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Abstract
A determinantal point process (DPP) is an elegant
model that assigns a probability to every subset
of a collection of n items. While conventionally a
DPP is parameterized by a symmetric kernel ma-
trix, removing this symmetry constraint, resulting
in nonsymmetric DPPs (NDPPs), leads to signif-
icant improvements in modeling power and pre-
dictive performance. Recent work has studied an
approximate Markov chain Monte Carlo (MCMC)
sampling algorithm for NDPPs restricted to size-k
subsets (called k-NDPPs). However, the runtime
of this approach is quadratic in n, making it in-
feasible for large-scale settings. In this work, we
develop a scalable MCMC sampling algorithm for
k-NDPPs with low-rank kernels, thus enabling
runtime that is sublinear in n. Our method is
based on a state-of-the-art NDPP rejection sam-
pling algorithm, which we enhance with a novel
approach for efficiently constructing the proposal
distribution. Furthermore, we extend our scalable
k-NDPP sampling algorithm to NDPPs without
size constraints. Our resulting sampling method
has polynomial time complexity in the rank of
the kernel, while the existing approach has run-
time that is exponential in the rank. With both
a theoretical analysis and experiments on real-
world datasets, we verify that our scalable approx-
imate sampling algorithms are orders of magni-
tude faster than existing sampling approaches for
k-NDPPs and NDPPs.

1. Introduction
Determinantal Point Processes (DPPs) are probability dis-
tributions defined on the set of all subsets of a collection
of n items. They have been applied to a variety of funda-
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mental machine learning problems, including robustness
learning (Pang et al., 2019), reinforcement learning (Yang
et al., 2020), and bandit optimization (Kathuria et al., 2016),
among many others. While conventionally a DPP is pa-
rameterized by a symmetric kernel matrix, Gartrell et al.
(2019) showed that any nonsymmetric and positive semidef-
inite matrix can define a valid DPP, which they refer to as a
nonsymmetric DPP (NDPP). In addition, they established a
number of useful properties of NDPPs. For example, NDPPs
are able to capture both positive and negative correlations
among items, while symmetric DPPs can only represent
negative correlations, leading to significant improvements
in modeling power and predictive performance.

Recent works have proposed efficient algorithms for various
NDPP tasks, including learning (Gartrell et al., 2021), MAP
inference (Anari & Vuong, 2021), and sampling (Han et al.,
2022), where the NDPP kernel is given by a low-rank fac-
torization. In this paper we focus on developing an efficient
sampling algorithm for NDPPs restricted to size k subsets,
called k-NDPPs. Such size-constrained DPPs are often
more practical in applications such as video summariza-
tion (Sharghi et al., 2018), mini-batch optimization (Zhang
et al., 2017), document summarization (Dupuy & Bach,
2018) and coreset sampling (Tremblay et al., 2019). The
only existing approach for k-NDPP sampling is an approxi-
mate method based on Markov chain Monte Carlo (MCMC)
sampling (Alimohammadi et al., 2021; Anari & Vuong,
2021). The algorithm is based on a random walk, where in
every iteration a pair of items is exchanged with some prob-
ability. These prior works primarily focused on the number
of iterations required for convergence, and proved that with
time polynomial in k, the sampling algorithm converges
to the k-NDPP target distribution. However, each transi-
tion step needs time quadratic in n, making this approach
infeasible for large-scale settings.

1.1. Contributions

In this work, we develop a scalable MCMC sampling algo-
rithm for k-NDPPs with low-rank kernels. In particular, we
accelerate the transition step of the MCMC sampling algo-
rithm so that it runs in sublinear (polynomial-logarithmic)
time in n. We first show that this step is equivalent to
sampling a subset of size 2 from a conditional NDPP. To
achieve fast 2-NDPP sampling, we make use of a state-
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Table 1. Summary of recent NDPP sampling algorithms. The sampling time of Han et al. (2022)’s work assumes an orthogonal constraint
on the kernel. Here, n is the size of ground set, d is the rank of the kernel, k refers to the size of sampled set (k ≤ d ≪ n) and α > 0 is a
data-dependent factor. Alimohammadi et al. (2021) showed that titer = poly(k) guarantees the convergence of MCMC sampling, where
κ > 0 is a condition number of the NDPP kernel component (see Proposition 5 for details).

Algorithm Task Preprocessing Time Sampling Time

Cholesky-based Exact (Poulson, 2020) NDPP − O(n · d2)
Rejection-based Exact (Han et al., 2022) NDPP O(n · d2) O((log n · k3 + k4 + d) · (1 + α)d)

Naı̈ve MCMC (Alimohammadi et al., 2021) k-NDPP / NDPP − O(n2 · k3 · titer)
Scalable MCMC (This work) k-NDPP / NDPP O(n · d2) O((log n · d2 + d3) · (1 + κ)2 · titer)

of-the-art NDPP rejection sampling algorithm (Han et al.,
2022), which we enhance with a novel approach for effi-
ciently constructing a symmetric DPP this is used for the
proposal distribution. When the NDPP kernel is given by
a rank-d factorization (d ≪ n), the proposal DPP kernel
can be constructed in only O(d3) time. This type of pro-
posal kernel is similar to a personalized version of the DPP
kernel (Gillenwater et al., 2019; Han & Gillenwater, 2020),
which consists of a global features matrix X ∈ Rn×d and
a personalization matrix U ∈ Rd×d. This proposal distri-
bution changes in every transition of the MCMC sampling,
however according to our construction it suffices to update
only the matrix U . This allows us to utilize a fast tree-based
DPP sampling algorithm (Gillenwater et al., 2019) suitable
for personalized DPPs. This tree-based algorithm requires
us to build a binary tree based on the global features, as
a one-time preprocessing step. After preprocessing, the
sampling algorithm runs in time that is logarithmic in n.
This makes a single iteration of the rejection sampling much
faster. We further prove that the number of rejections does
not depend on the dimensions of the NDPP kernel, but on
some spectral bounds of the kernel. As a consequence, our
MCMC sampling algorithm for k-NDPPs runs in logarith-
mic time in n, and polynomial time in both d and k. To the
best of our knowledge, this is the first work on a sublinear
time algorithm for k-NDPP sampling. In our experiments,
we observe that our proposed algorithm runs orders of mag-
nitude faster than the existing sampling approach, which
for kernels learned from some datasets does not terminate
within 10 days.

Furthermore, we extend our sampling algorithm to size-
unconstrained NDPPs. The resulting algorithm has polyno-
mial time complexity in the rank d of the kernel, while the
existing sampling algorithm for NDPPs (Han et al., 2022)
has runtime that is exponential in d. Through theoretical
analysis and experiments on real-world datasets, we show
that our approximate sampling algorithm is orders of mag-
nitude faster than the fastest existing sampling approach
for k-NDPPs, and up to an order of magnitude faster for
NDPPs. The source code for our NDPP sampling algo-
rithms is publicly available at https://github.com/
insuhan/ndpp-mcmc-sampling.

1.2. Related Work

Fast sampling algorithms for symmetric DPPs have
been extensively studied, including a tree-based algo-
rithm (Gillenwater et al., 2019), and an intermediate sam-
pling method (Derezinski, 2019). These methods commonly
require a one-time preprocessing step, with the subsequent
sampling procedure running in time that is sublinear in the
size of the ground set n. Celis et al. (2017) studied a poly-
nomial time sampling algorithm under partition constraints.
For unconstrained-size NDPP sampling, Poulson (2020)
developed the Cholesky-based sampling algorithm, which
runs in time O(n3) for general kernels. Recently, Han et al.
(2022) showed that with a rank-d kernel decomposition, the
runtime of the Cholesky-based algorithm can be reduced
to O(nd2). Moreover, they propose a tree-based rejection
sampling algorithm for NDPPs that combines previous work
for fast sampling of symmetric DPPs with an efficient ap-
proach for constructing the proposal distribution. However,
although the sampling process has runtime that is sublinear
in n, they show that the average number of rejections is
exponential in d, which can be problematic in general. For
k-NDPPs, to the best of our knowledge, there is no prior
work on an efficient algorithm for exact sampling. The only
existing approach is an approximate MCMC sampling algo-
rithm (Alimohammadi et al., 2021), which has runtime that
is quadratic in n. We summarize these k-NDPP and NDPP
sampling algorithms in Table 1.

