
Proceedings of Machine Learning Research vol 178:1–25, 2022 35th Annual Conference on Learning Theory

Self-Consistency of the Fokker-Planck Equation

Zebang Shen ZEBANG@SEAS.UPENN.EDU
University of Pennsylvania

Zhenfu Wang ZWANG@BICMR.PKU.EDU.CN
Peking University

Satyen Kale SATYEN.KALE@GMAIL.COM
Google

Alejandro Ribeiro ARIBEIRO@SEAS.UPENN.EDU
University of Pennsylvania

Amin Karbasi AMIN.KARBASI@YALE.EDU
Yale, Google

Hamed Hassani HASSANI@SEAS.UPENN.EDU

University of Pennsylvania

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
The Fokker-Planck equation (FPE) is the partial differential equation that governs the density evo-
lution of the Itô process and is of great importance to the literature of statistical physics and machine
learning. The FPE can be regarded as a continuity equation where the change of the density is com-
pletely determined by a time varying velocity field. Importantly, this velocity field also depends
on the current density function. As a result, the ground-truth velocity field can be shown to be the
solution of a fixed-point equation, a property that we call self-consistency. In this paper, we exploit
this concept to design a potential function of the hypothesis velocity fields, and prove that, if such
a function diminishes to zero during the training procedure, the trajectory of the densities gener-
ated by the hypothesis velocity fields converges to the solution of the FPE in the Wasserstein-2
sense. The proposed potential function is amenable to neural-network based parameterization as
the stochastic gradient with respect to the parameter can be efficiently computed. Once a parame-
terized model, such as Neural Ordinary Differential Equation is trained, we can generate the entire
trajectory to the FPE.
Keywords: Fokker Planck equation

1. Introduction

We consider the Fokker-Planck equation (FPE) that corresponds to the Itô process with a constant
diffusion coefficient, which can be written as

∂

∂t
α(t, x) + div

(
α(t, x)(−∇V (t, x)−∇ logα(t, x)︸ ︷︷ ︸

underlying velocity field f∗(t,x)

)
)

= 0, (1)

subject to the initial condition
α(0, x) = α0(x). (2)
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Here, α : [0, T ]×X → R is a time varying density function defined onX ⊆ Rd, V : [0, T ]×X → R
is a known potential function that determines the drifting term; div and ∇ denote the divergence
and gradient operator with respect to the spatial variable x respectively. The boundary condition
that we impose will be introduced in section 2.

FPE is a fundamental problem in the literature of statistical physics due to its wide applications
in thermodynamic system analysis (Markowich and Villani, 2000; Lucia and Gervino, 2015; Qi and
Majda, 2016) and is one of the key equations in the research of the mean field game (Cardaliaguet
and Porretta, 2020; Gomes et al., 2014). Recently, it has also been used to model the dynamics
of the stochastic gradient descent method on neural networks (Chizat and Bach, 2018; Sonoda
and Murata, 2019; Sirignano and Spiliopoulos, 2020; Fang et al., 2021) and the dynamics of the
Rényi differential privacy (Chourasia et al., 2021), and has become a fundamental tool for learning
complex distributions and deep generative models due to its deep connection to the Wasserstein
gradient flow (Sohl-Dickstein et al., 2015; Hashimoto et al., 2016; Liu et al., 2019; Song et al., 2020;
Solin et al., 2021; Mokrov et al., 2021). There is a plethora of previous works trying to solve FPE
numerically, including the classic mesh-based finite difference and finite volume methods (Carrillo
et al., 2015; Bailo et al., 2018), the stochastic particle methods that are based on the discretization
of the Ito SDE (Dalalyan, 2017; Li et al., 2019, 2021), the deterministic particle methods that utilize
the Gaussian mollifier to approximate the dynamic (Degond and Mustieles, 1990), the variational
methods that are built on the Wasserstein gradient flow interpretation of the FPE (Bernton, 2018;
Liu et al., 2020; Carrillo et al., 2021; Ambrosio et al., 2005; Jordan et al., 1998), and most recently
the physics-informed neural network approach that directly parameterize the solution to the FPE
and cast the FPE as a root finding problem (Han et al., 2018; Long et al., 2018, 2019; Raissi et al.,
2019; Blechschmidt and Ernst, 2021). We note that in all previous approaches, the entity under
consideration, i.e. the function to be approximated or learned, is explicitly the solution to the PDE
(1), which is a time-varying probability density function.

In this work, we take a different route: Instead of approximating the solution to the FPE, we
propose to learn the underlying velocity field that drives the evolution of the FPE. The solution to the
FPE can then be implicitly recovered by the learned velocity field. Our work is built on a concept
called the self-consistency of the Fokker-Planck equation: A velocity field that correctly recovers
the solution to the FPE should be a fixed point to a velocity-consistency transformation (defined in
Eq. (14)) derived from the FPE. The main contribution of our work is summarized as follows.

We establish the theoretical foundation of learning the underlying velocity field of the
FPE. Specifically, we design a potential function R for the hypothesis velocity fields
{fn} that describes the self-consistency of the Fokker-Planck equation and show that
if R(fn) → 0 as n → ∞, the trajectory of distributions generated by f∞ recovers the
solution to the FPE in the Wasserstein-2 sense.

Moreover, when the hypothesis velocity field is parameterized as a Neural Ordinary Differential
Equation fθ (Chen et al., 2018), we discuss how the stochastic gradient of the proposed potential
function R(fθ) with respect to the parameter θ of the neural network can be efficiently computed.
Therefore, once fθ is trained via stochastic optimization methods, our approach returns an approxi-
mate solution to the FPE, which is non-negative and has unit mass, i.e. it integrates to 1 onX . These
fundamental properties are crucial in real-world physics models and are not guaranteed in previous
neural network based approaches.
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2. Preliminaries

Boundary Condition We assume that the process takes place on a d-dimensional box centered
around the origin, i.e. X = [− l

2 ,
l
2 ]d. We consider the periodic boundary condition:

α

(
t, (· · · ,− l

2
, · · · )

)
= α

(
t, (· · · , l

2
, · · · )

)
(3)

∂

∂x
α

(
t, (· · · ,− l

2
, · · · )

)
=

∂

∂x
α

(
t, (· · · , l

2
, · · · )

)
. (4)

The above condition is the same as identifying the points on the corresponding boundaries which
happens when the spatial domain is a torus. Note that on a torus, the particle that leaves the torus on
the boundary will reenter the domain X through the boundary such that l/2 (resp.,−l/2) is replaced
by −l/2 (resp., l/2) in the same coordinate.

The periodic boundary condition (torus) is commonly used in the PDE analysis (e.g. see (Jabin
and Wang, 2016)) with an important technical merit that the integration of a periodic function on
the boundary is naturally zero and hence the analysis using integration by parts can be simplified.
Moreover, it also allows us to focus on the behavior of the PDE system on compact domains without
sacrificing the generality, since we can always set the diameter of the torus to be sufficiently large.
We emphasize that to the ML community, this is usually the case of interest: Only in a bounded
domain can we expect a neural ODE to be able to represent the underlying velocity field of the FPE,
since the neural network is not a universal function approximator on unbounded domains.

In the following, we refer to periodic functions with a period of l as l-periodic.

