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Abstract

We consider the problem of causal discovery (struc-
ture learning) from heterogeneous observational
data. Most existing methods assume homogeneous
sampling scheme and causal mechanism, which
may lead to misleading conclusions when violated.
We propose a novel approach that exploits data
heterogeneity to infer possibly cyclic causal struc-
tures from causally insufficient systems. The core
idea is to model the direct causal effects as func-
tions of exogenous covariates that help explain
sampling and causal heterogeneity. We investigate
the structure identifiability properties of the pro-
posed model. Structure learning is carried out in a
fully Bayesian fashion, which provides natural un-
certainty quantification. We demonstrate its utility
through extensive simulations and two real-world
applications.

1 INTRODUCTION

Causal discovery is a central task in various fields including
social science, artificial intelligence, and systems biology.
While randomized controlled trials are the gold standard
to establish causality, they can be too costly, unethical, or
impossible to carry out. For example, recovering gene reg-
ulatory networks through gene knockout would be too ex-
pensive to scale whereas observational genomic data are
considerably easier to obtain with next-generation sequenc-
ing technologies and have become widely available. Many
causal discovery methods, therefore, attempt to discover
causality from purely observational data.

Related work One prominent approach in presenting and
learning causality is to use the structural equation model
(SEM) and the associated causal graph [Pearl, 1998]. The
recursive linear Gaussian SEM is among the most popular

ones although the associated causal directed acyclic graph is
only identifiable up to Markov equivalence classes [Verma
and Pearl, 1990]. In order to uniquely identify causal struc-
tures with observational data, additional distributional as-
sumptions have been made in prior works including the
linear non-Gaussian model [Shimizu et al., 2006], the non-
linear additive noise model [Hoyer et al., 2008a], and the
linear Gaussian model with equal error variances [Peters
and Biihlmann, 2014]. A common thread of these meth-
ods is that they assume that the causal graph is acyclic and
there are no unmeasured confounders (also known as causal
sufficiency). However, directed cycles and confounders are
very common in practice. For example, feedback loops (di-
rected cycles) are common regulatory motifs in biological
signaling systems [Brandman and Meyer, 2008]. As for
confounders, gene regulation is known to be affected by
many factors such as epigenetic modification [Portela and
Esteller, 2010], which may not be measured together with
gene expressions.

To allow for cycles, non-recursive SEMs have been devel-
oped and proven to be identifiable for linear non-Gaussian
models [Lacerda et al., 2008] and nonlinear additive noise
models [Mooij et al., 2011]. In the presence of unmeasured
confounders, linear non-Gaussian SEMs have received lots
of attention: various models have been proposed and shown
to be structurally identifiable under the respective confound-
ing assumptions [Hoyer et al., 2008b, Chen and Chan, 2012,
Shimizu and Bollen, 2014, Salehkaleybar et al., 2020]. Nev-
ertheless, none of the aforementioned methods explicitly
deal with and provide identifiability guarantees for graphs
with both cycles and confounders. Although Hyttinen et al.
[2012] and Forré and Mooij [2018] provided learning algo-
rithms for general SEMs (allowing cycles, confounders, and
nonlinearity), the graph structure can only be fully recov-
ered with interventional data, which is quite different from
the observational setting considered in this paper.

Furthermore, all the aforementioned methods assume inde-
pendent and identically distributed (iid) observations, which
may be violated in many applications. For example, can-
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cer is known to be a genetically heterogeneous disease and,
therefore, cancer genomic data exhibit great heterogeneity.
Methods that ignore such heterogeneity can perform poorly
as we will see in our experiments. Recently, Ni et al. [2019],
Huang et al. [2020], Saeed et al. [2020] explicitly addressed
the heterogeneity issue by incorporating covariates or using
a latent mixture model but their models are acyclic and do
not account for unmeasured confounders. The method pro-
posed by Peters et al. [2016] is able to identify the causal
relationships in heterogeneous data if the causal effects are
invariant across environments. By contrast, we assume the
causal mechanism varies with the environment. Our moti-
vating application in cancer genomics is one example where
causal variance is more likely to hold than invariance be-
cause gene regulation may change as cancer progresses
[Moustakas and Heldin, 2007, Huang et al., 2009]. Other
examples include finance data (e.g., stock prices) where
causal relationships can change over time, and fMRI data
where brain connectivity networks can change from sub-
ject to subject. Mooij et al. [2020] proposed a flexible joint
causal inference (JCI) framework, which allows the causal
mechanism to vary. Faria et al. [2022] dealt with discrete
groups of interventional samples with known interventional
targets but they did not provide causal identification guaran-
tee. Creager et al. [2021] focused on invariant learning and
environment inference in tasks like domain generalization,
which is related to but different from causal discovery.

In this paper, we propose a novel method for Causal dis-
covery with Heterogeneous Observational Data (CHOD).
Importantly, we do not restrict our model to be acyclic and
do not assume causal sufficiency. By exploiting the data
heterogeneity via exogenous covariates, we provide suffi-
cient conditions under which CHOD is structurally identifi-
able in (i) causally insufficient bivariate cyclic graphs, (ii)
causally insufficient multivariate acyclic graphs, and (iii)
causally sufficient multivariate cyclic graphs. Our method
is among the first model-based causal discovery methods to
identify causal graphs with both cycles and confounders in
purely observational settings without prior domain knowl-
edge. Extensive simulation experiments and two real-world
applications support the utility of our method and demon-
strate its superiority in handling heterogeneous data through
comparison with state-of-the-art alternatives.