2. Background
Notation. The set of first n positive integers is denoted by
{1, . . . , n} := [n]. For a finite set S, we denote by

(
S
k

)
the

collection of all k-element subsets of a set S. We use Id for
the d-by-d identity matrix and drop the subscript when it is
clear from the context. For a matrix X ∈ Rm×n and indices
A ⊆ [m], B ⊆ [n], we use XA,B ∈ R|A|×|B| to denote a
submatrix of X whose rows and columns are indexed by A
and B, respectively. We write X:,B := X[m],B to denote all
rows of X , and similarly XA,: := XA,[n] for all columns
of X . We denote the largest and smallest singular values of
X by σmax(X) and σmin(X), respectively. We use ⪰ to
denote the Loewner order, i.e., A ⪰ B implies A −B is

https://github.com/insuhan/ndpp-mcmc-sampling
https://github.com/insuhan/ndpp-mcmc-sampling
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positive semidefinite (PSD), and Diag to denote the direct
sum, i.e., Diag(A,B) = [A 0

0 B ].

2.1. Nonsymmetric DPPs

Given a matrix L ∈ Rn×n, a DPP assigns a probability

PL(S) ∝ det(LS) (1)

to every subset S of [n]. Any symmetric and PSD kernel
L guarantees that det(LS) is nonnegative, and therefore
admits a DPP. Gartrell et al. (2019) extended the space of
valid DPP kernels and proved that nonsymmetric and PSD L
kernels (i.e., L+L⊤ ⪰ 0) can be also used to define a DPP.
An important property of NDPPs is that they can capture
both positive and negative correlations, while symmetric
DPPs only capture the negative correlations, resulting in
significant improvements in modeling power and predictive
performance for NDPPs.

In particular, Gartrell et al. (2019) proposed a kernel con-
struction for NDPPs that combines a symmetric PSD matrix
and a skew-symmetric matrix:

L = V V ⊤ +B(D −D⊤)B⊤, (2)

where V ∈ Rn×d1 ,B ∈ Rn×d2 , and D ∈ Rd2×d2 . For
simplicity, we will write X := [V , B] ∈ Rn×d, W :=
Diag(I,D − D⊤) ∈ Rd×d for d = d1 + d2, and L =
XWX⊤.

We refer to a k-NDPP as a NDPP whose support is restricted
to size-k subsets of [n].1 As studied in Kulesza & Taskar
(2011, Proposition 5.1), the normalization constant of a
k-NDPP can be computed using the eigenvalues of L.2

Formally, when {λi}di=1 are the nonzero eigenvalues of the
rank-d matrix L, it holds that∑

S∈([n]
k )

det(LS) =
∑

S∈([d]k )

∏
i∈S

λi := ek({λi}di=1), (3)

where ek is known as the k-th elementary symmetric polyno-
mial. Note that {λi}di=1 are also eigenvalues of WX⊤X ∈
Rd×d, and therefore one can obtain them from matrix-matrix
multiplications and the eigendecomposition, resulting in
O(nd2) runtime. In addition, Equation (3) can be computed
in time O(dk) using the following recursive relation:

ek({λi}di=1) = ek({λi}d−1
i=1 ) + λd · ek−1({λi}d−1

i=1 ), (4)

where e0({λi}di=1) = 1. Since every determinant of a prin-
cipal submatrix of L is nonnegative, the ek’s for NDPPs are
also nonnegative.

1Throughout this paper, we assume that 2 ≤ k ≤ d ≪ n.
2This was originally studied for symmetric DPPs, but can be

naturally extended to a nonsymmetric PSD matrix L.

Algorithm 1 MCMC Sampling for k-NDPP
1: Input: L ∈ Rn×n, k ∈ N, titer ∈ N
2: Select S ∈

(
[n]
k

)
uniformly at random

3: for t = 1, . . . , titer do
4: Select A ∈

(
S

k−2

)
uniformly at random

5: Select a, b ∈ [n] with probability ∝ det(LA∪{a,b})

(▷ Run Algorithm 2)
6: S ← A ∪ {a, b}
7: end for
8: Return S

2.2. MCMC Sampling for k-NDPPs

An MCMC sampling algorithm for a k-DPP begins with a
subset S selected from

(
[n]
k

)
uniformly at random, and then

iteratively updates S with some probability. For symmetric
k-DPPs, single-item-exchange Markov chains (i.e., S is
replaced with S ∪ {i} \ {j} for i /∈ S, j ∈ S in every
iteration) can guarantee fast convergence to the approximate
target distribution in total variation distance (Li et al., 2016;
Anari et al., 2016; Rezaei & Gharan, 2019). However, the
single-item-exchange chain does not mix well for k-NDPPs
because they are not negatively dependent, which is a key
requirement for fast mixing (Anari et al., 2016).

Recent work has shown that when a pair of items S is
exchanged, the chain can quickly converge to the target k-
NDPP distribution (Anari & Vuong, 2021; Alimohammadi
et al., 2021). We provide pseudo-code for this MCMC
algorithm in Algorithm 1.

Alimohammadi et al. (2021) proved that the mixing time,
i.e., the minimum number of iterations required to approxi-
mate the target distribution within ε in terms of total varia-
tion distance, is bounded by a polynomial in k.

Proposition (Theorem 11 in (Alimohammadi et al., 2021)).
For any ε > 0, a sample S obtained from Algorithm 1 with

titer = O
(
k2 · log

(
1

ε · Pr(S0)

))
, (5)

and randomly chosen subset S0 ∈
(
[n]
k

)
, the total variation

distance to the target k-NDPP distribution is guaranteed to
be less than ε.

Note that each iteration of MCMC sampling (line 5 in Algo-
rithm 1) needs to compute determinants of k-by-k matrices
for O(n2) candidates, and therefore runs in time O(n2k3).
We call this step the “up operator”.

3. Scalable MCMC Sampling for k-NDPPs
As mentioned above, the naı̈ve up operator, which involves
an exhaustive search over the space of possible candidates,
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requires time complexity that is quadratic in the ground set
size n. This runtime clearly suffers from scalability issues
for large n. In this section, we show how to significantly
accelerate the up operator by utilizing the low-rank structure
of the kernel matrix.

We first observe that the up operator is equivalent to sam-
pling a size 2 subset from the NDPP conditioned on A.
Formally, given a low-rank NDPP kernel L = XWX⊤

for X ∈ Rn×d,W ∈ Rd×d, and a subset A ⊆ [n], |A| ≤ d,
one can check that det

(
LA∪{a,b}

)
∝ det(LA

{a,b}), where
LA is the kernel of the conditional NDPP on A, given by

LA := L−L:,AL
−1
A LA,: = XWAX⊤, (6)

where WA := W −WX⊤
A,:(XA,:WX⊤

A,:)
−1XA,:W .

Note that computing WA requires a matrix inversion of
dimension |A| ≤ d and matrix-matrix multiplications of
dimension d, which results in O(d3) operations in total.
Therefore, the up operator can be seen as sampling a size 2
subset from the NDPP with kernel LA. In the next section,
we present an approach for efficiently sampling from this
conditional 2-NDPP.

3.1. Up Operator via Rejection Sampling

Our goal is an efficient sampling from a 2-NDPP whose
kernel is given by Equation (6). To this end, we utilize
recent work on a sublinear-time NDPP rejection sampling
algorithm (Han et al., 2022).

Specifically, given a NDPP kernel LA, assume that there
exists a matrix L̂ such that

det(LA
S ) ≤ det(L̂S) (7)

for every S ⊆ [n]. The rejection sampling method pro-
ceeds as follows: first, draw a sample S from the DPP with
kernel L̂ and accept it with probability det(LA

S )/ det(L̂S),
otherwise repeat the draws until S is accepted. The re-
sulting sample S has probability proportional to det(LA

S ).
The distribution from which we actually draw a sample
(i.e., the DPP with L̂) is called the proposal distribution.
Furthermore, if L̂ is symmetric, one can make use of sev-
eral symmetric DPP sampling algorithms. In particular, we
adopt a sublinear-time tree-based method (Gillenwater et al.,
2019) for our scalable MCMC sampling algorithm, which
we describe in more detail in Section 3.2.

