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Abstract

The Fokker-Planck equation (FPE) is the partial differential equation that governs the density evo-
lution of the Itd process and is of great importance to the literature of statistical physics and machine
learning. The FPE can be regarded as a continuity equation where the change of the density is com-
pletely determined by a time varying velocity field. Importantly, this velocity field also depends
on the current density function. As a result, the ground-truth velocity field can be shown to be the
solution of a fixed-point equation, a property that we call self-consistency. In this paper, we exploit
this concept to design a potential function of the hypothesis velocity fields, and prove that, if such
a function diminishes to zero during the training procedure, the trajectory of the densities gener-
ated by the hypothesis velocity fields converges to the solution of the FPE in the Wasserstein-2
sense. The proposed potential function is amenable to neural-network based parameterization as
the stochastic gradient with respect to the parameter can be efficiently computed. Once a parame-
terized model, such as Neural Ordinary Differential Equation is trained, we can generate the entire
trajectory to the FPE.

Keywords: Fokker Planck equation

1. Introduction

%a(t, ) + div (a(t, 2)(—VV(t,z) — Vg aft, x))) — 0,

underlying velocity field f* (¢,x)

subject to the initial condition

a(0,2) = ap(x).
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We consider the Fokker-Planck equation (FPE) that corresponds to the Itd process with a constant
diffusion coefficient, which can be written as
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Here, a : [0, T]x X — Ris atime varying density function definedon & C R4, V : [0, T]xX — R
is a known potential function that determines the drifting term; div and V denote the divergence
and gradient operator with respect to the spatial variable x respectively. The boundary condition
that we impose will be introduced in section 2.

FPE is a fundamental problem in the literature of statistical physics due to its wide applications
in thermodynamic system analysis (Markowich and Villani, 2000; Lucia and Gervino, 2015; Qi and
Majda, 2016) and is one of the key equations in the research of the mean field game (Cardaliaguet
and Porretta, 2020; Gomes et al., 2014). Recently, it has also been used to model the dynamics
of the stochastic gradient descent method on neural networks (Chizat and Bach, 2018; Sonoda
and Murata, 2019; Sirignano and Spiliopoulos, 2020; Fang et al., 2021) and the dynamics of the
Rényi differential privacy (Chourasia et al., 2021), and has become a fundamental tool for learning
complex distributions and deep generative models due to its deep connection to the Wasserstein
gradient flow (Sohl-Dickstein et al., 2015; Hashimoto et al., 2016; Liu et al., 2019; Song et al., 2020;
Solin et al., 2021; Mokrov et al., 2021). There is a plethora of previous works trying to solve FPE
numerically, including the classic mesh-based finite difference and finite volume methods (Carrillo
et al., 2015; Bailo et al., 2018), the stochastic particle methods that are based on the discretization
of the Ito SDE (Dalalyan, 2017; Li et al., 2019, 2021), the deterministic particle methods that utilize
the Gaussian mollifier to approximate the dynamic (Degond and Mustieles, 1990), the variational
methods that are built on the Wasserstein gradient flow interpretation of the FPE (Bernton, 2018;
Liu et al., 2020; Carrillo et al., 2021; Ambrosio et al., 2005; Jordan et al., 1998), and most recently
the physics-informed neural network approach that directly parameterize the solution to the FPE
and cast the FPE as a root finding problem (Han et al., 2018; Long et al., 2018, 2019; Raissi et al.,
2019; Blechschmidt and Ernst, 2021). We note that in all previous approaches, the entity under
consideration, i.e. the function to be approximated or learned, is explicitly the solution to the PDE
(1), which is a time-varying probability density function.

In this work, we take a different route: Instead of approximating the solution to the FPE, we
propose to learn the underlying velocity field that drives the evolution of the FPE. The solution to the
FPE can then be implicitly recovered by the learned velocity field. Our work is built on a concept
called the self-consistency of the Fokker-Planck equation: A velocity field that correctly recovers
the solution to the FPE should be a fixed point to a velocity-consistency transformation (defined in
Eq. (14)) derived from the FPE. The main contribution of our work is summarized as follows.

We establish the theoretical foundation of learning the underlying velocity field of the
FPE. Specifically, we design a potential function R for the hypothesis velocity fields
{fn} that describes the self-consistency of the Fokker-Planck equation and show that
if R(fn,) — 0asn — oo, the trajectory of distributions generated by fo, recovers the
solution to the FPE in the Wasserstein-2 sense.

Moreover, when the hypothesis velocity field is parameterized as a Neural Ordinary Differential
Equation fy (Chen et al., 2018), we discuss how the stochastic gradient of the proposed potential
function R(fy) with respect to the parameter 6 of the neural network can be efficiently computed.
Therefore, once fy is trained via stochastic optimization methods, our approach returns an approxi-
mate solution to the FPE, which is non-negative and has unit mass, i.e. it integrates to 1 on X'. These
fundamental properties are crucial in real-world physics models and are not guaranteed in previous
neural network based approaches.
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2. Preliminaries

Boundary Condition We assume that the process takes place on a d-dimensional box centered

around the origin, i.e. X = [—%, £]?. We consider the periodic boundary condition:

272

(i b)) = o) "

2 (1) = Za (b ). “

The above condition is the same as identifying the points on the corresponding boundaries which
happens when the spatial domain is a forus. Note that on a torus, the particle that leaves the torus on
the boundary will reenter the domain X" through the boundary such that [ /2 (resp., —1/2) is replaced
by —1/2 (resp., [ /2) in the same coordinate.

The periodic boundary condition (torus) is commonly used in the PDE analysis (e.g. see (Jabin
and Wang, 2016)) with an important technical merit that the integration of a periodic function on
the boundary is naturally zero and hence the analysis using integration by parts can be simplified.
Moreover, it also allows us to focus on the behavior of the PDE system on compact domains without
sacrificing the generality, since we can always set the diameter of the torus to be sufficiently large.
We emphasize that to the ML community, this is usually the case of interest: Only in a bounded
domain can we expect a neural ODE to be able to represent the underlying velocity field of the FPE,
since the neural network is not a universal function approximator on unbounded domains.

In the following, we refer to periodic functions with a period of [ as [-periodic.