2 PRELIMINARIES OF CAUSAL
DISCOVERY

Let X = (Xi,...,X,)T be a p-dimensional random vector.
We represent the causal structure as well as the joint obser-
vational distribution of X by a linear SEM, X = BX + F,
with direct causal effects B = [bj,] € RP*P and ran-
dom noises E = [e;] € RP.If bj; # 0, then X, is a
direct cause of X;. We assume E to be centered Gaus-
sian with covariance S = [0j¢]. When there are no un-

measured confounders (i.e., hidden common causes), the
noises are independent of each other and hence S is di-
agonal. However, the presence of confounders would cor-
relate the noises, making the off-diagonal elements of .S
non-zero and resulting in a causally insufficient system. To
see that, suppose we explicitly model unmeasured Gaus-
sian confounders L via X = BX + I'L + E’. Then
marginalizing out L leads to X = BX + E where
S = Cov(E) = I'Cov(L)I'" + Cov(E’). Therefore, the
non-zero off-diagonal entries of .S implicitly account for
unmeasured confounders.

We use a mixed graph Gy = (V, Ep, Ep) to represent
the causal relationships embedded in the SEM, where V' =
{1,...,p} is the set of nodes representing X, Ep is the
set of bidirected edges, and Ep is the set of directed edges;
see Figure 1 for a few examples. There is a bidirected edge
{ < jif oj0 # 0, and a directed edge ¢ — j if bj, # 0.
In the former case, X; and X, are confounded by at least
one hidden common cause, while in the latter case, X, is
a direct cause of X;. The graph is acyclic if there does not
exist a directed path ky — ks — ... = k¢ — kp that
returns a node to itself, otherwise it is called cyclic. Our
goal is to identify the edge-induced subgraph G = (V, Ep)
with direct causal relationships Ep among the observed
variables X.

3 METHOD

3.1 PROPOSED MODEL

Our key idea to discover causality is to take advantage of the
data heterogeneity, which we assume can be explained by
some exogenous covariates Z € R?. The exogenous covari-
ates may be observed (e.g., biomarkers in cancer genomic
data) or latent. In the latter case, one can impute the latent
covariates by various embedding methods such as t-SNE
[van der Maaten and Hinton, 2008] and UMAP [McInnes
et al., 2018]. Alternatively, latent covariates can be learned
simultaneously with our model. For ease of exposition, we
first focus our discussion on the case where the exogenous
covariate is given (either observed or imputed) and univari-
ate (i.e., ¢ = 1), and later briefly discuss the extension
to multivariate latent covariates. Specifically, given Z, we
model X as a varying-coefficient linear Gaussian SEM,

X =B(Z)X +E, E~N(0,5), (1)

where B(Z) = [bje(Z)] : R — RP*P is a matrix-valued
function of Z, which characterizes the changes of the direct
causal effects with respect to Z. Because each observation
potentially has a different value of covariate Z, the direct
causal effects B(Z) are heterogeneous and observation-
specific. Note that since S does not depend on Z, we im-
plicitly assume that the confounding effects are not hetero-
geneous. Model (1) implies the conditional distribution of
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X given Z,
P(X|Z,B,S)=det(I - B(Z))N((I - B(Z))X]|0,5).

When B(Z) is constant in Z, model (1) is reduced to an
ordinary linear Gaussian SEM and hence its underlying
causal graph G is not identifiable. However, as we will show
later, the causal graph of model (1) is in general identifiable.

Relation to existing methods While most existing causal
discovery methods that are applicable to heterogeneous data
assume the exogenous covariate to be discrete and finite
(i.e., multiple contexts, domains, or experimental condi-
tions), under our framework the exogenous covariate Z can
be either continuous or discrete. To match the case of our
real-data application (see Section 4.2) and emphasize the
advantage of CHOD, we present Z as a continuous covari-
ate in this paper. With continuous Z, the proposed method
is particularly useful when the data are heterogeneous but
there are no clear predefined discrete groups. If the covari-
ate is categorical, the proposed model can be thought of as
multi-domain/group-specific graphical models (see, for ex-
ample, Yajima et al. [2015], Ghassami et al. [2018], Ni et al.
[2018]) by viewing the categorical covariate as the domain
or group indicator. The proposed model is also reminiscent
of causal models with soft interventions by viewing Z as
intervention that modifies causal effects; however, the key
difference is that our model does not assume the knowledge
of the interventional targets (i.e., Z could affect all causal
effects) and the interventions are conducted by nature rather
than humans. In summary, our model explicitly accounts
for the heterogeneity of data generating mechanism via the
observation-specific direct causal effects B(Z), which vary
smoothly with covariate Z. We provide a detailed discussion
contrasting the proposed method with two state-of-the-art
heterogeneous causal discovery methods from Huang et al.
[2020] and Mooij et al. [2020] in Section S1 of the Supple-
mentary Materials.

