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Abstract

We consider the problem of causal discovery (struc-

ture learning) from heterogeneous observational

data. Most existing methods assume homogeneous

sampling scheme and causal mechanism, which

may lead to misleading conclusions when violated.

We propose a novel approach that exploits data

heterogeneity to infer possibly cyclic causal struc-

tures from causally insufficient systems. The core

idea is to model the direct causal effects as func-

tions of exogenous covariates that help explain

sampling and causal heterogeneity. We investigate

the structure identifiability properties of the pro-

posed model. Structure learning is carried out in a

fully Bayesian fashion, which provides natural un-

certainty quantification. We demonstrate its utility

through extensive simulations and two real-world

applications.

1 INTRODUCTION

Causal discovery is a central task in various fields including

social science, artificial intelligence, and systems biology.

While randomized controlled trials are the gold standard

to establish causality, they can be too costly, unethical, or

impossible to carry out. For example, recovering gene reg-

ulatory networks through gene knockout would be too ex-

pensive to scale whereas observational genomic data are

considerably easier to obtain with next-generation sequenc-

ing technologies and have become widely available. Many

causal discovery methods, therefore, attempt to discover

causality from purely observational data.

Related work One prominent approach in presenting and

learning causality is to use the structural equation model

(SEM) and the associated causal graph [Pearl, 1998]. The

recursive linear Gaussian SEM is among the most popular

ones although the associated causal directed acyclic graph is

only identifiable up to Markov equivalence classes [Verma

and Pearl, 1990]. In order to uniquely identify causal struc-

tures with observational data, additional distributional as-

sumptions have been made in prior works including the

linear non-Gaussian model [Shimizu et al., 2006], the non-

linear additive noise model [Hoyer et al., 2008a], and the

linear Gaussian model with equal error variances [Peters

and Bühlmann, 2014]. A common thread of these meth-

ods is that they assume that the causal graph is acyclic and

there are no unmeasured confounders (also known as causal

sufficiency). However, directed cycles and confounders are

very common in practice. For example, feedback loops (di-

rected cycles) are common regulatory motifs in biological

signaling systems [Brandman and Meyer, 2008]. As for

confounders, gene regulation is known to be affected by

many factors such as epigenetic modification [Portela and

Esteller, 2010], which may not be measured together with

gene expressions.

To allow for cycles, non-recursive SEMs have been devel-

oped and proven to be identifiable for linear non-Gaussian

models [Lacerda et al., 2008] and nonlinear additive noise

models [Mooij et al., 2011]. In the presence of unmeasured

confounders, linear non-Gaussian SEMs have received lots

of attention: various models have been proposed and shown

to be structurally identifiable under the respective confound-

ing assumptions [Hoyer et al., 2008b, Chen and Chan, 2012,

Shimizu and Bollen, 2014, Salehkaleybar et al., 2020]. Nev-

ertheless, none of the aforementioned methods explicitly

deal with and provide identifiability guarantees for graphs

with both cycles and confounders. Although Hyttinen et al.

[2012] and Forré and Mooij [2018] provided learning algo-

rithms for general SEMs (allowing cycles, confounders, and

nonlinearity), the graph structure can only be fully recov-

ered with interventional data, which is quite different from

the observational setting considered in this paper.

Furthermore, all the aforementioned methods assume inde-

pendent and identically distributed (iid) observations, which

may be violated in many applications. For example, can-
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cer is known to be a genetically heterogeneous disease and,

therefore, cancer genomic data exhibit great heterogeneity.

Methods that ignore such heterogeneity can perform poorly

as we will see in our experiments. Recently, Ni et al. [2019],

Huang et al. [2020], Saeed et al. [2020] explicitly addressed

the heterogeneity issue by incorporating covariates or using

a latent mixture model but their models are acyclic and do

not account for unmeasured confounders. The method pro-

posed by Peters et al. [2016] is able to identify the causal

relationships in heterogeneous data if the causal effects are

invariant across environments. By contrast, we assume the

causal mechanism varies with the environment. Our moti-

vating application in cancer genomics is one example where

causal variance is more likely to hold than invariance be-

cause gene regulation may change as cancer progresses

[Moustakas and Heldin, 2007, Huang et al., 2009]. Other

examples include finance data (e.g., stock prices) where

causal relationships can change over time, and fMRI data

where brain connectivity networks can change from sub-

ject to subject. Mooij et al. [2020] proposed a flexible joint

causal inference (JCI) framework, which allows the causal

mechanism to vary. Faria et al. [2022] dealt with discrete

groups of interventional samples with known interventional

targets but they did not provide causal identification guaran-

tee. Creager et al. [2021] focused on invariant learning and

environment inference in tasks like domain generalization,

which is related to but different from causal discovery.

In this paper, we propose a novel method for Causal dis-

covery with Heterogeneous Observational Data (CHOD).

Importantly, we do not restrict our model to be acyclic and

do not assume causal sufficiency. By exploiting the data

heterogeneity via exogenous covariates, we provide suffi-

cient conditions under which CHOD is structurally identifi-

able in (i) causally insufficient bivariate cyclic graphs, (ii)

causally insufficient multivariate acyclic graphs, and (iii)

causally sufficient multivariate cyclic graphs. Our method

is among the first model-based causal discovery methods to

identify causal graphs with both cycles and confounders in

purely observational settings without prior domain knowl-

edge. Extensive simulation experiments and two real-world

applications support the utility of our method and demon-

strate its superiority in handling heterogeneous data through

comparison with state-of-the-art alternatives.