Velocity Field and the Induced Push-forward Map A velocity field is map f : [0, 7] x X — R?
that determines the movement of a particle x(t):

d
Calt) = 1(t,2(0) ©
A velocity field f(¢,x) induces a push-forward map X (¢, z; f) via integrating over time
t
X(tyaui f) =0+ [ f(s,2.)ds, ©)
0

where {xs}!_ is the trajectory of a particle following the velocity field f(¢,z) with the initial
position x(. Note that the map X (¢, z; f) is invertible under the assumption that f (¢, x) is Lipschitz
continuous in z for all £. Additionally X (¢, x; f) — x is [-periodic if we further assume that f is
[-periodic: Forany i € {1,...,d}

t t
X(t,xo+lej; f) — (xo +le;) = / f(s,xs +le;)ds = / f(s,zs)ds = X (t,x0; f) — xo. (7)
0 0

When the velocity f is clear from the context, we omit the dependence of X on f and write X (¢, ),
for simplicity.
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Neural Ordinary Differential Equation The neural ordinary differential equation (NODE) is a
favorable instance of the hypothesis class since neural networks are universal function approxima-
tors in a bounded domain and have achieved great recent success in machine learning (Chen et al.,
2018; Dupont et al., 2019; Choromanski et al., 2020). Let f : R x R x © — R? be a neural
network parameterized by § € ©. A d-dimensional NODE in can be described as

Salt) = folt,2(6). ®

To accommodate the periodic boundary conditions (3) qnd (4), we need the NODE to be [-
periodic. Consider a 2d-dimensional NODE with velocity f. We can construct a d-dimensional
NODE with the following hypothesis velocity field

folt,2(0)) = fo (t, (Sm ?5”((2)) . ©

cos T”:U

Here sin and cos are applied in an element-wise manner.

Notations Consider the d-dimensional index vector a = (a1, ...,aq) with a; € N and |ja|; = k
and a map f : R? — R%. Denote
ok ok
f(a) = |: al fl agy " al fd ad:| ; (10)
ozr{"...0x, oz{"...0x,

where f; denotes the ith entry of f. We define the kth order Sobolev norm of a map f : X — R?
with a base measure p € M1 (X) by

1
2

k
fagy = @ (2)12u(2)d . 11
1l (Z; /X 1£O @) 2uz) a:) (11

Here f(*) = {f (a)}a:”aHl:k denotes the collection of all kth order partial derivatives of the map f
and is regarded as a d"**!-dimensional vector. We use || - || to denote the spectral norm for matrices
and tensors and the standard ¢>-norm for vectors.

We use {e;} to denote the standard basis of R? and use A to denote the Laplacian operator on the
spatial variable. We use V,i > 2 to denote higher order gradient.

3. Methodology

Recall that on a torus, when a particle leaves the domain on a boundary, it reappears on the other side
(see Figure 1-(a)). Therefore, the velocity field of the particles are discontinuous on the boundaries,
which introduces difficulties in function approximation. To avoid this issue, a useful and equivalent
perspective of the periodic boundary condition is to think of the density function «a(t,-) as a -
periodic function in every coordinate, i.e.

Vi, z,  a(t,z+le;) = a(t,z),i € [d], (12)

which is depicted in (b) of Figure 1. While particles are allowed to leave X, the domain of interest,
due to the periodicity of the whole domain R, the total mass within X’ is conserved since the influx
and the outflow are balanced.
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Figure 1: Figure (a) depicts that when a particle leaves the torus on a boundary, it reappears on
the other side. The velocity field is discontinuous on the boundary. In Figure (b), we
consider the periodic extension of the density function «(¢, ). This is equivalent to the
torus since whenever a particle leaves the boundary, another particle will enter X from a
corresponding adjoining cell. Note that in Figure (b) the velocity field is continuous on
the whole domain.

3.1. Self-consistency of the Fokker-Planck Equation

Suppose that the particles are distributed initially according to the distribution ag defined in (2) and
follow a hypothesis velocity field f(¢,2). From this perspective, we can write the distribution of
particles on X at time ¢ in a push-forward manner

Pt 5 f) = X(t, 5 o, (13)

where the push-forward map X, induced by the velocity f, is defined in (6). Note that p' is well-
defined on the whole domain R?, but we restrict our interest to X’. Based on this notation, the
Fokker-Planck equation (1) induces a velocity-consistency transformation A of the velocity field in
the following manner:

Alf)(t,x) = =VV(t,x) — Vlog p' (¢, ; ). (14)

Observe that, for the ground-truth velocity field f* that drives the particle evolution of the Fokker-
Planck equation, i.e. f*(t,z) = —VV(t,z) — Vlog a(t, x), we have
AlfT =1

We term this property the self-consistency of the Fokker-Planck equation. Similar to Eq. (13), we
can define p?(t, -; f) = X(t,-; A[f])fico,. Indeed, the interplay between the two systems p' and p?
is crucial to our analysis.

The goal of our paper is to show that if a sequence of hypothesis velocity fields { f,,} asymp-
totically satisfies the above consistency property, i.e. ||A[f.] — full — 0 as n — oo for some

appropriate norm || - ||, then the distribution p'(t, z; fo,) generated from the hypothesis velocity
field f recovers a(t, x), the solution to the FPE (1) in the Wasserstein-2 sense.

3.2. Designing the Self-Consistency Potential Function and its Computation

Given a hypothesis velocity field f, we denote the difference between f and A[f] by
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We propose to use the time average of the 2nd order Sobolev norm of ¢ with the base measure
p'(t,-; f) as the potential function of f:

T 2 T
RO = [ ] 52100 1) s ot = [ 18005 Dl
=0

In Section 4, we show that R( ) controls the Wasserstein-2 distance between p' (¢, -) and a(t, -), i.e.
for any time ¢t € [0, 7], W2(p!(t,-), a(t,-)) = O(R(f)). This result has two direct implications: (i)
Given a hypothesis velocity field f, we can use R(f) to measure its quality in terms of recovering
the solution to the FPE; (ii) Given a class of parameterized hypothesis velocity fields fy, one can find
the best parameter # by minimizing R(fp) with a learning procedure, which is discussed in details
at the end of this section. By “learning”, we mean to distinguish our approach from the previous
numerical FPE solvers, e.g. the JKO method, which are in essence “simulating” the FPE dynamics:
They iteratively update the configuration of the system using certain rules derived from the FPE. In
contrast, the proposed potential function describes the self-inconsistency of a hypothesis velocity
field, which can be refined through a training procedure.

The potential function R( f) might seem difficult to compute at first. In the following, we present
an equivalent formulation of R(f) from the perspective of particle trajectory, which is critical to
our analysis and to the actually computation of R(f). We first introduce the following important
change-of-variables formula of integrating periodic functions on X. Recall that the standard change-
of-variables formula reads as follows: for a function ¢ : R — R

/ngﬁa:/ g o Xda. (16)
X X-1(x)

In brief, we show that for an [-periodic functions g the integration domain X ~*(X’) on the RHS of
the above equation can be replaced by X'. The proof is deferred to Appendix A.