In the regression context, the varying-coefficient model
serves as an important generalization of linear model. As
introduced by Hastie and Tibshirani [1993], the class of
varying-coefficient models ties together many important
structured regression models such as additive models and
dynamic linear models into one common framework. Like-
wise, our proposed model is a natural extension of linear
SEMs, which allows varying causal effects. One important
ingredient exploited in this paper is that the adoption of vary-
ing causal effects helps identify the causal structure. Note
that for simplicity, we have assumed linearity and Gaus-
sianity in the current formulation. In addition to efficient
computation and causal effect estimation (discussed briefly
in Section S2 of the Supplementary Materials), this simple
setup allows us to convey the main idea that heterogeneity
alone is enough to enable causal identification.

3.2 CAUSAL STRUCTURE IDENTIFIABILITY

For model-based causal discovery methods, the non-
identifiability issue can be seen from the distribu-
tional/observational equivalence point of view. Two CHOD
models parameterized by (B, S) and (B’, S’) are said to
be distributionally/observationally equivalent if for any
values of (B, S) there exist values of (B’,S’) such that
P(X|Z,B,S) =P(X|Z,B’,S’) for all X. Clearly, dis-
tributionally/observationally equivalent models cannot be
distinguished from each other by examining their observa-
tional distributions. The causal structure is said to be identifi-
able if there do not exist two distributionally/observationally
equivalent causal models such that G # G’.

Throughout, we make the causal Markov assumption
[Richardson, 1996], i.e., the probability distribution PP re-
spects the Markov property of the causal graph G. Before
stating our main results, we first provide an intuition on
how the proposed CHOD is identifiable using a toy example.
Consider the bivariate graphs shown in Figure 1. We can
distinguish graphs (a)—(b) from graphs (c)—(f) because the
marginal variance of X5 is independent of Z in graphs (a)—
(b) but depends on Z in graphs (c)—(f) through the causal
effect be1(Z): X1 — Xs. Likewise, we can separate graphs
(c)—(d) from graphs (e)—(f) by examining the marginal vari-
ance of X; which depends on Z through X, — X;. We
may not distinguish (c) from (d) or (e) from (f), but the
direct causal relationship between X; and X5 is determined
in either case.

X e e X X, S % Xs X| oe—>e X,
(@) () ©

Xl L»‘. X2 Xl e X2 Xl @ XQ
(@ (e) ()

Figure 1: Mixed graphs. Solid arrows are causal effects and
dashed bidirected arrows are confounding effects.

We further illustrate the identifiability with simulated data
from graphs (b), (d), and (f) in Figure 1. Specifically, the
exogenous covariates were generated uniformly. Under each
graph, the non-zero elements of B(Z) were assumed to be
0.5sin(mZ). We set the noise variances to 1 and the corre-
lation coefficients to 0.5 to have confounding effects. The
n = 1000 data points as well as the marginal variances
estimated by kernel method of the two nodes as functions
of Z are depicted in Figure 2 for these 3 cases, from which
the causal relationships between X and X are intuitively
identifiable in the presence of both confounders and cycles:
in Figure 2(a), both Var(X7) and Var(X3) are nearly con-
stant in Z indicating no direct causal link; in Figure 2(b),
Var(X7) is constant but Var(X5) is not constant in Z indi-
cating a direct causal link X; — Xb; and in Figure 2(c),
neither Var(X) nor Var(X5) is constant in Z indicating a
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cyclic causal link X; = Xo.
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Figure 2: Illustration with a bivariate toy example.

Now we present the identifiability theories. We first show
that in the bivariate case the CHOD models are not distri-
butionally equivalent and, therefore, their causal graphs are
identifiable.

Theorem 1 (Causally Insufficient Bivariate Cyclic Graphs).
Consider bivariate CHOD models with direct causal ef-
fects [b12(Z),b21(Z)] and [b)5(Z),b5,(Z)], respectively.
Assume bji(Z) and b,/ (Z) are either zero or non-constant
functions for all j # £ € {1,2}. Then if the two CHOD mod-
els are distributionally equivalent, we must have G = G'.

All proofs are provided in Section S3 of the Supplementary
Materials. The assumption that b;,(Z) is either zero or a
non-constant function is not surprising because if non-zero
b;e(Z) is constant in Z, then the proposed model is reduced
to an ordinary linear Gaussian SEM, which is known to be
non-identifiable. Loosely speaking, Theorem 1 states that
CHOD is identifiable if Z can help explain the heterogeneity
of the data generating mechanism.

Next, we provide sufficient conditions for causally insuf-
ficient multivariate acyclic systems and causally sufficient
multivariate cyclic systems to be identifiable, and leave
the theoretical investigation of causally insufficient mul-
tivariate cyclic systems as future work. Denote pa(j) =
{{ : ¢ — j € Ep} as the set of direct causes and
ds(j) ={€: 0 < --- < j} as the set of nodes connected
to j through bidirected arrows.

Theorem 2 (Causally Insufficient Multivariate Acyclic
Graphs). Consider the CHOD model in (1) restricted to

acyclic causal graphs. Assume without loss of generality
(1,...,p) is a true causal ordering (i.e., L /> jif L > j).
If for any node j, and any set S = {1,...,m} such that
pa(j) ¢ S, we have Var(X;|Xg) is a non-constant func-
tion of the covariate Z, then the causal ordering is identi-
fiable. Moreover, if pa(j) Nds(7) = 0, V7, then the causal
graph is identifiable.