Han et al. (2022) provided a proposal distribution with ker-
nel L̂, based on a spectral decomposition of XWAX⊤,
and shows that it satisfies Equation (7). When L is given by
a rank-d factorization, this spectral decomposition has a run-
time ofO(nd2). However, this complexity makes the cost of
the preprocessing steps for the sampler dominant when the
subsequent sampling from the DPP with L̂ is performed in
sublinear-time in n (e.g., using tree-based sampling). Thus,

Algorithm 2 Up Operator via Rejection Sampling
1: Input: A ⊆ [n], X ∈ Rn×d,W ∈ Rd×d

2: WA ←W −WX⊤
A,:(XA,:WX⊤

A,:)
−1XA,:W

3: {(σi,yi, zi)}d/2i=1 ← Youla decomp. of WA−WA⊤

2

4: ŴA ← WA+WA⊤

2 +
∑d/2

i=1 σi

(
yiy

⊤
i + ziz

⊤
i

)
5: while true do
6: Sample {a, b} with prob. ∝ det([XŴAX⊤]{a,b})

(▷ Run Algorithm 3 )

7: if U([0, 1]) ≤ det([XWAX⊤]{a,b})
det([XŴAX⊤]{a,b})

then

8: Return {a, b}
9: end if

10: end while

we would not fully utilize the advantages of a scalable DPP
sampling algorithm. We resolve this issue by developing a
more efficient procedure for constructing the proposal DPP.

Our key idea is to apply a similar spectral decomposition
approach for computing the d-by-d matrix WA, which al-
lows us to compute the proposal DPP kernel in time O(d3).
More specifically, we begin with writing the spectral decom-
position of the skew-symmetric matrix WA−WA⊤

2 as

WA −WA⊤

2
=

d/2∑
i=1

[
yi zi

] [ 0 σi

−σi 0

][
y⊤
i

z⊤
i

]
, (8)

where {yi, zi}d/2i=1 is a set of eigenvectors, and the σi’s are
the nonnegative eigenvalues. The above decomposition
is also known as the Youla decomposition (Youla, 1961).
Given this, we define a symmetric matrix ŴA as follows:

ŴA :=
WA +WA

2
+

d/2∑
i=1

[
yi zi

] [σi 0

0 σi

][
y⊤
i

z⊤
i

]
. (9)

An important property is that every determinant of a prin-
cipal submatrix of ŴA is equal to or greater than that of
WA, i.e., det(WA

S ) ≤ det(ŴA
S ) for all S ⊆ [d], as shown

in (Han et al., 2022, Theorem 1). We further prove that
this property is preserved under the bilinear transformation
WA →XWAX⊤ for any X ∈ Rn×d.

Theorem 1. Given X ∈ Rn×d and WA ∈ Rd×d, suppose
ŴA is obtained from Equation (9) with WA. Then,

det([XWAX⊤]S) ≤ det([XŴAX⊤]S) (10)

for every S ⊆ [n]. In addition, equality holds when |S| ≥ d.

We provide the proof of Theorem 1 in Appendix C.1. Theo-
rem 1 allows us to use rejection sampling, with the kernel
L̂ := XŴAX⊤ as the proposal distribution.
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Pseudo-code for the up operator computed using rejection
sampling is shown in Algorithm 2. Observe that ŴA can be
computed in timeO(d3) (lines 2-4 in Algorithm 2), because
both matrix operations involve matrices with dimension d,
and the Youla decomposition of WA−WA⊤

2 , have complexi-
ties O(d3). Therefore, we can build each kernel component
for the proposal DPP in time O(d3). This improves the
previous method with runtime O(nd2), since d ≪ n, and
potentially allows us to utilize the sublinear-time sampling
algorithm. In the next section, we discuss the tree-based
k-DPP sampling algorithm that uses our proposal DPP.

3.2. Sublinear-time Tree-based Sampling

We now focus on sampling the 2-DPP with kernel L̂ =

XŴAX⊤ (line 6 in Algorithm 2). Observe that the matrix
X ∈ Rn×d remains unchanged, and only the inner ma-
trix ŴA ∈ Rd×d changes in every iteration of the MCMC
sampling algorithm. Fortunately, the sublinear-time tree-
based DPP sampling algorithm (Gillenwater et al., 2019)
is well suited to this type of kernel structure. We build a
binary tree using X , which can be used for 2-DPP sampling
with the kernel XŴAX⊤, and then the sampling process
is equivalent to k tree traversals with a d-by-d query ma-
trix. Consequently, 2-DPP sampling can be done in time
O(d2 log n+ d3).

We begin by explaining the workflow for tree-based k-DPP
sampling, where we set k to 2. Formally, denote U :=

(ŴA)−
1
2 , and let {(λi,vi)}di=1 be the eigendecomposition

of U(X⊤X)U . From (Kulesza & Taskar, 2012, Eq. (187)),
the probability of sampling S ∈

(
[n]
k

)
from the k-DPP with

L̂ can be decomposed into the following

det(L̂S)

ek({λi}di=1)
=

∑
E∈([d]k )

∏
i∈E λi

ek({λi}di=1)
· det(KE

S ), (11)

where KE := XU
(∑

i∈E λ−1
i viv

⊤
i

)
UX⊤, and ek is the

elementary symmetric polynomial defined in Equation (3).
We observe that KE is a rank-k projection matrix, because

KE =
∑
i∈E

XUvi√
λi

(
XUvi√

λi

)⊤

, (12)

and XUvi√
λi

’s are the eigenvectors of L̂ (Kulesza & Taskar,
2012, Proposition 3.1). Any projection matrix can define
a DPP with a marginal kernel, called an elementary DPP.
Equation (11) allows the following two-step k-DPP sam-
pling procedure: 1) select an index set E ∈

(
[d]
k

)
with prob-

ability
∏

i∈E λi

ek({λi}d
i=1)

, and then 2) sample a subset S from the

elementary DPP with kernel KE . As studied in (Kulesza
& Taskar, 2012, Algorithm 8), step 1) can be efficiently
performed using the recursive property of ek introduced

Algorithm 3 Tree-based k-DPP Sampling

1: Input: X ∈ Rn×d, ŴA ∈ Rd×d, C = X⊤X ∈
Rd×d, tree structure T

2: U ← (ŴA)−
1
2

3: {(vi, λi)}di=1 ← Eigendecomp. of UCU⊤

4: Select size k subset E with prob. ∝∏i∈E λi

(▷ Run Algorithm 8 in (Kulesza & Taskar, 2012))
5: Q← U

(∑
i∈E λ−1

i viv
⊤
i

)
U⊤

6: Y ← ∅
7: for j = 1, . . . , k do
8: Sample a with probability

〈
Q,xax

⊤
a

〉
using the tree

structure T (▷ Run Algorithm 3 in (Han et al., 2022))
9: Y ← Y ∪ {a}

10: Q← Q−QX⊤
Y,:

(
XY,:QX⊤

Y,:

)−1
XY,:Q

11: end for
12: Return Y

in Equation (4), resulting in O(dk) runtime. Notice that
step 2) is a computational bottleneck for k-DPP sampling.
However, this step can be accelerated using tree-based sam-
pling, which we describe next.

Specifically, let S ⊆ [n] be a subset that we wish to sample.
For any Y ⊆ [n] and a /∈ Y observe that

PKE (a ∈ S|Y ⊆ S) =
det(KE

Y ∪{a})

det(KE
Y )

= KE
a,a −KE

a,Y (K
E
Y )−1KE

Y,a =
〈
QY ,x⊤

a xa

〉
, (13)

where QY := M − MX⊤
Y,:(XY,:MX⊤

Y,:)
−1XY,:M ,

M := U
(∑

i∈E λ−1
i viv

⊤
i

)
U , and xa ∈ Rd is the a-

th row vector in X . This implies that we can begin with
Y ← ∅ and iteratively append a to Y , where a is selected
with the probability described in Equation (13). The process
of selecting a single element can be done in a divide-and-
conquer manner by leveraging a binary tree structure.

