in
Algorithms 1 and 2, we use the precondi-
tioned Crank-Nicolson (pCN) of Cotter et al.
(2013) and the Modified Metropolis-Hastings
(MMH) of Au & Beck (2001a). The former
is used in Hamiltonian Monte Carlo (Wang
et al., 2019, Eq. (21)) and similarly compet-
itive MCMC samplers (Papaioannou et al.,
2015, Subsection 3.3).

We evaluate the empirical performance of
PIM in terms of the coefficient of variation,
or the inefficiency A? when the exact value of
pr is known. The optimal inefficiency Ai is
calculated for a perfectly mixing kernel and
optimal splitting factor 1/sqpc == 0.2032.

Our empirical validation includes Gaussian
models with known closed-form solutions.
Thus, in the reminder of this section we let
& ~ A4(0,1) be a standard normal r.v. with
cd.f. ¢. Also, B is the standard Brownian
motion with B(0) =0 and B(r +s) — B(s) ~
A(0,¢) for all ¢,5 > 0, and W is white noise
given by B(t) := [ W (t)dt.

Table 1. Linear limit-state function (x = 0).

B PF Cly(%99) A?/A2
. 2 228x1072 (2.2640.11)x1072 2.5
T 4 3.17x107°  (3.18+£0.33)x10™>  3.93
=6 987x10710 (9.41+1.38)x1010 3.30
= 2 2281077 (226£0.10)x1072  2.00
= 4 3.17x107°  (3.124£0.30)x107°  3.44
= 6 987x10710 (920+147)x10°10  3.65

We use test-cases to challenge the perfor-
mance of particle integration methods.

4.1 Linear/nonlinear limit state function

First, we consider a limit-state function
with a parameterized nonlinearity and known
closed-form solution to assess the robustness
of estimates in a high-dimensional problem.
The limit-state function is defined as:

K S

gx)=p Z(xl x2) %i_zix“

with x; ~ A47(0,1), i = 1:n, and exact solu-
tion pr independent of n (Papaioannou et al.,
2015, Eq. (34)). For x = 0 the limit-state
function is linear and pr = ¢(—f). Ta-
bles 1 and 2 show results for n = 1000.
The pCN and MMH kernels had compara-
ble performance and their inefficiency A> was
roughly 2-8 times greater than the optimal.

4.2  Random vibration

This example consists of a single-barrier
problem that has no closed-form solution,
and we show that PIM issues a much more
efficient approximation than Crude Monte
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Table 2. Nonlinear limit-state function (8 = 4).

K PF CIy(%99) A? /A2
o 0.2 641x107  (6.56+0.64)x1075  4.01
G -1.0 899%x1073 (9.04+0.59)x1073  3.48
= 50 6.62x10°° (6.87+0.83)x1076  5.17
= 02 641x107° (6.27+0.62)x107>  3.01
S -1.0 899x1073 (8.9940.51)x1073  2.53
= 50 6.62x10°6 (7.2040.93)x107°%  6.49

Table 3. Random vibration example.

a/or  pr (=) CIn(%99) G/i
~ 3.0 6.01x1072  (5.68+0.21)x10"2  0.01
Qg 40 1.79x1073  (1.8540.14)x10~3  0.02

5.0  1.97x107°  (2.05+£0.22)x107°  0.03
= 3.0 6.01x1072 (5.6440.18)x1072 0.01
= 40  1.79x1073  (1.83+0.12)x1073  0.02
= 50 1.97x10°5 (2.1240.20)x10~°  0.03

Carlo, while guaranteeing consistent and un-
biased estimates. Consider a single-degree-
of-freedom oscillator subject to white noise:

X(t)+28wX (1) + 0*X (1) = VoW (1),
X(0)=X(0) =0,

with @ = 2zrad/s, { = 0.02, and the LSF
glx] =T — 14, with 74 = inf{¢ : x(¢) > a} and
T = 15s, i.e. pF is the probability that X (r)
will exit threshold a before time 7. Assum-
ing a time-domain discretization of the white
noise, the response becomes

300

X(t)~ ) h(t;—1;)E;V2mAr, i =0:300,
Jj=0
h(t) =1(t>0)-e @ sin(wy, 1),

withz; = iAt, At = 0.05s and w; = ©+/1— .
Table 3 shows results for various thresholds a,
with approximate reference values of pr and
response standard deviation or from Au &
Beck (2001b, Table 1 and Eq. (44)). The ref-
erence values come from crude Monte Carlo
(N = 10%) and are in rough agreement with
our unbiased approximations despite having
a greater coefficient of variation.
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4.3  Network reliability

This example demonstrates the applicabil-
ity of PIM in discrete domain problems.
We adapt a latent-variable model (Botev
et al., 2012). First, for every binary r.v.
that takes value zero with probability p; =
¢~'(—p;), introduce a standard normal r.v.
X; ~ A(0,1), i = l:n. The binary r.v. can
be expressed as Y;(r) = 1(X;+ 1 — B; <1t), for
t = 1. Then, we use as importance function

Lx] =inf{r € R: g[y(¢)] <0}, (13)

which makes at most log, (n) calls to the LSF
g :{0,1}" — R using binary search. Recall
that the importance function is a smooth ana-
log of the failure indicator function. It is
known that pr = P{L[X] > 1}. The transfor-
mation to the standard normal space allow us
to use pPCN/MMH with a single call to the im-
portance function per kernel sample. Instead,
the competitive Gibbs sampler of Botev et al.
(2012) makes n calls per kernel sample.