2 PRELIMINARIES OF CAUSAL

DISCOVERY

Let X = (X1, . . . , Xp)
T be a p-dimensional random vector.

We represent the causal structure as well as the joint obser-

vational distribution of X by a linear SEM, X = BX+E,

with direct causal effects B = [bjℓ] ∈ R
p×p and ran-

dom noises E = [ej ] ∈ R
p. If bjℓ 6= 0, then Xℓ is a

direct cause of Xj . We assume E to be centered Gaus-

sian with covariance S = [σjℓ]. When there are no un-

measured confounders (i.e., hidden common causes), the

noises are independent of each other and hence S is di-

agonal. However, the presence of confounders would cor-

relate the noises, making the off-diagonal elements of S

non-zero and resulting in a causally insufficient system. To

see that, suppose we explicitly model unmeasured Gaus-

sian confounders L via X = BX + ΓL + E′. Then

marginalizing out L leads to X = BX + E where

S = Cov(E) = ΓCov(L)ΓT + Cov(E′). Therefore, the

non-zero off-diagonal entries of S implicitly account for

unmeasured confounders.

We use a mixed graph GM = (V,EB , ED) to represent

the causal relationships embedded in the SEM, where V =
{1, . . . , p} is the set of nodes representing X , EB is the

set of bidirected edges, and ED is the set of directed edges;

see Figure 1 for a few examples. There is a bidirected edge

ℓ ↔ j if σjℓ 6= 0, and a directed edge ℓ → j if bjℓ 6= 0.

In the former case, Xj and Xℓ are confounded by at least

one hidden common cause, while in the latter case, Xℓ is

a direct cause of Xj . The graph is acyclic if there does not

exist a directed path k1 → k2 → . . . → kℓ → k1 that

returns a node to itself, otherwise it is called cyclic. Our

goal is to identify the edge-induced subgraph G = (V,ED)
with direct causal relationships ED among the observed

variables X .

3 METHOD

3.1 PROPOSED MODEL

Our key idea to discover causality is to take advantage of the

data heterogeneity, which we assume can be explained by

some exogenous covariates Z ∈ R
q . The exogenous covari-

ates may be observed (e.g., biomarkers in cancer genomic

data) or latent. In the latter case, one can impute the latent

covariates by various embedding methods such as t-SNE

[van der Maaten and Hinton, 2008] and UMAP [McInnes

et al., 2018]. Alternatively, latent covariates can be learned

simultaneously with our model. For ease of exposition, we

first focus our discussion on the case where the exogenous

covariate is given (either observed or imputed) and univari-

ate (i.e., q = 1), and later briefly discuss the extension

to multivariate latent covariates. Specifically, given Z, we

model X as a varying-coefficient linear Gaussian SEM,

X = B(Z)X +E, E ∼ N(0,S), (1)

where B(Z) = [bjℓ(Z)] : R 7→ R
p×p is a matrix-valued

function of Z, which characterizes the changes of the direct

causal effects with respect to Z. Because each observation

potentially has a different value of covariate Z, the direct

causal effects B(Z) are heterogeneous and observation-

specific. Note that since S does not depend on Z, we im-

plicitly assume that the confounding effects are not hetero-

geneous. Model (1) implies the conditional distribution of
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X given Z,

P(X|Z,B,S) = det(I −B(Z))N((I −B(Z))X|0,S).

When B(Z) is constant in Z, model (1) is reduced to an

ordinary linear Gaussian SEM and hence its underlying

causal graph G is not identifiable. However, as we will show

later, the causal graph of model (1) is in general identifiable.

Relation to existing methods While most existing causal

discovery methods that are applicable to heterogeneous data

assume the exogenous covariate to be discrete and finite

(i.e., multiple contexts, domains, or experimental condi-

tions), under our framework the exogenous covariate Z can

be either continuous or discrete. To match the case of our

real-data application (see Section 4.2) and emphasize the

advantage of CHOD, we present Z as a continuous covari-

ate in this paper. With continuous Z, the proposed method

is particularly useful when the data are heterogeneous but

there are no clear predefined discrete groups. If the covari-

ate is categorical, the proposed model can be thought of as

multi-domain/group-specific graphical models (see, for ex-

ample, Yajima et al. [2015], Ghassami et al. [2018], Ni et al.

[2018]) by viewing the categorical covariate as the domain

or group indicator. The proposed model is also reminiscent

of causal models with soft interventions by viewing Z as

intervention that modifies causal effects; however, the key

difference is that our model does not assume the knowledge

of the interventional targets (i.e., Z could affect all causal

effects) and the interventions are conducted by nature rather

than humans. In summary, our model explicitly accounts

for the heterogeneity of data generating mechanism via the

observation-specific direct causal effects B(Z), which vary

smoothly with covariate Z. We provide a detailed discussion

contrasting the proposed method with two state-of-the-art

heterogeneous causal discovery methods from Huang et al.

[2020] and Mooij et al. [2020] in Section S1 of the Supple-

mentary Materials.