We construct a binary tree where the root contains [n] and
assigns a partition Aℓ, Ar of [n] to its left and right nodes.
The branching proceeds until n leaf nodes are created. In
addition, every non-leaf node contains a d-by-d matrix∑

a∈A x⊤
a xa, where A is the stored subset. Sampling a

single element can be done by traversing the tree with the
query matrix QY . In every non-leaf node containing a sub-
set A, we move down to the left branch with probability〈

QY ,
∑

a∈Aℓ
x⊤
a xa

〉〈
QY ,

∑
a∈A x⊤

a xa

〉 (14)

or otherwise to the right branch, until we reach a leaf node.
The tree traversal process is repeated for k iterations, be-
cause every subset sampled from the elementary DPP has
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exactly k elements. If we construct a binary tree of depth
O(log n), which requires timeO(nd2), then step 2) can run
in timeO(kd2 log n+ k2d2). We summarize the tree-based
k-DPP sampling in Algorithm 3 and provide the overall
runtime in Theorem 2.

Theorem 2. Given X ∈ Rn×d, and symmetric and PSD
ŴA ∈ Rd×d, Algorithm 3 samples a subset from the
k-DPP with kernel L = XŴAX⊤, and runs in time
O(kd2 log n+ k2d2 + d3), after a one-time preprocessing
step that runs in time O(nd2).

We provide the proof of Theorem 2 in Appendix C.2. The
runtime of our tree-based sampling algorithm improves
that of previous work (Gillenwater et al., 2019), which is
O(k2d2 log n + d3). We also remark that the binary tree
used in (Han et al., 2022) is slightly different from ours.
They build a tree using the eigenvectors of the kernel, while
our tree structure is based on the non-orthogonal features
X . This allows our tree to be used for sublinear-time sam-
pling for any DPP with kernel XAX⊤, with an arbitrarily
symmetric and PSD matrix A ∈ Rd×d, as is the case for
our MCMC-based k-NDPP sampling approach.

We remind the reader that the rejection-based up operator
requires sampling from a 2-DPP (line 6 in Algorithm 2).
From Theorem 2, sampling from the proposal distribution
runs in O(d2 log n + d3) time. However, as discussed in
Section 3.1, this process is repeated until the sample is ac-
cepted. In the next section, we examine the average number
of rejections in Algorithm 2.

4. Runtime Analysis
We first define the ratio of the largest and smallest singular
values of the conditional kernel components, which will
affect the average number of rejections.

Definition 3. Given X ∈ Rn×d and W ∈ Rd×d, such that
W +W⊤ ⪰ 0 and A ∈

(
[n]
k−2

)
for k ≥ 2, consider WA

as defined in Equation (6). Define

κA :=
σmax(W

A −WA⊤
)

min
Y ∈([n]\A

2 ) σmin([X(WA +WA⊤)X⊤]Y )
.

and κ := maxA⊆[n],|A|≤d−2 κA.

We now provide an upper bound on the average number of
rejections in Algorithm 2.

Theorem 4. Given X ∈ Rn×d and W ∈ Rd×d, such that
W +W⊤ ⪰ 0 and A ∈

(
[n]
k−2

)
for k ≥ 2, consider κA as

in Definition 3. Then, the average number of rejections of
the rejecion-based up operator (Algorithm 2) is no greater
than (1 + σmax(X)2 κA)

2.

Proof Sketch. First, we observe that the average number of

rejections can be expressed as∑
Y ∈([n]\A

2 ) det([XŴAX⊤]Y )∑
Y ∈([n]\A

2 ) det([XWAX⊤]Y )
. (15)

Instead of bounding the above directly, we consider
max

Y ∈([n]\A
2 )

det([XŴAX⊤]Y )
det([XWAX⊤]Y )

, which upper bounds Equa-
tion (15). In addition, observing that the denominator is no
less than

∑
Y ∈([n]\A

2 ) det([X(W
A+WA⊤

2 )X⊤]Y ), we can
derive the bound as a determinant of a 2-by-2 symmetric and
PSD matrix. This can be bounded by the singular values of
the kernel. A full proof is provided in Appendix C.3.

We observe that the matrices in the numerator and denomina-
tor of the factor κA in Definition 3 are bounded by the largest
and smallest eigenvalues among some 2-by-2 matrices (see
Equation (39) in Appendix C.3). There is no dependency on
d here, and therefore the number of rejections does not de-
pend on either n or d. In Section 6.3, we empirically verify
that the actual rejection numbers are very small compared
to n both for synthetic and real-world datasets. For example,
for the Book recommendation dataset with n ≃ 106 (Wan
& McAuley, 2018), we see only 3 rejections on average.
This makes our rejection-based MCMC sampling algorithm
practical for NDPPs with large n.

Putting all of the above together, we provide the overall
runtime for our MCMC sampling algorithm for k-NDPPs
in the following proposition.

Proposition 5. Given X ∈ Rn×d and W ∈ Rd×d, such
that W + W⊤ ⪰ 0 and k ≥ 2, consider κ as de-
fined in Definition 3. With a preprocessing step that runs
in time O(nd2), Algorithm 1 runs in time O(titer (1 +
σmax(X)2 κ)2 (d2 log n+ d3)) in expectation.

The proof of Proposition 5 can be found in Appendix C.4.
Note that the size k only affects the number of MCMC iter-
ations titer, since each transition of the MCMC algorithm
requires sampling from a 2-NDPP. Moreover, as mentioned
in Section 2.2, titer = O(k2 log 1

εPr(S0)
) guarantees con-

vergence. Therefore, our MCMC algorithm runs in time that
is sublinear in n and polynomial in both k and d. In Sec-
tion 6.1, we compare the MCMC sampling algorithm (Algo-
rithm 1) to the exact sampler by empirically evaluating the
total variation (TV) distance to the ground-truth distribution.
We observe that the TV distance of the MCMC sampler
with titer = k2 decreases as fast as the exact sampler when
the number of samples increases.

5. Extension from k-NDPPs to Unconstrained
NDPPs

In this section we show that any k-NDPP sampling algo-
rithm can be transformed into an unconstrained-size NDPP



Scalable MCMC Sampling for NDPPs

103 104 105 106

number of samples

10−4

10−3

10−2

to
ta
lv
ar
ia
tio

n
di
st
an

ce Exact Sampling
MCMC Sampling

(a) k-NDPP

103 104 105 106

number of samples

10−4

10−3

10−2

to
ta

lv
ar

ia
tio

n
di

st
an

ce Exact Sampling
MCMC Sampling

(b) NDPP

Figure 1. Total variation distance between the exact sampler and our
proposed MCMC sampler for (a) a k-NDPP and (b) a unconstrained-
size NDPP. We use synthetically-generated NDPP kernels with
n = 10, d = 8, k = 5, and set titer = 25 for our MCMC algorithm.
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Figure 2. Wall-clock runtime for the preprocessing and sampling
steps of our scalable MCMC algorithm, for k-NDPPs with synthetic
kernels. In (a) we vary n ∈ {102, . . . , 106} and set k = 10, and in
(b) vary k ∈ {10, . . . , 100}, and set n = 106.

Algorithm 4 MCMC Sampling for NDPP
1: Input: X ∈ Rn×d,W ∈ Rd×d

2: {(λi,vi)}di=1 ← Eigendecomp. of WX⊤X

3: Compute elementary symmetric polynomials {ek}dk=0

of {λi}di=1 (▷ Run Algorithm 7 in (Kulesza & Taskar,
2012))

4: Sample k ∈ {0, 1, . . . , d} with prob. ∝ ek

5: Compute titer with the chosen k (e.g., titer = k2)
6: Construct a binary tree T with X

7: S ← Run Algorithm 1 with T ,X,W , k, titer

8: Return S

sampling algorithm, with a marginal cost for preprocess-
ing. A simple approach for using a k-NDPP sampler to
perform NDPP sampling consists of two steps: 1) first, sam-
ple a random variable k ∈ {0, 1, . . . , d} with probability
proportional to the normalization constant of the k-NDPP,
and then 2) run any k-NDPP sampling algorithm with the
chosen k. From Equation (3), the normalization constant of
a k-NDPP is equal to the k-th elementary symmetric poly-
nomial ek({λi}di=1), where {λi}di=1 are the nonzero eigen-
values of the rank-d kernel. Once we obtain the eigenvalues
in O(nd2) time, the corresponding ek’s can be computed
in O(dk) time using Equation (4). The MCMC sampling
algorithm for NDPPs is outlined in Algorithm 4.