Lemma 1 Consider an invertible mapping X : R* — R? such that X (x) — x is l-periodic, an
I-periodic function g : R* — R, and an l-periodic measure o. The following formula holds:

/ngjjoz:/gona, a7
X X

where X is the centered d-dimensional box defined above.

Note that the push-forward map X defined in (6) is invertible and X (¢, x; f) — x is [-periodic (see
(7)), the integrand in R(f) is [-periodic, and from (12) the measure «y is also [-periodic. Using the
above lemma, we have

T 2 '
R(f)=/0 /XZ!6(”(@~;f>H2dX(t,~;f)ﬁaodt (18)
, 7,;0 |
= [ [ 100w p: plPdag(e)an (19)
0 JXi—p

If we further define the trajectory-wise loss

T 2 '
R(f;z0) = /0 D U89 (1 X (&, 205 £); f) |1 Pdt, (20)
=0
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the potential function R(f) admits an equivalent formulation

R(f):/XR(f;a:o)ozo(xo)d:zo. 21)

Therefore, we have that R(f; () is an unbiased estimator of the objective R(f). In the following,
we elaborate on how R(f;xo) can be computed.

Computation of the trajectory-wise loss R(f;z9) We now discuss how the function R(f;x¢)
can be computed. We assume that we have the exact expression of f and V/, and hence we can
readily evaluate f(*) for i € {0,1,2} and V® fori € {1,2,3} (recall the notation of differentials
in (10)). Use z(t) = X (¢, x0; f) to denote the trajectory of a particle with the initial position x¢
and following the velocity field f. In the following, we address how Vlog p!(t, z(t); f ) fori €
{1, 2,3} can be computed since these are the only unknown terms when evaluating A[f]® (¢, z(t))
for i € {0,1,2}. The proofs of the following propositions are deferred to the appendix. We first
compute the first order gradient of the log-probability.

Proposition 2 Denote fi(z) = f(t,x) and p; = p*(t,x; f) where we recall that p* (t, z; f) is the
density function formally defined in equation (13). We have

d .
gV log i ( H(x(1)) = =Vdiv (fi(x(t) = (Vfi(x(1)) " Viog p ((1)),
The second order partial derivatives of the log-probability is computed as follows.

Proposition 3 Denote f;(x) = f(t,x) and p; = p'(t,x; f) where we recall that p*(t,x; f) is
formally defined in equation (13). The time evolution of the 2nd order gradient of the log probability
function can be computed by

d o? ok 0 0

1 D0z, 8 pi(a(t) = — 5 By, Vi) = 5 Vlog pL((t)) - 5 ()
2
" om ft( (t)) - aileogptl(x(t)) - 8;?8% fi(z(t)) - Vlog p; (x(t)).

The third order partial derivatives of the log-probability is computed as follows.

Proposition 4 Denote f;(x) = f(t,x) and p; = p'(t,x; f) where we recall that p*(t,x; f) is
formally defined in equation (13). The time evolution of the 3rd order gradient of the log probability
function can be computed by

d 0 1 0 . 0?
@mlog pi (z(t)) = —mdwﬁ(x(t)) -

V log p} (z(t)) - 7ft( ()

81‘1'(9333‘ Oxy,
2
— Vo g a(1) - 0 fe(1)) — e 0) - 031 i((0)
2
~ g V1ot 0(0) - 0f(a(0) = 5V lom p(a(8) - D la(0)

3
- fmwogpw(f)) 0i3 fi(2(t)) — Vlog pl(a(1)) - Mimm(t».
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The above propositions show that the evolution of the ith order differential of log p; only depends
differentials with order no more than i. This means that the differentials of log p} can be exactly
computed using only local information, even though they depend on the macroscopic distribution.
Note that this is only possible along {z ()}, the trajectory of the particle under consideration.

Parameterizing the Hypothesis Velocity Field with NODE In the following, we take the NODE
as a specific parameterized instance of the hypothesis velocity field fp. Recall that R( fy; zo) is an
unbiased estimator of R(fy). A key step in the optimization of a neural network is to compute the
stochastic gradient Vg R( fy; xo), which is elaborated as follows.

Suppose that the initial point x is fixed. To compute Vg R( fy; ), the gradient of the trajectory-
wise loss with respect to the parameter 6, we write R( fy; xo) in a standard ODE-constrained form:

T
R(fuia) = 60) 2 [ g(t.s(0),0) @2)
0
where {s(t)}4c[0,77 is the solution to the ODE
(1) = (1, 5(1);) o)
s(0) = so(o)-
Recall the definition of the differentials f(*) in (10). Here, the time-varying state s(t) is
S(t) = [l’(t), Cl (t)a CQ (t)v <3 (t)]v (24)
where ¢;(t) = (log p) D (¢, 2(t); fo) for i € {0,1,2}; s¢ is a function of g
s0(2o) = [wo, (log a0)™M (o), (log a9) P (o), (log a9) ) (0)); (25)

Here, 1) is the velocity field that drives the evolution of the state s such that the first component of
s is updated according to the ODEs in equation (8) and the last three components of s are updated
according to propositions 2 to 4 respectively; and the function g is define as

ZHf@ (t,2(1)) + VDt () + G,

so that we recover the difference functlon 0 defined in (15) Note that by introducing the auxiliary
states (;, the function g depends on 6§ only through fa (t,z(t)). With the above standard ODE-
constrained form of R(fp; o), we can compute V/(#) in equation (22) using the classic adjoint
method, which is provided in Appendix E.

Recovering an Approximate Solution to the FPE  Given a hypothesis velocity field f, we return
p(t,+; f) as an approximate solution to the FPE. To evaluate p(t, z; f) forany @ € X, let 2(s) (o 4
be the trajectory of the final value problem
da(s)
ds
We can compute that 4 g logp (t xz(t); f) =
Using the FPE (1), we derlve - log pt(t, z)
we have & log pt(t, z(t); f) = —dlvf(t x(t

z(s)), z(t) = z. (26)

f(s,

Silogp!(t,x(t); f) + f(t,2(t)) - Viog p'(t, x(t); f)-
= —divf(t,z) — Viog p(t,z; f) - f(t, ), and hence
)). Therefore, we can compute log p! (¢, x; f) by

t
log p (¢, 2 f) = log an((0)) — /O divf(t, o(s))ds. @7)

8
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4. Analysis

In this section, we prove that the potential function R( f) inspired by the self-consistency of the FPE
controls the Wasserstein-2 distance between p!(¢, ; f) and «(t, -) for all t € [0, T]. We achieve this
by introducing an auxiliary distribution p? induced by A[f] to bridge the hypothesis distribution
pt(t,-; f) induced by the velocity field and the solution to the FPE (¢, -). This allows us to con-
trol the Wasserstein-2 distance between p'(t,-; f) and p?(t, -; f) and the KL-divergence between
p%(t,-; f) and «(t, -) separately. We first present the assumptions required for our analysis.