In the regression context, the varying-coefficient model

serves as an important generalization of linear model. As

introduced by Hastie and Tibshirani [1993], the class of

varying-coefficient models ties together many important

structured regression models such as additive models and

dynamic linear models into one common framework. Like-

wise, our proposed model is a natural extension of linear

SEMs, which allows varying causal effects. One important

ingredient exploited in this paper is that the adoption of vary-

ing causal effects helps identify the causal structure. Note

that for simplicity, we have assumed linearity and Gaus-

sianity in the current formulation. In addition to efficient

computation and causal effect estimation (discussed briefly

in Section S2 of the Supplementary Materials), this simple

setup allows us to convey the main idea that heterogeneity

alone is enough to enable causal identification.

3.2 CAUSAL STRUCTURE IDENTIFIABILITY

For model-based causal discovery methods, the non-

identifiability issue can be seen from the distribu-

tional/observational equivalence point of view. Two CHOD

models parameterized by (B,S) and (B′,S′) are said to

be distributionally/observationally equivalent if for any

values of (B,S) there exist values of (B′,S′) such that

P(X|Z,B,S) = P(X|Z,B′,S′) for all X . Clearly, dis-

tributionally/observationally equivalent models cannot be

distinguished from each other by examining their observa-

tional distributions. The causal structure is said to be identifi-

able if there do not exist two distributionally/observationally

equivalent causal models such that G 6= G′.

Throughout, we make the causal Markov assumption

[Richardson, 1996], i.e., the probability distribution P re-

spects the Markov property of the causal graph G. Before

stating our main results, we first provide an intuition on

how the proposed CHOD is identifiable using a toy example.

Consider the bivariate graphs shown in Figure 1. We can

distinguish graphs (a)–(b) from graphs (c)–(f) because the

marginal variance of X2 is independent of Z in graphs (a)–

(b) but depends on Z in graphs (c)–(f) through the causal

effect b21(Z): X1 → X2. Likewise, we can separate graphs

(c)–(d) from graphs (e)–(f) by examining the marginal vari-

ance of X1 which depends on Z through X2 → X1. We

may not distinguish (c) from (d) or (e) from (f), but the

direct causal relationship between X1 and X2 is determined

in either case.

X1 X2

(a)

X1 X2

(b)

X1 X2

(c)

X1 X2

(d)

X1 X2

(e)

X1 X2

(f)

Figure 1: Mixed graphs. Solid arrows are causal effects and

dashed bidirected arrows are confounding effects.

We further illustrate the identifiability with simulated data

from graphs (b), (d), and (f) in Figure 1. Specifically, the

exogenous covariates were generated uniformly. Under each

graph, the non-zero elements of B(Z) were assumed to be

0.5 sin(πZ). We set the noise variances to 1 and the corre-

lation coefficients to 0.5 to have confounding effects. The

n = 1000 data points as well as the marginal variances

estimated by kernel method of the two nodes as functions

of Z are depicted in Figure 2 for these 3 cases, from which

the causal relationships between X1 and X2 are intuitively

identifiable in the presence of both confounders and cycles:

in Figure 2(a), both Var(X1) and Var(X2) are nearly con-

stant in Z indicating no direct causal link; in Figure 2(b),

Var(X1) is constant but Var(X2) is not constant in Z indi-

cating a direct causal link X1 → X2; and in Figure 2(c),

neither Var(X1) nor Var(X2) is constant in Z indicating a

2385



cyclic causal link X1 ⇄ X2.
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Figure 2: Illustration with a bivariate toy example.

Now we present the identifiability theories. We first show

that in the bivariate case the CHOD models are not distri-

butionally equivalent and, therefore, their causal graphs are

identifiable.

Theorem 1 (Causally Insufficient Bivariate Cyclic Graphs).

Consider bivariate CHOD models with direct causal ef-

fects [b12(Z), b21(Z)] and [b′12(Z), b′21(Z)], respectively.

Assume bjℓ(Z) and b′jℓ(Z) are either zero or non-constant

functions for all j 6= ℓ ∈ {1, 2}. Then if the two CHOD mod-

els are distributionally equivalent, we must have G = G′.

All proofs are provided in Section S3 of the Supplementary

Materials. The assumption that bjℓ(Z) is either zero or a

non-constant function is not surprising because if non-zero

bjℓ(Z) is constant in Z, then the proposed model is reduced

to an ordinary linear Gaussian SEM, which is known to be

non-identifiable. Loosely speaking, Theorem 1 states that

CHOD is identifiable if Z can help explain the heterogeneity

of the data generating mechanism.

Next, we provide sufficient conditions for causally insuf-

ficient multivariate acyclic systems and causally sufficient

multivariate cyclic systems to be identifiable, and leave

the theoretical investigation of causally insufficient mul-

tivariate cyclic systems as future work. Denote pa(j) =
{ℓ : ℓ → j ∈ ED} as the set of direct causes and

ds(j) = {ℓ : ℓ ↔ · · · ↔ j} as the set of nodes connected

to j through bidirected arrows.

Theorem 2 (Causally Insufficient Multivariate Acyclic

Graphs). Consider the CHOD model in (1) restricted to

acyclic causal graphs. Assume without loss of generality

(1, . . . , p) is a true causal ordering (i.e., ℓ 6→ j if ℓ > j).