The proof of Theorem 2 first identifies an ordering by re-
cursively finding root variables in acyclic graphs and then
identifies the graph structure given the ordering. The as-
sumption on Var(X;|Xg) means that the heterogeneous
causal effects do not accidentally become constant in any
paths, which is similar in spirit to the causal faithfulness as-
sumption. See Section S3.2 of the Supplementary Materials
for more discussions.

We have presented our theorems in their strongest forms,
i.e., full structure identifiability. If some of the causal effects
do not vary with Z, then their identification is not always
guaranteed (they may still be identifiable in some graphs via
v-structure and Meek rules). This is similar to other causal
models. For example, in additive noise models, all causal
effects have to be nonlinear for full identification. Those
linear causal effects have to rely on v-structure and Meek
rules to achieve identification as in our method. In the linear
non-Gaussian acyclic model, all but one noises have to be
non-Gaussian. Like our model, violation of these assump-
tions would lead to partial structure identification. We would
like to point out though, under our proposed Bayesian learn-
ing framework discussed in Section 3.3, we can assess the
credibility of inferred edges via posterior inference: edges
that have nearly constant causal effects (e.g., if 95% credible
bands of b;,(Z), which can be computed from Monte Carlo
samples, cover constant functions) are deemed less reliable.

Unlike bivariate graphs, the identifiability results of multi-
variate cyclic graphs for purely observational data are sparse
in the literature with few exception [Lacerda et al., 2008],
which assumes causal sufficiency and disjoint cycles. In the
following theorem, we also make the same assumptions.

Theorem 3 (Causally Sufficient Multivariate Cyclic
Graphs). Consider the CHOD model (1). Assume there are
no unmeasured confounders and all cycles are disjoint. The
causal graph is generally identifiable’'.

Theorems 1-3 assume Z to be univariate and known (ob-
served or imputed). When Z is multivariate and unknown,
it can be inferred jointly with the causal graph. We provide
its identifiability result below and briefly discuss its imple-
mentation in Section S4.1 of the Supplementary Materials.

!"That is, it is identifiable unless a peculiar condition holds. We
discuss that condition (%) in Section S3.3 of the Supplementary
Materials.
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Proposition 1 (Multivariate Latent Exogenous Covariates).
Assume the vector m(Z) that stacks the non-zero ele-
ments of B(Z) is continuous and injective, and (m, S) —
P(X|m, S) is continuous and injective in m given G. Then
the latent exogenous covariates are identifiable up to a
monotone transformation.

Proposition 1 shows that the relative position of the latent co-
variates can be identified, which is useful in sorting observa-
tions (see many prominent examples of trajectory inference
in single-cell genomic studies [Saelens et al., 2019]). It can
be also viewed as an embedding and dimension reduction
tool wrapped in a causal model because the dimension of Z
is typically much smaller than X . The condition of Proposi-
tion 1 that assumes m(Z) to be injective as a vector-valued
function should not be interpreted as a requirement that
each individual function has to be injective. For example,
if b12(Z) = (Z +1)? and by (Z) = Z2, neither is injec-
tive but the resulting m(Z) = [b12(Z), b21(Z)] is injective.
Given the causal structure, the second requirement on the
distribution P is equivalent to the identifiability of causal
effects or model parameters. The causal effect identifica-
tion itself is an interesting but challenging task. For linear
Gaussian SEMs, it is well-known that causal effects are iden-
tifiable without confounders. With confounders, Drton et al.
[2011] showed that the acyclic mixed graph needs to be a
simple graph. As is evident from the proofs of Theorems 2
and 3, the causal effects under the corresponding assump-
tions are indeed identifiable for our model. In a related work,
Salehkaleybar et al. [2020] showed that the causal effects
in the presence of latent confounders are identifiable with
mild structure assumptions in the non-Gaussian setting. This
paper focuses on investigating causal structure identifiabil-
ity; establishing causal effect identifiability theory for the
causally insufficient multivariate cyclic graphs will be an
interesting future work.

3.3 BAYESIAN STRUCTURE LEARNING

We learn the causal structure through a Bayesian approach
by assigning priors on the space of graphs and model param-
eters. We model the direct causal effects by cubic B-splines
with evenly spaced knots bje(Z) = i Biméw(Z),
where {¢,(Z)}E_, is the set of spline basis. To encour-
age graph sparsity, a spike-and-slab prior is assigned to the
vector B¢ = (Bjer, - -, Bje) "

P(Bjelrje, 7) = (1 —742)00(Bje) + 150 N(Bje|0, 1),

where do(-) is a point mass at vector zero and 7, is a bi-
nary edge indicator. By construction, r;, = 0 if and only if
B¢ = 0 (equivalently, £ 4 j and b;(Z) = 0). We assume
independent beta-Bernoulli priors with rj, ~ P(rj,|7) =
Bernoulli(rj¢|7) and m ~ P(7) = beta(r|a,b). We place
conjugate inverse-gamma prior on 7 ~ P(7) = IG(7|w, B)
and inverse-Wishart prior on the covariance matrix S ~

P(S) = IW(S|¥,v). If a sparse estimation of confound-
ing effects is desired, selection or shrinkage priors can be
assigned to S, which we do not pursue in this paper.