Assumption 1 (Regularity of the initial distribution) For any x € X, the Hessian of the log
probability of the initial distribution p = o is bounded, i.e.

max{[|Vlog ag(2)], [ V2 log ag(«)||, [[V* log ao ()], | V2 Alog ||} < Lo. (28)

Assumption 2 (Regularity of the hypothesis velocity field) The hypothesis velocity field f is [-
periodic for any time t and parameter 6. Moreover, given a fixed time horizon T > 0 of the
evolution, for any space-time variables © € X and t € |0,T| and any neural network parameters
0 € ©, the hypothesis velocity field f in NODE satisfies that for all v € X

¢ idi < L. 2
max{|| ieff3,§,4}v ft(m)\l,ie{r{}%“ |V'div fi(z)||} < Ly (29)

Assumption 3 (Regularity of the drifting term) For allt, the potential function V' (t, -) is l-periodic
and for all x € X max{||V2V (¢, )|, ||V3V (t,2)|, |[VZAV (2)|} < L,.

‘We state our main result as follows.

Theorem 5 (main result) Suppose that the assumptions 1 to 3 hold. We have for all t € [0,T]
W3(p'(t, 1 f),alt, ) < dlec- R(f), (30)

where [ is length of the box X, d is the dimension of the ambient space, and c is a constant that
depends on the regularity constants Lo, Ly, L, and the maximum evolving time T'.

The following corollary states that if we can optimize over the hypothesis velocity field f such that
R(f) diminishes to zero, we can recover the solution to the FPE in the Wasserstein-2 sense.

Corollary 6 Suppose that assumptions 1 to 3 hold and assume a sequence of hypothesis velocity
fields f, satisfies R(f,) — 0 asn — 0o. We have W2(p!(t,-; f), a(t,)) — 0 as n — oc.

Remark 7 Assume that the class of hypothesis velocity fields is the NODE fy (see (8)). Also,
assume that the underlying velocity field * is sufficiently regular such that it can be represented by
fox for some optimal parameter 0*. Then, we can optimize over the parameter 0 and recover the
solution to the FPE if R( fy) diminishes to zero during the training phase.

We now present the proof of Theorem 5 which is built on the interplay between two systems: The
first is described by the hypothesis velocity field f:

System (1): dz(f) = f(t,z(t)); 31)

9
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Table 1: Summary of the notations for systems (1) and (2). Note that Y (¢, -; f) = X (¢, -; A[f])-

velocity field | particle map | particle trajectory density
SyStem(l) f(t,l’) X(t7';f) {i’(t)} pl(ty';f) :X(t»'§f)ﬁa0
SyStem (2) A[f] (t7 x) Y(tv E f) {y(t>} ,02(t, E f) = Y(tv E f)ﬁao

and the second is driven by A[f] which is defined in (14):

System (2): dgé(f) = A[f](t y(t)). (32)

Similar to the push-forward map X (¢, -; f) defined in (6), A[f] also induces a map X (¢, -; A[f]). To
better distinguish these two systems, we denote Y (¢, z; f) = X (¢, z; A[f]) and define p?(t,-; f) =
Y (¢, -; f)fayp for system (2). These notations are summarized in Table 1.

The following lemma establishes some regularity results of the involved velocity fields.

Lemma 8 Recall Systems (1) and (2) in Table 1. For simplicity of notations, denote their prob-
ability density functions by p} and p? respectively. Additionally, we denote fi(x) = f(t,x) and
A[fle(x) = A[f](t, x). We have that for all t € [0, T]

1. Both p} and p? are l-periodic.
2. Vlog p} is bounded and Lipschitz continuous.

3. Both VA[f]: and VdivA|[f]; are bounded and Lipschitz continuous.

The following lemma shows that R(f) controls the Wasserstein-2 distance between p'(t,-) and
p%(t,-) for all t € [0, T). The full proof is provided in Appendix F.1.

Lemma 9 Recall Systems (1) and (2) in Table 1. Denote their probability density functions by p;
and p? respectively. Under Assumptions 1 to 3, there exists a constant Cy such that

sup W3 (pt,pi) < CLR(f),
te[0,7

where C depends on the maximum evolving time T and Lo, Ly, L, defined in assumptions I to 3.

Proof [A sketch of the proof.] We first note that P(t,-; f) = Y (t,-; f) o X(t,-; f)~! is a trans-
port map such that p?(t,-; f) = P(t,-; f)ip'(t,-; f). Consequently, from the definition of the
Wasserstein-2 distance, we have

W2(ob.p?) < /X Iz — Pt,z: )|2dp! (t,z: f) = /X IX(t,25 f) — Y(t,z: f)[Pdao(z)

_ / 12(£) — y(1)]|2deo(z0),
X

where we used the change-of-variables formula of the push-forward measure from Lemma 1 in the
first equality and {z(t) }4cjo,7) and {y()}sc(o,7) are the trajectory of particles initialized from z
but driven by Systems (1) and (2) respectively. We then study the dynamic of % |lz(t) — y(t)||* and
prove the lemma using the Gronwall’s inequality. |

We then show that R(f) controls the distance between score functions of systems (1) and (2).
The full proof is provided in Appendix F.2.

10
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Lemma 10 Recall Systems (1) and (2) in Table 1. For simplicity of notations, denote their proba-
bility density functions by p} and p? respectively. Denote the weighted Ly norm by

A
& = |Viog pi — Vlog pf % (33)

Suppose assumptions 1 to 3 hold. There exists some constant Co such that for any t € [0,T],

t
/0 £,ds < CyR(S), (34)

where Co depends on the maximum evolving time T and Lo, Ly, L, defined in assumptions I to 3.
Proof [A sketch of the proof.] With the change-of-variables lemma, we can expand
& =|Vlogp; oY, — Vlog p o Yi[2,

< ||Vlog p; (y(t)) — Vlog pi (x(t)) |2, + IV og pi (x(t)) — Vog p7 (y(t))|2,

The first term can be control by the Lipschitz continuity of V log p}. We study the dynamic of the
second term using Proposition 2 and use the Gronwall’s inequality to establish the lemma. |

Built on the above two lemmas, the following lemma states the most novel part of our analysis
which shows that the KL-divergence between p?(t, -) generated by system (2) and the solution to
the FPE «(t, -) is controlled by R(f).

