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Abstract

We provide the first generalization error analysis for black-box learning through
derivative-free optimization. Under the assumption of a Lipschitz and smooth
unknown loss, we consider the Zeroth-order Stochastic Search (ZoSS) algorithm,
that updates a d-dimensional model by replacing stochastic gradient directions with
stochastic differences of K + 1 perturbed loss evaluations per dataset (example)
query. For both unbounded and bounded possibly nonconvex losses, we present
the first generalization bounds for the ZoSS algorithm. These bounds coincide
with those for SGD, and they are independent of d, K and the batch size m, under
appropriate choices of a slightly decreased learning rate. For bounded nonconvex
losses and a batch size m = 1, we additionally show that both generalization
error and learning rate are independent of d and K, and remain essentially the
same as for the SGD, even for two function evaluations. Our results extensively
extend and consistently recover established results for SGD in prior work, on both
generalization bounds and corresponding learning rates. If additionally m = n,
where n is the dataset size, we recover generalization guarantees for full-batch GD
as well.

1 Introduction

Learning methods often rely on empirical risk minimization objectives that highly depend on a
limited training data-set. Known gradient-based approaches such as SGD train and generalize
effectively in reasonable time [1]. In contrast, emerging applications such as convex bandits [2–
4], black-box learning [5], federated learning [6], reinforcement learning [7, 8], learning linear
quadratic regulators [9, 10], and hyper-parameter tuning [11] stand in need of gradient-free learning
algorithms [11–14] due to an unknown loss/model or impossible gradient evaluation.

Given two or more function evaluations, zeroth-order algorithms (see, e.g., [14, 15]) aim to estimate
the true gradient for evaluating and updating model parameters (say, of dimension d). In particular,
Zeroth-order Stochastic Search (ZoSS) [13, Corollary 2], [16, Algorithm 1] uses K + 1 function
evaluations (K ≥ 1), while deterministic zeroth-order approaches [5, Section 3.3] require at least
K ≥ d + 1 queries. The optimization error of the ZoSS algorithm is optimal as shown in prior
work for convex problems [13], and suffers at most a factor of

√
d/K in the convergence rate as

compared with SGD. In addition to the optimization error, the importance of generalization error
raises the question of how well zeroth-order algorithms generalize to unseen examples. In this paper,
we show that the generalization error of ZoSS essentially coincides with that of SGD, under the
choice of a slightly decreased learning rate. Assuming a Lipschitz and smooth loss function, we
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establish generalization guarantees for ZoSS, by extending stability-based analysis for SGD [1], to
the gradient-free setting. In particular, we rely on the celebrated result that uniform algorithmic
stability implies generalization [1, 17, 18].

Early works [17, 19–22] first introduced the notion of stability, and the connection between (uniform)
stability and generalization. Recently, alternative notions of stability and generalization gain attention
such as locally elastic stability [23], VC-dimension/flatness measures [24], distributional stability [25–
27], information theoretic bounds [16, 28–33] mainly based on assuming a sub-Gaussian loss, as
well as connections between differential privacy and generalization [34–37].

In close relation to our paper, Hardt et al. [1] first showed uniform stability final-iterate bounds
for vanilla SGD. More recent works develop alternative generalization error bounds based on high
probability guarantees [38–41] and data-dependent variants [42], or under different assumptions than
those of prior works such as as strongly quasi-convex [43], non-smooth convex [44–47], and pairwise
losses [48, 49]. In the nonconvex case, [50] provide bounds that involve on-average variance of the
stochastic gradients. Generalization performance of other algorithmic variants lately gain further
attention, including SGD with early momentum [51], randomized coordinate descent [52], look-ahead
approaches [53], noise injection methods [54], and stochastic gradient Langevin dynamics [55–62].

Recently, stability and generalization of full-bath GD has also been studied; see, e.g., [63–67]. In
particular, Charles and Papailiopoulos. [64] showed instability of GD for nonconvex losses. Still, such
instability does not imply a lower bound on the generalization error of GD (in expectation). In fact,
Hoffer et al. [63] showed empirically that the generalization of GD is not affected by the batch-size,
and for large enough number of iterations GD generalizes comparably to SGD. Our analysis agree
with the empirical results of Hoffer et al. [63], as we show that (for smooth losses) the generalization
of ZoSS (and thus of SGD) is independent of the batch size.

Notation. We denote the training data-set S of size n as {zi}ni=1, where zi are i.i.d. observations
of a random variable Z with unknown distribution D. The parameters of the model are vectors of
dimension d, denoted by W ∈ Rd, and Wt is the output at time t of a (randomized) algorithm AS .
The (combined) loss function f(·, z) : Rd → R+ is uniformly Lipschitz and smooth for all z ∈ Z .
We denote the Lipschitz constant as L and the smoothness parameter by β. The number of function
(i.e., loss) evaluations (required at each iteration of the ZoSS algorithm) is represented by K +1 ∈ N.
We denote by ∆f the smoothed approximation of the loss gradient, associated with parameter µ. The
parameter Γd

K ≜
√
(3d− 1)/K + 1 prominently appears in our results. We denote the gradient of

the loss function with respect to model parameters W , by ∇f(W, z) ≡ ∇wf(w, z)|w=W . We denote
the mini batch at t by Jt, and m ≜ |Jt|.

1.1 Contributions

Under the assumption of Lipschitz and smooth loss functions, we provide generalization guarantees
for black-box learning, extending the analysis of prior work by Hardt et al. [1] to the gradient free
setting. In particular, we establish uniform stability and generalization error bounds for the final iterate
of the ZoSS algorithm; see Table 1 for a summary of the results. In more detail, the contributions of
this work are as follows:

• For unbounded and bounded losses, we show generalization error bounds identical to SGD, with
a slightly decreased learning rate. Specifically, the generalization error bounds are independent
of the dimension d, the number of evaluations K and the batch-size m. Further, a large enough
number of evaluations (K) provide fast generalization even in the high dimensional regime.

• For bounded nonconvex losses and single (example) query updates (m = 1), we show that both
the ZoSS generalization error and learning rate are independent of d and K, similar to that of
SGD [1, Theorem 3.8]. This property guarantees efficient generalization even with two function
evaluations.

• In the full information regime (i.e., when the number of function evaluations K grow to ∞), the
ZoSS generalization bounds also provide guarantees for SGD by recovering the results in prior
work [1]. Further, we derive novel SGD bounds for unbounded nonconvex losses, as well as
mini-batch SGD for any batch size. Our results subsume generalization guarantees for full-batch
ZoSS and GD algorithms.
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Generalization Error Bounds: ZoSS vs SGD
Algorithm Bound NC UB MB

ZoSS (this work)
αt ≤ C/(tΓd

K)
1 + (Cβ)−1

n

(
(2 + c)CL2

) 1
Cβ+1 (eT )

Cβ
Cβ+1 ✓ ✗ ✗

SGD, αt ≤ C/t
Hardt et al. [1]

1 + (Cβ)−1

n

(
2CL2

) 1
Cβ+1 (eT )

Cβ
Cβ+1 ✓ ✗ ✗

ZoSS (this work)
αt ≤ C/t

3e
(
1 + (Cβ)−1

)2
2n

(
1 + (2 + c)CL2

)
T

(independent of both d and K)
✓ ✗ ✗

ZoSS (this work)

αt ≤
log

(
1+ Cβ

Γd
K

(Γd
K−1)

)
Tβ

√
(3d−1)/K

(2 + c)CL2

n
✗ ✓ ✓

SGD, αt ≤ C/T
Hardt et al. [1]

2CL2

n
✗ ✓ ✓

ZoSS (this work)
αt ≤ C/(TΓd

K)
(2 + c)L2(eCβ − 1)

nβ
✓ ✓ ✓

ZoSS (this work)
αt ≤ log(1+Cβ)

TβΓd
K

(2 + c)CL2

n
(proper choice of C in previous bound)

✓ ✓ ✓

ZoSS (this work)
αt ≤ C/(tΓd

K)
(2 + c)L2(eT )Cβ

n
min{C + β−1, C log(T )} ✓ ✓ ✓

Table 1: A list of the generalization error bounds developed herein for ZoSS (Eq. 6) in comparison
with SGD, with µ ≤ cLΓd

K/nβ(3 + d)3/2, for c > 0. In the table, “NC” and “UB” stand for
“nonconvex” and “unbounded”, respectively. “MB” corresponds to the mini-batch algorithm and for
any batch size. Also, αt denotes the stepsize of ZoSS/SGD, and T the total number of iterations.

2 Problem Statement

Given a data S ≜ {zi}ni=1 of i.i.d samples zi from an unknown distribution D, our goal is to find the
parameters w∗ of a learning model such that w∗ ∈ argminw R(w), where R(w) ≜ EZ∼D[f(w,Z)].
Since the distribution D is not known, we consider the empirical risk

RS(w) ≜
1

n

n∑
i=1

f(w, zi), (1)

and the corresponding empirical risk minimization (ERM) problem to find w∗
s ∈ argminw RS(w).

For a (randomized) algorithm AS with input S and output W = A(S), the excess risk ϵexcess is
bounded by the sum of the generalization error ϵgen and the optimization error ϵopt,

ϵexcess ≜ ES,A[R(W )]−R(w∗) = ES,A[R(W )−RS(W )]︸ ︷︷ ︸
ϵgen

+(ES,A[RS(W )]−R(w∗)︸ ︷︷ ︸
ϵopt

). (2)

To analyze and control ϵgen, we prove uniform stability bounds which imply generalization [1,
Theorem 2.2]. Specifically, if for all i.i.d. sequences S, S′ ∈ Zn that differ in one entry, we have
supz EA[f(A(S), z)− f(A(S′), z)] ≤ ϵstab, for some ϵstab > 0, then ϵgen ≤ ϵstab. Because the loss
is L-Lipschitz, ϵstab may then be chosen as L supS,S′ EA∥A(S)−A(S′)∥.

Our primary goal in this work is to develop uniform stability bounds for a gradient-free algorithm AS

of the form wt+1 = wt − αt∆fwt,z , where ∆fwt,z only depends on loss function evaluations. To
achieve this without introducing unnecessary assumptions, we consider a novel algorithmic stability
error decomposition approach. In fact, the stability error introduced at time t by AS breaks down into
the stability error of SGD and an approximation error due to missing gradient information. Let Gt(·)
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and G′
t(·) be the following SGD update rules

Gt(w) ≜ w − αt∇f(w, zit), G′
t(w) ≜ w − αt∇f(w, z′it), (3)

under inputs S, S′ respectively, and let it ∈ {1, 2, . . . , n} be a random index chosen uniformly and
independently by the random selection rule of the algorithm, for all t ≤ T . Similarly we use the
notation G̃(·) and G̃′(·) to denote the iteration mappings of AS , i.e.,

G̃t(w) ≜ w − αt∆fw,zit
, G̃′

t(w) ≜ w − αt∆fw,z′
it
. (4)

Then, as we also discuss later on (Lemma 1), the iterate stability error G̃t(w)− G̃′
t(w

′) of AS , for
any w,w′ ∈ Rd and for all at t ≤ T , may be decomposed as

G̃t(w)− G̃′
t(w

′) ∝ Gt(w)−G′
t(w

′)︸ ︷︷ ︸
ϵGBstab

+
[
∇f(w, zit)−∆fw,zit

]
+
[
∇f(w′, z′it)−∆fw′,z′

it

]︸ ︷︷ ︸
ϵest

, (5)

where ϵGBstab denotes the gradient-based stability error (associated with SGD), and ϵest denotes the
gradient approximation error. We now proceed by formally introducing ZoSS.

3 Zeroth-Order Stochastic Search (ZoSS)

As a gradient-free alternative of the classical SGD algorithm, we consider the ZoSS scheme, with
iterates generated according to the following (single-example update) rule

Wt+1 = Wt − αt
1

K

K∑
k=1

f(Wt + µU t
k, zit)− f(Wt, zit)

µ
U t
k, U t

k ∼ N (0, Id), µ ∈ R+, (6)

where αt ≥ 0 is the corresponding learning rate (for the mini-batch update rule we refer the
reader to Section 5). At every iteration t, ZoSS generates K i.i.d. standard normal random vectors
U t
k, k = 1, . . . ,K, and obtains K + 1 loss evaluations on perturbed model inputs. Then ZoSS

evaluates a smoothed approximation of the gradient for some µ > 0. In light of the discussion in
Section 2, we define the ZoSS smoothed gradient step at time t as

∆fK,µ
w,zit

≡ ∆fK,µ,Ut

w,zit
≜

1

K

K∑
k=1

f(w + µU t
k, zit)− f(w, zit)

µ
U t
k. (7)

3.1 ZoSS Stability Error Decomposition

To show stability bounds for ZoSS, we decompose its error into two parts through the stability error
decomposition discussed in Section 2. Under the ZoSS update rule, Eq. (5) holds by considering
the directions ∆fw,zit

and ∆fw′,z′
it

according to ZoSS smoothed approximations (7). Then for any

w,w′ ∈ Rd, the iterate stability error G̃t(w)− G̃′
t(w

′) of ZoSS at t, breaks down into the gradient
based error ϵGBstab and approximation error ϵest.

The error term ϵGBstab expresses the stability error of the gradient based mappings [1, Lemma 2.4]
and inherits properties related to the SGD update rule. The error ϵest captures the approximation error
of the ZoSS smoothed approximation and depends on K and µ. The consistency of the smoothed
approximation with respect to SGD follows from limK↑∞,µ↓0 ∆fK,µ

w,z = ∇f(w, z) for all w ∈ R and
z ∈ Z . Further, the stability error is also consistent since limK↑∞,µ↓0 |ϵest| = 0. Later on, we use
the ZoSS error decomposition in Eq. (5) together with a variance reduction lemma (Lemma 10), to
derive exact expressions on the iterate stability error G̃t(w) − G̃′

t(w
′) for fixed K and µ > 0 (see

Lemma 1). Although in this paper we derive stability bounds and bounds on the ϵgen, the excess risk
ϵexcess depends on both errors ϵgen and ϵopt. In the following section, we briefly discuss known results
on the ϵopt of zeroth-order methods, including convex and nonconvex losses.

3.2 Optimization Error in Zeroth-Order Stochastic Approximation

Convergence rates of the ZoSS optimization error and related zeroth-order variants have been
extensively studied in prior works; see e.g., [14, 15, 68]. For the convex loss setting, when K + 1
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function evaluations are available and no other information regarding the loss is given, the ZoSS
algorithm achieves optimal rates with respect to the optimization error ϵopt. Specifically, under the
assumption of a closed and convex loss, Duchi et al. [13] provided a lower bound for the minimax
convergence rate and showed that ϵopt = Ω(

√
d/K), for any algorithm that approximates the gradient

given K + 1 evaluations. In the nonconvex setting Ghadimi et al. [69, 70] established sample
complexity guarantees for the zeroth-order approach to reach an approximate stationary point.

4 Main Results

For our analysis, we introduce the same assumptions on the loss function (Lipschitz and smooth)
as appears in prior work [1]. Additionally, we exploit the η-expansive and σ-bounded properties of
the SGD mappings Gt(·) and G′

t(·) in Eq. (3).1 The mappings Gt(·) and G′
t(·) are introduced for

analysis purposes due to the stability error decomposition given in Eq. (5) and no further assumptions
or properties are required for the zeroth-order update rules G̃t(·) and G̃′

t(·) given in Eq. (4). The
η-expansivity of Gt(·) holds for η = 1+ βαt if the loss is nonconvex, and η = 1 if the loss is convex
and αt ≤ 2/β [1, Lemma 3.6]. Note that Gt(·) is always σ-bounded (σ = Lαt) [1, Lemma 3.3.].

4.1 Stability Analysis

We derive generalization error bounds through uniform stability. To study the stability of ZoSS, we
apply a variance reduction lemma that we provide in Appendix A. Exploiting the variance reduction
lemma, we show a growth recursion lemma for the iterates of the ZoSS.

Lemma 1 (ZoSS Growth Recursion) Consider the sequences of updates {G̃t}Tt=1 and {G̃′
t
}Tt=1.

Let w0 = w′
0 be the starting point, wt+1 = G̃t(wt) and w′

t+1 = G̃′
t(w

′
t) for any t ∈ {1, . . . , T}.

Then for any wt, w
′
t ∈ Rd and t ≥ 0 the following recursion holds

E[∥G̃t(wt)− G̃′
t(w

′
t)∥] ≤

{(
η + αt

√
3d−1
K β

)
∥wt − w′

t∥+ µβαt(3 + d)3/2, if G̃t(·) = G̃′
t(·),

∥wt − w′
t∥+ 2αtLΓ

d
K + µβαt(3 + d)3/2, if G̃t(·) ̸= G̃′

t(·).

The growth recursion of ZoSS characterizes the stability error that it is introduced by the ZoSS update
and according to the outcome of the randomized selection rule at each iteration. Lemma 1 extends
growth recursion results for SGD in prior work [1, Lemma 2.5] to the setting of the ZoSS algorithm.
If K → ∞ and µ → 0 (while the rest of the parameters are fixed), then Γd

K → 1, and the statement
recovers that of the SGD [1, Lemma 2.5].

Proof of Lemma 1. Let S and S′ be two samples of size n differing in only a single example, and let
G̃t(·), G̃′

t(·) be the update rules of the ZoSS for each of the sequences S, S′ respectively. First under
the event Et ≜ {G̃t(·) ≡ G̃′

t(·)} (see Eq. (4)), by applying the Taylor expansion there exist vectors
W ∗

k,t and W †
k,t with jth coordinates in the intervals

(
w

(j)
t , w

(j)
t +µU

(j)
k,t

)
∪
(
w

(j)
t +µU

(j)
k,t , w

(j)
t

)
and(

w
′(j)
t , w

′(j)
t + µU

(j)
k,t

)
∪
(
w

′(j)
t + µU

(j)
k,t , w

′(j)
t

)
, respectively, such we find that for any wt, w

′
t ∈ Rd

it is true that

G̃t(wt)− G̃′
t(w

′
t) = G̃t(wt)− G̃t(w

′
t)

= wt − w′
t −

αt

K

K∑
k=1

⟨∇f(wt, zit)−∇f(w′
t, zit), U

t
k⟩U t

k (8)

− αt

K

K∑
k=1

(µ
2
UT
k∇2

wf(w, zit)|w=W∗
k,t
U t
k

)
U t
k +

αt

K

K∑
k=1

(µ
2
UT
k∇2

wf(w, zit)|w=W †
k,t
U t
k

)
U t
k

= wt − αt∇f(wt, zit)︸ ︷︷ ︸
G(wt)

− (w′
t − αt∇f(w′

t, zit))︸ ︷︷ ︸
G′(w′

t)≡G(w′
t)

1 [1, Definition 2.3]: An update rule G(·) is η-expansive if ∥G(w) − G(w′)∥ ≤ η∥w − w′∥ for all
w,w′ ∈ Rd. If ∥w −G(w)∥ ≤ σ then it is σ-bounded.

5



− αt

K

K∑
k=1

(µ
2
UT
k∇2

wf(w, zit)|w=W∗
k,t
U t
k

)
U t
k +

αt

K

K∑
k=1

(µ
2
UT
k∇2

wf(w, zit)|w=W †
k,t
U t
k

)
U t
k

− αt

(
1

K

K∑
k=1

⟨∇f(wt, zit)−∇f(w′
t, zit), U

t
k⟩U t

k − (∇f(wt, zit)−∇f(w′
t, zit))

)
. (9)

We find (9) by adding and subtracting αt∇f(wt, zit) and αt∇f(w′
t, zit) in Eq. (8). Recall that U t

k
are independent for all k ≤ K, t ≤ T and that the mappings G(·) and G′(·) defined in Eq. (9), are
η-expansive. The last display and the triangle inequality give

E[∥G̃t(wt)− G̃t(w
′
t)∥]

≤ ∥G(wt)−G(w′
t)∥+

2αt

K

K∑
k=1

µβ

2
E
[
∥U t

k∥3
]
+αt

√
3d− 1

K
E[∥∇f(wt, zit)−∇f(w′

t, zit)∥] (10)

≤ η∥wt − w′
t∥+

2αt

K

K∑
k=1

µβ

2
E
[
∥U t

k∥3
]
+ αt

√
3d− 1

K
β∥wt − w′

t∥ (11)

≤

(
η + αt

√
3d− 1

K
β

)
∥wt − w′

t∥+ µβαt(3 + d)3/2, (12)

where (10) follows from (9) and Lemma 10, and for (11) we applied the η-expansive property of G(·)
(see [1, Lemma 2.4 and Lemma 3.6]) and the β-smoothness of the loss function.2 Finally (12) holds
since the random vectors U t

k ∼ N (0, Id) are identically distributed for all k ∈ {1, 2, . . . ,K} and
E∥U t

k∥3 ≤ (3 + d)3/2. Eq. (12) gives the first part of the recursion.

Similar to (9), under the event Ec
t ≜ {G̃t(·) ̸= G̃′

t(·)}, we find

G̃t(wt)− G̃′
t(w

′
t)

= wt − αt∇f(wt, zit)︸ ︷︷ ︸
G(wt)

−
(
w′

t − αt∇f(w′
t, z

′
it)
)︸ ︷︷ ︸

G′(w′
t)

− αt

K

K∑
k=1

(µ
2
UT
k∇2

wf(w, zit)|w=W̃∗
k,t
U t
k

)
U t
k +

αt

K

K∑
k=1

(µ
2
UT
k∇2

wf(w, z
′
it)|w=W̃ †

k,t
U t
k

)
U t
k

− αt

(
1

K

K∑
k=1

⟨∇f(wt, zit)−∇f(w′
t, z

′
it), U

t
k⟩U t

k − (∇f(wt, zit)−∇f(w′
t, z

′
it))

)
. (13)

By using the last display, triangle inequality, Lemma 10 and β-smoothness, we find

E[∥G̃t(wt)− G̃t(w
′
t)∥]

≤ ∥G(wt)−G′(w′
t)∥+

2αt

K

K∑
k=1

µβ

2
E[∥U t

k∥3] + αt

√
3d− 1

K
E[∥∇f(wt, zit)−∇f(w′

t, z
′
it)∥]

≤ min{η, 1}δt + 2σt +
2αt

K

K∑
k=1

µβ

2
E[∥U t

k∥3] + 2Lαt

√
3d− 1

K
(14)

≤ δt + 2αtLΓ
d
K + µβαt(3 + d)3/2, (15)

where (14) follows from the triangle inequality and L−Lipschitz condition, while the upper bound
on ∥G(wt)−G′(w′

t)∥ comes from [1, Lemma 2.4]. Finally, (15) holds since η ≥ 1 for both convex
and nonconvex losses, σt = Lαt and E∥U t

k∥3 ≤ (3 + d)3/2 for all k ∈ {1, . . . ,K}. This shows the
second part of recursion. □

For sake of brevity, let I be an adapted stopping time that corresponds to the first iteration index that
the single distinct instance of the two data-sets S, S′ is sampled by ZoSS. For any t0 ∈ {0, 1, . . . , n}
we define the event Eδt0 ≜ {I > t0} ≡ {δt0 = 0}. The next result provides the stability bound.

2For all z ∈ Z and W ∈ Rd it is true that ∥∇2
wf(w, z)|w=W ∥ ≤ β.
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Lemma 2 (ZoSS Stability | Nonconvex Loss) Assume that the loss function f(·, z) is L-Lipschitz
and β-smooth for all z ∈ Z . Consider the ZoSS algorithm (6) with final-iterate estimates WT and
W ′

T , corresponding to the data-sets S, S′, respectively (that differ in exactly one entry). Then the
discrepancy δT ≜ ∥WT −W ′

T ∥, under the event Eδt0 , satisfies the inequality

E[δT |Eδt0 ] ≤
(
2L

n
Γd
K + µβ(3 + d)3/2

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + βαjΓ

d
K

(
1− 1

n

))
. (16)

The corresponding bound of Lemma 2 for convex losses is slightly tighter than the bound in (16).
Since the two bounds differ only by a constant, the consequent results of Lemma 2 are essentially
identical for convex losses as well. We provide the equivalent version of Lemma 2 for convex losses
in Appendix B.

Proof of Lemma 2. Consider the events Et ≜ {G̃t(·) ≡ G̃′
t(·)} and Ec

t ≜ {G̃t(·) ̸= G̃′
t(·)} (see

Eq. (4)). Recall that P(Et) = 1 − 1/n and P(Ec
t ) = 1/n for all t ≤ T . For any t0 ≥ 0, a direct

application of Lemma 1 gives

E[δt+1|Eδt0 ] = P(Et)E[δt+1|Et, Eδt0 ] + P(Ec
t )E[δt+1|Ec

t , Eδt0 ]

=

(
1− 1

n

)
E[δt+1|Et, Eδt0 ] +

1

n
E[δt+1|Ec

t , Eδt0 ]

≤

(
η + αtβ

√
3d− 1

K
+

1

n

(
1− η − αtβ

√
3d− 1

K

))
E[δt|Eδt0 ]

+
2αtL

n
Γd
K + µβαt(3 + d)3/2. (17)

With Rt ≜ (η + αtβ(Γ
d
K − 1) + (1− η − αtβ(Γ

d
K − 1))/n) solving the recursion in (17) gives

E[δT |Eδt0 ] ≤
(
2L

n
Γd
K + µβ(3 + d)3/2

) T∑
t=t0+1

αt

T∏
j=t+1

Rj . (18)

We consider the last inequality for nonconvex loss functions with η = 1 + βαt and convex loss
functions with η = 1 to derive Lemma 2 and Lemma 11 respectively (Appendix B). □

4.2 Generalization Error Bounds

For the first generalization error bound, we evaluate the right part of the inequality (16) for decreasing
step size and bounded nonconvex loss. Then the Lipschitz condition provides a uniform stability
condition for the loss and yields the next theorem.

Theorem 3 (Nonconvex Bounded Loss | Decreasing Stepsize) Assume that the loss f(·, z) ∈
[0, 1] is L-Lipschitz and β-smooth for all z ∈ Z . Consider the ZoSS update rule (6) with T
the total number of iterates, αt ≤ C/tΓd

K for some (fixed) C > 0 and for all t ≤ T , and fixed
µ ≤ cLΓd

K/nβ(3 + d)3/2 for some c > 0. Then the generalization error of ZoSS is bounded by

|ϵgen| ≤
(
(2 + c)CL2

) 1
Cβ+1 (eT )

Cβ
Cβ+1

n
max

{
1, 1 + (Cβ)−1− eβC

βC
1

Cβ+1

(
(2 + c)L2

eT

) Cβ
Cβ+1

}
(19)

≤
(
1 + (Cβ)−1

) (
(2 + c)CL2

) 1
Cβ+1

n
(eT )

Cβ
Cβ+1 . (20)

Inequality (19), as a tighter version of (20), provides a meaningful bound in marginal cases, i.e.,

lim
β↓0

E [|f(WT , z)− f(W ′
T , z)|] ≤

(2 + c)CL2

n
max

{
log

(
eT

(2 + c)CL2

)
, 1

}
. (21)

By neglecting the negative term in (19) we find (20), that is the ZoSS equivalent of SGD [1, Theorem
3.8]. When K → ∞ and c → 0, then Γd

K → 1, and the inequalities (19), (20) reduce to a
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generalization bound for SGD. Inequality (20) matches that of [1, Theorem 3.8], and (19) provides a
tighter generalization bound for SGD as well. We show Theorem 3 in Appendix A.

Next, we provide a bound on the generalization error for nonconvex losses that comes directly from
Theorem 3. In contrast to Theorem 3, the next result provides learning rate and a generalization error
bounds, both of which are independent of the dimension and the number of function evaluations.

Corollary 4 Assume that the loss function f(·, z) ∈ [0, 1] is L-Lipschitz and β-smooth for all z ∈ Z .
Consider the ZoSS update rule (6) with µ ≤ cLΓd

K/(nβ(3 + d)3/2), T the total number of iterates,
and αt ≤ C/t for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of ZoSS is
bounded by

|ϵgen| ≤
(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

) 3Te
2n

. (22)

As a consequence, even in the high dimensional regime d → ∞, two function evaluations (i.e.,
K = 1) are sufficient for the ZoSS to achieve ϵgen = O(T/n), with the learning rate being no smaller
than that of SGD. We continue by providing the proof of Theorem 3. For the proof of Corollary 4,
see Appendix A.3.

In light of Theorem 3 and Corollary 4, we observe that the over-fitting phenomenon occurs in the
gradient-free approach similarly to gradient-based algorithms. For general nonconvex (and convex)
losses under standard step-size choices, the generalization error increases with respect to T . Further,
the effect of β affects both the stability (similarly to SGD in prior work) of the algorithm and the
error approximation of the ZoSS. If β is large, then the expected approximation error (due to limited
function evaluations) is also large [15] and the dependence on smoothness is unavoidable in black-
box learning. In our results, this is expressed through the Growth Recursion of ZoSS (Lemma 2),
that involves both the stability and approximation error per iteration. However, a smaller step-size
(αt = 1/2tβΓd

K) mitigates the effect of β on the bound. We refer the reader to Appendix E for a
unified analysis of the excess risk, that captures the over-fitting and under-fitting trade-off.

Additionally, the number of iterations T is considered to be fixed and known (as in prior works
including on average and high probability results on generalization). This is reasonable and quite
standard because given the theoretical results, we know beforehand the appropriate choices of T that
provide a good trade-off between generalization and optimization. A classical setting is that of a fixed
step-size αt = 1/T with T =

√
n, which provides the well known generalization error bound for

SGD with order O(1/
√
n), as appears in very recent and timely prior works [32, Section 3.1], [45].

In the unbounded loss case, we apply Lemma 2 by setting t0 = 0 (recall that t0 is a free parameter,
while the algorithm depends on the random variable I). The next result provides a generalization
error bound for the ZoSS algorithm with constant step size. In the first case of the theorem, we
also consider the convex loss as a representative result, as we show the same bound holds for an
appropriate choice of greater learning rate than the learning rate of the nonconvex case. The convex
case for the rest of the results of this work can be similarly derived.

Theorem 5 (Unbounded Loss | Constant Step Size) Assume that the loss f(·, z) is L-Lipschitz, β-
smooth for all z ∈ Z . Consider the ZoSS update rule (6) with µ ≤ cLΓd

K/(nβ(3 + d)3/2) for some
c > 0. Let T be the total number of iterates and for any t ≤ T ,

• if f(·, z) is convex for all z ∈ Z and αt ≤ min{log
(
1+Cβ(1− 1/Γd

K)
)
/Tβ(Γd

K − 1), 2/β}, or
if f(·, z) is nonconvex and αt ≤ log

(
1 + Cβ

)
/TβΓd

K , for C > 0 then

|ϵgen| ≤
(2 + c)CL2

n
, (23)

• if f(·, z) is nonconvex and αt ≤ C/TΓd
K , for some C > 0, then

|ϵgen| ≤
L2 (2 + c) (eCβ − 1)

nβ
. (24)

For the proof of Theorem 5 see Appendix A.4. In the following, we present the generalization error
of ZoSS for an unbounded loss with a decreasing step size. Recall that the results for unbounded
nonconvex loss also hold for the case of a convex loss with similar bounds on the generalization error
and learning rate (see the first case of Theorem 5).
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Theorem 6 (Unbounded Loss | Decreasing Step Size) Assume that the loss f(·, z) is L-Lipschitz,
β-smooth for all z ∈ Z . Consider ZoSS with update rule (6), T the total number of iterates,
αt ≤ C/tΓd

K for all t ≤ T and for some C > 0, and µ ