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Abstract

In this paper we study the problem of multiclass classification with a bounded
number of different labels k, in the realizable setting. We extend the traditional
PAC model to a) distribution-dependent learning rates, and b) learning rates under
data-dependent assumptions. First, we consider the universal learning setting
(Bousquet, Hanneke, Moran, van Handel and Yehudayoff, STOC’21), for which
we provide a complete characterization of the achievable learning rates that holds
for every fixed distribution. In particular, we show the following trichotomy:
for any concept class, the optimal learning rate is either exponential, linear or
arbitrarily slow. Additionally, we provide complexity measures of the underlying
hypothesis class that characterize when these rates occur. Second, we consider
the problem of multiclass classification with structured data (such as data lying
on a low dimensional manifold or satisfying margin conditions), a setting which
is captured by partial concept classes (Alon, Hanneke, Holzman and Moran,
FOCS’21). Partial concepts are functions that can be undefined in certain parts
of the input space. We extend the traditional PAC learnability of total concept
classes to partial concept classes in the multiclass setting and investigate differences
between partial and total concepts.

1 Introduction

Classifying data into multiple different classes is a fundamental problem in machine learning that has
many real-life applications, such as image recognition, web advertisement and text categorization.
Due to its importance, multiclass classification has been an attractive field of research both for
theorists [NT88, BCHL95, RBR09, Nat89, DSBDSS11, DSS14, SSBD14] and for practitioners
[SSKS04, Col04, Aly05]. Essentially, it boils down to learning a classifier & from a domain A" to a
label space ), where || > 2, and the error is measured by the probability that /(z) is incorrect.
In this work, we focus on the setting where the number of labels is finite and we identify ) with
[k] :=={0,1, ..., k} for some constant k € N.

Multiclass PAC Learning. The PAC model [Val84] constitutes the gold-standard learning framework.
A seminal result in learning theory [VC71, BEHW89] characterizes PAC learnability of binary classes
(k = 1) through the Vapnik-Chervonenkis (VC) dimension and provides a clear algorithmic landscape
with the empirical risk minimization (ERM) principle yielding (almost) optimal statistical learning
algorithms. The picture established for the binary setting extends to the case of multiple labels when
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the number of classes || is bounded. The works of [NT88, Nat89] and [BCHL95] identified natural
extensions of the VC dimension such as the Natarajan dimension whose finiteness characterizes
multiclass learnability in this setting. Moreover, the ERM principle still holds and achieves the
desired learning rate by essentially reducing learnability to optimization. The fundamental result of
the multiclass PAC learning (in the realizable setting) can be summarized in the following elegant
equation for any n € N which we explain right-after:

inf sup Eler(h,)] = min (ék (W) ,1> , (1)

h,, PERE(H)

where Ndim(# ) stands for the Natarajan of 7 and ©, subsumes logarithmic factors and dependencies
on k. In words, assume that n is the number of training samples and let H C [k]* be a set of multiclass
classifiers mapping the elements of the domain X to [k] that the learner has access to. The learner
observes n labeled examples (x,y) € X' X [k] generated i.i.d. from some unknown distribution P
with the constraint that P is realizable with respect to H, i.e., there is some h € H that has (almost

surely) zero classification error. The learner then outputs a guess hypothesis ﬁn : X = [k]. The

o~

fundamental theorem of PAC learning, as shown above, controls the expected error Eler(h,,)], where

o~ ~

er(hy) = Pr(g )~p[hn(x) # y|, in a minimax sense, i.e., it controls the performance of the best

algorithm ﬁn (inf) against the worst-case realizable distribution P € RE(H) (sup) and states that the
following dichotomy occurs: if the Natarajan dimension Ndim(7) is finite, the error rate decreases
as, roughly, 1/n, so H is PAC learnable at a linear rate; otherwise, the class H is not PAC learnable.
Additionally, this theory provides a clean algorithmic landscape: the ERM principle, which means
outputting some classifier in 7 that best fits the training set, achieves the rates of Eq. (1).

Towards Novel Learning Theories. While the PAC model provides a solid and attractive theoretical
framework, it fails to (fundamentally) capture the real-world behavior of various applied ML problems.
In this work, we focus on the following two points of criticism for the standard PAC model. The first
natural point concerns the supremum over all realizable distributions in Eq. (1).

Observation 1. The PAC model is distribution-independent and captures the worst-case learning
rate. Is it possible to design a learning theory that provides distribution-dependent learning rates?

Another critique is that one cannot express natural data-dependent assumptions through the PAC
framework. For instance, high-dimensional data may lie in a low-dimensional manifold. To be more
specific, consider the task of classifying images of vehicles. The representation of such images
corresponds to a low-dimensional subset of the space of all possible images, most of which do not
correspond to vehicles. A prominent way to capture such assumptions is via partial concepts: these
are functions which can be undefined on a subset of X', a departure from the traditional model.

Observation 2. The PAC model only considers total concept classes, i.e., H C [k]*, which cannot
express data-dependent constraints. Is it possible to design a learning theory for partial concepts
h:X —{0,1,....k, %}, where h(x) = * means that h is undefined at x?

The aim of this paper is to develop (i) a distribution-dependent learning theory for multiclass
classification and (ii) a learning theory for partial multiclass concept classes in the distribution-
independent setting?. We comment that we focus on the realizable setting that already poses important
challenges and requires novel ideas and we believe that our results can be extended to the agnostic
case, which is left for future work. We remark that such theories for binary classification were recently
developed [BHM ™21, AHHM?22]. However, in various practical applications, such explanations may
not suffice, since it is rarely the case that there are only two classes. As it is already evident from the
PAC setting, moving from binary classification to multiclass classification is not trivial [DSBDSS11].
We now discuss Observation 1 and 2; we underline that our goal is not to replace, but to build upon
and complement, the traditional PAC model, which constitutes the bedrock of learning theory.

Distribution-Dependent Learning Rates. In many modern machine learning applications the

o~

generalization error E[er(h,,)] drops exponentially fast as a function of the sample size n [CT90,

CT92, Sch97, VL21]. However, the traditional PAC learning theory predicts merely O(d /n) rates
in the realizable setting, where d is the complexity measure of the underlying concept class that
the algorithm is trying to learn. A possible explanation for this discrepancy between the theoretical

2While we believe that one could design a unified learning theory addressing the two questions at once, we
prefer to provide two separate theories, since they are both interesting in their own.



guarantees and the empirical performance of the learning algorithms is the worst-case nature of
the PAC guarantees. Notice that in Eq. (1), for any fixed learning algorithm, one considers its
performance against the worst distribution for it. In particular, this means that as the sample size n

increases and new classifiers h,, are produced, the distribution that is used as a benchmark can differ.
However, in many practical applications, one considers some fixed distribution P and measures the
performance of the classifier as n — oo without changing P. Hence, there is an important need to
study mathematical models that capture this behavior of learning algorithms and not just the minimax
one. One such approach that was recently proposed by [BHM™21] is to study universal learning
rates, which means that the learning rates guarantees hold for every fixed (realizable) distribution P,
but there is not a uniform bound over all of the distributions. To be more precise, H is learnable at
rate R (where lim,,_, o R(n) = 0) in the universal setting if

3h,, : VP € RE(H), 3C = C(P),c = ¢(P) > 0 so that Eler(h,)] < C - R(c-n),¥n € N. (2)

Note that the above equation is the same as in the PAC model with the exception of a change between
the existential quantifiers: in PAC, the focus is on the case where 3C,c > 0 : VP € RE(H) the
guarantee holds (which expresses uniformity), while in the universal setting distribution-dependent
constants are allowed. This subtle change in the definition can make the error-rate landscape vastly

different. As an example, consider the case where for &, we have that er(h,,) < C(P)e=<(P)"_for
every distribution P, where C(P), ¢(P) are some distribution-dependent constants. When we take
the pointwise supremum over all of these infinitely many distributions, it can be the case that the
resulting function drops as C’/n, where C’ is a distribution-independent constant [BHM*21].
Partial Concept Classes. The motivation behind Observation 2 is that, in various practical learning
tasks, the data satisfy some special properties that make the learning process simpler. For instance, it
is a common principle to use classification with margin where the points in the dataset have a safe gap
from the decision boundary. Such properties induce data-dependent assumptions that the traditional
PAC learning theory framework provably fails to express. In fact, existing data-dependent analyses
diverge from the standard PAC model [STBWA98, HWO01] and provide problem-specific approaches.
Thus, there is a need for a formal framework that allows us to express such data-dependent restrictions
and study these problems in a unified and principled way. Recently, [AHHM22] proposed an elegant
extension of the binary PAC model to handle such tasks via the framework of partial concept classes.
As an intuitive example, a halfspace with margin is a partial function that is undefined inside the
forbidden margin and is a well-defined halfspace outside the margin boundaries.

1.1 The Traditional Multiclass Learning Problem

Let [k] = {0,1,...,k} for some fixed positive integer & € N. We consider a domain X and a
concept class H C [k]*. A classifier is a universally measurable® function h : X — [k]. The
error rate of a classifier & with respect to a probability distribution P on X X [k] is equal to
er(h) = erp(h) = Pr(, ,p[h(xz) # y|. We focus on the setting where P is realizable, i.e.,
inf,c3 erp(h) = 0. Formally, a (deterministic*) learning algorithm is a sequence of universally
measurable functions, which take as input a sequence of n independent pairs (X;,Y;) ~ P (training

set) and output a classifier 1, : X — V. The goal is to come up with algorithms whose Eler (%, )]
admits a fast decay as a function of n, where the expectation is over the training set.

1.2 Universal Multiclass Learning: Our Results

The aim of our first theory is to fully characterize the admissible universal rates of learning, i.e.,

o~

Eler(h,,)], in the multiclass classification setting with a bounded number of labels. The following defi-
nition formalizes this notion of achievable rate in the (realizable) universal learning model [BHM*21].
Definition 1 (BHM*21]). Let H C [k]* and let R : N — [0, 1], with R(n) — 0, be a rate function.

We say that H is learnable at rate R if there exists a learning algorithm iAL" such that for every
realizable distribution P on X X [k] with respect to H, there exist distribution-dependent C,c > 0

o~

Sor which Eler(h,)] < CR(cn), for alln € N. Also, H is not learnable at rate faster than R if for
any learning algorithm h.,, there exists a realizable distribution P on X x [k] with respect to H and

3We discuss measurability formally in Appendix B.5
*We focus for simplicity on deterministic learners. Our results extend to randomized algorithms.
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distribution-dependent C,c > 0 for which Eler(h,,)] > CR(cn) for infinitely many n € N. H is
learnable with optimal rate R if it is learnable at rate R and is not learnable faster than R. Finally,
‘H requires arbitrarily slow rates if, for every R(n) — 0, H is not learnable at rate faster than R.

In the universal multiclass setting, we show that the following fundamental trichotomy occurs (in
comparison with the dichotomy witnessed in the uniform PAC model). This result is a theoretical
justification of the exponential error rates observed in practice.

Theorem 1. Fix a constant k € N. Consider a hypothesis class H C [k]* with |H| > k + 2. Then,
exactly one of the following holds for the learning rate of H in the realizable case:

* H is learnable at an optimal rate e™".

n

* H is learnable at an optimal rate 1 /n.

* ‘H requires arbitrarily slow rates.

We mention that [H| > k + 2 comes without loss of generality.> In contrast to the standard PAC
model, any concept class is learnable in the universal rates setting [HKSW20]. The analogue of
non-learnability in the uniform setting is the case of arbitrarily slow rates. Our second result is the
specification of some combinatorial complexity measures of H that characterize the optimal learning
rate of this class. Let us first provide some informal definitions of these measures. We begin with the
notion of multiclass Littlestone trees, which extends the binary Littlestone trees from [BHMT21].

Definition 2 (Informal (see Definition 11)). A multiclass Littlestone tree for H C [k|* is a complete
binary tree of depth d < oo whose internal nodes are labeled by X, and whose two edges connecting
a node fo its children are labeled by two different elements in [k|, such that every path of length at
most d emanating from the root is consistent with a concept h € H. We say that H has an infinite
multiclass Littlestone tree if there is a multiclass Littlestone tree for H of depth d = oc.

For some intuition we refer the reader to Figure 1. The above complexity measure appears in the
definition of the multiclass Littlestone dimension [DSBDSS11]. In fact, a class H C [k]* has
multiclass Littlestone dimension d if it has a multiclass Littlestone tree of depth d but not of depth
d + 1. We underline that having an infinite multiclass Littlestone tree is not the same as having an
unbounded multiclass Littlestone dimension. A class H has unbounded Littlestone dimension if for
every d € N there is some tree of depth d. However, this does not mean that there is a single infinite
tree. This is a fundamental conceptual gap between the uniform and the universal settings.

The next definition is novel and is moti-
vated by the fundamental notion of the
Natarajan dimension from the multiclass
PAC setting (see Definition 7). We
first need some terminology: a tuple

(xl,...,xt,sgo),...,sgo),sgl),...,sgl)) €

Xt x [k]t x [k]t with 81(0) + s, for
any ¢ € [t], is N-consistent with the
edge (y1,...,y:) € {0, 1} and the concept
h o€ Hif h(z;) = s for any i € [t].
Recall that if the tuple is /N -consistent with
any binary pattern y € {0, 1}%, we say that
(21, ...,2¢) is N-shattered. More gener-
ally, a path is N-consistent with a con-
cept h € H if each node of the path is
N-consistent with the edge connecting the
node with its child across the path and h.
Since the next definition might be hard to
parse, we refer the reader to Figure 2 for
some intuition.
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Figure 1: A multiclass Littlestone tree of depth 3. Each

node z,, has two children &30) #+ 67(}) where E(ul ) €
[k] for any ¢ € {0,1} and u € {0,1}*, i.e., the set
of binary strings of arbitrary length. Every branch is
consistent with some concept h € H. The figure is
adapted from [BHM*21].

Definition 3 (Informal (see Definition 12)). A Natarajan-Littlestone (NL) tree for H C k] is a
complete tree of depth d < oo so that every level 1 < t < d has branching factor 2t and nodes that

>The constraint || > k 4 2 rules out some degenerate scenarios, we kindly refer to Appendix A.2.



are labeled by X' x [k]' x [k]* (so that for all i € [t] the two labels in [k] x [k] are different) and
whose 2! edges connecting a node to its children are labeled by the elements of {0, 1}t. It must hold
that every path of length at most d emanating from the root is N -consistent with a concept h € H.
We say that H has an infinite Natarajan-Littlestone tree if there is an NL tree for H of depth d = cc.
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Figure 2: A Natarajan-Littlestone tree of depth 3. Every branch is consistent with a concept h € H.
This is illustrated here for one of the branches. Due to lack of space, not all nodes and external edges
are drawn. The figure is adapted from [BHM™21]. The root of the tree is the point (zg) with two

colors séo) #+ s((ol). In this example, the branch picks the string ’1’ and hence the node of the second
level contains the two points (29, 1) and the associated colors. We proceed in a similar manner.

An NL tree looks like a multiclass Littlestone tree whose branching factor increases exponentially
with the depth of the tree and where each node at depth ¢ in the NL tree contains ¢ points x1, ..., Tt
of X and two colorings 5(*), s(1) so that 5(°) (2;) # s(Y) (x;) for all i € [t]. Crucially, this structure
encapsulates the notion of N-shattering in the combinatorial structure of a Littlestone tree. Intuitively,
along each path in the NL tree, we encounter N-shattered sets of size increasing with the depth.
Using these two definitions, we can state our second result which is a complete characterization of
the optimal rates achievable for any given concept class H C [k]*.

Theorem 2. Fix a constant positive integer k. Consider a hypothesis class H C [k]* with |H| > k+2.
Then, one of the following holds for any n € N in the realizable case:

* If'H does not have an infinite multiclass Littlestone tree, then it is learnable at an optimal
n

rate e~ .
* If H has an infinite multiclass Littlestone tree but does not have an infinite Natarajan-
Littlestone tree, then it is learnable at an optimal rate 1 /n.

* If'H has an infinite Natarajan-Littlestone tree, then it requires arbitrarily slow rates.

It is clear that the above result implies Theorem 1. We remark that not only the achievable rates are
different compared to the uniform setting, but also the algorithms we use to get these rates differ vastly
from ERM. We sketch the main techniques in Section 2. For the formal proof, see Appendix C. We
briefly summarize our main technical contributions in this setting: using the pre-described complexity
measures of 7, we introduce novel Gale-Stewart games (see Section 1.4 for a definition) which
lead to new learning algorithms that achieve the optimal learning rates. For the exponential rates
setting, the algorithm that we obtain through the Gale-Stewart game cannot be directly used to make
predictions, since it takes as input two labels and it outputs the correct one. Hence, our predictor,
essentially, plays a tournament between all the potential labels using this function we just mentioned.
The case of linear rates is also more technically involved compared to its binary counterpart and



this is related to the fact that the Natarajan-Littlestone tree has a more complicated structure than
the VCL tree (for example, we need to check all the possible mappings from some given points to
labels). The Gale-Stewart game that handles the case of linear rates goes as follows: the adversary
presents to the learner a tuple of points x, and two (different) colorings for these points. Similarly
as before, we could not use a simpler game to obtain the result. Also, we extend the lower bounds
from [BHM™21] that hold for binary classification to the multiclass setting using our combinatorial
measures. Ensuring the realizability of the distribution in the case of arbitrarily slow rates is a bit
delicate and it raises questions about how the equivalence between various combinatorial dimensions,
like the Graph dimension and the Natarajan dimension, which is established in the PAC setting
translates to the universal setting. For further details, we refer to Section 2 and Appendix C.5.

1.3 Partial Multiclass Learning: Our Results

As we mentioned earlier, traditional PAC learning cannot capture data-dependent assumptions.
Inspired by [AHHM22], we slightly modify the basic multiclass learning problem in a quite simple
manner: instead of dealing with concept classes H C {0, 1, ..., k}** where each concept h € H is a
total function h : X — {0,1,..., k}, we study partial concept classes  C {0, 1, ..., k,x}*, where
each concept & is now a partial function and ~(z) = x means that the function 4 is undefined at
x. We define the support of h as the set supp(h) = {x € X : h(x) # x}. To illustrate the power
of partial classes, we comment that the fundamental class of d-dimensional halfspaces with margin
v > 0 and k labels can be cast as a partial class H., = {hy : W € R¥*4} where hy (z) = i € [k]if
(W; —W;)-ax >~ forall j # i and hy () = * otherwise [AHHM22]. As another example, we can
express the constraint that the data have to be in a low-dimensional space by considering the partial
concept class H = {h: R? = {0,1,...,k,x} : dim (supp(h)) < d}, where dim(S) captures the
dimension of the set of points in S. We characterize multiclass PAC learnability of partial concepts
in the realizable setting. A distribution P on X’ x {0, 1, ..., k} is realizable by # if, almost surely,
for any n, a training set (z;,¥;)ic[n) ~ P" is realizable by some partial concept h € H, i.e.,
{%i}icin) € supp(h) and h(x;) = y; for all i < n. For a partial concept h and a distribution P on
X x{0,1,...,k}, weleterp(h) = Pr(, ,.p[h(z) # |, i.e., whenever h outputs x it is counted as
a mistake. We mention that the standard combinatorial measures such as the VC or the Natarajan
dimension naturally extend to the partial setting; e.g., a partial class H VC shatters a set of points if
any binary pattern is realized by H (we forget about %).

Definition 4 (Multiclass Partial PAC Learnability [AHHM22]). A partial concept class H C
{0,1,...,k,x}* is PAC learnable if for every ¢,6 € (0,1), there exists a finite M(e,6) € N
and a learning algorithm A such that, for every distribution P on X x {0, 1, ..., k} realizable with
respect to H, for S ~ PM(<9) it holds that Prg [erp(A(S)) < €] > 1 — & . The sample complexity
of A is the value M(e,d) and the optimal sample complexity is the minimum possible value of
M(e, d) for any given €, 0.

We provide a combinatorial characterization of multiclass PAC learnability in the partial setting with a
bounded number of labels. We additionally give bounds for M (e, §) in our more general Theorem 6.

Theorem 3. Fix a positive constant k € N. For any partial concept class H C {0,1,... k,x}%, it
holds that H is PAC learnable if and only if Ndim(H) < oo.

Here, Ndim(#) is the Natarajan dimension of H (see Definition 7 and Remark 2). At first sight
this result may not seem surprising. However, its proof is different from the standard multiclass
PAC learning (for constant k), which goes through uniform convergence and ERM. In fact, such
tools provably fail [AHHM22]. For a sketch, see below Theorem 6. We complement the above
structural result with some additional insight which sheds light towards the, perhaps unanticipated,
complexity of partial concept classes. To this end, we discuss the question of disambiguation
[AKM19, AHHM22]: Can a partial Natarajan class (i.e., with finite Ndim) be represented by total
Natarajan classes? To address this task, the notion of disambiguation is required: roughly, a total
class H disambiguates the partial class # if every partial concept h € H can be extended to some
total concept h € H, i.e., h agrees with h in the support of h and assigns to the undefined points some
labels. For a formal definition of disambiguation, see Definition 15. For the case k£ = 1, [AHHM22]
provided an easy-to-learn partial class that cannot be represented by any total class of bounded VC
dimension using, surprisingly, some recent results from communication complexity and graph theory
(see e.g., [BBDG™22]). We extend this result to the multiclass setting using Sauer’s lemma, which
provides a bound on the growth function [SSBD14], and tools from the binary impossibility result.



Theorem 4 (Informal, see Theorem 16). Fix k € N. For any n € N, there exists a class H C
{0,1, ..., k, x}N with Ndim(H) = Oy.(1) such that any disambiguation H of H has Ndim(H) = oo.

We denote with O (1) a constant that depends on k. Via Theorem 3, the above partial class H is PAC
learnable; however, any disambiguation of H causes a blow-up to the Natarajan dimension. This result
showcases the complexity of partial concepts. We briefly outline the main technical contributions
in this regime: we extend the main results of [AHHM?22] for binary classification to the multiclass
setting using appropriate complexity measures. Recall that the combinatorial Sauer-Shelah-Perles

(SSP) lemma [Sau72, SSBD14] bounds the size of a (total) class H C {0,1}" by Z;;CO(H) (7;)
Notably, [AHHM?22] showed that this lemma does not hold true for partial concept classes. To obtain
our disambiguation result, we prove that the second variant of the SSP lemma, which uses the growth

function of the class [SSBD14], does hold in the partial regime, which may be of independent interest.

1.4 Preliminaries and Related Work

Preliminaries. In this section, we discuss some important preliminaries for this paper. Due to space
constraints, we refer the reader to Appendix B for a more extensive discussion.

Gale-Stewart Games. An important tool we leverage to establish our results in the universal learning
setting is the theory of Gale-Stewart (GS) games [GS53]. Every such game consists of two players, a
learner P, and an adversary P 4, and is played over an infinite sequence of discrete steps. In each step,
the adversary presents some point x; € A& to the learner and the learner picks a response y; € V;. If
some predefined condition gets violated at some step ¢, the game terminates and the learner wins. On
the other hand, if the condition does not get violated during the infinite sequence of these time-steps,
the adversary wins. The main property which characterizes the GS game is that the winning strategy
of the learner is finitely-decidable, i.e., she knows that she has won the game after playing a finite
number of rounds. [GS53, Kec12, HW 193] proved that either P, or P4 has a winning strategy, i.e.,
playing that strategy makes them win regardless of the opponents actions. Similar to [BHM™21], the
main reason we use GS games in this work is to obtain functions that are eventually correct.
Related Work. As we mentioned in the introduction, we focus on the well-studied problem of multi-
class classification [Nat89, BCHL95, RBR09, DSBDSS11, DSS14, SSBD14, BCD ™22, BDK22].
For a more detailed overview, see Appendix A.l. Our work provides two theoretical perspectives
complementing and extending the standard multiclass PAC learning. For the universal rates, the
seminal work of [BHM™21] provided a similar trichotomy for the binary setting (we obtain their
results by setting k£ = 1). The gap between exponential and linear rates was studied by [Sch97] in
some special cases. Also, [AL98] showed that there exist concept classes for which no improvement
on the PAC learning rate is possible in the universal setting. A natural approach to obtain results for
the multiclass setting is via reductions to the binary setting. In the exponential rates setting, a first
idea would be to consider for the class H C [k]”* the binary restrictions H|; = {h; : h € H}, where
h; denotes the i-th bit of the output of h. In order to obtain the desired result for exponential rates, one
has to prove that if # does not have an infinite multiclass Littlestone tree, then every #|; does not have
an infinite binary Littlestone tree. However, it is not clear how to obtain such a result. This is why we
design statistical learning algorithms for the multiclass setting from scratch, following the conceptual
roadmap introduced in [BHM™21]. We note that the existence of multiple labels requires various
novel ideas compared to the binary setting. We introduce novel Gale-Stewart games (see Algorithm 1,
Algorithm 2) in order to provide winning strategies for the learning player both in the exponential
and the linear rates settings. Finally, in terms of reductions for the linear rates setting, we provide a
sufficient condition for learnability at a linear rate using a reduction to the binary setting; however, it
is again not clear how to use these complexity measures in order to obtain lower bounds (see Open
Question 1). In general, the idea of “universal learning” has been studied in various concepts such as
universal consistency [Sto77, DGL13, Han20, HKSW20, BC21, Han22, Bla22, BJ22, BCH22] and
active learning [Han09, BHV10, Han11, HY15]. For an extended discussion, we refer to [BHM*21].
For the partial concepts setting, our work builds on the seminal work [AHHM?22] and uses tools
from [BCD*22]. The work of [AHHM22] shows that the algorithmic landscape behind partial
concept classes is quite elusive. We extend some of their results to learning scenarios where one
deals with more than two labels. Our contributions draw ideas from various directions, namely
the one-inclusion hypergraph algorithm [HLW94, RBR09, DSS14, BCD"22] which we define for-
mally in Appendix B.2, the Sauer-Shelah-Perles lemma [Sau72] and recent breakthroughs in the
intersection of graph theory and complexity theory concerning the Alon-Saks-Seymour problem
[HS12, Amal4, Go615, SA15, BDHT17, GPW18, AHHM22, BBDG22].



Remark 1 (Connection between Universal Rates and Partial Concept Classes). There is an interesting
connection between universal rates and partial concepts: in the universal learning setting, the first
step of the approach is to use the data to simulate some Gale-Stewart games and show that, with high
probability, most of them will have “converged”, i.e., the function that corresponds to the learning
strategy of the learner will be correct. In turn, this defines some data-dependent constraints. For
instance, assume that g is a successful NL pattern avoidance function, i.e., a function which takes as
input any € points x1, . . ., x; and any two (everywhere different) mappings s(9, sV from points to
labels and returns an invalid pattern, i.e., a binary pattern y of length ¢ that is not compatible with
the definition of the Natarajan dimension (i.e., there is no function h € H such that if y; = 1 then
h(x;) = s (x;) and if y; = 0 then h(z;) = s (x;), for all i € [€]). Then, we can define a partial
concept class H', the set of all functions from X to {1, ..., k,*} that satisfy the constraint of this
pattern avoidance function, and it has two important properties: its Natarajan dimension is bounded
by ¢ and a learning algorithm for H' also learns H. Hence, understanding the learnability of partial
concept classes is an essential step in coming up with more natural learning strategies in the universal
learning setting. Importantly, in both of these settings, ERM is not an optimal learning algorithm and
the one-inclusion graph predictor is an essential part in deriving results in both theories.

2 Technical Overview & Proof Sketches

In this section we briefly discuss the technical details and provide proof sketches of our main results.

Technical Overview of Universal Multiclass Learning. In the universal multiclass setting, we
provide three lower bounds and two algorithms in order to get the desired trichotomy of Theorem 1.
The first lower bound states that no class # is learnable at rate faster than exponential (see Proposi-
tion 1). Our first essential contribution is that any 7 C [k]* is learnable at (optimal) rate e~ " if and
only it has no infinite multiclass Littlestone tree. For this task, we provide Algorithm 1 that achieves
this rate. Our approach uses tools from infinite game theory (Gale-Stewart games) and set theory
(ordinals) in order to show that there exists an online learning algorithm that makes only a finite
number of mistakes. We denote this key subroutine with g; in Algorithm 1. This subroutine g; is
obtained by using the winning strategy of the game, which given the correct label and an incorrect
one outputs the correct one, to play a tournament between all the labels. Our final algorithm runs the
above subroutine g; on multiple batches using data-splitting techniques and then takes a majority
vote; the intuition behind this step is that the majority vote of various executions of our algorithm
will be much better concentrated than a single execution and will achieve the desired exponential rate.
The main technical challenge is to construct g;.

Algorithm 1 Exponential Rates Algorithm for Universal Multiclass Learning

Exponential Rates

Let g, : X — Y be an eventually correct label-
ing function (Theorem 5).

Let (X1,Y7,...,X,,Y,) be the training set.
Estimate £,, such that Prler(g; )] < 3/8.

Break the training set into N = n/%,, batches.
Create NN copies of g: g', ..., g’ where the i-th
copy is trained on the i-th batch.

Exponential GS Game

Foranyt € N:
Papicks re = (.0 y; ) € X x[K]x[H].
P 4 reveals x; to the learner Py,.
Py, chooses n; € {0,1}.

Py, wins the game if for some t € N

(heH nE&) =y" Veel.4}=0.

To predict the label of some z € X, take the
majority vote over all gz .

Our approach to construct the eventually correct function g; passes through the adversarial on-
line learning setting. As a first step, we introduce the standard multiclass online learning game
[DSBDSS11] between an adversary and a learner. In this game, the adversary picks a point
x¢ € X and the learner guesses its true label y; € [k]. In the standard mistake bound model
[Lit88, DSBDSS11], the learner’s goal is to achieve a uniformly bounded number of mistakes (and
this is associated with the multiclass Littlestone dimension and the Standard Optimal Algorithm). We
extend this model to the case where we can guarantee a finite number of mistakes for each realizable
sequence, but without an a priori bound on the number of mistakes, i.e., this number is not uniformly



bounded. This is the motivation behind Definition 2. We prove that when H does not have an infinite
multiclass Littlestone tree, there exists an online learning algorithm for this setting which makes
finitely many mistakes. This is exactly the eventually correct function g; of Algorithm 1. To be
precise, the function g; corresponds to the tournament that we run using the winning strategy after
round ¢ of the learning player in the above game.

Theorem 5 (Informal, see Theorem 9). For any H C [k]*, if H does not have an infinite multiclass
Littlestone tree, there is a strategy g;,t € N, for the learner that makes only finitely many mistakes.
Otherwise, the adversary has a winning strategy.

To prove this result, we invoke the theory of Gale-Stewart games. We introduce a novel two-player
game, the Exponential GS Game outlined in Algorithm 1. The structure of this game looks like
the standard multiclass online learning game but has some evident differences; the adversary not
only reveals a point &; but also two colors for it. Then, the learner should choose between these two.
The structure of this game (while unaccustomed) is crucial and generalizes the game of [BHM™21].

The learner wins if the class of consistent hypotheses M, ...k = 1h € H : h(&) = yém") Ve e
[1..t]} becomes empty after a finite number of rounds. If the game continues indefinitely, the adversary
wins. The intuition behind the definition of the class in Algorithm 1 is that the adversary wins as
long as there is always a hypothesis in # that is consistent with the examples (this is in parallel with
the definition of an infinite path in the multiclass Littlestone tree). Using tools from Gale-Stewart
games (Appendix B.6), we manage to show that the learning player Py, has a winning strategy if
and only if H does not have an infinite multiclass Littlestone tree. This winning strategy is in fact
the ordinal Standard Optimal Algorithm. Recall that it is possible to have unbounded multiclass
Littlestone dimension while not having an infinite multiclass Littlestone tree.

In order to quantify this intermediate state (between uniformly bounded and truly infinite), we invoke
the theory of ordinal numbers and introduce the ordinal multiclass Littlestone dimension, which
quantifies “how infinite” the multiclass Littlestone dimension is. Hence, the learner’s strategy is to
play according to the SOA where the standard Littlstone dimension is replaced by the ordinal one
(see Appendix C.1.1). We note that the analysis of the above game constitutes an important technical
contribution in the exponential rates setting. More to that, we believe that the link between the
multiclass SOA and ordinals’ theory is an interesting conceptual step. For further details concerning
the exponential rates, we refer to Appendix C.1. Our next result (Theorem 11) is a lower bound
indicating a sharp transition in the learning rate: A class H C [k]? that has an infinite multiclass
Littlestone tree is learnable no faster than 1/n. Its proof uses the probabilistic method and shows

that for any learning algorithm En, there exists a realizable distribution P over X' X [k] such that

o~

Eler(hy,)] > ©(1/n) for infinitely many n, when 7 has an infinite multiclass Littlestone tree.

We can now move to the linear rates setting where the situation is significantly more involved
technically. In this setting, we show that any H C [k]¥ is learnable at rate 1/n if and only if
it has no infinite NL tree. The structure of an NL tree indicates that the notion of the Natarajan
dimension (which characterizes learnability in the uniform setting) is invoked in order to control
the complexity/expressivity of our concept class. Compared to the exponential rates setting, we
shift our goal from hoping for a finite number of mistakes to looking for a control over the model
complexity. This model complexity is quantified by the notion of an NL pattern in the data (see
Definition 13). Conceptually, the design of the algorithm for the linear rates follows a similar path as
in the exponential case; we first develop an infinite game which makes use of the structure of the NL
trees. This Linear GS Game is also original and can be found in Algorithm 2. The precise structure
of the game is quite important for our results and various modifications of it seem to fail.

In the Linear GS Game, the adversary picks ¢ points and two colorings for these points which are
everywhere different. Then the learner responds with an NL pattern n; € {0,1}* with the goal
that there is no h € H that is N-consistent with the adversary’s input. Hence, the learner aims to
find forbidden NL patterns in the data. The finiteness of the NL tree implies the existence of a
winning strategy for the learner in the game and, hence, an algorithm (which one can construct) for
learning to rule out NL patterns. Then, we show how to simulate this game using any #-realizable
sequence and utilize the learner’s strategy to, eventually, find forbidden NL patterns in the data. The
simulation of the game is another novel part for the linear rates (see Figure 7). Intuitively, there exists
some finite number m, which depends on the data sequence, such that for any collection of m + 1
points, there exists some invalid NL pattern. The definition of the NL patterns then indicates that
we cannot N-shatter any collection of m + 1 points and hence we can work, in some sense, with



Algorithm 2 Linear Rates Algorithm for Universal Multiclass Learning

Linear Rates Linear GS Game
Let g, : Xt x [k]" x [k]" — {0,1}* be an even-| Foranyte N:

tually correct NL-pattern avoidance. fgnction. P 4 picks a point &, = ( . §tt 1)7

Let (X;,Y3,...,X,,Y,) be the training set. ) .

Estimate #,, such that Prer(g; )] < 3/8. where (i) & € X* x [k]* x [k] and
o ) n/d = (ii) 50 M) oy S(O)(g(l)) # s (§(Z )

Break the training set into N = n/t,, batches. tooot S ot Gt t \St

Create N copies of g: g',..., gV, where the P4 reveals & to the learner Py .

i-th copy is trained on the i-th batch. Py, chooses a pattern 7); € {0,1}.

Create N copies of the one-inclusion graph | Pz wins the game if for some ¢t € N

predlct(?r, each copy is equipped Wlt.h gf,; h( 5(z’ ) = (nz ( 5(1 )

To predict the label of x, take the majority vote h € H s.t. z =0.

f0r0§z<z z € [1..1]

over all the one-inclusion graph predictors.

a class whose Natarajan dimension is m. We can then use the one-inclusion hypergraph algorithm
[HLW94, RBR09, DSS14, BCD*22] (see Appendix B.2) to get a good predictor for the data. Again
a single execution of the above strategy is not sufficient, we have to use data-splitting and aggregate
our collection of predictors using the majority vote. Algorithm 2 achieves an optimal rate of 1/n.
Finally, we prove that a class with an infinite NL tree requires arbitrarily slow rates.

Technical Overview of Partial Multiclass Learning. In the partial multiclass setting with a
bounded number of labels, we first characterize learnability in terms of the Natarajan dimension. For
the proof of Theorem 3, it suffices to show the following more fine-grained Theorem 6.

Theorem 6. For any partial class H C {0, 1, ..., k, %} with Ndim(H) < oo, the sample complexity

of PAC learning H satisfies C1 - w < M(e, 5) < Oy - NdimG) log(k) 10g(1/9) 1 e
constants C1, Cy. In particular, if Ndlm(H) 00, then ‘H is not PAC learnable.

For the upper bound, we have to employ the one-inclusion hypergraph algorithm (see Appendix B.2).
Following the methodology of [AHHM?22], we extend its guarantees (which hold for total concept
classes) to the partial setting. This algorithm guarantees an expected error which can be boosted to a
high probability result using standard concentration and boosting techniques. To show that the partial
concept class H C {0, 1,..., k, x} is not learnable if it has infinite Natarajan dimension, we reduce
the problem to classification with total concepts and invoke the existing (standard) lower bound.
The main take-away from Theorem 6 is that the algorithmic landscape of partial concept classes is
provably elusive, as already indicated by the seminal work of [AHHM22]. To this end, we provide a
second result that shows when one can apply the well-understood ERM principle (which is valid
when the number of labels is bounded) with partial concepts. For details, we refer to Proposition 2.
To conclude, we address the task of disambiguation [AKM19, AHHM?22] of partial concepts (see
Definition 15). Our proof of Theorem 4 relies on an interesting observation: the seminal work of
[AHHM22] showed that the combinatorial variant of the SSP lemma [Sau72] does not hold in this
setting. This lemma has a second variant that uses the growth function [SSBD14] instead of the size
of the class. We show that a natural extension of this variant for partial classes is still correct (see
Lemma 13). Using this tool and techniques from [AHHM?22], we obtain our impossibility result.
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