Lemma 11 Recall Systems (1) and (2) in Table 1. For simplicity of notations, denote their probabil-
ity density functions by p} and p? respectively and use o to denote the solution to the Fokker-Planck
equation (1). Suppose assumptions 1 to 3 hold. For any t € [0,T], we have

C
KL(pf. o) < " R()). (35)
where Cy is the constant defined in Lemma 10.
Proof We study the evolution of the KL divergence between p? and «v;. Recall that for p?, we have

5 = Api + div (piVV;) + div(p}V log p—;), (36)
Pt
and for o; we have
0
% = Aay + div (s VV}). (37)
We can compute
dKL(p}, o) it ;5 310g at 4 i} pi day
SBAPE ) log Pt YPt log Pt — Pt 27t
dt v ot o8 +8t Pt / ar Ot 0
where in the second equality, we use [, < i Frda = 4 d’;t pdr _ % = 0. Plug (36) and (37) in the
above equation to derive
dKI( 2
pt’at / Ap? log —|—d1v (,0 VVt) log + div(p Vlog )log Pt 4g
Pt Qg
[ Pipg, +5 ot o div (Vi) da (38)

x Ot

11
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Combine the first and fourth terms of the above equation. Using integration by part, we have that

2 2
/ Ap? log — — —Aatdx = / —Vp?- Vlog p—t + Vg—t -Vaydz
t
2. 2
= / th? -Vlo g vt + Voot = prvo -Vaude
(c)?
= —[IVlogpj — Vlogoztllﬁg, (39)

where we note that the integration on the boundary 0X is 0 due to the periodic boundary conditions
(3) and (4). Combine the second and the last terms of (38). Use integration by part to compute

2
/ div (p}VV;) log - PE P i (0, VA) da
X Qg

p 2. 9
- / — (PPVV) - v1og —t Voio: b VO (V) dz = 0
X (o)

We hence have (using integration by part for the third term of (38))

dKL(p?, o
WZ—IIVIOgP?—WogatIIig —/pfwogp Vlog d:n
X

Pt

Using 2(a — b)(a — ¢) = ||a — b||?> + |la — ¢||* — ||b — ¢||?, we have

—/p?Vlogpt Vlog dx
X Pt Qy

1
=5 (HVIog pi — Viogpy 2 + [|Vlog pi — Vlogay||2e — [|[Vlog pi — Vlog atllig)

1
152 + 5[V log pif = Vlog ay |-

1
<35IV log p{ — V log p}
Consequently, we obtain

AKL(p?.0)) _ 1

G < lIVios s} — Vieg i, -

1 2 2
= 5[V log pi — Vlog cu| .
Omitting the negative term and integrating from O to ¢ and using Lemma 10, we have our result. W

We now present the proof of Theorem 5.
Proof [Proof of Theorem 5] Using Theorem 6.15 of (Villani, 2009), we have for any ¢

W22(p2(t7 ')a a(ta )) < 2ldTV2(p2(t, ')a a(ta )) < ldKL(pz(t, ')7 a(t7 ))7 (40)

where we use the Pinsker’s inequality in the second inequality. Using the triangle inequality of the
Wasserstein-2 distance, Theorem 5 is a direct consequence of Lemma 9 and Lemma 11. |

12
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Figure 2: Learning the FPE with a Gaussian initial distribution oy and a quadratic drifting term V.

5. Experiment

Setup. In this section, we showcase the effecacy of our approach for numerically solving the
FPE with the example where the initial distribution is Gaussian, i.e. ay = N (10, 20), and the
drifting term is a quadratic function, i.e. V(z) = (2 — pioo) " Bt (T — 0o ). We use this example
since we know the analytical solution of the FPE «(¢, x) in this specific instance and hence we can
explicitly calculate the difference between the learned hypothesis velocity field fy and the ground
truth. Specifically, we know that for any time ¢ > 0, the solution a(t,-) = N(u, [}/ Ty) is a
Gaussian distribution where p; and I'; evolve in the following manner

d _ dr _ 1T

% = 5 (oo — 1), d—tt = Y J0, 4+ T = Vo, (41)
if we take the the domain X = R? (see for example Eq. (36) and Eq. (37) in Liu et al. (2020)). In our
experiment, we take pg = (—4, —4), ¥o = diag(0.7,1.3), and poo = (4,4), Lo = diag(1.1,0.9).

Performance Metrics. We grid the box [—10, 10]? with a uniform increment of 0.1 over both
coordinates. This gives us 2012 = 40401 grid points altogether and we use 3 to denote the uniform
distribution over these points. We then grid the time interval [0, 3] with a uniform increment of
0.3. This gives us 11 distinct time stamps and we use ~ to denote the uniform distribution over
these time stamps. Define the score estimation error of a hypothesis velocity field f to be 5(f) =
[Nf¢t,z) + Viega(t,z) + VV(x)||*dB(z)dy(t), where we note that (—VV — Vloga) is the
ground truth velocity field. Additionally, define the density estimation error of a hypothesis density
trajectory p as {q(p) = [|a(t,z) — p(t,z)|dB(x)dy(t). We use the these two quantities in our
experiment to measure the quality of the recovered solutions from NWGF (our approach) and we
include a successful NN-based PDE solver P INN (Raissi et al., 2019) as the baseline. Note that the
implementation of the continuous time P INN model requires a collection of spatial points {x;} for
defining the objective loss, which are set to the grid points mentioned above.

Details. To avoid negative density values in P INN, instead of directly approximating «/(¢, z), we
use a neural network gy (¢, x) to approximate the ground-truth log-density trajectory log v in P INN.
For a fair comparison, the network structures of fy (the hypothesis velocity field used in our ap-
proach) and gy are identical except the last layer since gy outputs a scalar (log-density) while fy out-
puts a 2d-vector (velocity). We use £5(—VV —V,gg) to measure the quality of gy as (—VV —Vgp)
is the hypothesis velocity field that corresponds to gg. We use the strategy discussed in Eq. (27) to
reover the density from our hypothesis velocity field fj.