Let D = {(x;,2%),4 € 1,...,n} be n realizations of
(X, Z). Denote 8 = [B,¢x] and r = [r;,]. The joint poste-
rior distribution is then given by

P(8, 8,7, m,7|D) o< P(B|r, 7)P(S)P(r|m)P(m)P(r)
X H?:l P(CCL|Z,, B(Zi), S),

where P(B|r,7) = [[,; ,P(Bjelrje,7) and P(r|m) =
[ 1.0 P(7jelm). The posterior distribution is not analytically
available; we use Markov chain Monte Carlo (MCMC) to
approximate it with the sampling steps detailed in Section
S4 of Supplementary Materials.

The per-iteration computational complexity of sampling is
O(np®)?. This is a general learning algorithm that includes
possible cycles and confounders. It can be simplified if there
are no cycles and/or confounders. For example, for acyclic
graphs, the spline coefficients 3 can be integrated out to
improve MCMC mixing. Upon the completion of MCMC,
the causal structure can be summarized by thresholding the
estimated posterior probability of inclusion P(r;, = 1|D) ~
1/M Zf\le I(r]%") = 1) at 0.5, where the superscript (m)
indexes the Monte Carlo samples. Alternatively, we can
choose a different threshold to control the Bayesian false
discovery rate as in Miiller et al. [2006].

4 EXPERIMENTS

We use extensive simulations as well as a real cancer ge-
nomic dataset with known cyclic causal graphs to evaluate
the proposed method, CHOD. Additionally, we also ap-
plied CHOD to a Hong Kong stock market dataset analyzed
in a recent heterogeneous causal discovery work [Huang
et al., 2020]. Throughout, we set the hyperparameters as
non-informative ones with ¥ = I, v = p, a = b = 0.5,
a = =0.01, and K = 10, which performed well in all
experiments considered. We ran MCMC for 2000 iterations,
discarded the first 1000 iterations as burn-in, and retained
every Sth iteration after burn-in as posterior samples. We
evaluated the graph structure recovery accuracy by calcu-
lating true positive rate (TPR), false discovery rate (FDR),
and Matthew’s correlation coefficient (MCC) based on 50
repetitions in simulations. TPR (higher is better) measures
the sensitivity/power of the method, i.e., how many true
edges can a method detect, and FDR (lower is better) mea-
sures how many detected edges are false discoveries. A good
method should have high TPR and low FDR. MCC (higher
is better) is a unified measure that accounts for both TPR
and FDR. It takes value in [—1, 1] with | indicating perfect
graph recovery.

2Sampling r and 3 requires O(p®) numbers of likelihood
evaluation and each likelihood evaluation is O(np®).
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4.1 SIMULATIONS

Since most existing causal discovery methods assume
acyclic graphs and/or causal sufficiency with some excep-
tions that allow either cycles or confounders but usually not
both, in order to maximize the fairness of comparison, we
conducted simulations under three scenarios: when the sim-
ulation truths are cyclic graphs with confounders, acyclic
graphs with confounders, and cyclic graphs without con-
founders, respectively. The first scenario is the most general
one, which has been the focus of this paper, while the second
and third scenarios are designed for fairness and hence are
briefly discussed in the main text with details provided in the
Section S5.1 of the Supplementary Materials. Note that our
general algorithm accommodates all those three settings. We
first considered data generated from our proposed model and
then considered various model misspecifications in terms of
non-Gaussian errors, different confounding effects, varying
degrees of heterogeneity, and unobserved covariates.

Data generating mechanism We considered sample size
n € {125,250,500, 1000} and the number of nodes p €
{10, 25, 50}. Exogenous covariates were simulated from the
uniform distribution U (—1, 1). True causal graphs were gen-
erated as Erd6s-Rényi random graph with edge probability
1/p (plotted in Figure S2-S4 in Section S5 of the Supple-
mentary Materials). When assumed acyclic in the second
scenario, the graph is constrained to have no directed cycles.
Given the true structure, non-zero direct causal effects were
randomly chosen from f(Z) = 0.8Z, g(Z) = 0.9 cos(nZ),
or h(Z) = 0.9 tanh(wZ). We set the diagonal elements of
S to 1. We generated the off-diagonal entries of S randomly
from U(—1,1) in scenarios where there are unmeasured
confounders, subject to S being positive-definite. Observa-
tions were then generated from model (1).

Scenario 1: cyclic graphs with confounders To the best
of our knowledge, methods that can deal with both cy-
cles and confounders in purely observational data are un-
common. We compared CHOD with two state-of-the-art
acyclic causal discovery methods with confounders: RFCI
[Colombo et al., 2012] and RICA [Salehkaleybar et al.,
2020], and two state-of-the-art cyclic causal discovery meth-
ods without confounders: LiNG [Lacerda et al., 2008] and
ANM [Mooij et al., 2011]. RICA and LiNG are based on
linear non-Gaussian models, while ANM uses nonlinear
additive noise models. RFCI imposes no distributional as-
sumptions and outputs a graph containing both directed and
bidirected edges (or edges with indeterminate directions).
The results are summarized in Table 1. As expected, CHOD
was the only approach that could recover the true graph well
under this general heterogeneous simulation setting where
both cycles and confounders are present. For example, the
MCC for all the competing methods was uniformly low for
all (n,p) whereas the MCC of the proposed CHOD was

always substantially higher and improved as sample size
increased as expected.