We consider the computation of the ek’s as a preprocessing
step, because we re-use these values for drawing subsequent
NDPP samples. The runtime complexity of this prepro-
cessing step is O(nd2), which is equivalent to the runtime
complexity of preprocessing for our sublinear-time MCMC
sampling algorithm for k-NDPPs.

We describe the overall runtime of Algorithm 4 in the fol-
lowing proposition.

Proposition 6. Given X ∈ Rn×d and W ∈ Rd×d, such
that W +W⊤ ⪰ 0, consider κ as in Definition 3. With a
preprocessing step that runs in time O(nd2), Algorithm 4
runs in timeO(titer (1+σmax(X)2 κ)2 (d2 log n+d3)) in
expectation.

Previous work on exact NDPP sampling (Han et al., 2022)
also has runtime that is sublinear in n. However, their algo-
rithm has runtime that is exponential in the rank of kernel
d (see Theorem 2 therein). In contrast, our MCMC-based
approximate sampling algorithm runs in time polynomial in
d, because of titer = Õ(d2). Such a gap makes our approx-
imate MCMC sampler feasible to run in cases where the
exact sampler does not terminate for several days in some
real-world settings; see Section 6.3 for details.

6. Experiments
In this section, we report empirical results for our exper-
iments involving several NDPP sampling algorithms, for
NDPPs with and without size constraints.

6.1. Convergence of MCMC Sampling

We first benchmark our MCMC sampling algorithm and
compare it to the exact sampler for both k-NDPPs and
unconstrained-size NDPPs. We randomly generate V ,B ∈
Rn×d/2, where each entry is sampled from N (0,

√
2/d);

D ∈ Rd/2×d/2, where each entry is sampled from N (0, 1);
and then construct the NDPP kernel as L = V V ⊤+B(D−
D⊤)B⊤. We collect samples from each sampling algorithm
and evaluate the empirical total variation (TV) distance,
i.e., maxS |p(S)− q(S)|, where p and q correspond to the
ground-truth and empirical distributions from the samplers,
respectively. We set n = 10, d = 8, k = 5, and draw up to
106 random samples from each sampler. For our MCMC
algorithm, we set titer = k2. The results are shown in



Scalable MCMC Sampling for NDPPs

Table 2. Number of rejections and runtime (in seconds), for sampling and preprocessing, for k-NDPP and unconstrained-size NDPP
sampling algorithms. Runtimes in the top three rows report sampling times, and the bottom row shows the preprocessing times of our
MCMC algorithm. Bold values indicate the fastest runtimes, and (∗) indicates the expected results for those cases where the sampling
algorithm does not terminate within a feasible timeframe.

Task Metric Algorithm
UK Retail
n = 3,941

Recipe
n = 7,993

Instacart
n = 49,677

Million Song
n = 371,410

Book
n = 1,059,437

k = 10

Runtime
Exact (Rejection) 406 2.1 93.7 0.13 0.46

MCMC (Ours) 25.4 14.5 21.0 9.5 23.7

# of Rejections
Exact (Rejection) 20880 79.2 3102 2.2 8.5

MCMC (Ours) 7.8 3.5 6.0 0.8 6.8

k = 50

Runtime
Exact (Rejection) (∗)5.11×1012 (∗)9.55×105 (∗)9.50×105 (∗)1.45×1012 (∗)4.06×106

MCMC (Ours) 334 229 242 488 374

# of Rejections
Exact (Rejection) (∗)2.83×1013 (∗)4.94×106 (∗)4.63×106 (∗)4.66 ×1012 (∗)1.65×107

MCMC (Ours) 3.8 1.3 1.6 5.4 3.2

Unconstrained
Runtime

Exact (Cholesky) 5.6 11.5 71.1 537 1540
Exact (Rejection) (∗)1.34×108 1.0 1351.6 (∗)1.89×1010 1022

MCMC (Ours) 75.3 11.8 21 281 80

# of Rejections
Exact (Rejection) (∗)1.50×109 45.3 27941.7 (∗)6.91×1010 13924.5

MCMC (Ours) 6.0 3.6 5.7 7.2 9.8

Preprocessing Runtime MCMC (Ours) 1.0 2.2 14.0 30.8 74.3

Figure 1. We observe that the TV distance of MCMC sam-
pling decays as fast as that of the exact sampler for both
k-NDPPs and NDPPs. This indicates that setting the num-
ber of MCMC iterations to k2 is sufficient for convergence
to the target distribution. Therefore, we use titer = k2 for
all of our experiments. In Appendix A.5, we additionally
validate our choice for titer by evaluating the Potential Scale
Reduction Factor (PSRF), commonly used to measure the
convergence of the Markov chains (Gelman & Rubin, 1992).

6.2. Runtimes for Synthetic Datasets

Next, we report the runtimes of both the preprocessing and
sampling steps of our proposed MCMC algorithm. We
generate random NDPP kernels using the same approach
described above, and measure the actual runtime in seconds.
In Figure 2(a), we vary the size of ground set n from 102 to
106 while fixing d = 100, k = 10. In Figure 2(b), we vary
k from 10 to 100 while n = 106, d = 100 are fixed. As
discussed in Proposition 5, we verify that the preprocessing
time increases linearly with respect to n, and that the sam-
pling time tends to grow sublinearly in n. Interestingly, we
notice that the sampling times for both n = 102 and 106 are
almost identical, at about 10 seconds. This indicates that
our algorithm scales well with respect to n, and is suitable
for large-scale settings. We also see that our sampling al-
gorithm scales superlinearly with k, because the number of
MCMC iterations is set to titer = k2.

6.3. Runtimes for Recommendation Datasets

To investigate the practical performance of our proposed
sampling algorithms, we apply them to NDPP kernels
learned from five real-world recommendation datasets, used
in (Han et al., 2022). The ground set size n varies from
3,941 to 1 million, while the rank of the kernel is gener-
ally set to d = 200 for all datasets. More details on these
datasets can be found in Appendices A.2 and A.3. We learn
the low-rank components of the NDPP kernels, V ,B,D,
using gradient-based maximum likelihood estimation, as
described in (Gartrell et al., 2021).3 We run our algorithms
for k-NDPPs with sizes k = 10 and 50, and unconstrained-
size NDPPs, and compare our MCMC algorithms to the
exact rejection-based sampling algorithm (Han et al., 2022).
We omit the naı̈ve MCMC algorithm (Alimohammadi et al.,
2021), which runs in quadratic time in n, from our experi-
ments, because it is over 1,000 times slower than our sam-
pling method for synthetic NDPP kernels with n = 1,000.
For NDPP sampling, we also test the Cholesky-based sam-
pling algorithm (Poulson, 2020), which has linear runtime
in n. In Table 2, we report the runtimes of each sampling al-
gorithm, as well as the number of rejections if the algorithm
is based on rejection sampling.

We observe that for the 10-NDPP, the exact sampling algo-

3We use the code from https://github.com/
insuhan/nonsymmetric-dpp-sampling for data
preprocessing and NDPP kernel learning.

https://github.com/insuhan/nonsymmetric-dpp-sampling
https://github.com/insuhan/nonsymmetric-dpp-sampling
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rithm often runs faster than our MCMC method, e.g., for
the Recipe, Million Song, and Book datasets. However,
for the 50-NDPP, the exact sampling algorithm results in
a very large number of rejections on average, and thus is
infeasible for all datasets. On the other hand, our MCMC
sampler always terminates within a few minutes, running
orders of magnitude faster than the exact sampling algo-
rithm. For NDPP sampling, our algorithm is also orders
of magnitude faster for the UK Retail and Million Song
datasets. In Appendix A.4, we also apply those sampling
algorithms to NDPP kernels learned with an orthogonality
constraint (known as ONDPPs), which is tailored to ensure
a small number of rejections for NDPP sampling (Han et al.,
2022). These results show that reducing the runtime com-
plexity from exponential to polynomial time can be very
important in practice. Additionally, for NDPP sampling, we
see up to a 13 times speedup for our method compared to
the linear-time Cholesky-based sampling algorithm.