13
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Results. We report the results of our experiment in Figure 2 and we use NWGF (short for Neural
Wasserstein Gradient Flow) to denote our approach. In plot (i), we observe that stochastic gradient
descent is able to reduce the objective values of both NWGF and P INN substantially over 2500 steps.
However, in plots (ii) and (iii), we observe that our method correctly learns the underlying velocity
field and the density trajectories, but these two metrics of P INN barely improve after a long training
procedure. This shows the advantage of our approach.

6. Conclusion

In this work, instead of directly approximating the solution to the FPE, we proposed a learning
paradigm that recovers the entire velocity field, thus understanding better the evolution of the sys-
tem. By introducing a velocity-consistency transformation A induced by the FPE, we identified a
fundamental property of the system called the self-consistency of the FPE. In words, it states that
the underlying velocity field of the FPE must be a fixed point of .A. Based on this novel observation,
we designed a potential function R(f) for any hypothesis velocity field f and proved that R(f) con-
trols the Wasserstein-2 distance between the trajectory of distributions generated by f and the exact
solution to the FPE. When the hypothesis velocity field is parameterized by a time-varying neural
network, we showed that the stochastic gradient of the proposed potential function with respect to
the parameter of the neural network can be computed using the adjoint method.
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Appendix A. Proof of Lemma 1

Proof From the change-of-variables formula of the pushforward measure, we have

/ gdXfa = / go Xda. (42)
X X-1(X)

Let IT : R? — X be that modulus operator such that given any input z € RY, TI(z) is the unique
element in X" such that

d
x=1II(z)+ Z nil - e;, (43)
i=1
for some n; € Z,7 = 1,...,d. In the following, we show that (1) X _I(X ) does not overlap with

itself under the operator II, i.e. there do not exist two points 1,79 € X 1 (X) with 21 # x5 such
that TI(x1) = I(z2) and (2) II(X (X)) = X. Suppose that these two statements hold, we have

/ gona@/ gona@/gona. (44)
X-1(x) (X —1(X)) X
To prove (1), suppose that there exist 1,79 € X 1(X) with 71 # x5 such that II(z1) = TI(x3).
There must exist m; € Z, i € {1,...,d} such that x;1 = 2o + (--- ,m; x [,---) and that m;’s
cannot be all zeros. Since X (z) — « is [-periodic, we have

X(l’l) — T :X<1'2) —x9 = X(z1) = X(22) + ( ym X L), (45)

Since at least one of the m;’s are non-zero, it is impossible that X (z1) and X (z2) belong to X’
simultaneously, which leads to a contradiction.

To prove (2), we first observe that TI(X ~1(X')) C X holds trivially due to the definition of II, and
hence we just need to show that X C TI(X ~1(X)). We prove via contradiction. Suppose that there
exists y € X such that y ¢ II(X ~(X)). From the definition of the operator II, we can write

X(y) =T(X(Y) + (- ymi x1,--), (46)
for some m; € Z,i € {1,...,d}. Since X ~! is periodic, we have that

_ 46) < _ _
y— (o mix ) = XX ()~ (o mix--0) E XU INX () € XX, @)

However, the above statement means y € I1(X ~!(X')) which contradicts to the definition of y. W
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Appendix B. Proof of Proposition 2

Proof First, compute that

d 1 0 1 dz(t) 0
EVIngt(x(t))—aVIngt(w(t)H & 9s
(z

= V2 1og pl(a(0) + fia(6) Y log p} (1),

Using the Fokker Planck equation (1), we derive

V log p; (x(t))

0 .
57 logpt = —divfy = Vlogpy - fi, (48)
which together with

V(Viogp; - fi) = V21og pt fi + (Vf1) " Vlog pf

allows us to compute

%V log py (x(1)) = =Vdiv fy(x(1)) — (Vfula(t))) " Viog p; (x(1)).

In the above computation, we use the fact that the term V2 log pf (x(t)) f;(z(t)) is canceled. [

Appendix C. Proof of Proposition 3

Proof For compactness, we use 0; ; to denote #;xj. First, compute that
d 0 0 dz(t)
3700 log pio(a(t) = ¢ 0 log pi (a(t)) + 5y 01 108 pi (x(t)) - 1

= 01y 0w (1)) + - s log (1)) - (1)

Using the Fokker Planck equation (1), we derive

0 .
571081 = —divfy = Viogpy - i, (49)
which together with

9;,;(Vlogpt - f1) = 9;;Vlog p} - fr + 8;V1og p; - 0;
+0,f, - 03V log pp + B i fr - Vog py

allows us to compute

0110w o (1)) = s gdiv [ a(1)) — D0V log pa(1) - ol (1)
0@ (t)) - 0,V log py(a(t)) — Dy filw(t)) - Vlog py(w(2)).

In the above computation, we use the fact that the term 8%&4 log pi (x(t)) - fe(z(t)) is canceled. B
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Appendix D. Proof of Proposition 4

93 .
Proof For compactness, we use 0; ;i to denote 9210, 0y First, compute that

d 0 0 dx(t
g ian1og pro((t)) = =0 jxlog pl (¢, (1); 0) + 5-0i jxlog p' (¢, (1); 0) - d(t )
0 0
=0ijk n log p*(t, z(t); 0) + 875581"]"]“ log p'(t, 2(t); 0) - fi(x(t)).
Using the Fokker Planck equation (1), we derive
0 .
9t log py = —div f; — Vlog p; - fi, (50)

which together with

0:k(Vog pi - f1) = 03 ;kV log py - fr + 05,V log pi - Ok fo
9,V 1og p - 0; fy + 8;V log p; - ;1 fr
9;kVlog pi - 0ifs + 0;V log pt - Oinfi
OxVlogpt - 0;jfi +Vlogpt -0 jxfi

allows us to compute
%&,M log py ((x(t))) = — 9y jkdiv fo((t)) — 9,V log py ((1)) - O fe((t))
— 0V log py ((t)) - 9; fr(x(t)) — 9;V log py (w(t)) - 81 fi(x(t))

(
— 0;kV log pi (x(t)) - 0 fu(2(t)) — 9;V log pi (x(t)) - Dy fi(x(t))
— 0,V log pi (x(t)) - i j fr(2(t)) — Viog pf (1)) - 0y j i fr(2(1).

In the above computation, we use the fact that the term 8; ; x V log pf (x(t)) - fi(z(t)) is canceled.