Velocity Field and the Induced Push-forward Map A velocity field is map f : [0, T ]×X → Rd
that determines the movement of a particle x(t):

d

dt
x(t) = f(t, x(t)) (5)

A velocity field f(t, x) induces a push-forward map X(t, x; f) via integrating over time

X(t, x0; f) = x0 +

∫ t

0
f(s, xs)ds, (6)

where {xs}ts=0 is the trajectory of a particle following the velocity field f(t, x) with the initial
position x0. Note that the map X(t, x; f) is invertible under the assumption that f(t, x) is Lipschitz
continuous in x for all t. Additionally X(t, x; f) − x is l-periodic if we further assume that f is
l-periodic: For any i ∈ {1, . . . , d}

X(t, x0 + lei; f)− (x0 + lei) =

∫ t

0
f(s, xs + lei)ds =

∫ t

0
f(s, xs)ds = X(t, x0; f)− x0. (7)

When the velocity f is clear from the context, we omit the dependence ofX on f and writeX(t, x),
for simplicity.
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Neural Ordinary Differential Equation The neural ordinary differential equation (NODE) is a
favorable instance of the hypothesis class since neural networks are universal function approxima-
tors in a bounded domain and have achieved great recent success in machine learning (Chen et al.,
2018; Dupont et al., 2019; Choromanski et al., 2020). Let f : R × Rd × Θ → Rd be a neural
network parameterized by θ ∈ Θ. A d-dimensional NODE in can be described as

d

dt
x(t) = fθ(t, x(t)). (8)

To accommodate the periodic boundary conditions (3) and (4), we need the NODE to be l-
periodic. Consider a 2d-dimensional NODE with velocity f̃ . We can construct a d-dimensional
NODE with the following hypothesis velocity field

fθ(t, x(t)) = f̃θ

(
t,

(
sin 2π

l x(t)
cos 2π

l x(t)

))
. (9)

Here sin and cos are applied in an element-wise manner.

Notations Consider the d-dimensional index vector a = (a1, . . . , ad) with ai ∈ N and ‖a‖1 = k
and a map f : Rd → Rd. Denote

f (a) =

[
∂kf1

∂xa11 . . . ∂xadd
, · · · , ∂kfd

∂xa11 . . . ∂xadd

]
, (10)

where fi denotes the ith entry of f . We define the kth order Sobolev norm of a map f : X → Rd
with a base measure µ ∈M1

+(X ) by

‖f‖Wk,2(µ) =

(
k∑
i=0

∫
X
‖f (i)(x)‖2µ(x)dx

) 1
2

. (11)

Here f (k) = {f (a)}a:‖a‖1=k denotes the collection of all kth order partial derivatives of the map f
and is regarded as a dk+1-dimensional vector. We use ‖ · ‖ to denote the spectral norm for matrices
and tensors and the standard `2-norm for vectors.
We use {ei} to denote the standard basis of Rd and use ∆ to denote the Laplacian operator on the
spatial variable. We use ∇i, i ≥ 2 to denote higher order gradient.

3. Methodology

Recall that on a torus, when a particle leaves the domain on a boundary, it reappears on the other side
(see Figure 1-(a)). Therefore, the velocity field of the particles are discontinuous on the boundaries,
which introduces difficulties in function approximation. To avoid this issue, a useful and equivalent
perspective of the periodic boundary condition is to think of the density function α(t, ·) as a l-
periodic function in every coordinate, i.e.

∀t, x, α(t, x+ lei) = α(t, x), i ∈ [d], (12)

which is depicted in (b) of Figure 1. While particles are allowed to leave X , the domain of interest,
due to the periodicity of the whole domain Rd, the total mass within X is conserved since the influx
and the outflow are balanced.
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Figure 1: Figure (a) depicts that when a particle leaves the torus on a boundary, it reappears on
the other side. The velocity field is discontinuous on the boundary. In Figure (b), we
consider the periodic extension of the density function α(t, x). This is equivalent to the
torus since whenever a particle leaves the boundary, another particle will enter X from a
corresponding adjoining cell. Note that in Figure (b) the velocity field is continuous on
the whole domain.

3.1. Self-consistency of the Fokker-Planck Equation

Suppose that the particles are distributed initially according to the distribution α0 defined in (2) and
follow a hypothesis velocity field f(t, x). From this perspective, we can write the distribution of
particles on X at time t in a push-forward manner

ρ1(t, ·; f) = X(t, ·; f)]α0, (13)

where the push-forward map X , induced by the velocity f , is defined in (6). Note that ρ1 is well-
defined on the whole domain Rd, but we restrict our interest to X . Based on this notation, the
Fokker-Planck equation (1) induces a velocity-consistency transformation A of the velocity field in
the following manner:

A[f ](t, x) = −∇V (t, x)−∇ log ρ1(t, x; f). (14)

Observe that, for the ground-truth velocity field f∗ that drives the particle evolution of the Fokker-
Planck equation, i.e. f∗(t, x) = −∇V (t, x)−∇ logα(t, x), we have

A[f∗] = f∗.

We term this property the self-consistency of the Fokker-Planck equation. Similar to Eq. (13), we
can define ρ2(t, ·; f) = X(t, ·;A[f ])]α0,. Indeed, the interplay between the two systems ρ1 and ρ2

is crucial to our analysis.
The goal of our paper is to show that if a sequence of hypothesis velocity fields {fn} asymp-

totically satisfies the above consistency property, i.e. ‖A[fn] − fn‖ → 0 as n → ∞ for some
appropriate norm ‖ · ‖, then the distribution ρ1(t, x; f∞) generated from the hypothesis velocity
field f∞ recovers α(t, x), the solution to the FPE (1) in the Wasserstein-2 sense.

3.2. Designing the Self-Consistency Potential Function and its Computation

Given a hypothesis velocity field f , we denote the difference between f and A[f ] by

δ(t, x; f) = f(t, x)−A[f ](t, x). (15)

5
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We propose to use the time average of the 2nd order Sobolev norm of δ with the base measure
ρ1(t, ·; f) as the potential function of f :

R(f) =

∫ T

0

∫
X

2∑
i=0

‖δ(i)(t, x; f)‖2ρ1(t, x; f)dxdt =

∫ T

0
‖δ(t, ·; f)‖2W 2,2(ρ1(t,·;f))dt.

In Section 4, we show thatR(f) controls the Wasserstein-2 distance between ρ1(t, ·) and α(t, ·), i.e.
for any time t ∈ [0, T ],W 2

2 (ρ1(t, ·), α(t, ·)) = O(R(f)). This result has two direct implications: (i)
Given a hypothesis velocity field f , we can use R(f) to measure its quality in terms of recovering
the solution to the FPE; (ii) Given a class of parameterized hypothesis velocity fields fθ, one can find
the best parameter θ by minimizing R(fθ) with a learning procedure, which is discussed in details
at the end of this section. By “learning”, we mean to distinguish our approach from the previous
numerical FPE solvers, e.g. the JKO method, which are in essence “simulating” the FPE dynamics:
They iteratively update the configuration of the system using certain rules derived from the FPE. In
contrast, the proposed potential function describes the self-inconsistency of a hypothesis velocity
field, which can be refined through a training procedure.

The potential functionR(f) might seem difficult to compute at first. In the following, we present
an equivalent formulation of R(f) from the perspective of particle trajectory, which is critical to
our analysis and to the actually computation of R(f). We first introduce the following important
change-of-variables formula of integrating periodic functions onX . Recall that the standard change-
of-variables formula reads as follows: for a function g : Rd → R∫

X
gdX]α =

∫
X−1(X )

g ◦Xdα. (16)

In brief, we show that for an l-periodic functions g the integration domain X−1(X ) on the RHS of
the above equation can be replaced by X . The proof is deferred to Appendix A.

Lemma 1 Consider an invertible mapping X : Rd → Rd such that X(x) − x is l-periodic, an
l-periodic function g : Rd → R, and an l-periodic measure α. The following formula holds:∫

X
gdX]α =

∫
X
g ◦Xdα, (17)

where X is the centered d-dimensional box defined above.

Note that the push-forward map X defined in (6) is invertible and X(t, x; f) − x is l-periodic (see
(7)), the integrand in R(f) is l-periodic, and from (12) the measure α0 is also l-periodic. Using the
above lemma, we have

R(f) =

∫ T

0

∫
X

2∑
i=0

‖δ(i)(t, ·; f)‖2dX(t, ·; f)]α0dt (18)

=

∫ T

0

∫
X

2∑
i=0

‖δ(i)(t,X(t, x; f); f)‖2dα0(x)dt (19)

If we further define the trajectory-wise loss

R(f ;x0) =

∫ T

0

2∑
i=0

‖δ(i) (t,X(t, x0; f); f) ‖2dt, (20)

6
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the potential function R(f) admits an equivalent formulation

R(f) =

∫
X
R(f ;x0)α0(x0)dx0. (21)

Therefore, we have that R(f ;x0) is an unbiased estimator of the objective R(f). In the following,
we elaborate on how R(f ;x0) can be computed.