If for any node j, and any set S = {1, . . . ,m} such that

pa(j) 6⊂ S, we have Var(Xj |XS) is a non-constant func-

tion of the covariate Z, then the causal ordering is identi-

fiable. Moreover, if pa(j) ∩ ds(j) = ∅, ∀j, then the causal

graph is identifiable.

The proof of Theorem 2 first identifies an ordering by re-

cursively finding root variables in acyclic graphs and then

identifies the graph structure given the ordering. The as-

sumption on Var(Xj |XS) means that the heterogeneous

causal effects do not accidentally become constant in any

paths, which is similar in spirit to the causal faithfulness as-

sumption. See Section S3.2 of the Supplementary Materials

for more discussions.

We have presented our theorems in their strongest forms,

i.e., full structure identifiability. If some of the causal effects

do not vary with Z, then their identification is not always

guaranteed (they may still be identifiable in some graphs via

v-structure and Meek rules). This is similar to other causal

models. For example, in additive noise models, all causal

effects have to be nonlinear for full identification. Those

linear causal effects have to rely on v-structure and Meek

rules to achieve identification as in our method. In the linear

non-Gaussian acyclic model, all but one noises have to be

non-Gaussian. Like our model, violation of these assump-

tions would lead to partial structure identification. We would

like to point out though, under our proposed Bayesian learn-

ing framework discussed in Section 3.3, we can assess the

credibility of inferred edges via posterior inference: edges

that have nearly constant causal effects (e.g., if 95% credible

bands of bjℓ(Z), which can be computed from Monte Carlo

samples, cover constant functions) are deemed less reliable.

Unlike bivariate graphs, the identifiability results of multi-

variate cyclic graphs for purely observational data are sparse

in the literature with few exception [Lacerda et al., 2008],

which assumes causal sufficiency and disjoint cycles. In the

following theorem, we also make the same assumptions.

Theorem 3 (Causally Sufficient Multivariate Cyclic

Graphs). Consider the CHOD model (1). Assume there are

no unmeasured confounders and all cycles are disjoint. The

causal graph is generally identifiable1.

Theorems 1–3 assume Z to be univariate and known (ob-

served or imputed). When Z is multivariate and unknown,

it can be inferred jointly with the causal graph. We provide

its identifiability result below and briefly discuss its imple-

mentation in Section S4.1 of the Supplementary Materials.

1That is, it is identifiable unless a peculiar condition holds. We

discuss that condition (⋆) in Section S3.3 of the Supplementary

Materials.
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Proposition 1 (Multivariate Latent Exogenous Covariates).

Assume the vector m(Z) that stacks the non-zero ele-

ments of B(Z) is continuous and injective, and (m,S) 7→
P(X|m,S) is continuous and injective in m given G. Then

the latent exogenous covariates are identifiable up to a

monotone transformation.

Proposition 1 shows that the relative position of the latent co-

variates can be identified, which is useful in sorting observa-

tions (see many prominent examples of trajectory inference

in single-cell genomic studies [Saelens et al., 2019]). It can

be also viewed as an embedding and dimension reduction

tool wrapped in a causal model because the dimension of Z

is typically much smaller than X . The condition of Proposi-

tion 1 that assumes m(Z) to be injective as a vector-valued

function should not be interpreted as a requirement that

each individual function has to be injective. For example,

if b12(Z) = (Z + 1)2 and b21(Z) = Z2, neither is injec-

tive but the resulting m(Z) = [b12(Z), b21(Z)] is injective.

Given the causal structure, the second requirement on the

distribution P is equivalent to the identifiability of causal

effects or model parameters. The causal effect identifica-

tion itself is an interesting but challenging task. For linear

Gaussian SEMs, it is well-known that causal effects are iden-

tifiable without confounders. With confounders, Drton et al.

[2011] showed that the acyclic mixed graph needs to be a

simple graph. As is evident from the proofs of Theorems 2

and 3, the causal effects under the corresponding assump-

tions are indeed identifiable for our model. In a related work,

Salehkaleybar et al. [2020] showed that the causal effects

in the presence of latent confounders are identifiable with

mild structure assumptions in the non-Gaussian setting. This

paper focuses on investigating causal structure identifiabil-

ity; establishing causal effect identifiability theory for the

causally insufficient multivariate cyclic graphs will be an

interesting future work.

3.3 BAYESIAN STRUCTURE LEARNING

We learn the causal structure through a Bayesian approach

by assigning priors on the space of graphs and model param-

eters. We model the direct causal effects by cubic B-splines

with evenly spaced knots bjℓ(Z) =
∑K

k=1 βjℓkφk(Z),
where {φk(Z)}Kk=1 is the set of spline basis. To encour-

age graph sparsity, a spike-and-slab prior is assigned to the

vector βjℓ = (βjℓ1, . . . , βjℓK)T ,

P(βjℓ|rjℓ, τ) = (1− rjℓ)δ0(βjℓ) + rjℓN(βjℓ|0, τI),

where δ0(·) is a point mass at vector zero and rjℓ is a bi-

nary edge indicator. By construction, rjℓ = 0 if and only if

βjℓ = 0 (equivalently, ℓ 6→ j and bjℓ(Z) ≡ 0). We assume

independent beta-Bernoulli priors with rjℓ ∼ P(rjℓ|π) =
Bernoulli(rjℓ|π) and π ∼ P(π) = beta(π|a, b). We place

conjugate inverse-gamma prior on τ ∼ P(τ) = IG(τ |α, β)
and inverse-Wishart prior on the covariance matrix S ∼

P(S) = IW (S|Ψ, v). If a sparse estimation of confound-

ing effects is desired, selection or shrinkage priors can be

assigned to S, which we do not pursue in this paper.