Appendix E. Gradient Computation via Adjoint Method

Consider the ODE system
$(t) = P(s(t), ¢, 0)
5(0) = so,
and the objective loss
T
(0 = [ als(0).1.0)ar. 5D
0

The following proposition computes the gradient of ¢ w.r.t. 6. We omit the parameters of the
functions for succinctness. We note that all the functions in the integrands should be evaluated at
the corresponding time stamp ¢, e.g. ng—Zdt abbreviates for b(t)T%h(ﬁ(t), x(t),t,0)dt.
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Proposition 12

d¢ T Loy oy

where a(t) is solution to the following final value problems

T

a +aTa—w 9% _

5s 5, = 0:a(D) =0, (53)

Proof Let us define the Lagrange multiplier function (or the adjoint state) a(¢) dual to s(¢). More-
over, let £ be an augmented loss function of the form

T
L=1(— / a' (5 —)dt. (54)
0

Since we have $(t) = 1 (s(t),t, 0) by construction, the integral term in £ is always null and a can
be freely assigned while maintaining d£/df = d¢/d#. Using integral by part, we have

T T
/ a'sdt =a(t)"s(t)|l - / s'a dt. (55)
0 0
We obtain

T
L=—at) s@)E+ / a's+a'p+gdt (56)
0

Now we compute the gradient of £ w.r.t. 0 as

a0 _de_
do  do

T T
_a(T)de(T)+/O .rds T(aw 8¢ds>dt dg ds @dt,

a0 “ T \9g T asae . 9sd6 o6

which by rearranging terms yields to
dZ—dﬁ—_a(T)de(T)_F/TaTaw_{_agdt_F/T C'LT+QT8£+@ Edt
do  do dé 0 00 00 0 ds  0s) do
Now by taking a satisfying the final value problems
o' +a' =+ 2 =0,a(T) =0, (57)

we derive the result

a —~+ --dt. (58)
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Appendix F. Proof of Lemma 8

Proof Recall the definition of p} in (13). p} is I-periodic since it can be expressed as a push-forward
measure of an [-periodic measure vy under an /-periodic map X (¢, ). Consequently, V log p; is also
[-periodic, which together with the [-periodicity of V' shows that the map Y (t, -) is also I-periodic.
Following a similar argument, we see that p? is also [-periodic.

To prove that ||V log pf ()| is bounded for all x € X, recall Proposition 2 where we show that
forany x € X

V log pl(x) = V log ap(x(0)) — /0 Vdiv f(w(s)) + V fu(2(s) V log pl(a(s))ds.  (59)

Here z(s) | is the trajectory of the final value problem

s€[0,¢
dz(s
d( ) = fo(x(s)),z(t) = x. (60)
S
Using Gronwall’s inequality, we can bound
IV log p; (x)|| < (Lo +tLy)exp(tLy) < (Lo + TLy)exp(TLy). (61)

To prove that ||V log p} (z)|| is Lipschitz continuous for all z € X', recall Proposition 3 where we
show that for any z € X

V2 log p; (x) = V*log ag(z(0)) —/0 V2divf(x(s)) + (V21og pl(2(s)) " Ty, (2(s))
+(T5, (2(5)) " V2 og py(a(s)) + V2 fo(x(s)) @1 V log p} (a(s))ds,

where z(s) is the trajectory defined in (60), J; denotes the Jacobian matrix of a vector valued
function f, and

V2(fs)p) (x(5))V log py (z(s))
V2 fo(x(s)) ®1 Vlog pi(x(s)) = = eR™ (62)
V2(fs)ia (x(s))V log py(x(s))

Here f[; denotes the ith entry of a vector valued function f. We can bound the spectral norm
V2 log pf ()]|op by (note that x(t) = z)

t
||V2 log P%("E(t))HoP < Lo +/0 Ly+ 2Lf||V2 log Pi(SE(S))IIop + Ly Bids
t
— Lo+ tLy + LyBi) + [ 2LV log ph(a) s
0

where we denote By = (Lo + T'Ly) exp(T'L¢). Use Gronwall’s inequality to derive
IV*1og pi () llop < (Lo+#(Ly+ BiLy)) exp(2tLy) < (Lo+T(Ly+B1Ly)) exp(2T'Ly), (63)
To see that | V.A[f]¢||op is bounded over X, observe that

VA[f]: = =V?V, — V?log p;, (64)
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which is bounded due to Assumption 3 and (63). To see that V.A[f]; is Lipschitz continuous, we
need to prove that the spectral norm of the following tensor is bounded

V2A[f]e = V3V — V3log p}. (65)

The first term is bounded due to Assumption 3. To bound the second term, use Proposition 4 to
bound (note that x(t) = x)

IV2log py (z(t) lop < [V* log ao((0)) lop
+/0 IV2div fo(@(5))llop + 3lIV2 fs(2(5)lopl V2 1og p5 (2(3))llop
+ 3V fs(2(5))lloplI V7 Jog py ((5))lop + [V og o3 (2(5)) V2 f(2(5)) [ opds,

Using Gronwall’s inequality, we can bound

IV*10g py ()[lop < (Lo + t(Ly + BaLy + BiLy)) exp(3tLy)
< (Lo + T(Lf + BQLf + BlLf)) eXp(BTLf),
where we denote By = 3(Lo + T(Ly + B1Ly)) exp(27'Ly).

The boundedness of || Vdiv.A[f];(x)|| and the Lipschitz continuity of Vdiv.4|f]; hold following
the same argument above under the assumptions 1 to 3. |

F.1. Proof of Lemma 9

Proof In this proof, for simplicity of the notation, we use p; and p? to denote the probability density
functions of systems (1) and (2) and use X; and Y; to denote the corresponding particle maps.
The Wasserstein-2 metric between p} and p? can be written as:

Wik o) = int [ o= P@)Papla),
1Pt =Pt

where the infimum is taken over all the pushforward maps P such that Puﬂ% = p?. From the
Lipschitz continuity of the velocity field f in Assumption 2, the particle map X; of System (1) is
invertible. Moreover, recall that Systems (1) and (2) have the same initial distribution ag. We have
an upper bound on W2 (p}, p?) by considering a special map Pg=Y 0oX ! where we use X;
and Y; to denote the particle maps of systems (1) and (2) compactly (see Table 1). We have the
feasibility of P ¢ by the definitions of pt and p?,

P otp; = Yib(X; ' o Xy)tao = p}. (66)