We focus on the multiterminal network un-
reliability problem: for a graph G = (V,E),
compute the probability that a specified set of
terminals V/ C V becomes disconnected given
that each edge e € E fails independently with
probability p,. Here, g[-] = 1 if the terminals
are connected and g[-] = 0, otherwise.

We consider the square lattice 100 x 100
with 10000 vertices and 19800edges. For
the case of two terminals in opposing cor-
ners, one can obtain a lower bound as ref-
erence value using exact sequential bound-
ing techniques (e.g. Paredes et al., 2018).
In this example we use N = 10, as stor-
ing N vectors of size 19800 takes roughly
1.5 gigabytes using double floating-point rep-
resentation. Table 4 shows estimates that are
in agreement with the reference values. To the
best of our knowledge, state-of-the-art meth-
ods struggle with similar instances in the rare-
event regime. For example, Ching & Hsu
(2007, Table 1) consider the same example
but crude Monte Carlo outperforms their es-
timates using standard graph traversal algo-
rithms such as breadth-first-search. Also, the
method of Zueyv et al. (2015) does not address
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Table 4. Network reliability (100 x 100 grid).

Pe pr (>) ClIn(%99) G/n
o le-03  2x107°  (1.90+0.76)x107®  0.12
G 1e-05 2x107'0 (2.23+1.10)x107'% 0.15
= 1e-07 2x107M  (2.62+£1.46)x10~*  0.17
= le-03 2x107° (2.074£1.03)x107°  0.15
S le-05 2x10710  (2.57+3.53)x10710 042
= 1e-07 2x107  (2.0642.25)x10" 033

the importance function so it is not directly
applicable to a binary LSF such as in connec-
tivity reliability.

4.4  Probabilistic resiliency

We consider a network flow restoration model
of the power transmission network of Shelby
County, TN (Gonzélez et al., 2016), and
compute its unresiliency pr: the probabil-
ity of violating robustness or rapidity con-
straints [Eq. (2)]. The recovery model mir-
rors an iterative mixed integer program that,
given a budget per unit of time (e.g. re-
pairs per day), identifies the network ele-
ments whose repair maximize demand satis-
faction. The power network data consist of
75 nodes (9 supply nodes and 42 demand
nodes) and 93 transmission lines. This net-
work system is substantially smaller than the
previous due to the intractability of the LSF,
which requires solving an iterative mixed in-
teger program. We assume independent trans-
mission line outages with uniform probabili-
ties of failure, and a single outage repair per
unit of time; however, it is straightforward to
consider pairwise correlations or hazard-and-
site specific fragilities. To test the efficiency
of our approach, we consider various values
of the transmission line failure probability p,
rapidity target r, (time horizon) and robust-
ness target ry, (satisfied demand).

We use the latent variable formulation from
the previous section and, given a sample path
x, consider a copy x\) for each time unit j =

0,1,..., with xl(j ) — _oo if network element

i is repaired by time unit j. The importance
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function in this case is:
L[X] = maX(LROb[X(O)],LRap[X(Rap[XD])’

where Lrop (resp. Lgap) 1s like Eq. (13), but
we have g[-] <0 when the satisfied demand is
less than r,, (resp. 100%).
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Figure 4. Unresiliency for various recovery targets.

Fig. 4 shows results for p, = 1/10. When
rp = 0 and r, = 80%, the system does not
tolerate drops of satisfied demand after the
disruption, and the system is highly unre-
silient. As the rapidity and robustness con-
straints are less stringent, the system transi-
tions into highly-resilient, and the computa-
tion of pr is infeasible via crude Monte Carlo
methods. Clearly, enhancing only system ro-
bustness, or rapidity, sets a ceiling on how
much we can reduce unresiliency. To the best
of our knowledge, our approach gives the first
consistent and unbiased estimation of failure
probabilities in highly-resilient systems.

5 CONCLUSIONS

We considered the path-dependent system re-
liability problem and its application to first-
excursion probabilities, network reliability,
and the probabilistic resiliency of critical in-
frastructure systems.

We optimized the performance of Parti-
cle Integration Methods (PIM) to engineering
applications with computationally expensive
limit-state functions. The main advantage
over traditional algorithms, e.g. subset simu-
lation, is that ours deliver consistent and unbi-
ased estimates. Using a wide range of numer-
ical examples, we empirically verified near-
optimal performance in practice, with ineffi-
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ciency values within an order of magnitude of
the optimal performance.

For future research, we are studying
rigorous approximations guaranteeing user-
specified relative error and confidence param-
eters. Also, we are studying efficient Markov
Chain Monte Carlo samplers and importance
functions for applications of interest, includ-
ing random excitation of non-linear structures
and the joint-decentralized recovery of criti-
cal infrastructure systems.
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