Computation of the trajectory-wise loss R(f ;x0) We now discuss how the function R(f ;x0)
can be computed. We assume that we have the exact expression of f and V , and hence we can
readily evaluate f (i) for i ∈ {0, 1, 2} and V (i) for i ∈ {1, 2, 3} (recall the notation of differentials
in (10)). Use x(t) = X(t, x0; f) to denote the trajectory of a particle with the initial position x0

and following the velocity field f . In the following, we address how ∇i log ρ1(t, x(t); f) for i ∈
{1, 2, 3} can be computed since these are the only unknown terms when evaluating A[f ](i)(t, x(t))
for i ∈ {0, 1, 2}. The proofs of the following propositions are deferred to the appendix. We first
compute the first order gradient of the log-probability.

Proposition 2 Denote ft(x) = f(t, x) and ρ1
t = ρ1(t, x; f) where we recall that ρ1(t, x; f) is the

density function formally defined in equation (13). We have

d

dt
∇ log ρ1

t (x(t)) = −∇div (ft(x(t)))− (∇ft(x(t)))>∇ log ρ1
t (x(t)),

The second order partial derivatives of the log-probability is computed as follows.

Proposition 3 Denote ft(x) = f(t, x) and ρ1
t = ρ1(t, x; f) where we recall that ρ1(t, x; f) is

formally defined in equation (13). The time evolution of the 2nd order gradient of the log probability
function can be computed by

d

dt

∂2

∂xi∂xj
log ρ1

t (x(t)) = − ∂2

∂xi∂xj
divft(xt)−

∂

∂xi
∇ log ρ1

t (x(t)) · ∂

∂xj
ft(x(t))

− ∂

∂xi
ft(x(t)) · ∂

∂xj
∇ log ρ1

t (x(t))− ∂2

∂xi∂xj
ft(x(t)) · ∇ log ρ1

t (x(t)).

The third order partial derivatives of the log-probability is computed as follows.

Proposition 4 Denote ft(x) = f(t, x) and ρ1
t = ρ1(t, x; f) where we recall that ρ1(t, x; f) is

formally defined in equation (13). The time evolution of the 3rd order gradient of the log probability
function can be computed by

d

dt

∂3

∂xi∂xj∂xk
log ρ1

t (x(t)) = − ∂3

∂xi∂xj∂xk
divft(x(t))− ∂2

∂xi∂xj
∇ log ρ1

t (x(t)) · ∂

∂xk
ft(x(t))

− ∂2

∂xi∂xk
∇ log ρ1

t (x(t)) · ∂jft(x(t))− ∂

∂xi
∇ log ρ1

t (x(t)) · ∂j,kft(x(t))

− ∂2

∂xj∂xj
∇ log ρ1

t (x(t)) · ∂ift(x(t))− ∂

∂xj
∇ log ρ1

t (x(t)) · ∂i,kft(x(t))

− ∂

∂xk
∇ log ρ1

t (x(t)) · ∂i,jft(x(t))−∇ log ρ1
t (x(t)) · ∂3

∂xi∂xj∂xk
ft(x(t)).

7
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The above propositions show that the evolution of the ith order differential of log ρ1
t only depends

differentials with order no more than i. This means that the differentials of log ρ1
t can be exactly

computed using only local information, even though they depend on the macroscopic distribution.
Note that this is only possible along {x(t)}, the trajectory of the particle under consideration.

Parameterizing the Hypothesis Velocity Field with NODE In the following, we take the NODE
as a specific parameterized instance of the hypothesis velocity field fθ. Recall that R(fθ;x0) is an
unbiased estimator of R(fθ). A key step in the optimization of a neural network is to compute the
stochastic gradient ∇θR(fθ;x0), which is elaborated as follows.

Suppose that the initial point x0 is fixed. To compute∇θR(fθ;x0), the gradient of the trajectory-
wise loss with respect to the parameter θ, we write R(fθ;x0) in a standard ODE-constrained form:

R(fθ;x0) = `(θ)
∆
=

∫ T

0
g(t, s(t), θ)dt (22)

where {s(t)}t∈[0,T ] is the solution to the ODE{
d
dts(t) = ψ(t, s(t); θ)

s(0) = s0(x0).
(23)

Recall the definition of the differentials f (i) in (10). Here, the time-varying state s(t) is

s(t) = [x(t), ζ1(t), ζ2(t), ζ3(t)], (24)

where ζi(t) = (log ρ1)(i+1)(t, x(t); fθ) for i ∈ {0, 1, 2}; s0 is a function of x0

s0(x0) = [x0, (logα0)(1)(x0), (logα0)(2)(x0), (logα0)(3)(x0)]; (25)

Here, ψ is the velocity field that drives the evolution of the state s such that the first component of
s is updated according to the ODEs in equation (8) and the last three components of s are updated
according to propositions 2 to 4 respectively; and the function g is define as

g(t, s(t); θ) =

2∑
i=0

‖f (i)
θ (t, x(t)) + V (i+1)(t, x(t)) + ζi‖2,

so that we recover the difference function δ defined in (15). Note that by introducing the auxiliary
states ζi, the function g depends on θ only through f (i)

θ (t, x(t)). With the above standard ODE-
constrained form of R(fθ;x0), we can compute ∇`(θ) in equation (22) using the classic adjoint
method, which is provided in Appendix E.

Recovering an Approximate Solution to the FPE Given a hypothesis velocity field f , we return
ρ(t, ·; f) as an approximate solution to the FPE. To evaluate ρ(t, x; f) for any x ∈ X , let x(s)s∈[0,t]

be the trajectory of the final value problem

dx(s)

ds
= f(s, x(s)), x(t) = x. (26)

We can compute that d
dt log ρ1(t, x(t); f) = ∂

∂t log ρ1(t, x(t); f) + f(t, x(t)) · ∇ log ρ1(t, x(t); f).
Using the FPE (1), we derive ∂

∂t log ρ1(t, x) = −divf(t, x)−∇ log ρ1(t, x; f) · f(t, x), and hence
we have d

dt log ρ1(t, x(t); f) = −divf(t, x(t)). Therefore, we can compute log ρ1(t, x; f) by

log ρ1(t, x; f) = logα0(x(0))−
∫ t

0
divf(t, x(s))ds. (27)

8
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4. Analysis

In this section, we prove that the potential functionR(f) inspired by the self-consistency of the FPE
controls the Wasserstein-2 distance between ρ1(t, ·; f) and α(t, ·) for all t ∈ [0, T ]. We achieve this
by introducing an auxiliary distribution ρ2 induced by A[f ] to bridge the hypothesis distribution
ρ1(t, ·; f) induced by the velocity field and the solution to the FPE α(t, ·). This allows us to con-
trol the Wasserstein-2 distance between ρ1(t, ·; f) and ρ2(t, ·; f) and the KL-divergence between
ρ2(t, ·; f) and α(t, ·) separately. We first present the assumptions required for our analysis.

Assumption 1 (Regularity of the initial distribution) For any x ∈ X , the Hessian of the log
probability of the initial distribution ρ1

0 = α0 is bounded, i.e.

max{‖∇ logα0(x)‖, ‖∇2 logα0(x)‖, ‖∇3 logα0(x)‖, ‖∇2∆ logα‖} ≤ L0. (28)

Assumption 2 (Regularity of the hypothesis velocity field) The hypothesis velocity field f is l-
periodic for any time t and parameter θ. Moreover, given a fixed time horizon T > 0 of the
evolution, for any space-time variables x ∈ X and t ∈ [0, T ] and any neural network parameters
θ ∈ Θ, the hypothesis velocity field f in NODE satisfies that for all x ∈ X

max{‖ max
i∈{1,2,3,4}

∇ift(x)‖, max
i∈{1,2,3,4}

‖∇idivft(x)‖} ≤ Lf . (29)

Assumption 3 (Regularity of the drifting term) For all t, the potential function V (t, ·) is l-periodic
and for all x ∈ X max{‖∇2V (t, x)‖, ‖∇3V (t, x)‖, ‖∇2∆V (x)‖} ≤ Lv.