Additionally, we have that ||z — P, g(x)|| is {-periodic:

|z +le; — Pig(z +lei)|| = ||z +le; — Y0 X! (:I:—i—lel)H H:U—i—leZ Yi( X () + ey
2 _
D e+ lei — (G (@) +en)]| = o — Prg(a)]]
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where in (1) we use Xt_l(:n +le;) = Xt_l(x) + le; since

Xo(X7 x4 le) —ley) — (X7 M+ leg) — le) = Xo (X, M+ 1eg)) — XM + ley)
& X (X a4 le) —le) = = X, Nz +1e)) = X7 (z) + e,

and in (2) we use Y;(a + le;) = Yi(a) + le; following a similar argument. Therefore, we can bound

W2 (b, 0?) / 2 — Pro(a)|2dp} (x / 1X(x) — Yi(a)|*da ()
= / ¢ — yel|*devo (20),
X

where we used the change-of-variables formula of the push-forward measure from Lemma 1 in
the first equality and {x;}co,7) and {y: }1e(o, are the trajectory of particles initialized from zg
but driven by Systems (1) and (2) respectively. Hence, we can bound the Wasserstein-2 distance
between the trajectory of probability distributions by studying the distance between the particles
driven by the two systems, which is proved to be bound by R(f) in expectation (¢ ~ «p) in the
following.

Suppose two particles are initialized from the same position xg, but follow System (1) and
System (2) respectively. The change of their distance at time ¢ can be computed by

d d.’I}t dyt

£||$t —yl? =2 —w)" (E - E) =2z — )" (F(t.ze) — Alf](Em))

=2(z — )" (Ftae) = Alf)(t20) +2 (20— yo) " (ALFI(E 20) = ALf] (8 )
< 2|z — el + 1 £t @) — AlFI(E 20 |2+ AL ) — ALFE o),

where A[f] is the velocity field of System (2) and the transformation A is defined in equation (14).
Bound the the last term on the RHS can be bounded by L?2||x; — v||? using the Lipschitz continuity
of A[f] in Lemma 8 to derive

d
~llze = el <

2+ L)z — el + 1f(t,2e) — AFI(, )|
%exp( t(2+ L))l — yell* < exp(=t(2 + L))Lf (£, xe) — Alf](¢, ) |°

Integrate from ¢ = 0 to 7. By noting that 2y = yo and exp (—(2 + L%)t) < 1, we have

exp (—(2+ L)1) llzr — yr|* < /T £t 2e) — AlFI(E, 22 |Pdt.
0

Take expectation with respect to zo ~ «g. We derive that for any 7 € [0, 7]

W2(oh.p?) < /X |2 — yr|*dao(zo) < exp (2 + L2)T) R(f). 67)
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F.2. Proof of Lemma 10

Proof For compactness, in this proof, we denote f;(x) = f(t,z) and A[f]:(z) = A[f](t,z). We
use p; and p? to denote the probability density functions of systems (1) and (2) and use X; and Y;
to denote the corresponding particle maps (see Table 1).

Since both V log p} and V log p? are I-periodic, using the change of variable formula in Lemma
1, we have

= |Vlogpi oYy — Vlog p? o Vi |2, (68)
Denote y; = Y;(yo) and 2y = X (o) with yo = x. For any ¢, we have
(Vlog pt oYy) (w0) = (Vlog pf (yr) — Vlog pi (1)) + Vlog pf (). (69)
Hence &; can be bounded by
& < IV1og py (ye) — Vlog py ()%, + IV log pi (1) — Vog pi (ye) I, (70)

The first term is of the order O(||z; — y; HZQ) from the Lipschitz continuity of V log p;. To bound
0

the second term, note that V log p} (z;) can be computed from from Proposition 2,

t
V log p; (1) = Vlog ap(o) — /0 Vdiv (fr(z7)) + [V fr(2,)] T Vg p}(2,)dr

and that (V log p? o Yt) (yo) = Vlog p?(y:) can be similarly computed as

Vlog p7 (y:) = V log ao(yo) —/0 Vdiv (A[f]-(yr)) + [VA[f]-(y-)] " Vlog pi (y,)dr.

Hence, the second term can be decomposed as follows:

Vlog p}(ar) = Vlog ) = | Deiv (L) (9r)) = Vil (f () dr
A

+ /0 [VA[f]-(y:)] " Viog i (yr) — [V f+(ar)z] ' Vog pj (a;) dr.
By

Recall that 0, = f; — A[f]; in (15). To bound the norm of A, we have
Ar = Vdiv (A[f];(yr)) — Vdiv (A[f]7(z-)) + Vdiv(-(z7))

and hence using z, ~ pl = X, flap and the Lipschitz continuity of Vdiv.A[f]; we have
1A%, = Ollyr — -5, + Vdiv(6-)[2).

To bound the norm of B, note that

B = VA[f]-(y-) " Vlog p2(y-) — VA[f]+(y-) " V1og p1(yr) (a)
+ VA[f]r(yr) " Viog pr(y-) — VA[f]r(2-) TV log pr () (b)
+ VA[f]r(z:) ' Viog pr(yr) — V f-(27) TV iog pr(ys) (©)
+ Vfr(z:) " Viog pr(yr) = V fr(a7) 'V log py () (d)
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Using the boundedness of V f; and the Lipschitz continuity of V log p, we have [|d||2 = O(||z; —
yr[12,). Similarly, we have [|b]|2 = O(||lz; — y-||2,)- Note that

¢ =—Vé-(z-)" Vlog p2(ys). (71)
Using the boundedness of V log p?, we have
lellz, = OUIVé-II%)- (72)
Finally, using the boundedness of V. A[f], we have that
lall3, < Lol Vilogp? 0 Yy = Vlog pf o Yr[3, = Ly[[Vlog g7 — Viog pr[’a) = Lu&r. (73)
Therefore, by noting that

t
wa%m—vmﬁwM&SAbM&+wﬂ&w, (74)

we bound (note that [|57 | 1 = |67 © X7 lag)
t
&< [ Ol = w12, + IVaiv(6) 2 + 15 12) + Lugrar
t
< [ OB, + IVaiv G|, + IVE|Z,) + Lotedr
0

< [ o) + Lgear

where we use Lemma 9 in the second inequality. Using the Gronwall’s inequality of the integral
form for continuous functions, we have there exists some constant C'(7") such that

& < C(T)R(f) exp(tL,) < C(T)R(f) exp(TL,) (75)

Integrating 7 from 0 to ¢, we have for any ¢ € [0, 7]

| &ar < T en(TLRU) = CTIR(). (76)

where we denote C(T) = C(T)T exp(TLy,). [
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