Scenario 2: acyclic graphs with confounders In addi-
tion to RICA and RFCI, in this scenario, we compared
CHOD with CAM [Biihlmann et al., 2014], GDS [Peters
et al., 2014], and RESIT [Peters et al., 2014] as bench-
marks although they are not designed for causal discovery
in the presence of confounders. These three methods are
based on nonlinear additive noise model. Moreover, we
combined several bivariate causal discovery methods with
CAM as suggested in Tagasovska et al. [2020] by first using
CAM to learn a Markov equivalence class and then using
IGCI [Janzing and Scholkopf, 2010], EMD [Chen et al.,
2014], and bQCD [Tagasovska et al., 2020] to orient edges.
These three bivariate causal discovery methods are based
on asymmetry between the cause and the effect in terms of
certain complexity metrics. In addition, we also compared
with NOTEARS [Zheng et al., 2018] and DAG-GNN [Yu
et al., 2019], which utilize continuous optimization for di-
rected acyclic graph learning. Results are summarized in
Table S3 in Section S5.1 of the Supplementary Materials. In
summary, CHOD outperformed all the competing methods:
the MCC of CHOD ranged from 0.6 to 0.9 whereas the
competing methods had MCC typically < 0.4. Moreover,
we conducted additional simulations under the scenario of
acyclic graphs without confounders. Still, the performance
of these methods did not improve much compared to the
scenario with confounders because of the heterogeneity, and
the proposed CHOD still significantly outperformed them
(results provided in Section S5.1 of the Supplementary Ma-
terials). Furthermore, in Section S5.1 of the Supplementary
Materials, we considered more comparisons with methods
that incorporate the covariate Z as an additional node in the
causal graph (similar in spirit to the JCI framework [Mooij
et al., 2020]). However, these additional comparisons did
not show significantly better graph recovery.

Scenario 3: cyclic graphs without confounders We
compared CHOD with LiNG and ANM. The results are sum-
marized in Table S4 in Section S5.1 of the Supplementary
Materials. As in the first two scenarios, CHOD performed
significantly better by exploiting the data heterogeneity.

Misspecification 1: nonlinear confounding, non-Gaus-
sianity, and varying degrees of heterogeneity From pre-
vious experiments, the proposed CHOD consistently out-
performed non-Gaussian SEMs because data were hetero-
geneous and the errors were Gaussian, both conditions fa-
voring CHOD. For fairer comparison and better illustration,
we conducted further simulations under an alternative data
generating mechanism. Specifically, we mimicked the simu-
lation setting in Salehkaleybar et al. [2020] by generating
n = 250 observations from the SEM (1) with uniform
noises e ~ U(—1,1) under a three-node (Figure S5(b))
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Table 1: Simulation Scenario 1. Average operating characteristics over 50 repetitions. The standard deviation for each
statistic is given within parentheses. The best performance is shown in boldface.

n=125 p=10 p=25 p =250
TPR FDR MCC TPR FDR MCC TPR FDR MCC
CHOD  0.662 (0.065) 0.253(0.092) 0.644 (0.077) 0.662 (0.062) 0.385 (0.080) 0.590 (0.094) 0.608 (0.082) 0.385(0.077) 0.590 (0.061)
LING  0.913(0.088) 0.863(0.012) 0.104 (0.073) 0.860 (0.057) 0.953 (0.003) 0.023 (0.034) 0.802 (0.059) 0.979 (0.002) 0.007 (0.021)
ANM  0.093(0.069) 0.879 (0.091) 0.004 (0.083) 0.002 (0.006) 0.988 (0.035) 0.009 (0.015) 0.002 (0.006) 0.972 (0.043)  0.004 (0.022)
RECI  0.174 (0.069) 0.742 (0.082) 0.113(0.071) 0.227 (0.035) 0.715 (0.046) 0.200 (0.041) 0.046 (0.025) 0.943 (0.026)  0.030 (0.025)
RICA  0.470(0.130) 0.895(0.029) 0.051 (0.009) 0.566 (0.104) 0.947 (0.009) 0.037 (0.045) 0.485 (0.044) 0.978 (0.002)  0.006 (0.013)
n = 250 p=10 p=125 p =150
TPR FDR MCC TPR FDR MCC TPR FDR MCC
CHOD  0.804 (0.081) 0.162 (0.088) 0.768 (0.075) 0.698 (0.065) 0.286 (0.090) 0.662 (0.056) 0.680 (0.083) 0.340 (0.081) 0.644 (0.086)
LING  0.880(0.084) 0.870(0.010) 0.064 (0.068) 0.834 (0.099) 0.955 (0.005) 0.007 (0.051) 0.798 (0.047) 0.979 (0.001) 0.004 (0.017)
ANM 0077 (0.056) 0.910(0.057) 0.024 (0.058) 0.009 (0.013) 0.937 (0.048) 0.010 (0.033) 0.003 (0.029) 0.964 (0.012)  0.004 (0.002)
RFCI  0.201 (0.050) 0.739 (0.045) 0.123(0.047) 0.280(0.033) 0.744 (0.027) 0.203 (0.030) 0.009 (0.030) 0.907 (0.027) 0.069 (0.028)
RICA  0.463(0.127) 0.890(0.033) 0.033(0.099) 0.481 (0.120) 0.955 (0.011) 0.001 (0.051) 0.472 (0.065) 0.978 (0.003)  0.008 (0.019)
— — =4 — K
n =500 p=10 p=25 p=>50
TPR FDR MCC TPR FDR MCC TPR FDR MCC
CHOD  0.849 (0.073) 0.152(0.073) 0.813 (0.073) 0.813 (0.063) 0.268 (0.090) 0.768 (0.094) 0.804 (0.075) 0.259 (0.057) 0.768 (0.061)
LING  0.917(0.099) 0.867 (0.013) 0.093 (0.083) 0.875 (0.073) 0.952 (0.004) 0.034 (0.039) 0.788 (0.063) 0.979 (0.002) 0.002 (0.022)
ANM  0.100 (0.066) 0.898 (0.071) 0.026 (0.074) 0.009 (0.013) 0.917 (0.058) 0.009 (0.041) 0.004 (0.008) 0.961 (0.015) 0.003 (0.018)
RFCI  0.274 (0.045) 0.734 (0.050) 0.147 (0.052) 0.320(0.043) 0.772(0.030) 0.197 (0.039) 0.124 (0.027) 0.901 (0.018) 0.086 (0.022)
RICA  0.413(0.126) 0.903(0.033) 0.078(0.104) 0.491 (0.094) 0.954 (0.009) 0.006 (0.040) 0.489 (0.082) 0.977 (0.004) 0.015 (0.025)
n = 1000 p=10 p=25 p =50
TPR FDR MCC TPR FDR MCC TPR FDR MCC
CHOD 0912 (0.081) 0.142(0.069) 0.840 (0.083) 0.894 (0.072) 0.245 (0.064) 0.813 (0.062) 0.849 (0.093) 0.251 (0.062) 0.786 (0.079)
LING  0.897(0.108) 0.866(0.014) 0.088 (0.089) 0.836 (0.058) 0.954 (0.003) 0.013(0.030) 0.814(0.058) 0.978 (0.001) 0.011 (0.020)
ANM  0.127(0.059) 0.908 (0.042) 0.037 (0.055) 0.010 (0.006) 0.903 (0.006) 0.024 (0.006) 0.003 (0.016) 0.962 (0.017)  0.009 (0.017)
RECI 0303 (0.043) 0.754 (0.034) 0.139(0.042) 0.350(0.028) 0.792 (0.017) 0.191 (0.022) 0.159 (0.022) 0.897 (0.013) 0.101 (0.017)
RICA  0.447(0.142) 0.893 (0.037) 0.044 (0.114) 0.506 (0.073) 0.951 (0.007) 0.018 (0.031) 0.483 (0.078) 0.977 (0.004) 0.014 (0.023)

and a four-node (Figure S5(c)) directed acyclic graph, both
having one unmeasured confounder (red, discarded at the
model fitting stage). The non-zero direct causal effects were
assumed to be quadratic with varying degrees of curvature
(Figure S5(a)). As the degree of curvature approached zero,
the data became more homogeneous. The coefficient func-
tions were scaled to have the same average effects, that is
we kept [ |b(Z)|dZ constant.

We compared CHOD with RICA. Their receiver operat-
ing characteristic (ROC) curves under each true graph are
shown in Figure S5(d) and S5(e) in the Supplementary Ma-
terials, respectively. In both cases, CHOD’s performance
deteriorated as the degree of heterogeneity decreased; by
contrast, RICA’s performance deteriorated as the degree of
heterogeneity increased. Not surprisingly, when the data
were completely homogeneous, CHOD was no better than a
random guess in the three-node graph. However, somewhat
surprisingly, in the four-node graph, CHOD still performed
reasonably well even when the data were homogeneous. For
instance, the worst area under the ROC curve were 0.865
and 0.789 for CHOD and RICA, respectively. Also note that,
given sufficient degrees of heterogeneity, CHOD performed
reasonably well despite the non-Gaussianity and nonlinear
confounding. For further comparison, we reran the analyses
on data generated with Gaussian noises (keeping everything

else the same). The results are shown in S5(g) and S5(e) in
the Supplementary Materials. RICA were close to random
guesses in both graphs whereas CHOD thrived on hetero-
geneity, especially in the four-node graph.

Misspecification 2: partially homogeneous data and un-
known covariates We considered another type of model
misspecification where data were partially homogeneous
(i.e., observations were clustered and iid within each clus-
ter) and the unknown covariate was estimated by UMAP.
CHOD significantly outperformed the competing methods
(see Section S5.2 of the Supplementary Materials).