7. Conclusion
We have shown in this work how to accelerate MCMC
sampling for k-NDPPs by leveraging a tree-based rejec-
tion sampling algorithm. Our proposed sampling algorithm
achieves runtime that is sublinear in n, and polynomial in d
and k. We have also extended our scalable k-NDPP MCMC
sampling approach to NDPP sampling, while preserving the
same efficient runtime. Compared to the fastest state-of-
the-art exact sampling algorithms for k-NDPPs and NDPPs,
which have runtime that is quadratic in n or exponential in d,
respectively, our method makes sampling feasible for large-
scale real-world settings by showing significantly faster and
more scalable runtimes.
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A. Additional Details on Experimental Results
A.1. Efficient Tree Construction

Although our MCMC sampler can be very fast for large-scale settings, we do note that consideration of the preprocessing
cost is important. Notably, preprocessing requires construction of a binary tree with O(nd2) memory space, which can be
problematic in practice. To alleviate this, we suggest a fat-leaf tree structure, where each leaf node contains B > 1 elements.
This reduces the number of nodes in the tree to O( n

B ), and thus memory space can be reduced to O(d2 n
B ). However,

since tree-based sampling returns a leaf node with some probability, according to Line 8 in Algorithm 3, an additional
cost for computing the probabilities required for selecting a single item is required, with runtime O(d2B). Therefore, with
this change, the tree-based 2-DPP sampling runtime becomes O

(
d2
(

logn
B +B

)
+ d3

)
. We set B = 8 for datasets with

n ≥ 105 elements, and observe that the additional runtime overhead is very marginal, while memory consumption is reduced
by a factor of 8.

A.2. Full Details on Datasets

We perform experiments on the following real-world public datasets:

• UK Retail: This dataset (Chen et al., 2012) contains baskets representing transactions from an online retail company
that sells all-occasion gifts. We omit baskets with more than 100 items, leaving us with a dataset containing 19,762
baskets drawn from a catalog of n = 3,941 products. Baskets containing more than 100 items are in the long tail of the
basket-size distribution.

• Recipe: This dataset (Majumder et al., 2019) contains recipes and food reviews from Food.com (formerly Genius
Kitchen)4. Each recipe (“basket”) is composed of a collection of ingredients, resulting in 178,265 recipes and a catalog
of 7,993 ingredients.

• Instacart: This dataset (Instacart, 2017) contains baskets purchased by Instacart users5. We omit baskets with more
than 100 items, resulting in 3.2 million baskets and a catalog of 49,677 products.

• Million Song: This dataset (McFee et al., 2012) contains playlists (“baskets”) of songs from Echo Nest users6. We
trim playlists with more than 100 items, leaving 968,674 playlists and a catalog of 371,410 songs.

• Book: This dataset (Wan & McAuley, 2018) contains reviews from the Goodreads book review website, including a
variety of attributes describing the items7. For each user we build a subset (“basket”) containing the books reviewed by
that user. We trim subsets with more than 100 books, resulting in 430,563 subsets and a catalog of 1,059,437 books.

A.3. Full Details on Experimental Setup

NDPP kernel learning. We use the learning algorithm described in (Gartrell et al., 2021), where we learn the kernel
components V ,B ∈ Rn×d/2,D ∈ Rd/2×d/2 by minimizing the regularized negative log-likelihood using training example
subsets {Y1, . . . , Ym}:

min
V ,B,D

− 1

m

m∑
i=1

log det
(
VYi

V ⊤
Yi

+BYi
(D −D⊤)B⊤

Yi

)
+ log det

(
V V ⊤ +B(D −D⊤)B⊤ + I

)
+ α

n∑
i=1

∥vi∥22
µi

+ β
n∑

i=1

∥bi∥22
µi

, (16)

where vi and bi are the i-th row vectors of V and B, respectively. We also use the training scheme from (Han et al.,
2022), where 300 randomly-selected baskets are held-out as a validation set for tracking convergence during training,

4See https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions for the license
for this public dataset.

5This public dataset is available for non-commercial use; see https://www.instacart.com/datasets/
grocery-shopping-2017 for the license.

6See http://millionsongdataset.com/faq/ for the license for this public dataset.
7This public dataset is available for academic use only; see https://sites.google.com/eng.ucsd.edu/

ucsdbookgraph/home for the license.

https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions
https://www.instacart.com/datasets/grocery-shopping-2017
https://www.instacart.com/datasets/grocery-shopping-2017
http://millionsongdataset.com/faq/
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
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Table 3. Number of rejections and runtime (in seconds) for k-NDPP and unconstrained-size NDPP sampling algorithms, for ONDPP
kernels learned with regularization on the number of NDPP sampling rejections. Bold values indicate the fastest runtimes, and (∗)
indicates the expected results for those cases where the sampling algorithm does not terminate within a feasible timeframe.

Task Metric Algorithm
UK Retail
n=3,941

Recipe
n=7,993

Instacart
n=49,677

Million Song
n=371,410

Book
n=1,059,437

k = 10

Runtime
Exact (Rejection) 0.04 0.6 1.9 0.2 0.8

MCMC (Ours) 6.5 9.0 11.8 8.3 10.7

# of Rejections
Exact (Rejection) 0 12.4 36.6 2.1 13.4

MCMC (Ours) 0 0.9 1.3 0.3 0.9

k = 50

Runtime
Exact (Rejection) 0.4 (∗)7.33×109 (∗)1.92×108 99.1 (∗)7.95×106

MCMC (Ours) 140.7 450.8 307.9 182.9 285.2

# of Rejections
Exact (Rejection) 0.1 (∗)2.08×108 (∗)4.96×108 239.7 (∗)1.61×107

MCMC (Ours) 0.1 6.2 2.6 0.5 2.1

Unconstrained
Runtime

Exact (Rejection) 0.1 0.7 6.0 7.5 2.8
MCMC (Ours) 23.1 8.3 11.7 81.3 17.1

# of Rejections
Exact (Rejection) 0.1 15.0 91.6 27.5 34.0

MCMC (Ours) 0.0 1.1 1.3 0.4 0.9

another 2000 random subsets are used for testing, and the remaining baskets are used for training. Convergence is reached
during training when the relative change in validation log-likelihood is below a predetermined threshold. We use the Adam
optimizer (Kingma & Ba, 2015); we initialize D from N (0, 1), and V and B are initialized from the U([0, 1]). We set
α = β = 0.01 for all datasets.

ONDPP kernel learning. Unlike the NDPP kernel, the orthogonal NDPP (ONDPP) kernel (Han et al., 2022) is parameter-
ized as L = V V ⊤ +B(D −D⊤)B⊤, where

D = Diag

([
0 σ1

0 0

]
, . . . ,

[
0 σd/2

0 0

])
∈ Rd/2×d/2

and σj > 0. The training objective is

min
V ,B,{σj}d/2

j=1

− 1

m

m∑
i=1

log

(
det(LYi

)

det(L+ I)

)
+ α

n∑
i=1

∥vi∥22
µi

+ β
n∑

i=1

∥bi∥22
µi

+ γ

d/2∑
j=1

log

(
1 +

2σj

σ2
j + 1

)
, (17)

with constraints B⊤B = I and V ⊤B = 0. To satisfy the first constraint, Han et al. (2022) applies QR decomposition on
B; for the second constraint, we project V to the column space of B by updating V ← V −B(B⊤B)−1(B⊤V ). We use
the regularizer settings from Han et al. (2022): α = β = 0.01, γ = 0.5 for the UK Retail dataset, α = β = 0.01, γ = 0.1
for Recipe, α = β = 0.001, γ = 0.001 for Instacart, α = β = 0.01, γ = 0.2 for Million Song, and α = β = 0.01, γ = 0.1
for Book.