Let D = {(xi, zi), i ∈ 1, . . . , n} be n realizations of

(X, Z). Denote β = [βjℓk] and r = [rjℓ]. The joint poste-

rior distribution is then given by

P(β,S, r, π, τ |D) ∝ P(β|r, τ)P(S)P(r|π)P(π)P(τ)

×
∏n

i=1 P(xi|zi,B(zi),S),

where P(β|r, τ) =
∏

j,ℓ P(βjℓ|rjℓ, τ) and P(r|π) =∏
j,ℓ P(rjℓ|π). The posterior distribution is not analytically

available; we use Markov chain Monte Carlo (MCMC) to

approximate it with the sampling steps detailed in Section

S4 of Supplementary Materials.

The per-iteration computational complexity of sampling is

O(np5)2. This is a general learning algorithm that includes

possible cycles and confounders. It can be simplified if there

are no cycles and/or confounders. For example, for acyclic

graphs, the spline coefficients β can be integrated out to

improve MCMC mixing. Upon the completion of MCMC,

the causal structure can be summarized by thresholding the

estimated posterior probability of inclusion P(rjℓ = 1|D) ≈

1/M
∑M

m=1 I(r
(m)
jℓ = 1) at 0.5, where the superscript (m)

indexes the Monte Carlo samples. Alternatively, we can

choose a different threshold to control the Bayesian false

discovery rate as in Müller et al. [2006].

4 EXPERIMENTS

We use extensive simulations as well as a real cancer ge-

nomic dataset with known cyclic causal graphs to evaluate

the proposed method, CHOD. Additionally, we also ap-

plied CHOD to a Hong Kong stock market dataset analyzed

in a recent heterogeneous causal discovery work [Huang

et al., 2020]. Throughout, we set the hyperparameters as

non-informative ones with Ψ = I , v = p, a = b = 0.5,

α = β = 0.01, and K = 10, which performed well in all

experiments considered. We ran MCMC for 2000 iterations,

discarded the first 1000 iterations as burn-in, and retained

every 5th iteration after burn-in as posterior samples. We

evaluated the graph structure recovery accuracy by calcu-

lating true positive rate (TPR), false discovery rate (FDR),

and Matthew’s correlation coefficient (MCC) based on 50

repetitions in simulations. TPR (higher is better) measures

the sensitivity/power of the method, i.e., how many true

edges can a method detect, and FDR (lower is better) mea-

sures how many detected edges are false discoveries. A good

method should have high TPR and low FDR. MCC (higher

is better) is a unified measure that accounts for both TPR

and FDR. It takes value in [−1, 1] with 1 indicating perfect

graph recovery.

2Sampling r and β requires O(p2) numbers of likelihood

evaluation and each likelihood evaluation is O(np3).
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4.1 SIMULATIONS

Since most existing causal discovery methods assume

acyclic graphs and/or causal sufficiency with some excep-

tions that allow either cycles or confounders but usually not

both, in order to maximize the fairness of comparison, we

conducted simulations under three scenarios: when the sim-

ulation truths are cyclic graphs with confounders, acyclic

graphs with confounders, and cyclic graphs without con-

founders, respectively. The first scenario is the most general

one, which has been the focus of this paper, while the second

and third scenarios are designed for fairness and hence are

briefly discussed in the main text with details provided in the

Section S5.1 of the Supplementary Materials. Note that our

general algorithm accommodates all those three settings. We

first considered data generated from our proposed model and

then considered various model misspecifications in terms of

non-Gaussian errors, different confounding effects, varying

degrees of heterogeneity, and unobserved covariates.

Data generating mechanism We considered sample size

n ∈ {125, 250, 500, 1000} and the number of nodes p ∈
{10, 25, 50}. Exogenous covariates were simulated from the

uniform distribution U(−1, 1). True causal graphs were gen-

erated as Erdős-Rényi random graph with edge probability

1/p (plotted in Figure S2-S4 in Section S5 of the Supple-

mentary Materials). When assumed acyclic in the second

scenario, the graph is constrained to have no directed cycles.

Given the true structure, non-zero direct causal effects were

randomly chosen from f(Z) = 0.8Z, g(Z) = 0.9 cos(πZ),
or h(Z) = 0.9 tanh(πZ). We set the diagonal elements of

S to 1. We generated the off-diagonal entries of S randomly

from U(−1, 1) in scenarios where there are unmeasured

confounders, subject to S being positive-definite. Observa-

tions were then generated from model (1).

Scenario 1: cyclic graphs with confounders To the best

of our knowledge, methods that can deal with both cy-

cles and confounders in purely observational data are un-

common. We compared CHOD with two state-of-the-art

acyclic causal discovery methods with confounders: RFCI

[Colombo et al., 2012] and RICA [Salehkaleybar et al.,

2020], and two state-of-the-art cyclic causal discovery meth-

ods without confounders: LiNG [Lacerda et al., 2008] and

ANM [Mooij et al., 2011]. RICA and LiNG are based on

linear non-Gaussian models, while ANM uses nonlinear

additive noise models. RFCI imposes no distributional as-

sumptions and outputs a graph containing both directed and

bidirected edges (or edges with indeterminate directions).

The results are summarized in Table 1. As expected, CHOD

was the only approach that could recover the true graph well

under this general heterogeneous simulation setting where

both cycles and confounders are present. For example, the

MCC for all the competing methods was uniformly low for

all (n, p) whereas the MCC of the proposed CHOD was

always substantially higher and improved as sample size

increased as expected.

Scenario 2: acyclic graphs with confounders In addi-

tion to RICA and RFCI, in this scenario, we compared

CHOD with CAM [Bühlmann et al., 2014], GDS [Peters

et al., 2014], and RESIT [Peters et al., 2014] as bench-

marks although they are not designed for causal discovery

in the presence of confounders. These three methods are

based on nonlinear additive noise model. Moreover, we

combined several bivariate causal discovery methods with

CAM as suggested in Tagasovska et al. [2020] by first using

CAM to learn a Markov equivalence class and then using

IGCI [Janzing and Schölkopf, 2010], EMD [Chen et al.,

2014], and bQCD [Tagasovska et al., 2020] to orient edges.

These three bivariate causal discovery methods are based

on asymmetry between the cause and the effect in terms of

certain complexity metrics. In addition, we also compared

with NOTEARS [Zheng et al., 2018] and DAG-GNN [Yu

et al., 2019], which utilize continuous optimization for di-

rected acyclic graph learning. Results are summarized in

Table S3 in Section S5.1 of the Supplementary Materials. In

summary, CHOD outperformed all the competing methods:

the MCC of CHOD ranged from 0.6 to 0.9 whereas the

competing methods had MCC typically < 0.4. Moreover,

we conducted additional simulations under the scenario of

acyclic graphs without confounders. Still, the performance

of these methods did not improve much compared to the

scenario with confounders because of the heterogeneity, and

the proposed CHOD still significantly outperformed them

(results provided in Section S5.1 of the Supplementary Ma-

terials). Furthermore, in Section S5.1 of the Supplementary

Materials, we considered more comparisons with methods

that incorporate the covariate Z as an additional node in the

causal graph (similar in spirit to the JCI framework [Mooij

et al., 2020]). However, these additional comparisons did

not show significantly better graph recovery.

Scenario 3: cyclic graphs without confounders We

compared CHOD with LiNG and ANM. The results are sum-

marized in Table S4 in Section S5.1 of the Supplementary

Materials. As in the first two scenarios, CHOD performed

significantly better by exploiting the data heterogeneity.

Misspecification 1: nonlinear confounding, non-Gaus-

sianity, and varying degrees of heterogeneity From pre-

vious experiments, the proposed CHOD consistently out-

performed non-Gaussian SEMs because data were hetero-

geneous and the errors were Gaussian, both conditions fa-

voring CHOD. For fairer comparison and better illustration,

we conducted further simulations under an alternative data

generating mechanism. Specifically, we mimicked the simu-

lation setting in Salehkaleybar et al. [2020] by generating

n = 250 observations from the SEM (1) with uniform

noises e ∼ U(−1, 1) under a three-node (Figure S5(b))
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Table 1: Simulation Scenario 1. Average operating characteristics over 50 repetitions. The standard deviation for each

statistic is given within parentheses. The best performance is shown in boldface.

n = 125
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.662 (0.065) 0.253 (0.092) 0.644 (0.077) 0.662 (0.062) 0.385 (0.080) 0.590 (0.094) 0.608 (0.082) 0.385 (0.077) 0.590 (0.061)

LiNG 0.913 (0.088) 0.863 (0.012) 0.104 (0.073) 0.860 (0.057) 0.953 (0.003) 0.023 (0.034) 0.802 (0.059) 0.979 (0.002) 0.007 (0.021)

ANM 0.093 (0.069) 0.879 (0.091) 0.004 (0.083) 0.002 (0.006) 0.988 (0.035) 0.009 (0.015) 0.002 (0.006) 0.972 (0.043) 0.004 (0.022)

RFCI 0.174 (0.069) 0.742 (0.082) 0.113 (0.071) 0.227 (0.035) 0.715 (0.046) 0.200 (0.041) 0.046 (0.025) 0.943 (0.026) 0.030 (0.025)

RICA 0.470 (0.130) 0.895 (0.029) 0.051 (0.009) 0.566 (0.104) 0.947 (0.009) 0.037 (0.045) 0.485 (0.044) 0.978 (0.002) 0.006 (0.013)

n = 250
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.804 (0.081) 0.162 (0.088) 0.768 (0.075) 0.698 (0.065) 0.286 (0.090) 0.662 (0.056) 0.680 (0.083) 0.340 (0.081) 0.644 (0.086)

LiNG 0.880 (0.084) 0.870 (0.010) 0.064 (0.068) 0.834 (0.099) 0.955 (0.005) 0.007 (0.051) 0.798 (0.047) 0.979 (0.001) 0.004 (0.017)

ANM 0.077 (0.056) 0.910 (0.057) 0.024 (0.058) 0.009 (0.013) 0.937 (0.048) 0.010 (0.033) 0.003 (0.029) 0.964 (0.012) 0.004 (0.002)

RFCI 0.201 (0.050) 0.739 (0.045) 0.123 (0.047) 0.280 (0.033) 0.744 (0.027) 0.203 (0.030) 0.009 (0.030) 0.907 (0.027) 0.069 (0.028)

RICA 0.463 (0.127) 0.890 (0.033) 0.033 (0.099) 0.481 (0.120) 0.955 (0.011) 0.001 (0.051) 0.472 (0.065) 0.978 (0.003) 0.008 (0.019)

n = 500
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.849 (0.073) 0.152 (0.073) 0.813 (0.073) 0.813 (0.063) 0.268 (0.090) 0.768 (0.094) 0.804 (0.075) 0.259 (0.057) 0.768 (0.061)

LiNG 0.917 (0.099) 0.867 (0.013) 0.093 (0.083) 0.875 (0.073) 0.952 (0.004) 0.034 (0.039) 0.788 (0.063) 0.979 (0.002) 0.002 (0.022)

ANM 0.100 (0.066) 0.898 (0.071) 0.026 (0.074) 0.009 (0.013) 0.917 (0.058) 0.009 (0.041) 0.004 (0.008) 0.961 (0.015) 0.003 (0.018)

RFCI 0.274 (0.045) 0.734 (0.050) 0.147 (0.052) 0.320 (0.043) 0.772 (0.030) 0.197 (0.039) 0.124 (0.027) 0.901 (0.018) 0.086 (0.022)

RICA 0.413 (0.126) 0.903 (0.033) 0.078 (0.104) 0.491 (0.094) 0.954 (0.009) 0.006 (0.040) 0.489 (0.082) 0.977 (0.004) 0.015 (0.025)

n = 1000
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.912 (0.081) 0.142 (0.069) 0.840 (0.083) 0.894 (0.072) 0.245 (0.064) 0.813 (0.062) 0.849 (0.093) 0.251 (0.062) 0.786 (0.079)

LiNG 0.897 (0.108) 0.866 (0.014) 0.088 (0.089) 0.836 (0.058) 0.954 (0.003) 0.013 (0.030) 0.814 (0.058) 0.978 (0.001) 0.011 (0.020)

ANM 0.127 (0.059) 0.908 (0.042) 0.037 (0.055) 0.010 (0.006) 0.903 (0.006) 0.024 (0.006) 0.003 (0.016) 0.962 (0.017) 0.009 (0.017)

RFCI 0.303 (0.043) 0.754 (0.034) 0.139 (0.042) 0.350 (0.028) 0.792 (0.017) 0.191 (0.022) 0.159 (0.022) 0.897 (0.013) 0.101 (0.017)

RICA 0.447 (0.142) 0.893 (0.037) 0.044 (0.114) 0.506 (0.073) 0.951 (0.007) 0.018 (0.031) 0.483 (0.078) 0.977 (0.004) 0.014 (0.023)

and a four-node (Figure S5(c)) directed acyclic graph, both

having one unmeasured confounder (red, discarded at the

model fitting stage). The non-zero direct causal effects were

assumed to be quadratic with varying degrees of curvature

(Figure S5(a)). As the degree of curvature approached zero,

the data became more homogeneous. The coefficient func-

tions were scaled to have the same average effects, that is

we kept
∫
|b(Z)|dZ constant.

We compared CHOD with RICA. Their receiver operat-

ing characteristic (ROC) curves under each true graph are

shown in Figure S5(d) and S5(e) in the Supplementary Ma-

terials, respectively. In both cases, CHOD’s performance

deteriorated as the degree of heterogeneity decreased; by

contrast, RICA’s performance deteriorated as the degree of

heterogeneity increased. Not surprisingly, when the data

were completely homogeneous, CHOD was no better than a

random guess in the three-node graph. However, somewhat

surprisingly, in the four-node graph, CHOD still performed

reasonably well even when the data were homogeneous. For

instance, the worst area under the ROC curve were 0.865

and 0.789 for CHOD and RICA, respectively. Also note that,

given sufficient degrees of heterogeneity, CHOD performed

reasonably well despite the non-Gaussianity and nonlinear

confounding. For further comparison, we reran the analyses

on data generated with Gaussian noises (keeping everything

else the same). The results are shown in S5(g) and S5(e) in

the Supplementary Materials. RICA were close to random

guesses in both graphs whereas CHOD thrived on hetero-

geneity, especially in the four-node graph.

Misspecification 2: partially homogeneous data and un-

known covariates We considered another type of model

misspecification where data were partially homogeneous

(i.e., observations were clustered and iid within each clus-

ter) and the unknown covariate was estimated by UMAP.

CHOD significantly outperformed the competing methods

(see Section S5.2 of the Supplementary Materials).

4.2 APPLICATIONS

Breast cancer genomic data We demonstrate the capabil-

ity of CHOD in identifying gene feedback loops using breast

cancer gene expression data downloaded from the Cancer

Genome Atlas (https://www.cancer.gov/tcga).

Breast cancer is a well-known extremely heterogeneous ge-

netic disease. The dataset contains n = 1215 observations

with 113 normal and 1102 tumor tissues. We focused on

8 feedback loops involving gene TP53 [Harris and Levine,

2005], plotted in Figure S7 in Section S5.3 of the Supple-

mentary Materials. We compared CHOD with two cyclic

causal discovery methods, LiNG and ANM. In addition,
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we also considered two versions of JCI Mooij et al. [2020],

FCI-JCI and ASD-JCI, which are broadly applicable for

causal discovery with heterogeneous data. Gene expressions

were log-transformed. For CHOD and JCI, we learned a

one-dimensional embedding using UMAP as an input co-

variate and regressed out the effects of the covariate on the

mean gene expression. The results are reported in Table

2. CHOD had uniformly strong performance: it was only

outperformed by LiNG in one case in terms of MCC. See

Section S5.3 of the Supplementary Materials for a more

elaborated description of the comparison.

Hong Kong stock market dataset We also applied

CHOD to the Hong Kong stock market dataset analyzed

by a recent heterogeneous causal discovery paper [Huang

et al., 2020], containing 10 major stocks: HSBC Holdings

plc (3), Hang Seng Bank Ltd (5), and Bank of China Hong

Kong (Holdings) Ltd (10) from Hang Seng Finance Sub-

index (HSF); Hong Kong Electric Holdings Limited (4)

from Hang Seng Utilities Sub-index (HSU); Cheung Kong

Holdings (1), Swire Group (8), and Cathay Pacific Airways

Ltd (9) from Hang Seng Commerce & Industry Sub-index

(HSC); Wharf (Holdings) Limited (2), Hong Kong Electric

Holdings Limited (4), and Sun Hung Kai Properties Limited

(7) from Hang Seng Properties Sub-index (HSP). The result

is shown in Figure 3, where the causal edges are consistent

with some background market knowledge. As indicated by

Huang et al. [2020], the within sub-index causal directions

5 → 3, 9 → 8 and 4 → 1 tend to follow the owner-member

relationship. In addition, the following findings also match

those in Huang et al. [2020]: stocks in HSF are major causes

for those in HSC and HSP, and the stocks in HSP and HSU

are major causes for those in HSC.

5

3 10

7
2

6

9 1 8

4

HSF 

HSC 

HSU 

HSP 

Figure 3: Application to the HK stock market dataset.

5 DISCUSSION

We have developed one of the first model-based causal dis-

covery methods for observational data in the presence of

both cyclic causality and confounders by exploiting the

heterogeneity of causal mechanism. We have established

several identifiability theories and carried out extensive ex-

periments to demonstrate the utility of the proposed method

against state-of-the-art alternatives.

There are many additional future directions can be taken

to extend this work. For example, we have focused on lin-

ear Gaussian models, which enable efficient computation

and causal effect estimation, and allow us to hopefully have

conveyed the main idea that heterogeneity alone is enough

to enable causal identification. Since nonlinearity and non-

Gaussianity have already been proved useful for causal iden-

tification, we might have somewhat masked the contribution

of heterogeneity if we had incorporated nonlinearity and/or

non-Gaussianity into the proposed model. And as demon-

strated in the experiments, the proposed model is relatively

robust to non-Gaussian noises. That said, a natural future

direction is indeed to extend this paper to nonlinear and

non-Gaussian models via e.g., basis expansion and mixture

of Gaussian error distributions.

Although we have not proven the most general case with

causally insufficient multivariate cyclic graphs, our bivariate

result is a strong indicator of identifiability in the general

multivariate case because in the multivariate case, the exis-

tence of special graph structures (e.g., v-structure) can help

causal identification whereas in the bivariate case, we can

only rely on cause-effect asymmetry. We plan to prove the

general identifiability in the future. Practically, as was done

in many previous works like Tagasovska et al. [2020], one

may first fix the skeleton or learn some partial structures

with common structure learning algorithms, and then ori-

ent indeterminate edges by applying the bivariate causal

discovery method to identify the full structure.
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Table 2: Application to breast cancer genomic data. 8 feedback loops involving gene TP53 were considered. The best

performance is shown in boldface.

Method
Network A Network B Network C Network D

TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.750 0.250 0.550 0.333 0.200 0.398 0.667 0.500 0.316 0.500 0.571 0.275

LiNG 0.750 0.000 0.791 0.583 0.563 0.198 0.333 0.667 0.000 0.500 0.667 0.164

ANM 0.500 0.333 0.316 0.667 0.556 0.238 0.333 0.500 0.189 0.167 0.500 0.180

FCI-JCI 0.250 0.500 0.059 0.417 0.500 0.219 0.667 0.500 0.316 0.333 0.667 0.123

ASD-JCI 0.500 0.333 0.316 0.500 0.455 0.298 0.667 0.500 0.316 0.167 0.750 0.010

Method
Network E Network F Network G Network H

TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.833 0.286 0.693 0.600 0.250 0.545 1.000 0.000 1.000 1.000 0.000 1.000

LiNG 0.333 0.778 0.031 0.800 0.500 0.405 1.000 0.000 1.000 0.500 0.000 0.577

ANM 0.667 0.556 0.359 1.000 0.583 0.389 1.000 0.000 1.000 0.500 0.000 0.577

FCI-JCI 0.500 0.700 0.114 0.400 0.667 0.035 0.000 - - 0.000 - -

ASD-JCI 0.500 0.625 0.217 0.600 0.571 0.221 0.000 - - 0.000 - -
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