We state our main result as follows.

Theorem 5 (main result) Suppose that the assumptions 1 to 3 hold. We have for all t ∈ [0, T ]

W 2
2 (ρ1(t, ·; f), α(t, ·)) ≤ d l c ·R(f), (30)

where l is length of the box X , d is the dimension of the ambient space, and c is a constant that
depends on the regularity constants L0, Lf , Lv and the maximum evolving time T .

The following corollary states that if we can optimize over the hypothesis velocity field f such that
R(f) diminishes to zero, we can recover the solution to the FPE in the Wasserstein-2 sense.

Corollary 6 Suppose that assumptions 1 to 3 hold and assume a sequence of hypothesis velocity
fields fn satisfies R(fn)→ 0 as n→∞. We have W 2

2 (ρ1(t, ·; fn), α(t, ·))→ 0 as n→∞.

Remark 7 Assume that the class of hypothesis velocity fields is the NODE fθ (see (8)). Also,
assume that the underlying velocity field f∗ is sufficiently regular such that it can be represented by
fθ∗ for some optimal parameter θ∗. Then, we can optimize over the parameter θ and recover the
solution to the FPE if R(fθ) diminishes to zero during the training phase.

We now present the proof of Theorem 5 which is built on the interplay between two systems: The
first is described by the hypothesis velocity field f :

System (1):
dx(t)

dt
= f(t, x(t)); (31)

9
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Table 1: Summary of the notations for systems (1) and (2). Note that Y (t, ·; f) = X(t, ·;A[f ]).
velocity field particle map particle trajectory density

System (1) f(t, x) X(t, ·; f) {x(t)} ρ1(t, ·; f) = X(t, ·; f)]α0

System (2) A[f ](t, x) Y (t, ·; f) {y(t)} ρ2(t, ·; f) = Y (t, ·; f)]α0

and the second is driven by A[f ] which is defined in (14):

System (2):
dy(t)

dt
= A[f ](t, y(t)). (32)

Similar to the push-forward mapX(t, ·; f) defined in (6),A[f ] also induces a mapX(t, ·;A[f ]). To
better distinguish these two systems, we denote Y (t, x; f) = X(t, x;A[f ]) and define ρ2(t, ·; f) =
Y (t, ·; f)]α0 for system (2). These notations are summarized in Table 1.

The following lemma establishes some regularity results of the involved velocity fields.

Lemma 8 Recall Systems (1) and (2) in Table 1. For simplicity of notations, denote their prob-
ability density functions by ρ1

t and ρ2
t respectively. Additionally, we denote ft(x) = f(t, x) and

A[f ]t(x) = A[f ](t, x). We have that for all t ∈ [0, T ]

1. Both ρ1
t and ρ2

t are l-periodic.

2. ∇ log ρ1
t is bounded and Lipschitz continuous.

3. Both ∇A[f ]t and ∇divA[f ]t are bounded and Lipschitz continuous.

The following lemma shows that R(f) controls the Wasserstein-2 distance between ρ1(t, ·) and
ρ2(t, ·) for all t ∈ [0, T ]. The full proof is provided in Appendix F.1.

Lemma 9 Recall Systems (1) and (2) in Table 1. Denote their probability density functions by ρ1
t

and ρ2
t respectively. Under Assumptions 1 to 3, there exists a constant C1 such that

sup
t∈[0,T ]

W 2
2 (ρ1

t , ρ
2
t ) ≤ C1R(f),

where C1 depends on the maximum evolving time T and L0, Lf , Lv defined in assumptions 1 to 3.

Proof [A sketch of the proof.] We first note that P (t, ·; f) = Y (t, ·; f) ◦ X(t, ·; f)−1 is a trans-
port map such that ρ2(t, ·; f) = P (t, ·; f)]ρ1(t, ·; f). Consequently, from the definition of the
Wasserstein-2 distance, we have

W 2
2 (ρ1

t , ρ
2
t ) ≤

∫
X
‖x− P (t, x; f)‖2dρ1(t, x; f) =

∫
X
‖X(t, x; f)− Y (t, x; f)‖2dα0(x)

=

∫
X
‖x(t)− y(t)‖2dα0(x0),

where we used the change-of-variables formula of the push-forward measure from Lemma 1 in the
first equality and {x(t)}t∈[0,T ] and {y(t)}t∈[0,T ] are the trajectory of particles initialized from x0

but driven by Systems (1) and (2) respectively. We then study the dynamic of d
dt‖x(t)− y(t)‖2 and

prove the lemma using the Grönwall’s inequality.

We then show that R(f) controls the distance between score functions of systems (1) and (2).
The full proof is provided in Appendix F.2.
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Lemma 10 Recall Systems (1) and (2) in Table 1. For simplicity of notations, denote their proba-
bility density functions by ρ1

t and ρ2
t respectively. Denote the weighted L2 norm by

ξt
∆
= ‖∇ log ρ1

t −∇ log ρ2
t ‖2ρ2t . (33)

Suppose assumptions 1 to 3 hold. There exists some constant C2 such that for any t ∈ [0, T ],∫ t

0
ξsds ≤ C2R(f), (34)

where C2 depends on the maximum evolving time T and L0, Lf , Lv defined in assumptions 1 to 3.

Proof [A sketch of the proof.] With the change-of-variables lemma, we can expand

ξt = ‖∇ log ρ1
t ◦ Yt −∇ log ρ2

t ◦ Yt‖2α0

≤ ‖∇ log ρ1
t (y(t))−∇ log ρ1

t (x(t))‖2α0
+ ‖∇ log ρ1

t (x(t))−∇ log ρ2
t (y(t))‖2α0

.

The first term can be control by the Lipschitz continuity of ∇ log ρ1
t . We study the dynamic of the

second term using Proposition 2 and use the Grönwall’s inequality to establish the lemma.

Built on the above two lemmas, the following lemma states the most novel part of our analysis
which shows that the KL-divergence between ρ2(t, ·) generated by system (2) and the solution to
the FPE α(t, ·) is controlled by R(f).

Lemma 11 Recall Systems (1) and (2) in Table 1. For simplicity of notations, denote their probabil-
ity density functions by ρ1

t and ρ2
t respectively and use αt to denote the solution to the Fokker-Planck

equation (1). Suppose assumptions 1 to 3 hold. For any t ∈ [0, T ], we have

KL(ρ2
t , αt) ≤

C2

2
R(f), (35)

where C2 is the constant defined in Lemma 10.

Proof We study the evolution of the KL divergence between ρ2
t and αt. Recall that for ρ2

t , we have

∂ρ2
t

∂t
= ∆ρ2

t + div
(
ρ2
t∇Vt

)
+ div(ρ2

t∇ log
ρ1
t

ρ2
t

), (36)

and for αt we have
∂αt
∂t

= ∆αt + div (αt∇Vt) . (37)

We can compute

dKL(ρ2
t , αt)

dt
=

∫
X

∂ρ2
t

∂t
log

ρ2
t

αt
+
∂ρ2

t

∂t
− ρ2

t

∂ logαt
∂t

dx =

∫
X

∂ρ2
t

∂t
log

ρ2
t

αt
− ρ2

t

αt

∂αt
∂t

dx,

where in the second equality, we use
∫
X
∂ρ2t
∂t dx =

d
∫
X ρ

2
tdx

dt = d1
dt = 0. Plug (36) and (37) in the

above equation to derive

dKL(ρ2
t , αt)

dt
=

∫
X

∆ρ2
t log

ρ2
t

αt
+ div

(
ρ2
t∇Vt

)
log

ρ2
t

αt
+ div(ρ2

t∇ log
ρ1
t

ρ2
t

) log
ρ2
t

αt
dx

−
∫
X

ρ2
t

αt
∆αt +

ρ2
t

αt
div (αt∇Vt) dx. (38)

11
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Combine the first and fourth terms of the above equation. Using integration by part, we have that∫
X

∆ρ2
t log

ρ2
t

αt
− ρ2

t

αt
∆αtdx =

∫
X
−∇ρ2

t · ∇ log
ρ2
t

αt
+∇ρ

2
t

αt
· ∇αtdx

=

∫
X
−∇ρ2

t · ∇ log
ρ2
t

αt
+
∇ρ2

tαt − ρ2
t∇αt

(αt)2
· ∇αtdx

= − ‖∇ log ρ2
t −∇ logαt‖2ρ2t , (39)

where we note that the integration on the boundary ∂X is 0 due to the periodic boundary conditions
(3) and (4). Combine the second and the last terms of (38). Use integration by part to compute∫

X
div
(
ρ2
t∇Vt

)
log

ρ2
t

αt
− ρ2

t

αt
div (αt∇Vt) dx

=

∫
X
−
(
ρ2
t∇Vt

)
· ∇ log

ρ2
t

αt
+
∇ρ2

tαt − ρ2
t∇αt

(αt)2
· (αt∇Vt) dx = 0

We hence have (using integration by part for the third term of (38))

dKL(ρ2
t , αt)

dt
= −‖∇ log ρ2

t −∇ logαt‖2ρ2t −
∫
X
ρ2
t∇ log

ρ1
t

ρ2
t

· ∇ log
ρ2
t

αt
dx.

Using 2(a− b)(a− c) = ‖a− b‖2 + ‖a− c‖2 − ‖b− c‖2, we have

−
∫
X
ρ2
t∇ log

ρ1
t

ρ2
t

· ∇ log
ρ2
t

αt
dx

=
1

2

(
‖∇ log ρ2

t −∇ log ρ1
t ‖2ρ2t + ‖∇ log ρ2

t −∇ logαt‖2ρ2t − ‖∇ log ρ1
t −∇ logαt‖2ρ2t

)
≤ 1

2
‖∇ log ρ1

t −∇ log ρ2
t ‖2ρ2t +

1

2
‖∇ log ρ2

t −∇ logαt‖2ρ2t .

Consequently, we obtain

dKL(ρ2
t , αt)

dt
≤ 1

2
‖∇ log ρ2

t −∇ log ρ1
t ‖2ρ2t −

1

2
‖∇ log ρ2

t −∇ logαt‖2ρ2t .

Omitting the negative term and integrating from 0 to t and using Lemma 10, we have our result.

We now present the proof of Theorem 5.
Proof [Proof of Theorem 5] Using Theorem 6.15 of (Villani, 2009), we have for any t

W 2
2 (ρ2(t, ·), α(t, ·)) ≤ 2ldTV2(ρ2(t, ·), α(t, ·)) ≤ ldKL(ρ2(t, ·), α(t, ·)), (40)

where we use the Pinsker’s inequality in the second inequality. Using the triangle inequality of the
Wasserstein-2 distance, Theorem 5 is a direct consequence of Lemma 9 and Lemma 11.

12
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Figure 2: Learning the FPE with a Gaussian initial distribution α0 and a quadratic drifting term V .

5. Experiment

Setup. In this section, we showcase the effecacy of our approach for numerically solving the
FPE with the example where the initial distribution is Gaussian, i.e. α0 = N (µ0,Σ0), and the
drifting term is a quadratic function, i.e. V (x) = (x − µ∞)>Σ−1

∞ (x − µ∞). We use this example
since we know the analytical solution of the FPE α(t, x) in this specific instance and hence we can
explicitly calculate the difference between the learned hypothesis velocity field fθ and the ground
truth. Specifically, we know that for any time t ≥ 0, the solution α(t, ·) = N (µt,Γ

>
t Γt) is a

Gaussian distribution where µt and Γt evolve in the following manner

dµt
dt

= Σ−1
∞ (µ∞ − µt),

dΓt
dt

= −Σ−1
∞ Γt + Γ−1

t
>
,Γ0 =

√
Σ0, (41)

if we take the the domainX = R2 (see for example Eq. (36) and Eq. (37) in Liu et al. (2020)). In our
experiment, we take µ0 = (−4,−4), Σ0 = diag(0.7, 1.3), and µ∞ = (4, 4), Σ∞ = diag(1.1, 0.9).

Performance Metrics. We grid the box [−10, 10]2 with a uniform increment of 0.1 over both
coordinates. This gives us 2012 = 40401 grid points altogether and we use β to denote the uniform
distribution over these points. We then grid the time interval [0, 3] with a uniform increment of
0.3. This gives us 11 distinct time stamps and we use γ to denote the uniform distribution over
these time stamps. Define the score estimation error of a hypothesis velocity field f to be `s(f) =∫
‖f(t, x) + ∇ logα(t, x) + ∇V (x)‖2dβ(x)dγ(t), where we note that (−∇V − ∇ logα) is the

ground truth velocity field. Additionally, define the density estimation error of a hypothesis density
trajectory ρ as `d(ρ) =

∫
|α(t, x) − ρ(t, x)|dβ(x)dγ(t). We use the these two quantities in our

experiment to measure the quality of the recovered solutions from NWGF (our approach) and we
include a successful NN-based PDE solver PINN (Raissi et al., 2019) as the baseline. Note that the
implementation of the continuous time PINN model requires a collection of spatial points {xi} for
defining the objective loss, which are set to the grid points mentioned above.

Details. To avoid negative density values in PINN, instead of directly approximating α(t, x), we
use a neural network gθ(t, x) to approximate the ground-truth log-density trajectory logα in PINN.
For a fair comparison, the network structures of fθ (the hypothesis velocity field used in our ap-
proach) and gθ are identical except the last layer since gθ outputs a scalar (log-density) while fθ out-
puts a 2d-vector (velocity). We use `s(−∇V −∇xgθ) to measure the quality of gθ as (−∇V −∇gθ)
is the hypothesis velocity field that corresponds to gθ. We use the strategy discussed in Eq. (27) to
reover the density from our hypothesis velocity field fθ.
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Results. We report the results of our experiment in Figure 2 and we use NWGF (short for Neural
Wasserstein Gradient Flow) to denote our approach. In plot (i), we observe that stochastic gradient
descent is able to reduce the objective values of both NWGF and PINN substantially over 2500 steps.
However, in plots (ii) and (iii), we observe that our method correctly learns the underlying velocity
field and the density trajectories, but these two metrics of PINN barely improve after a long training
procedure. This shows the advantage of our approach.

6. Conclusion

In this work, instead of directly approximating the solution to the FPE, we proposed a learning
paradigm that recovers the entire velocity field, thus understanding better the evolution of the sys-
tem. By introducing a velocity-consistency transformation A induced by the FPE, we identified a
fundamental property of the system called the self-consistency of the FPE. In words, it states that
the underlying velocity field of the FPE must be a fixed point ofA. Based on this novel observation,
we designed a potential functionR(f) for any hypothesis velocity field f and proved thatR(f) con-
trols the Wasserstein-2 distance between the trajectory of distributions generated by f and the exact
solution to the FPE. When the hypothesis velocity field is parameterized by a time-varying neural
network, we showed that the stochastic gradient of the proposed potential function with respect to
the parameter of the neural network can be computed using the adjoint method.
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Appendix A. Proof of Lemma 1

Proof From the change-of-variables formula of the pushforward measure, we have∫
X
gdX]α =

∫
X−1(X )

g ◦Xdα. (42)

Let Π : Rd → X be that modulus operator such that given any input x ∈ Rd, Π(x) is the unique
element in X such that

x = Π(x) +

d∑
i=1

nil · ei, (43)

for some ni ∈ Z, i = 1, . . . , d. In the following, we show that (1) X−1(X ) does not overlap with
itself under the operator Π, i.e. there do not exist two points x1, x2 ∈ X−1(X ) with x1 6= x2 such
that Π(x1) = Π(x2) and (2) Π(X−1(X )) = X . Suppose that these two statements hold, we have∫

X−1(X )
g ◦Xdα

(1)
=

∫
Π(X−1(X ))

g ◦Xdα
(2)
=

∫
X
g ◦Xdα. (44)

To prove (1), suppose that there exist x1, x2 ∈ X−1(X ) with x1 6= x2 such that Π(x1) = Π(x2).
There must exist mi ∈ Z, i ∈ {1, . . . , d} such that x1 = x2 + (· · · ,mi × l, · · · ) and that mi’s
cannot be all zeros. Since X(x)− x is l-periodic, we have

X(x1)− x1 = X(x2)− x2 ⇒ X(x1) = X(x2) + (· · · ,mi × l, · · · ). (45)

Since at least one of the mi’s are non-zero, it is impossible that X(x1) and X(x2) belong to X
simultaneously, which leads to a contradiction.
To prove (2), we first observe that Π(X−1(X )) ⊆ X holds trivially due to the definition of Π, and
hence we just need to show that X ⊆ Π(X−1(X )). We prove via contradiction. Suppose that there
exists y ∈ X such that y /∈ Π(X−1(X )). From the definition of the operator Π, we can write

X(y) = Π(X(y)) + (· · · ,mi × l, · · · ), (46)

for some mi ∈ Z, i ∈ {1, . . . , d}. Since X−1 is periodic, we have that

y − (· · · ,mi × l, · · · ) = X−1(X(y)− (· · · ,mi × l, · · · )) (46)
= X−1(Π(X(y))) ∈ X−1(X ). (47)

However, the above statement means y ∈ Π(X−1(X )) which contradicts to the definition of y.
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Appendix B. Proof of Proposition 2

Proof First, compute that

d

dt
∇ log ρ1

t (x(t)) =
∂

∂t
∇ log ρ1

t (x(t)) +
dx(t)

dt

∂

∂x
∇ log ρ1

t (x(t))

= ∇ ∂

∂t
log ρ1

t (x(t)) + ft(x(t))∇2 log ρ1
t (x(t)).

Using the Fokker Planck equation (1), we derive

∂

∂t
log ρ1

t = −divft −∇ log ρ1
t · ft, (48)

which together with

∇(∇ log ρ1
t · ft) = ∇2 log ρ1

t ft + (∇ft)>∇ log ρ1
t

allows us to compute

d

dt
∇ log ρ1

t (x(t)) = −∇divft(x(t))− (∇ft(x(t)))>∇ log ρ1
t (x(t)).

In the above computation, we use the fact that the term ∇2 log ρ1
t (x(t))ft(x(t)) is canceled.

Appendix C. Proof of Proposition 3

Proof For compactness, we use ∂i,j to denote ∂2

∂xi∂xj
. First, compute that

d

dt
∂i,j log ρ1

t,θ(x(t)) =
∂

∂t
∂i,j log ρ1

t (x(t)) +
∂

∂x
∂i,j log ρ1

t (x(t)) · dx(t)

dt

= ∂i,j
∂

∂t
log ρ1

t (x(t)) +
∂

∂x
∂i,j log ρ1

t (x(t)) · ft(x(t)).

Using the Fokker Planck equation (1), we derive

∂

∂t
log ρ1

t = −divft −∇ log ρt · ft, (49)

which together with

∂i,j(∇ log ρ1
t · ft) = ∂i,j∇ log ρ1

t · ft + ∂i∇ log ρ1
t · ∂jft

+∂ift · ∂j∇ log ρ1
t + ∂i,jft · ∇ log ρ1

t

allows us to compute

d

dt
∂i,j log ρ1

t,θ(x(t)) = −∂i,jdivft(x(t))− ∂i∇ log ρt(x(t)) · ∂jft(x(t))

−∂ift(x(t)) · ∂j∇ log ρt(x(t))− ∂i,jft(x(t)) · ∇ log ρt(x(t)).

In the above computation, we use the fact that the term ∂
∂x∂i,j log ρ1

t (x(t)) · ft(x(t)) is canceled.
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Appendix D. Proof of Proposition 4

Proof For compactness, we use ∂i,j,k to denote ∂3

∂xi∂xj∂xk
. First, compute that

d

dt
∂i,j,k log ρ1

t,θ(x(t)) =
∂

∂t
∂i,j,k log ρ1(t, x(t); θ) +

∂

∂x
∂i,j,k log ρ1(t, x(t); θ) · dx(t)

dt

= ∂i,j,k
∂

∂t
log ρ1(t, x(t); θ) +

∂

∂x
∂i,j,k log ρ1(t, x(t); θ) · ft(x(t)).

Using the Fokker Planck equation (1), we derive

∂

∂t
log ρ1

t = −divft −∇ log ρt · ft, (50)

which together with

∂i,j,k(∇ log ρ1
t · ft) = ∂i,j,k∇ log ρ1

t · ft + ∂i,j∇ log ρ1
t · ∂kft

∂i,k∇ log ρ1
t · ∂jft + ∂i∇ log ρ1

t · ∂j,kft
∂j,k∇ log ρ1

t · ∂ift + ∂j∇ log ρ1
t · ∂i,kft

∂k∇ log ρ1
t · ∂i,jft +∇ log ρ1

t · ∂i,j,kft

allows us to compute

d

dt
∂i,j,k log ρ1

t ((x(t))) = − ∂i,j,kdivft(x(t))− ∂i,j∇ log ρ1
t (x(t)) · ∂kft(x(t))

− ∂i,k∇ log ρ1
t (x(t)) · ∂jft(x(t))− ∂i∇ log ρ1

t (x(t)) · ∂j,kft(x(t))

− ∂j,k∇ log ρ1
t (x(t)) · ∂ift(x(t))− ∂j∇ log ρ1

t (x(t)) · ∂i,kft(x(t))

− ∂k∇ log ρ1
t (x(t)) · ∂i,jft(x(t))−∇ log ρ1

t (x(t)) · ∂i,j,kft(x(t)).

In the above computation, we use the fact that the term ∂i,j,k∇ log ρ1
t (x(t)) · ft(x(t)) is canceled.

Appendix E. Gradient Computation via Adjoint Method

Consider the ODE system

ṡ(t) = ψ(s(t), t, θ)

s(0) = s0,

and the objective loss

`(θ) =

∫ T

0
g(s(t), t, θ)dt. (51)

The following proposition computes the gradient of ` w.r.t. θ. We omit the parameters of the
functions for succinctness. We note that all the functions in the integrands should be evaluated at
the corresponding time stamp t, e.g. b> ∂h∂θdt abbreviates for b(t)> ∂

∂θh(ξ(t), x(t), t, θ)dt.
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Proposition 12
d`

dθ
=

∫ T

0
a>
∂ψ

∂θ
+
∂g

∂θ
dt. (52)

where a(t) is solution to the following final value problems

ȧ> + a>
∂ψ

∂s
+
∂g

∂s
= 0, a(T ) = 0, (53)

Proof Let us define the Lagrange multiplier function (or the adjoint state) a(t) dual to s(t). More-
over, let L be an augmented loss function of the form

L = `−
∫ T

0
a>(ṡ− ψ)dt. (54)

Since we have ṡ(t) = ψ(s(t), t, θ) by construction, the integral term in L is always null and a can
be freely assigned while maintaining dL/dθ = d`/dθ. Using integral by part, we have∫ T

0
a>ṡ dt = a(t)>s(t)|T0 −

∫ T

0
s>ȧ dt. (55)

We obtain

L = −a(t)>s(t)|T0 +

∫ T

0
ȧ>s+ a>ψ + g dt. (56)

Now we compute the gradient of L w.r.t. θ as

d`

dθ
=

dL
dθ

= −a(T )>
dx(T )

dθ
+

∫ T

0
ȧ>

ds

dθ
+ a>

(
∂ψ

∂θ
+
∂ψ

∂s

ds

dθ

)
dt+

∫ T

0

∂g

∂s

ds

dθ
+
∂g

∂θ
dt,

which by rearranging terms yields to

d`

dθ
=

dL
dθ

= −a(T )>
dx(T )

dθ
+

∫ T

0
a>
∂ψ

∂θ
+
∂g

∂θ
dt+

∫ T

0

(
ȧ> + a>

∂ψ

∂s
+
∂g

∂s

)
ds

dθ
dt.

Now by taking a satisfying the final value problems

ȧ> + a>
∂ψ

∂s
+
∂g

∂s
= 0, a(T ) = 0, (57)

we derive the result
d`

dθ
=

∫ T

0
a>
∂ψ

∂θ
+
∂g

∂θ
dt. (58)
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Appendix F. Proof of Lemma 8

Proof Recall the definition of ρ1
t in (13). ρ1

t is l-periodic since it can be expressed as a push-forward
measure of an l-periodic measure α0 under an l-periodic mapX(t, ·). Consequently,∇ log ρ1

t is also
l-periodic, which together with the l-periodicity of V shows that the map Y (t, ·) is also l-periodic.
Following a similar argument, we see that ρ2

t is also l-periodic.
To prove that ‖∇ log ρ1

t (x)‖ is bounded for all x ∈ X , recall Proposition 2 where we show that
for any x ∈ X

∇ log ρ1
t (x) = ∇ logα0(x(0))−

∫ t

0
∇divfs(x(s)) +∇fs(x(s))>∇ log ρ1

s(x(s))ds. (59)

Here x(s)s∈[0,t] is the trajectory of the final value problem

dx(s)

ds
= fs(x(s)), x(t) = x. (60)

Using Grönwall’s inequality, we can bound

‖∇ log ρ1
t (x)‖ ≤ (L0 + tLf ) exp(tLf ) ≤ (L0 + TLf ) exp(TLf ). (61)

To prove that ‖∇ log ρ1
t (x)‖ is Lipschitz continuous for all x ∈ X , recall Proposition 3 where we

show that for any x ∈ X

∇2 log ρ1
t (x) = ∇2 logα0(x(0))−

∫ t

0
∇2divfs(x(s)) +

(
∇2 log ρ1

s(x(s))
)> Jfs(x(s))

+ (Jfs(x(s)))>∇2 log ρ1
s(x(s)) +∇2fs(x(s))⊗1 ∇ log ρ1

s(x(s))ds,

where x(s) is the trajectory defined in (60), Jf denotes the Jacobian matrix of a vector valued
function f , and

∇2fs(x(s))⊗1 ∇ log ρ1
s(x(s)) =

∇2(fs)[1](x(s))∇ log ρ1
s(x(s))

· · ·
∇2(fs)[d](x(s))∇ log ρ1

s(x(s))

 ∈ Rd×d. (62)

Here f[i] denotes the ith entry of a vector valued function f . We can bound the spectral norm
‖∇2 log ρ1

t (x)‖op by (note that x(t) = x)

‖∇2 log ρ1
t (x(t))‖op ≤ L0 +

∫ t

0
Lf + 2Lf‖∇2 log ρ1

s(x(s))‖op + LfB1ds

= L0 + t(Lf + LfB1) +

∫ t

0
2Lf‖∇2 log ρ1

s(xs)‖ds,

where we denote B1 = (L0 + TLf ) exp(TLf ). Use Grönwall’s inequality to derive

‖∇2 log ρ1
t (x)‖op ≤ (L0 + t(Lf +B1Lf )) exp(2tLf ) ≤ (L0 +T (Lf +B1Lf )) exp(2TLf ), (63)

To see that ‖∇A[f ]t‖op is bounded over X , observe that

∇A[f ]t = −∇2Vt −∇2 log ρ1
t , (64)
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which is bounded due to Assumption 3 and (63). To see that ∇A[f ]t is Lipschitz continuous, we
need to prove that the spectral norm of the following tensor is bounded

∇2A[f ]t = −∇3Vt −∇3 log ρ1
t . (65)

The first term is bounded due to Assumption 3. To bound the second term, use Proposition 4 to
bound (note that x(t) = x)

‖∇3 log ρ1
t (x(t))‖op ≤ ‖∇3 logα0(x(0))‖op

+

∫ t

0
‖∇3divfs(x(s))‖op + 3‖∇2fs(x(s))‖op‖∇2 log ρ1

s(x(s))‖op

+ 3‖∇fs(x(s))‖op‖∇3 log ρ1
s(x(s))‖op + ‖∇ log ρ1

s(x(s))‖‖∇3fs(x(s))‖opds,

Using Grönwall’s inequality, we can bound

‖∇3 log ρ1
t (x)‖op ≤ (L0 + t(Lf +B2Lf +B1Lf )) exp(3tLf )

≤ (L0 + T (Lf +B2Lf +B1Lf )) exp(3TLf ),

where we denote B2 = 3(L0 + T (Lf +B1Lf )) exp(2TLf ).
The boundedness of ‖∇divA[f ]t(x)‖ and the Lipschitz continuity of∇divA[f ]t hold following

the same argument above under the assumptions 1 to 3.

F.1. Proof of Lemma 9

Proof In this proof, for simplicity of the notation, we use ρ1
t and ρ2

t to denote the probability density
functions of systems (1) and (2) and use Xt and Yt to denote the corresponding particle maps.

The Wasserstein-2 metric between ρ1
t and ρ2

t can be written as:

W 2
2 (ρ1

t , ρ
2
t ) = inf

P : P]ρ
1
t=ρ

2
t

∫
X
‖x− P (x)‖2dρ1

t (x),

where the infimum is taken over all the pushforward maps P such that P]ρ1
t = ρ2

t . From the
Lipschitz continuity of the velocity field f in Assumption 2, the particle map Xt of System (1) is
invertible. Moreover, recall that Systems (1) and (2) have the same initial distribution α0. We have
an upper bound on W 2

2 (ρ1
t , ρ

2
t ) by considering a special map Pt,θ = Yt ◦ X−1

t , where we use Xt

and Yt to denote the particle maps of systems (1) and (2) compactly (see Table 1). We have the
feasibility of Pt,θ by the definitions of ρ1

t and ρ2
t ,

Pt,θ]ρ
1
t = Yt](X

−1
t ◦Xt)]α0 = ρ2

t . (66)

Additionally, we have that ‖x− Pt,θ(x)‖ is l-periodic:

‖x+ lei − Pt,θ(x+ lei)‖ = ‖x+ lei − Yt ◦X−1
t (x+ lei)‖

(1)
= ‖x+ lei − Yt(X−1

t (x) + lei)‖
(2)
= ‖x+ lei − (Yt(X

−1
t (x)) + lei)‖ = ‖x− Pt,θ(x)‖,
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where in (1) we use X−1
t (x+ lei) = X−1

t (x) + lei since

Xt(X
−1
t (x+ lei)− lei)− (X−1

t (x+ lei)− lei) = Xt(X
−1
t (x+ lei))−X−1

t (x+ lei)

⇔ Xt(X
−1
t (x+ lei)− lei) = x ⇒ X−1

t (x+ lei) = X−1
t (x) + lei,

and in (2) we use Yt(a+ lei) = Yt(a) + lei following a similar argument. Therefore, we can bound

W 2
2 (ρ1

t , ρ
2
t ) ≤

∫
X
‖x− Pt,θ(x)‖2dρ1

t (x) =

∫
X
‖Xt(x)− Yt(x)‖2dα0(x)

=

∫
X
‖xt − yt‖2dα0(x0),

where we used the change-of-variables formula of the push-forward measure from Lemma 1 in
the first equality and {xt}t∈[0,T ] and {yt}t∈[0,T ] are the trajectory of particles initialized from x0

but driven by Systems (1) and (2) respectively. Hence, we can bound the Wasserstein-2 distance
between the trajectory of probability distributions by studying the distance between the particles
driven by the two systems, which is proved to be bound by R(f) in expectation (x0 ∼ α0) in the
following.

Suppose two particles are initialized from the same position x0, but follow System (1) and
System (2) respectively. The change of their distance at time t can be computed by

d

dt
‖xt − yt‖2 = 2 (xt − yt)> (

dxt
dt
− dyt

dt
) = 2 (xt − yt)> (f(t, xt)−A[f ](t, yt))

= 2 (xt − yt)> (f(t, xt)−A[f ](t, xt)) + 2 (xt − yt)> (A[f ](t, xt)−A[f ](t, yt))

≤ 2‖xt − yt‖2 + ‖f(t, xt)−A[f ](t, xt)‖2 + ‖A[f ](t, xt)−A[f ](t, yt)‖2,

where A[f ] is the velocity field of System (2) and the transformation A is defined in equation (14).
Bound the the last term on the RHS can be bounded by L2

v‖xt− yt‖2 using the Lipschitz continuity
of A[f ] in Lemma 8 to derive

d

dt
‖xt − yt‖2 ≤ (2 + L2

v)‖xt − yt‖2 + ‖f(t, xt)−A[f ](t, xt)‖2

⇒ d

dt
exp(−t(2 + L2

v))‖xt − yt‖2 ≤ exp(−t(2 + L2
v))‖f(t, xt)−A[f ](t, xt)‖2

Integrate from t = 0 to τ . By noting that x0 = y0 and exp
(
−(2 + L2

v)t
)
< 1, we have

exp
(
−(2 + L2

v)τ
)
‖xτ − yτ‖2 ≤

∫ τ

0
‖f(t, xt)−A[f ](t, xt)‖2dt.

Take expectation with respect to x0 ∼ α0. We derive that for any τ ∈ [0, T ]

W 2
2 (ρ1

t , ρ
2
t ) ≤

∫
X
‖xτ − yτ‖2dα0(x0) ≤ exp

(
(2 + L2

v)T
)
R(f). (67)
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F.2. Proof of Lemma 10

Proof For compactness, in this proof, we denote ft(x) = f(t, x) and A[f ]t(x) = A[f ](t, x). We
use ρ1

t and ρ2
t to denote the probability density functions of systems (1) and (2) and use Xt and Yt

to denote the corresponding particle maps (see Table 1).
Since both∇ log ρ1

t and∇ log ρ2
t are l-periodic, using the change of variable formula in Lemma

1 , we have

ξt = ‖∇ log ρ1
t ◦ Yt −∇ log ρ2

t ◦ Yt‖2α0
(68)

Denote yt = Yt(y0) and xt = Xt(x0) with y0 = x0. For any x0, we have(
∇ log ρ1

t ◦ Yt
)

(x0) =
(
∇ log ρ1

t (yt)−∇ log ρ1
t (xt)

)
+∇ log ρ1

t (xt). (69)

Hence ξt can be bounded by

ξt ≤ ‖∇ log ρ1
t (yt)−∇ log ρ1

t (xt)‖2α0
+ ‖∇ log ρ1

t (xt)−∇ log ρ2
t (yt)‖2α0

. (70)

The first term is of the order O(‖xt − yt‖2α2
0
) from the Lipschitz continuity of ∇ log ρ1

t . To bound

the second term, note that ∇ log ρ1
t (xt) can be computed from from Proposition 2,

∇ log ρ1
t (xt) = ∇ logα0(x0)−

∫ t

0
∇div (fτ (xτ )) + [∇fτ (xτ )]>∇ log ρ1

t (xτ )dτ

and that
(
∇ log ρ2

t ◦ Yt
)

(y0) = ∇ log ρ2
t (yt) can be similarly computed as

∇ log ρ2
t (yt) = ∇ logα0(y0)−

∫ t

0
∇div (A[f ]τ (yτ )) + [∇A[f ]τ (yτ )]>∇ log ρ2

t (yτ )dτ.

Hence, the second term can be decomposed as follows:

∇ log ρ1
t (xt)−∇ log ρ2

t (yt) =

∫ t

0
∇div (A[f ]τ (yτ ))−∇div (fτ (xτ ))︸ ︷︷ ︸

Aτ

dτ

+

∫ t

0
[∇A[f ]τ (yτ )]>∇ log ρ2

t (yτ )− [∇fτ (xτ )x]>∇ log ρ1
t (xτ )︸ ︷︷ ︸

Bτ

dτ.

Recall that δτ = fτ −A[f ]τ in (15). To bound the norm of Aτ , we have

Aτ = ∇div (A[f ]τ (yτ ))−∇div (A[f ]τ (xτ )) +∇div(δτ (xτ ))

and hence using xτ ∼ ρ1
τ = Xτ ]α0 and the Lipschitz continuity of ∇divA[f ]t we have

‖Aτ‖2α0
= O(‖yτ − xτ‖2α0

+ ‖∇div(δτ )‖2ρ1τ ).

To bound the norm of Bτ , note that

Bτ = ∇A[f ]τ (yτ )>∇ log ρ2
τ (yτ )−∇A[f ]τ (yτ )>∇ log ρ1

τ (yτ ) (a)

+∇A[f ]τ (yτ )>∇ log ρ1
τ (yτ )−∇A[f ]τ (xτ )>∇ log ρ1

τ (yτ ) (b)

+∇A[f ]τ (xτ )>∇ log ρ1
τ (yτ )−∇fτ (xτ )>∇ log ρ1

τ (yτ ) (c)

+∇fτ (xτ )>∇ log ρ1
τ (yτ )−∇fτ (xτ )>∇ log ρ1

τ (xτ ) (d)
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Using the boundedness of∇fτ and the Lipschitz continuity of∇ log ρ1
τ , we have ‖d‖2α0

= O(‖xτ−
yτ‖2α0

). Similarly, we have ‖b‖2α0
= O(‖xτ − yτ‖2α0

). Note that

c = −∇δτ (xτ )>∇ log ρ2
τ (yτ ). (71)

Using the boundedness of ∇ log ρ2
t , we have

‖c‖2α0
= O(‖∇δτ‖2ρ1t ). (72)

Finally, using the boundedness of ∇A[f ]τ , we have that

‖a‖2α0
≤ Lv‖∇ log ρ2

τ ◦ Yτ −∇ log ρ1
τ ◦ Yτ‖2α0

= Lv‖∇ log ρ2
τ −∇ log ρ1

τ‖2ρ(2)τ = Lvξτ . (73)

Therefore, by noting that

‖∇ log ρ1
t (xt)−∇ log ρ2

t (yt)‖2α0
≤
∫ t

0
‖Aτ‖2α0

+ ‖Bτ‖2α0
dτ, (74)

we bound (note that ‖δτ‖ρ1τ = ‖δτ ◦Xτ‖α0)

ξt ≤
∫ t

0
O(‖yτ − xτ‖2α0

+ ‖∇div(δτ )‖2ρ1τ + ‖∇δτ‖2ρ1τ ) + Lvξτdτ

≤
∫ t

0
O(‖δτ‖2α0

+ ‖∇div(δτ )‖2ρ1τ + ‖∇δτ‖2ρ1τ ) + Lvξτdτ

≤
∫ t

0
O(R(f)) + Lvξτdτ

where we use Lemma 9 in the second inequality. Using the Grönwall’s inequality of the integral
form for continuous functions, we have there exists some constant C̄(T ) such that

ξt ≤ C̄(T )R(f) exp(tLv) ≤ C̄(T )R(f) exp(TLv) (75)

Integrating τ from 0 to t, we have for any t ∈ [0, T ]∫ t

0
ξτdτ ≤ C̄(T )T exp(TLv)R(f) = C(T )R(f), (76)

where we denote C(T ) = C̄(T )T exp(TLv).
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