A.4. Additional Experiments with ONDPPs

We apply NDPP sampling algorithms in Section 6.3 to NDPP kernels learned with an orthogonality constraint (known
as ONDPPs), studied in (Han et al., 2022). In particular, these kernels are learned using a regularization mechanism that
guarantees a small number of NDPP sampling rejections. Therefore, we expect exact sampling with ONDPP kernels to run
very quickly. Table 3 shows the results with real-world datasets and ONDPP kernels learned on these datasets. As expected,
exact ONDPP sampling runs faster than our MCMC approach for unconstrained-size NDPPs. It also runs faster for 10-NDPP
sampling. However, we see that for 50-NDPP the expected exact sampling runtimes are over 92 days for three datasets,
while our MCMC approach always terminates within a few minutes. This substantial slowdown for 50-NDPP sampling
results from the runtime being exponential in k for exact sampling, which we are unable to mitigate using regularization
during training. This suggests that for 50-NDPP sampling, our scalable MCMC algorithm is the best and only viable choice
in practice.
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A.5. Empirical Mixing Time with Potential Scale Reduction Factor (PSRF)

We additionally validate the mixing times of our MCMC sampling algorithm (Algorithm 1) using the Potential Scale
Reduction Factor (PSRF). PSRF computes the ratio of within-chain and between-chain variances and is frequently
used for measuring the empirical mixing times of MCMC samplers. We used the synthetic dataset described in
Section 6.1, and the PSRF implementation in tensorflow.probability.mcmc, with 100 independent chains for
n = {100, 200, . . . , 3200}, k = {2, 3, . . . , 30}, and a fixed d = 20. Interestingly, as shown in Figure 3, we observe
that empirical mixing times increase linearly in k for all choices of n. We leave the problem of further improving the mixing
time of our NDPP MCMC sampling algorithm for future work.
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Figure 3. Empirical mixing time, computed using Potential Scale Reduction Factor (PSRF), for our proposed NDPP MCMC sampling
algorithm.

B. MAP Inference for Initialization
We observe that the mixing time in Equation (5) also depends on the initial subset S0. It is desirable to find a size-k subset
S0 where det(LS0) is as large as possible, and then use S0 as the initial subset in Algorithm 1. This is known as the MAP
inference problem for a DPP; that is,

argmax
S∈([n]

k )
det(LS).

MAP inference for a NDPP is generally known to be NP-hard, and a greedy algorithm is typically used as a heuristic (Gartrell
et al., 2021). In particular, Gartrell et al. (2021) showed that with a rank-d NDPP kernel, greedy MAP inference runs
in O(nd2) time. Once we find a proper size-k subset S0, we can re-use S0 for drawing subsequent k-NDPP samples.
Therefore, for a faster mixing time, we utilize greedy MAP inference as a preprocessing step, while preserving the total
preprocessing runtime described previously.

Furthermore, this MAP-based initialization approach can also be used for NDPP sampling without size constraints. We
note that the greedy algorithm finds elements in the output subset in a sequential way. In other words, if {s1, . . . , sd} is the
output of the greedy algorithm with size constraint d, then the algorithm with size constraint k ≤ d returns {s1, . . . , sk}.
Therefore, for NDPP sampling, we run the greedy algorithm to find a sequence of d items that maximize the determinant of
each principal submatrix of size d. While running our MCMC NDPP sampler (Algorithm 4), if the size random variable k is
selected, then we run the MCMC k-NDPP sampling (Algorithm 1) with the chosen k and a subset containing the first k ≤ d
elements in the sequence obtained from the greedy algorithm. In practice, for our experiments in Section 6.1 we observe
that our MCMC sampler without greedy initialization shows promising convergence, and thus we omit this procedure in our
experiments.

https://www.tensorflow.org/probability/api_docs/python/tfp/mcmc/potential_scale_reduction
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C. Proofs
C.1. Proof of Theorem 1

Theorem 1. Given X ∈ Rn×d and WA ∈ Rd×d, suppose ŴA is obtained from Equation (9) with WA. Then,

det([XWAX⊤]S) ≤ det([XŴAX⊤]S) (10)

for every S ⊆ [n]. In addition, equality holds when |S| ≥ d.

Proof. For simplicity, we write that G := X(W
A+WA⊤

2 )X⊤ and A := X(W
A−WA⊤

2 )X⊤, so that XWAX⊤ = G+A.
Also, denote B := XŴAX⊤ −G. Since G is positive semi-definite, for any S ⊆ [n] such that |S| ≤ d, we have

det([XWAX⊤]S) = det (GS +AS)

= det(G
1/2
S (I +G

−1/2
S ASG

−1/2
S )G

1/2
S )

= det(G
1/2
S ) · det(I +G

−1/2
S ASG

−1/2
S ) · det(G1/2

S ) (18)

where I is the |S|-by-|S| identity matrix. Similarly,

det([XŴAX⊤]S) = det(G
1/2
S ) · det(I +G

−1/2
S BSG

−1/2
S ) · det(G1/2

S ). (19)

From Theorem 2.1 in (Kulesza & Taskar, 2012), we have

det(I +G
−1/2
S ASG

−1/2
S ) =

∑
T⊆[|S|]

det([G
−1/2
S ASG

−1/2
S ]T ), (20)

det(I +G
−1/2
S BSG

−1/2
S ) =

∑
T⊆[|S|]

det([G
−1/2
S BSG

−1/2
S ]T ). (21)

Therefore, it is enough to prove that for every T ⊆ [|S|]

det([G
−1/2
S ASG

−1/2
S ]T ) ≤ det([G

−1/2
S BSG

−1/2
S ]T ). (22)

Now consider the Youla decomposition on WA−WA⊤

2 as in Equation (8), i.e.,

WA −WA⊤

2
=

d/2∑
i=1

σi

(
yiz

⊤
i − ziy

⊤
i

)
= V Diag

([
0 σ1

−σ1 0

]
, · · · ,

[
0 σ d

2
,

−σ d
2

0

])
V ⊤, (23)

where V := [y1, z1 . . . ,y d
2
, z d

2
]. Then, it can be written

G
−1/2
S ASG

−1/2
S = G

−1/2
S XS,:V ·Diag

([
0 σ1

−σ1 0

]
, · · · ,

[
0 σ d

2
,

−σ d
2

0

])
· V ⊤X⊤

S,:G
−1/2
S := R, (24)

G
−1/2
S BSG

−1/2
S = G

−1/2
S XS,:V ·Diag

(
σ1, σ1, . . . , σ d

2
, σ d

2

)
· V ⊤X⊤

S,:G
−1/2
S := R̂. (25)

From Theorem 1 in (Han et al., 2022), it holds that det(RT ) ≤ det(R̂T ) for all T ⊆ [|S|]. This completes the proof of
Theorem 1.

C.2. Proof of Theorem 2

Theorem 2. Given X ∈ Rn×d, and symmetric and PSD ŴA ∈ Rd×d, Algorithm 3 samples a subset from the k-DPP with
kernel L = XŴAX⊤, and runs in time O(kd2 log n+ k2d2 + d3), after a one-time preprocessing step that runs in time
O(nd2).
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Proof. The preprocessing for the k-DPP sampler includes (1) a binary tree construction based on X ∈ Rn×d and (2)
computing C = X⊤X ∈ Rd×d. Both can be done in O(nd2) time. Given this preprocessing, Algorithm 3 first performs
the eigendecomposition of UCU⊤, which requires O(d3) time. Then, a subset E ⊆ [d] is sampled with probability
proportional to

∏
i∈E λi where the λi’s are the eigenvalues of UCU⊤. With (Kulesza & Taskar, 2012, Algorithm 8),

this can be done in O(dk) time. Next, we need to perform tree-based sampling and query matrix updates for k iterations.
Since the tree has depth O(log n), and computing the required probability for moving down the tree takes O(d2) time, the
tree-based sampler requires O(d2 log n) time. In addition, computation of the query matrix runs in O(d2k). Therefore,
the overall runtime of Algorithm 3 (after preprocessing) is O(d3 + kd2 log n + k2d2). This improves the runtime of
O(d3 + k2d2 log n) from previous work (Gillenwater et al., 2019), which uses an alternative probability formulation for
the tree traversal in Equation (14) that needs several matrix multiplications in every tree node, resulting in O(k2d2 log n)
runtime. In our algorithm, these matrix multiplications are computed with a query matrix, outside of the tree traversal.

C.3. Proof of Theorem 4

Theorem 4. Given X ∈ Rn×d and W ∈ Rd×d, such that W +W⊤ ⪰ 0 and A ∈
(

[n]
k−2

)
for k ≥ 2, consider κA as in

Definition 3. Then, the average number of rejections of the rejecion-based up operator (Algorithm 2) is no greater than
(1 + σmax(X)2 κA)

2.

Proof. Let p be the probability distribution of the target 2-NDPP with kernel XWAX⊤, and q be that of the proposal
2-DPP with kernel XŴAX⊤. For every S ∈

(
[n]\A

2

)
, it holds that

p(S) =
det([XWAX⊤]S)∑

{a,b}∈([n]\A
2 ) det([XWAX⊤]{a,b})

≤ det([XŴAX⊤]S)∑
{a,b}∈([n]\A

2 ) det([XWAX⊤]{a,b})

=

∑
{a,b}∈([n]\A

2 ) det([XŴAX⊤]{a,b})∑
{a,b}∈([n]\A

2 ) det([XWAX⊤]{a,b})
· det([XŴAX⊤]S)∑

{a,b}∈([n]\A
2 ) det([XŴAX⊤]{a,b})

=

∑
{a,b}∈([n]\A

2 ) det([XŴAX⊤]{a,b})∑
{a,b}∈([n]\A

2 ) det([XWAX⊤]{a,b})
· q(S),

where the inequality comes from Theorem 1. This tells us that the average number of rejections is equal to∑
{a,b}∈([n]\A

2 ) det([XŴAX⊤]{a,b})∑
{a,b}∈([n]\A

2 ) det([XWAX⊤]{a,b})
. (26)

Instead of finding an upper bound on the above directly, we consider the following

max
{a,b}∈([n]\A

2 )

det([XŴAX⊤]{a,b})

det([XWAX⊤]{a,b})
,

which is greater than or equal to expression (26).

Now, for any symmetric and positive semidefinite (SPSD) matrix M , we denote by λmax(M) and λmin(M) the largest
and smallest nonzero eigenvalues of M , respectively. Let S := WA+WA⊤

2 and R := ŴA − S. From the construction of
ŴA in Equation (9), it is easy to check that both S and R are SPSD. First we claim that for any Y ⊆ [n] \A, it holds that

det([XWAX⊤]Y ) ≥ det([XSX⊤]Y ). (27)

This comes from the following. If det([XSX⊤]Y ) = 0, the result is trivial due to det([XWAX⊤]Y ) ≥ 0 for all Y .
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Assume that det([XSX⊤]Y ) ̸= 0, then

det([XWAX⊤]Y )

det([XSX⊤]Y )
=

det([XSX⊤]Y + [X(WA − S)X⊤]Y )

det([XSX⊤]Y )
(28)

= det

I|Y | + [XSX⊤]
− 1

2

Y XY,:︸ ︷︷ ︸
:=X′

(WA − S) X⊤
Y,: [XSX⊤]

− 1
2

Y

 (29)

= det
(
I|Y | +X ′ (WA − S

)
X ′⊤) (30)

=
∑

T⊆[|Y |]

det
([
X ′ (WA − S

)
X ′⊤]

T

)
(31)

≥ det(
[
X ′ (WA − S

)
X ′⊤]

∅) = 1, (32)

where the fourth line comes from (Kulesza & Taskar, 2012, Theorem 2.1), and the last line follows from the observation that
WA − S = WA−WA⊤

2 is a skew-symmetric matrix, so that every principal submatrix has a nonnegative determinant. Now
we fix some {a, b} ∈

(
[n]\A

2

)
and denote Q := X{a,b},: ∈ R2×d. Then we have

det([XŴAX⊤]{a,b})

det([XWAX⊤]{a,b})
≤ det([XŴAX⊤]{a,b}

det([XSX⊤]{a,b})
(33)

=
det(Q(S +R)Q⊤)

det(QSQ⊤)
(34)

= det
(
I2 +

(
QSQ⊤)−1/2

QRQ⊤ (QSQ⊤)−1/2
)

(35)

≤
(
1

2
· tr
(
I2 +

(
QSQ⊤)−1/2

QRQ⊤ (QSQ⊤)−1/2
))2

(36)

=

(
1 +

1

2
· tr
(
QRQ⊤ (QSQ⊤)−1

))2

(37)

≤
(
1 +

1

2
· tr
(
QRQ⊤) · λmax

((
QSQ⊤)−1

))2

(38)

≤
(
1 +

λmax

(
QRQ⊤)

λmin (QSQ⊤)

)2

, (39)

where the first line follows from Equation (27), the fourth line is due to the fact that det(M) ≤ (tr(M)/d)d for a SPSD
matrix M ∈ Rd×d (thanks to the AM-GM inequality), the fifth line comes from the cyclic property of a trace, and the sixth
line is from the fact that tr(MN) ≤ tr(M) · λmax(N) for SPSD matrices M ,N . For an arbitrary vector v ∈ R2, we
observe that

v⊤ (QRQ⊤)v ≤ λmax(R) · v⊤QQ⊤v ≤ λmax(R) · λmax(QQ⊤) · ∥v∥22 .

Since QQ⊤ = X{a,b},:X
⊤
{a,b},: = [XX⊤]{a,b} ∈ R2×2 is a principal submatrix of XX⊤, by Cauchy’s interlace

theorem, all eigenvalues of QQ⊤ interlace those of XX⊤, and thus λmax(QQ⊤) ≤ λmax(XX⊤) = σmax(X)2.
Furthermore, since the matrix R is obtained from the spectral symmetrization of WA−WA⊤

2 , their spectra are identical, i.e.,

λmax(R) = σmax(W
A−WA⊤)
2 . Therefore,

λmax

(
QRQ⊤) ≤ σmax(W

A −WA⊤)

2
· σmax(X)2. (40)
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In addition, we have8

λmin

(
QSQ⊤) = σmin

([
X
(
WA +WA⊤)X⊤]

{a,b}

)
2

≥
min

Y ∈([n]\A
2 ) σmin([X(WA +WA⊤)X⊤]Y )

2
. (41)

Putting Equations (40) and (41) into Equation (39) gives

det([XŴAX⊤]{a,b})

det([XWAX⊤]{a,b})
≤
(
1 + σmax(X)2 · κA

)2
, (42)

where, in Definition 3, κA is defined as

κA :=
σmax(W

A −WA⊤
)

min
Y ∈([n]\A

2 ) σmin([X(WA +WA⊤)X⊤]Y )
.

This completes the proof of Theorem 4.

C.4. Proof of Proposition 5

Proposition 5. Given X ∈ Rn×d and W ∈ Rd×d, such that W+W⊤ ⪰ 0 and k ≥ 2, consider κ as defined in Definition 3.
With a preprocessing step that runs in time O(nd2), Algorithm 1 runs in time O(titer (1 + σmax(X)2 κ)2 (d2 log n+ d3))
in expectation.

Proof. We remind the reader that our MCMC sampler (Algorithm 1) repeatedly runs tree-based rejection sampling for titer
iterations. From Theorem 4, each iteration requires 2-DPP sampling for at most (1 + σmax(X)2κ)2 times on average. From
Theorem 2, sampling from the 2-DPP can be done in time O(d2 log n + d3). Combining all of these runtimes gives the
result.

8One can similarly show that λmin

(
QSQ⊤) ≥ λmin (S) · λmin

(
QQ⊤). However, the matrix S can be rank-deficient, because

WA is computed by projecting W onto some subspace with dimension d− |A|. Thus, this approach gives us a trivial lower bound of
zero.