4.2 APPLICATIONS

Breast cancer genomic data We demonstrate the capabil-
ity of CHOD in identifying gene feedback loops using breast
cancer gene expression data downloaded from the Cancer
Genome Atlas (https://www.cancer.gov/tcga).
Breast cancer is a well-known extremely heterogeneous ge-
netic disease. The dataset contains n = 1215 observations
with 113 normal and 1102 tumor tissues. We focused on
8 feedback loops involving gene TP53 [Harris and Levine,
2005], plotted in Figure S7 in Section S5.3 of the Supple-
mentary Materials. We compared CHOD with two cyclic
causal discovery methods, LING and ANM. In addition,
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we also considered two versions of JCI Mooij et al. [2020],
FCI-JCI and ASD-JCI, which are broadly applicable for
causal discovery with heterogeneous data. Gene expressions
were log-transformed. For CHOD and JCI, we learned a
one-dimensional embedding using UMAP as an input co-
variate and regressed out the effects of the covariate on the
mean gene expression. The results are reported in Table
2. CHOD had uniformly strong performance: it was only
outperformed by LiNG in one case in terms of MCC. See
Section S5.3 of the Supplementary Materials for a more
elaborated description of the comparison.

Hong Kong stock market dataset We also applied
CHOD to the Hong Kong stock market dataset analyzed
by a recent heterogeneous causal discovery paper [Huang
et al., 2020], containing 10 major stocks: HSBC Holdings
plc (3), Hang Seng Bank Ltd (5), and Bank of China Hong
Kong (Holdings) Ltd (10) from Hang Seng Finance Sub-
index (HSF); Hong Kong Electric Holdings Limited (4)
from Hang Seng Utilities Sub-index (HSU); Cheung Kong
Holdings (1), Swire Group (8), and Cathay Pacific Airways
Ltd (9) from Hang Seng Commerce & Industry Sub-index
(HSC); Wharf (Holdings) Limited (2), Hong Kong Electric
Holdings Limited (4), and Sun Hung Kai Properties Limited
(7) from Hang Seng Properties Sub-index (HSP). The result
is shown in Figure 3, where the causal edges are consistent
with some background market knowledge. As indicated by
Huang et al. [2020], the within sub-index causal directions
5— 3,9 — 8and 4 — 1 tend to follow the owner-member
relationship. In addition, the following findings also match
those in Huang et al. [2020]: stocks in HSF are major causes
for those in HSC and HSP, and the stocks in HSP and HSU
are major causes for those in HSC.

[oBo=0

HBSC

e'e‘w HSU

HSF

HSP

Figure 3: Application to the HK stock market dataset.

S DISCUSSION

We have developed one of the first model-based causal dis-
covery methods for observational data in the presence of
both cyclic causality and confounders by exploiting the
heterogeneity of causal mechanism. We have established
several identifiability theories and carried out extensive ex-

periments to demonstrate the utility of the proposed method
against state-of-the-art alternatives.

There are many additional future directions can be taken
to extend this work. For example, we have focused on lin-
ear Gaussian models, which enable efficient computation
and causal effect estimation, and allow us to hopefully have
conveyed the main idea that heterogeneity alone is enough
to enable causal identification. Since nonlinearity and non-
Gaussianity have already been proved useful for causal iden-
tification, we might have somewhat masked the contribution
of heterogeneity if we had incorporated nonlinearity and/or
non-Gaussianity into the proposed model. And as demon-
strated in the experiments, the proposed model is relatively
robust to non-Gaussian noises. That said, a natural future
direction is indeed to extend this paper to nonlinear and
non-Gaussian models via e.g., basis expansion and mixture
of Gaussian error distributions.

Although we have not proven the most general case with
causally insufficient multivariate cyclic graphs, our bivariate
result is a strong indicator of identifiability in the general
multivariate case because in the multivariate case, the exis-
tence of special graph structures (e.g., v-structure) can help
causal identification whereas in the bivariate case, we can
only rely on cause-effect asymmetry. We plan to prove the
general identifiability in the future. Practically, as was done
in many previous works like Tagasovska et al. [2020], one
may first fix the skeleton or learn some partial structures
with common structure learning algorithms, and then ori-
ent indeterminate edges by applying the bivariate causal
discovery method to identify the full structure.
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Table 2: Application to breast cancer genomic data. 8 feedback loops involving gene TP53 were considered. The best

performance is shown in boldface.

Method Network A Network B Network C Network D
TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC
CHOD 0.750 0.250 0.550 0.333 0.200 0.398 0.667 0.500 0.316 0.500 0.571 0.275
LiNG 0.750 0.000 0.791 0.583 0.563 0.198 0.333 0.667 0.000 0.500 0.667 0.164
ANM 0.500 0.333 0316 0.667 0.556 0.238 0.333 0.500 0.189 0.167 0.500 0.180
FCI-JCI  0.250 0.500 0.059 0.417 0.500 0.219 0.667 0.500 0.316 0.333 0.667 0.123
ASD-JCI 0.500 0.333 0.316 0.500 0455 0298 0.667 0500 0316 0.167 0.750 0.010
Network E Network F Network G Network H
Method
TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC
CHOD 0.833 0.286 0.693 0.600 0.250 0.545 1.000 0.000 1.000 1.000 0.000 1.000
LiNG 0.333 0.778 0.031 0.800 0.500 0.405 1.000 0.000 1.000 0.500 0.000 0.577
ANM 0.667 0.556 0.359 1.000 0.583 0.389 1.000 0.000 1.000 0.500 0.000 0.577
FCI-JCI 0.500 0.700 0.114 0.400 0.667 0.035 0.000 - - 0.000 - -
ASD-JCI 0.500 0.625 0.217 0.600 0.571 0.221 0.000 - - 0.000 - -
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