
Fast Neural Kernel Embeddings

for General Activations

Insu Han1 Amir Zandieh2 Jaehoon Lee3

Roman Novak3 Lechao Xiao3 Amin Karbasi1,3

1Yale University 2Max-Planck-Institut für Informatik 3Google Research

Abstract

Infinite width limit has shed light on generalization and optimization aspects of
deep learning by establishing connections between neural networks and kernel
methods. Despite their importance, the utility of these kernel methods was limited
in large-scale learning settings due to their (super-)quadratic runtime and memory
complexities. Moreover, most prior works on neural kernels have focused on
the ReLU activation , mainly due to its popularity but also due to the difficulty
of computing such kernels for general activations. In this work, we overcome
such difficulties by providing methods to work with general activations. First, we
compile and expand the list of activation functions admitting exact dual activation
expressions to compute neural kernels. When the exact computation is unknown,
we present methods to effectively approximate them. We propose a fast sketching
method that approximates any multi-layered Neural Network Gaussian Process
(NNGP) kernel and Neural Tangent Kernel (NTK) matrices for a wide range of
activation functions, going beyond the commonly analyzed ReLU activation. This is
done by showing how to approximate the neural kernels using the truncated Hermite
expansion of any desired activation functions. While most prior works require data
points on the unit sphere, our methods do not suffer from such limitations and are
applicable to any dataset of points in R

d. Furthermore, we provide a subspace
embedding for NNGP and NTK matrices with near input-sparsity runtime and
near-optimal target dimension which applies to any homogeneous dual activation
functions with rapidly convergent Taylor expansion. Empirically, with respect
to exact convolutional NTK (CNTK) computation, our method achieves 106×
speedup for approximate CNTK of a 5-layer Myrtle network on CIFAR-10 dataset.

1 Introduction

Infinite width limit has enabled fundamental understandings of deep neural networks by establishing a
correspondence to kernel methods. In this limit, the network’s function prior is a Gaussian process [1±
3] and under gradient descent training with squared loss, the network behaves as a linearized
function [4, 5]. Underlying these limit, a core object is a neural kernel which encapsulates architectural
inductive prior in its functional form [6]. The kernel describing gradient descent dynamics, the Neural
Tangent Kernel (NTK) [4], and Neural Network Gaussian Process (NNGP) [2] kernel have been
extensively studied [7±12] since they were initially identified. In particular, the infinite width
theory has shed light on powerful abilities of deep neural networks including optimization [13±16],
generalization [17±19], regularization [20±22] and robustness [23, 24]. Beyond theoretical findings,
it has been extensively reported that neural kernels can enhance practical applications including small
data classification/regression tasks [25], neural architect search [26, 27], dataset distillation [28, 29],
federated learning [30], meta learning [31], generalization attack [32], just to name a few.
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Despite those powerful advantages, there is still a gap between practice and theory in the utility of
these kernel methods. First, the NNGP and NTK can be exactly computed recursively [2, 4] however,
the explicit forms are only known when the corresponding neural networks contain a few set of
activation functions such as ReLU or Error functions. While ReLU activation is the default choice for
many deep learning applications, recently different activation functions have shown to work well in
various domains of machine learning. For example, GeLU [33] has been widely used in Transformer
based natural language processing settings [34±36] and sinusoidal activation functions work well for
implicit neural representation (e.g. NeRF) [37, 38]. Moreover, Xie et al. [39] showed that smooth
activation functions could improve robustness compared to ReLU-based models. To enable better
theoretical understanding on the role of these activation functions in these domain, expanding the
infinite width limit tool set to general activation function is an important step forward.

Secondly, even if the exact neural kernel computation is explicitly known, it requires significantly
huge amount of computing resources. For example, it will take order of few 100 to 1,000 GPU
hours to compute the exact NTK of depth 10 convolutional neural networks with pooling on 60,000
CIFAR-10 dataset. High compute requirement is often too expensive to perform extensive studies
or use in a practical setting. While Novak et al. [40] have sped up Monte Carlo estimation of the
NTK, random sampling remains impractical due to still high kernel computation cost, and cubic (in
the training set size) inference cost. Recently, Zandieh et al. [41] proposed an efficient method to
approximate the NTK computation via sketching algorithms. Their algorithm can approximate the
neural kernels with ReLU activation orders of magnitude faster than the exact one. But it remains
unclear how sketching algorithms are extended to other activations.

In this work, we fill this gap by showing that neural kernel for arbitrary smooth activation can be
expressed in a form of series expansion. We first focus on how to express a kernel function of neural
network with a single hidden layer. Under the infinite width limit, this kernel converges to a static
function, so-called a dual kernel, and is determined by activation in the network. This is a key block
to compute the NNGP and NTK of deeper architectures. We establish an explicit expression of dual
kernel by expanding activation with the Hermite polynomial basis, and combining it with the fact that
Hermite polynomials can play a role of random features of monomial kernels. As a result, our dual
kernel formulation relies on coefficients of series expansion of the activation. In addition, we also
derive dual kernel expression of the first-order derivative of activation. The NTK can be computed by
combining these kernel computations. To the best of our knowledge, our work is the first to study the
computation of the NTK for general activations. Furthermore, we provide a subspace embedding
for NNGP and NTK matrices with near input-sparsity runtime and near-optimal target dimension.
As activation functions play an important role in modern neural network architectures, we hope our
work could empower researchers to explore properties of activations in a more principled way. Our
main contributions are summarized as follows:

• Building blocks for infinite-width neural kernel computations: We derive an explicit expression
of the dual kernel for a polynomial activation, which can be a building block for infinite-width
neural kernel computations. For non-polynomial activation, we suggest to use its truncated Hermite
expansion and analyze an error bound of the dual kernel.

• Compiling and expanding dual activation Table 1: We compile various known dual kernel for
point-wise activations providing pointers to the original work and expand the set further. We hope
our work also serve as an easy reference for various analytic expressions. We emphasize that while
many prior references lack required computation for NTK, this work is comprehensive in covering
both NNGP/NTK transformations for various activations where analytic computation is possible.

• NTK computation: Dual kernels of both activation and its derivative are essential for the
NTK computation. Since our formulation requires coefficients of Taylor series of the activation,
it is applicable to the dual kernel of derivative of the activation. In addition, we propose how to
automatically compute the dual kernel of the derivative without knowing the activation. This approach
is useful to characterize the NTK for kernel functions whose activation function is unavailable, e.g.,
normalized Gaussian, or whose dual kernel of the derivative is unavailable, e.g., GeLU and ELU.

• Kernel approximation: We analyze a pointwise error bound of approximated dual kernel
via truncated Hermite expansion of the activation with a finite degree. The estimation error can
decay polynomially faster in the degree. Furthermore, due to specific decomposition of our kernel
formulation, we accelerate the NTK approximation by sketching techniques, similar to [41]. We
also propose a new sketching method for the Convolutional NTK with homogeneous activations
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Table 1: Activation functions and references for their dual kernels. More detailed expressions are
provided in Appendix F.

Activation σ(t)
Reference
for the NNGP

Reference
for the NTK

Rectified monomials tq · ✶{t≥0} [44] [44]

Error function erf(t) [43] [5]

ABReLU (Leaky ReLU) −Amin(t, 0) +Bmax(t, 0) [42, 50, 51] [42, 50, 51]

Exponential exp(At) [46, 52] [46, 52]

Hermite polynomials hq(t) [46] This work

Sinusoidal sin(At+B) [45, 47, 53] This work

Gaussian exp
(
−At2

)
[43] This work

GeLU t
2

(
1 + erf

(
t√
2

))
[48] This work

ELU step(t)t+ step(−t) (et − 1) [48] This work

Normalized Gaussian Unknown [54] This work

RBF
√
2 sin(

√
2At+ π

4 ) [45] This work

Gabor exp(−t2) sin(t) This work This work

Monomial tq This work This work

Polynomial
∑q

j=0 ajt
j This work This work

and analyze both a pointwise error bound and its runtime in Appendix D.2. Notably, our sketching
method’s runtime scales only linearly in the number of pixels of the input images, while the exact
CNTK computation scales quadratically in the number of pixels.

• Implementation: We open-source NNGP and NTK for new activations within the Neural Tangents
library [42] and sketching algorithm at https://github.com/insuhan/ntk_activations.

1.1 Related Work

Neural kernels (NTK, NNGP) can be computed using the recursive formula [2±5]. A prerequisite
for these kernels is computing a static kernel function which is defined as the expectation of some
function of (non-linear) activation in neural network over the standard normal distribution. Williams
[43] studied this a dual kernel of erf(t) and Gaussian. Cho and Saul [44] derived dual kernels for the
rectified monomials, i.e., tq✶{t≥0}, this function is equal to arc-cosine kernels where ReLU activation
is a special case when q = 1. Rahimi and Recht [45] showed that sinusoidal activations, e.g., sin or
cos, can result in the Gaussian RBF kernel function using the Fourier transform. Daniely et al. [46]
proposed a method to obtain a dual kernel if activation can be expanded by Hermite polynomials.
However, inputs of the resulting kernels are restricted to be on the unit sphere. Louart et al. [47]
analyzed asymptotic properties of dual kernel with random matrix theory and show closed-form
formula of such as erf , |t|, sinusoidal. Tsuchida et al. [48] studied the dual kernels of both Gaussian
Error Linear Unit (GeLU) [33] and Exponential Linear Unit (ELU) [33]. For activation that does
not admit a closed-form expression, Lee et al. [2] numerically computed dual activation by doing
interpolation on predetermined grid of variances and covariances. Table 1 summarizes activations
whose dual kernels were priorly known, as well as expanding (in this work) the set to previously
unknown expressions. Recently, Simon et al. [49] discovered that NTK of fully-connected neural
network with any depth can be converted into that of a 1 hidden-layer neural network by modifying
activation function. However, their method is limited to the normalized input data and fully-connected
networks.

2 Preliminaries

Notations. We denote the identity matrix of dimension d by Id. For a scalar function f , we write

f (k) to denote its k-th derivative. We use ✶E to denote the indicator of event E . For a smooth function

σ : R → R, we use σ(k) to denote its k-th derivative and define ∥σ∥2N (0,ν2) := Et∼N (0,ν2)[|σ(t)|2]
for some ν ∈ R and simply write ∥σ∥N (0,1) := ∥σ∥N . For scalar functions f, g we use f ◦ g

to denote the composition of these functions and f◦q to denote the q times self-composition of
f , e.g., f◦3(x) = f(f(f(x))). Given a positive semidefinite matrix K and λ > 0, the statistical
dimension of K with regularizer λ is defined as sλ(K) := tr(K(K + λI)−1). We use nnz(x)
to denote the number of nonzero entries in x. Given x ∈ R

m and y ∈ R
n, we define x ⊗ y :=

3
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[x1y1, x2y1, . . . xmy1, x1y2, . . . xmy2, . . . xmyn] and x⊗p as the p-fold self-tensoring of x. We also
define ⊕ as the direct sum between vectors.

Hermite polynomials. The Probabilist’s Hermite polynomials of degree ℓ ≥ 0 is defined as

hℓ(t) = (−1)ℓe
t2

2

[
dℓ

dtℓ
e−

t2

2

]
= ℓ!

⌊ℓ/2⌋∑

i=0

(−1)i

i!(ℓ− 2i)!

tℓ−2i

2i
. (1)

The polynomials {hℓ}ℓ≥0 form a set of orthogonal basis for the space of square-integrable functions
in R with respect to the normal measure N (0, 1), i.e., the L2 space of functions L2(R,N ) := {f :

R → R | ∥σ∥2N < ∞}. Particularly, it holds that Et∼N (0,1) [hℓ(t) hm(t)] = ℓ! · ✶{ℓ=m}. Thus, any

function f ∈ L2(R,N ) has a unique Hermite expansion in the sense of ∥f −∑∞
t=0 cjhj∥N = 0 and

coefficient cj can be computed as cj = Et∼N (0,1) [f(t) hj(t)] /j!.

Infinite width neural kernels. Given an activation σ : R → R satisfying that ∥σ∥N = 1, consider

a fully-connected L-layered neural network f : Rd → R for L ≥ 2 defined as1

fσ(x;W) =
〈
w(L), zL−1

〉
/
√

dL−1, zℓ = σ
(
W

(ℓ)zℓ−1/
√
dl−1

)
, z0 = x (2)

where W := vec
(
w(L),∪L−1

ℓ=1 W
(ℓ)

)
for w(L) ∈ R

dL−1 ,W (ℓ) ∈ R
dℓ×dℓ−1 , d0 := d, dl := m for

l > 0 is a collection of learnable parameters, m is the width of the network, and σ(·) is applied
point-wisely. In the infinite width limit, i.e., m → ∞, when all elements of W are initialized by
i.i.d. random samples from N (0, 1) and optimized via gradient descent on the least-square loss
with an infinitesimal learning rate, the prediction of trained network becomes identical to that of its
first order Taylor approximation at W . Hence, inference with such ultra-wide network is equivalent
to kernel regression with a static kernel, the so-called Neural Tangent Kernel (NTK), defined as

Θ
(L)
σ (x, y) := plimm→∞ ⟨∇Wfσ(x;W),∇Wfσ(y;W)⟩ (convergence in probability to a constant).

In addition, at initialization the output of an infinitely wide network is equivalent to a sample from a

Gaussian process with mean zero and covariance Σ
(L)
σ (x, y) := plimm→∞ ⟨fσ(x;W), fσ(y;W)⟩,

known as the Neural Network Gaussian Process (NNGP) kernel.

Recursive expression for NNGP and NTK. Several previous works [2±5] have shown that the
NNGP and NTK can be expressed using the following recursive procedure:

1. For every x, y ∈ R
d, let K

(0)
σ (x, y) := ⟨x, y⟩ and for every layer h = 1, . . . , L, recursively

define kernel functions K
(h)
σ ,

.
K

(h)
σ : Rd × R

d → R as:

K(h)
σ (x, y) := E

(u,v)∼N (0,Λ
(h)
σ )

[σ(u)σ(v)],
.
K(h)

σ (x, y) := E

(u,v)∼N (0,Λ
(h)
σ )

[σ′(u)σ′(v)], (3)

where the covariance matrix is Λ
(h)
σ :=

[
K

(h−1)
σ (x, x) K

(h−1)
σ (x, y)

K
(h−1)
σ (y, x) K

(h−1)
σ (y, y)

]
∈ R

2×2.

2. The depth-L NNGP kernel is K
(L)
σ (x, y) and the depth-L NTK Θ

(L)
σ can be recursively computed

as Θ
(0)
σ (x, y) := ⟨x, y⟩ and

Θ(h)
σ (x, y) := Θ(h−1)

σ (x, y) · K̇(h)
σ (x, y) +K(h)

σ (x, y). (4)

At the core of the expression for Θ
(L)
σ , there is the expectation term over 2-dimensional Gaussian

distribution in Equation (3). This expectation term for the case where both diagonal entries of the

covariance matrix Λ
(ℓ)
σ are equal to one, was previously studied in [46]. We extend this to encompass

general symmetric covariance matrices in the following definition.

1Throughout the paper, we consider scalar-valued networks without biases for simplicity, but this can be
extended to vector-valued networks with biases . We also assume ∥σ∥

N
= 1 which does not change our results.
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Definition 1 (Dual Activation and Dual Kernel). For a smooth σ : R → R, we define the Dual
Kernel of σ as Kσ : Rd × R

d → R defined as

Kσ(x, y) := E
w∼N (0,Id)

[σ(⟨w, x⟩)σ(⟨w, y⟩)] for every x, y ∈ R
d. (5)

Equation (5) only depends on bivariate Gaussian random variables ⟨w, x⟩ , ⟨w, y⟩ where E[⟨w, x⟩2] =
∥x∥22 ,E[⟨w, y⟩

2
] = ∥y∥22 and E[⟨w, x⟩ · ⟨w, y⟩] = ⟨x, y⟩. Hence one can look at the dual kernel from

a different perspective by choosing a proper covariance matrix. To this end, let Λa,b,c :=
[

a2 abc
abc b2

]

for every a, b ∈ R+ and c ∈ [−1, 1] and the Dual Activation of σ with respect to Λa,b,c is the function
kσ : R+ × R+ × [−1, 1] → R defined as kσ(a, b, c) := E(u,v)∼N (0,Λa,b,c) [σ(u)σ(v)] .

With these definitions in place, the following relationship between dual kernel and activation holds

Kσ(x, y) = kσ

(
∥x∥2 , ∥y∥2 ,

⟨x, y⟩
∥x∥2 ∥y∥2

)
. (6)

Observe that Kσ(x, y) corresponds to the NNGP kernel of a 1-hidden layer neural network with
activation σ. For some specific activations, e.g., ReLU, Error function, closed form expressions for
their dual activations are known (see Table 1). Hence, one can compute the NTK analytically when
dual kernels of the activation and its derivative have a closed form expression. The above also holds
for kernels corresponding to convolutional neural networks called CNN-GP [7, 8] and CNTK [9].

3 NNGP and NTK for Smooth Activations

In this section, we focus on the NNGP and NTK for a wide range of smooth activation functions.
We first show that a series expansion for the dual kernel can be obtained from that of the activation
function, which is a key to NNGP kernel computation. By applying this result to the derivative of the
activation function, we can also compute the NTK for the same activation.

3.1 Dual Kernel Computation

Daniely et al. [46] proved that for absolutely continuous σ : R → R and any x, y ∈ S
d−1, the

dual kernel is equal to Kσ(x, y) =
∑∞

j=0 c
2
j j! · ⟨x, y⟩j . where {cj}j≥0 are coefficients of Hermite

expansion of σ. We now proceed to generalize this result from S
d−1 to entire R

d \ {0}. First we
remark that it can be naturally extended to the dual kernel of q-homogeneous activation functions,
i.e., σ(at) = |a|q σ(t) for every a, t ∈ R, on the entire R

d \ {0}. For every x, y ∈ R
d \ {0}, the

corresponding dual kernel is

Kσ(x, y) = ∥x∥q2 ∥y∥
q
2 ·

∞∑

j=0

c2j j! ·
( ⟨x, y⟩
∥x∥2 ∥y∥2

)j

. (7)

As examples, (leaky) ReLU and rectified polynomials fall into this activation class.

Now suppose that σ is not homogeneous. In particular, we first consider a polynomial activation
σ(t) =

∑q
j=0 ajt

j with coefficients {aj}qj=0. Recall that Kσ(x, y) can be obtained by taking the

expectation of σ(⟨w, x⟩)σ(⟨w, y⟩) over w ∼ N (0, Id) for every x, y ∈ R
d \ {0}. To make use

of Daniely et al. [46]’s result, we factorize the input into its radial and angular part and rewrite
the activation by expressing monomials in the Hermite polynomial basis. Formally, let us write

monomials in the Hermite basis as ti =
∑i

ℓ=0 µi,ℓhℓ(t) for some coefficients {µj,i}ji=0. Then

σ(⟨w, x⟩) =
q∑

j=0

aj ∥x∥j2
〈
w,

x

∥x∥2

〉j

=

q∑

i=0




q∑

j=i

µj,i ∥x∥j2 aj


hi

(〈
w,

x

∥x∥2

〉)
. (8)

Then, we can derive the dual kernel of polynomial activation. We further relax a condition on the
activation and propose the result below.
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Theorem 1. For a polynomial σ̃(t) =
∑q

j=0 ajt
j , the dual kernel of σ̃(·), as per Definition 1, is

Kσ̃(x, y) :=

q∑

ℓ=0

rσ̃,ℓ(∥x∥2) rσ̃,ℓ(∥y∥2)
( ⟨x, y⟩
∥x∥2 ∥y∥2

)ℓ

(9)

where rσ̃,ℓ(t) :=
∑⌊ q−ℓ

2 ⌋
i=0

aℓ+2i(ℓ+2i)!

2i·i!·
√
ℓ!

t2i+ℓ. Moreover, if an activation function σ : R → R satisfies

∥σ∥2N (0,ν2) < ∞ and ∥σ − σ̃∥2N (0,ν2) ≤ ε for some ε > 0 and ν ≥ 1, then for every x, y ∈ R
d such

that ∥x∥2 , ∥y∥2 ∈ (0, ν] the following holds

|Kσ(x, y)−Kσ̃(x, y)| ≤

√√√√ν2 · ε
(
6 ∥σ∥2N (0,ν2) + 4ε

)

∥x∥2 ∥y∥2
. (10)

The proof of Theorem 1 is provided in Appendix B.2. For non-polynomial activations, one can
consider approximating σ with its Hermite or Taylor expansion and then apply Theorem 1. Examples
can be found in Appendix B.2. For activation functions that do not have a Taylor expansion but
are k-th order differentiable, we show that, using their Hermite expansion, one can obtain a good
approximation to the corresponding dual kernel.

Theorem 2. Given σ : R → R, suppose that there exists an integer k ≥ 2 and some ν ≥ 1 such that

for every i = 0, . . . , k, σ(i) is absolutely continuous and limt→±∞ e−
t2

4 σ(i)(νt) = 0 and moreover

∥σ∥2N (0,ν2) < ∞ and
∥∥σ(k)

∥∥2
N (0,ν2)

< ∞. Consider the Hermite expansion coefficients {cj}j≥0 of

function σ(νt) and denote σ̃(t) :=
∑q

j=0 cjhj(t/ν). Given x, y ∈ R
d with ∥x∥2 , ∥y∥2 ∈ (0, ν],

|Kσ(x, y)−Kσ̃(x, y)| ≤
5νk+1

∥∥σ(k)
∥∥
N (0,ν2)

max
(
∥σ∥N (0,ν2) , ν

k
∥∥σ(k)

∥∥
N (0,ν2)

)

√
∥x∥2 ∥y∥2 · k · qk−1

. (11)

where Kσ(·, ·) and Kσ̃(·, ·) are dual kernels corresponding to σ(·) and σ̃(·) in Definition 1, respec-
tively. Moreover, for the ReLU activation σ(t) = max(t, 0), it holds that

|Kσ(x, y)−Kσ̃(x, y)| ≤
√

2ν6

q ∥x∥2 ∥y∥2
. (12)

The proof of Theorem 2 is provided in Appendix B.3. Observe that when the activation is k-th order
differentiable and the norms of its derivative and inputs are bounded then the approximation error
decreases with O( 1√

kqk−1
) rate. In Section 5, we empirically evaluate the dual kernel of various

activations using Hermite expansion and verify that smooth activations (e.g., Gaussian or sinusoidal)
provides much lower approximation errors than non-smooth ones (e.g., ReLU).

3.2 NNGP and NTK Computations

Once dual kernels of σ and σ′ or their polynomial approximations are calculated, one can compute
(approximate) NNGP and NTK using Theorem 1 or Theorem 2 and the recursion in Equation (4).
However, there are scenarios where we are only given the dual kernel and the corresponding activation
or derivative of the activation is unknown to us. For example, Shankar et al. [54] devised a normalized
Gaussian kernel defined as

KG(x, y) = ∥x∥2 ∥y∥2 exp
( ⟨x, y⟩
∥x∥2 ∥y∥2

− 1

)
, (13)

and reported that NNGP with this dual kernel performs better than the ReLU NTK by showing
promising results on various tasks. Note that, recovering the activation from KG is non-trivial. From
the dual kernel perspective, the activation should be 1-homogeneous and its Hermite series expansion
is of form

∑∞
j=0

±1
j! hj(t) and it is generally unknown how to choose the sign pattern on coefficients

of this series that would satisfy homogeneity constraint. Instead of trying to recover the activation
from dual kernel, we show how to directly derive the dual kernel of derivative of activation without
knowing the activation.
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Theorem 3. Given a differentiable activation function σ : R → R which satisfies |σ(t)| ≤
C1 exp

(
t2

4.1ν2

)
, |σ′(t)| ≤ C2 exp

(
t2

4.1ν2

)
, ∥σ∥2N (0,ν2) < ∞ and ∥σ′′∥2N (0,ν2) < ∞ for some

ν ≥ 1 and constants C1, C2, the following holds for any x, y ∈ R
d with ∥x∥2 , ∥y∥2 ∈ (0, ν] and

|⟨x, y⟩| < ∥x∥2 ∥y∥2:

Kσ′(x, y) =
1

∥x∥2 ∥y∥2
∂

∂c
kσ (∥x∥2 , ∥y∥2 , c)

∣∣∣∣∣
c=

⟨x,y⟩
∥x∥2∥y∥2

. (14)

Additionally, if ∂
∂ckσ(·, ·, c) is continuous at c = ±1 then Equation (14) holds for x, y such that

|⟨x, y⟩| = ∥x∥2 ∥y∥2.

The proof of Theorem 3 is provided in Appendix B.5. Our result is more general compared to [49]
where the previous work assumes that the Hermite expansion of given activation should converge and

∥x∥2 = ∥y∥2. Applying Theorem 3 to Equation (13) provides that
.
KG(x, y) = exp

(
⟨x,y⟩

∥x∥2∥y∥2
− 1

)

hence one can compute the NTK function even if the corresponding activation is unknown. In the
previous work [54], only ªNNGPº performances of the normalized Gaussian kernel were reported.

Moreover, with Theorem 3, only the knowledge of dual activation suffices to compute both NNGP
and NTK. For example, while dual activation (thus NNGP) of GeLU was known in Tsuchida
et al. [48], kσ′ was not derived explicitly. Theorem 3 provides a simple way to compute kσ′

(given in Equation (126)) via automatic differentiation, without requiring to take the expectation
under multivariate Gaussian distribution or computing derivatives by hand. This is implemented in
stax_extensions.Elementwise in our code supplement. Our method allows to omit the enitre
effort, lines of code, and potential mistakes in deriving and implementing the NTK.

3.3 Gauss-Hermite Quadrature

One simple approach to obtain dual activation function for general activation functions without closed
form expressions is to evaluate the expectation of under the 2d Gaussian distribution as numerical
integration. This can be efficiently done by Gauss-Hermite quadrature

kσ(a, b, c) ≈
1

π

q∑

i=1

q∑

j=1

wiwj

[
σ(
√
2axi) · σ(

√
2bcxi +

√
2b
√

1− c2xj)
]

(15)

where (xi, wi), correspond to i-th root of degree q Hermite polynomial hi(x) and associated

weights [55] wi =
q!
√
π

q2(hq−1(
√
2xi))2

. See Appendix E for the derivation of the quadrature formula.

For smooth activation functions errors will quickly go down as q increases by Theorem 2. We use this
method to compute approximate (non-sketched) kernels for general activation functions in Figure 3
and Figure 4. It is implemented as stax_extensions.ElementwiseNumerical in our code.

4 Approximating Neural Kernels via Sketching

Although using our Theorem 1, Theorem 2, and Theorem 3, one can analytically compute NTK for
general activation functions, computing all entries in the NTK kernel matrix requires massive amount
of resources, i.e., Ω(n2(d+Lq2)) runtime and Ω(n2) memory for datasets with n points in R

d. This
becomes even more expensive for CNTK, where its runtime can be Ω((nd1d2)

2(c+ Lq2))2 for n of
images with size d1 × d2 × c. To avoid quadratic complexities, we adopt a fast and efficient feature
map construction via randomized sketching [41] for both NTK and NNGP, i.e.,

Θ(L)
σ (x, y) ≈

〈
ψ(L)(x), ψ(L)(y)

〉
, K(L)

σ (x, y) ≈
〈
ϕ(L)(x), ϕ(L)(y)

〉
. (16)

The previous approach was only applicable for the ReLU activation but we establish more general
scheme based on our new results for dual kernel approximation.

2This is assuming Hermite expansion degree q, when exact expression is known q
2 is constant.
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Algorithm 1 Subspace Embedding of Homogeneous NNGP and NTK

1: input: x ∈ R
d, depth L, sketching dimension m, polynomial κ̃(t) =

∑q
j=0 ajt

j with aj ∈ R+

2: calculate the polynomial P (L)(t) = κ̃◦L(t) =
∑qL

j=0 bjt
j with coefficients bj ∈ R+

3: calculate the polynomial R(L)(t) =
∑L

h=0 κ̃
◦h(t) ·∏L−1

i=h κ̃′ ◦ κ̃◦i(t) =
∑p

j=0 cjt
j with coeffi-

cients cj ∈ R+ and degree p = qO(L)

4: for ℓ = 0, . . . , p, let Qℓ ∈ R
m×dℓ

be a degree-ℓ POLYSKETCH (See Appendix A)

5: for every ℓ = 0, . . . , p, uℓ ← Qℓ
(

x
∥x∥2

)⊗ℓ

6: construct ϕ(L)(x) ← ∥x∥2 ·
⊕qL

j=0

√
bju

j and ψ(L)(x) ← ∥x∥2 ·
⊕p

j=0

√
cju

j

7: return ϕ(L)(x) (NNGP embedding), ψ(L)(x) (NTK embedding)

Subspace embedding for homogeneous dual kernels. We provide a subspace embedding for
NNGP and NTK matrices with near input-sparsity runtime and near-optimal target dimension which
applies to any homogeneous dual activation functions with rapidly convergent Taylor expansion.
More specifically, we call a dual kernel Kσ homogeneous if there exists a positive definite dot-product
kernel function κ : [−1, 1] → [−1, 1] such that,

Kσ(x, y) = ∥x∥2 ∥y∥2 · κ
( ⟨x, y⟩
∥x∥2 ∥y∥2

)
. (17)

For such homogeneous dual kernels, the NTK and NNGP take a similar homogeneous form. In fact,
one can show by induction that when the dual kernel is in form of Equation (17), the depth-L NNGP
function defined in Equation (3) is equal to the following for any positive integer L,

K(L)
σ (x, y) = ∥x∥2 ∥y∥2 · κ◦L

( ⟨x, y⟩
∥x∥2 ∥y∥2

)
, (18)

where κ◦L denoted the L-fold composition of function κ. Furthermore, if κ has a derivative κ′ :
[−1, 1] → [−1, 1], using Theorem 3, there exists a depth-L NTK for this dual kernel, equal to

Θ(L)
σ (x, y) = ∥x∥2 ∥y∥2 ·

L∑

h=0

κ◦h(t) ·
L−1∏

i=h

κ′ ◦ κ◦i(t)

∣∣∣∣∣
t=

⟨x,y⟩
∥x∥2∥y∥2

, (19)

where we use the convention that κ◦0(t) = t. Therefore, if κ(·) can be tightly approximated by a
low-degree polynomial, then the NNGP and NTK functions can also be tightly approximated by low-
degree polynomials. Thus, by applying POLYSKETCH, which is a norm-preserving dimensionality
reduction that can be applied to the tensor product of multiple vectors very quickly [56], to the
polynomial approximations to these kernels, we can spectrally approximate the NNGP and NTK
kernel matrices. For details on POLYSKETCH see Appendix A. We provide the details of this
procedure in Algorithm 1 and prove the correctness and runtime of our procedure in Theorem 4.

Theorem 4 (Homogeneous NTK Embedding). Suppose that the dual kernel Kσ is homogeneous
as per Equation (17). Also suppose κ̃(t) is a degree-q polynomial with non-negative coefficients
that satisfies (1) maxt∈[−1,1] |κ̃(t)− κ(t)| ≤ 1

poly(n) and maxt∈[−1,1] |κ̃′(t)− κ′(t)| ≤ 1
poly(n) , (2)

max|t|≤1+ 1
poly(n)

|κ̃(t+ γ)− κ̃(t)| ≤ 1
poly(n) and max|t|≤1+ 1

poly(n)
|κ̃′(t+ γ)− κ̃′(t)| ≤ 1

poly(n)

for any |γ| ≤ 1
poly(n) . Then for any integer L ≥ 1, any ε, λ ≥ 1

poly(n) , and any dataset X ∈ R
d×n

with ∥X∥F ≤ poly (n), if Kntk ∈ R
n×n is the depth-L NTK kernel matrix on this dataset, there

exists m = O
(

sλ(Kntk)
ε2 · poly

(
qL, log n

))
such that the output ψ(L)(X) ∈ R

m×n of Algorithm 1

satisfies with probability at least 1− 1
poly(n)

(1− ε) (Kntk + λIn) ⪯ ψ(L)(X)⊤ψ(L)(X) + λIn ⪯ (1 + ε) (Kntk + λIn) . (20)

Moreover, the runtime of Algorithm 1 is O
(
poly

(
qL, log n

)
· ε−2 · (sλ(Kntk) · n+ nnz(X))

)
.

We prove this theorem in Appendix C. As an example, let us apply Theorem 4 on the normal-
ized Gaussian kernel KG defined in Equation (13), which is homogeneous. The dot-product fac-
tor corresponding to this dual kernel is κ(t) = exp(t − 1). The truncated Taylor series of this
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Figure 1: Relative errors of dual kernel approximations via the truncated Hermite expansion and
Monte Carlo estimation under synthetic dataset with n = 1,000, d = 256.

function is κ̃(t) =
∑q

j=0
tj

e·j! . If q = Ω(log n) then it can be verified that the polynomial κ̃(t)

satisfies the preconditions of Theorem 4. Therefore, one can invoke Algorithm 1 to get a sub-
space embedding for the NTK kernel matrix corresponding to the normalized Gaussian dual kernel

KG in O
(
ε−2 · (sλ(Kntk) · n+ nnz(X)) · poly

(
logL n

))
time and with a target dimension of

m = O
(
ε−2 · sλ(Kntk) · poly

(
logL n

))
. For any constant number of layers, L, this runtime

and target dimension is is optimal up to poly (log n) factors. The implementation of our sketching
algorithm is available at https://github.com/insuhan/ntk_activations.

5 Experiments

In this section, we perform experiments with the proposed neural kernels based on our dual kernel
approximation. All experiments run using a single A100 GPU machine.

Kernel approximation. We first benchmark our algorithm to approximate the dual kernel ma-
trix. We use ReLU, Abs (i.e., σ(t) = |t|), sin, Gaussian, erf and GeLU activations and ap-
proximate them by their Hermite expansion where degree changes from q = 1 to 20. We ran-
domly generate n = 1,000 of 256-dimensional inputs where each entry is i.i.d. drawn from

N (0, 1/
√
256). We also compare our approach to the Monte Carlo estimation of dual kernel,

i.e., Kσ(x, y) ≈ 1
m

∑m
i=1 σ(⟨wi, x⟩)σ(⟨wi, y⟩) where {wi}mi=1 are i.i.d. standard Gaussian vectors.

In Figure 1, we plot relative errors of the Frobenius norm of kernel approximations in terms of
wall-clock times (top) and polynomial degree (bottom). We run 10 independent trials and evaluate
the average approxmation errors. We observe that our approximation with Hermite expansion outper-
forms the Monte Carlo method for all activations we used. In particular, sin and Gaussian are well
approximated because they are smooth and norms of their derivatives are bounded with respect to the
normal measure.
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Figure 2: Test accuracy of CIFAR-10

Performance on CIFAR-10 classification.
We also benchmark the proposed CNTK ap-
proximating via sketching algorithm. We per-
form CIFAR-10 classification [57] by solving
the ridge regression problem. The image classes
are converted into 10-dimensional one-hot vec-
tors and inputs are pre-processed with regular-
ized ZCA [54, 58]. We report the best test ac-
curacy among 20 choices of ridge parameters

in {10−10+ 12
19 i | i = 0, 1, . . . , 19}. We extract

CNTK features of a 5-layer convolutional neural
network (known as Myrtle5 [54]) without pool-
ing by setting degree q = 8 and explore feature dimension m = {29, . . . , 214} and homogeneous
dual kernels including ReLU, ABReLU activations as well as deep normalized Gaussian kernels
with 2 scaling factors. See Appendix G for more details. In Figure 2, the test accuracy of neural
kernels (left) and the corresponding their dual activations (right) are plotted. The dual activation of
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ABReLU is very similar to the normalized Gaussian without scaling and their test performances are
also comparable. We observe that the scaled normalized Gaussian shows the best performance which
achieves 78.13% while the ReLU CNTK features [41] shows 75.56% with the same runtime. This
is because the coefficients decay of the normalized Gaussian is faster than that of the ReLU, which
leads to a lower approximation error of sketching algorithm. We also perform comparison among
different activation functions in neural kernels in Appendix E.

Speedup. We observe that the exact CNTK of Myrtle-5 constructs a kernel matrix of size 60,000×
60,000 and achieves 86-87% test accuracy. However, this requires approximately 151 GPU hours.
Under the same setting, our CNTK features for the normalized Gaussian kernel take about 1.4 GPU
hours, i.e. a 106× speedup. If we use less training data to construct 20,000× 20,000 kernel matrix,
the accuracy is about 77% accuracy and the runtime is 16.8 GPU hours in which our approximation
is still 12× faster without loss of accuracy. We believe such acceleration through our methods open
the door to using neural kernels in a wide range of research domains.

6 Discussion

In this work, we introduced methods to efficiently compute neural kernels for general activations.
As activation functions play an important role in modern neural network architectures, we hope our
work could empower researchers to explore properties of activations in a more principled way. We
are excited with sketching method’s compute efficiency by orders of magnitude on highly performant
neural kernels to open up applications in dataset distillation [29] or uncertainty critical problems [59]
such as autonomous driving, healthcare and science.
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Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261±272, 2020. doi: 10.1038/s41592-019-0686-2.

[65] Peter Jäckel. A note on multivariate Gauss-Hermite quadrature. London: ABN-Amro. Re, 2005.

[66] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In International Conference on Learning Representations (ICLR),
2013.

[67] Ben Adlam, Jake Levinson, and Jeffrey Pennington. A random matrix perspective on mixtures
of nonlinearities in high dimensions. In Conference on Artificial Intelligence and Statistics
(AISTATS), 2022.

[68] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representations.
International Conference on Learning Representations (ICLR), 2020.

[69] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[70] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep net-
work learning by exponential linear units (elus). In International Conference on Learning
Representations (ICLR), 2016.

14

https://reader.elsevier.com/reader/sd/pii/S0022247X12002600?token=97932C7A988518C97B458585BEF0EED5E22A87FF429E404FA55CA1F17A601C720335CA2FE840D7F4C1BCC4B0B9DAABF5&originRegion=us-east-1&originCreation=20220426144952
https://reader.elsevier.com/reader/sd/pii/S0022247X12002600?token=97932C7A988518C97B458585BEF0EED5E22A87FF429E404FA55CA1F17A601C720335CA2FE840D7F4C1BCC4B0B9DAABF5&originRegion=us-east-1&originCreation=20220426144952
https://antivirus.uclv.edu.cu/update/libros/Mathematics%20and%20Statistics/Probability%20Theory%20-%20Achim%20Klenke%2C%202nd%20ed.%202014%20-%20978-1-4471-5361-0.pdf
https://www.ams.org/journals/mcom/1969-23-106/S0025-5718-69-99647-1/S0025-5718-69-99647-1.pdf
http://www.jaeckel.org/ANoteOnMultivariateGaussHermiteQuadrature.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/pdf/1912.00827.pdf
https://arxiv.org/pdf/1912.00827.pdf
https://arxiv.org/pdf/1909.11942.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1511.07289.pdf
https://arxiv.org/pdf/1511.07289.pdf


Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [No]

(c) Did you discuss any potential negative societal impacts of your work? [No]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes] All detailed proofs in
the paper are provided in supplement.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We provide anonymous code of some of our implementation.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


	Introduction
	Related Work

	Preliminaries
	NNGP and NTK for Smooth Activations
	Dual Kernel Computation
	NNGP and NTK Computations
	Gauss-Hermite Quadrature

	Approximating Neural Kernels via Sketching
	Experiments
	Discussion

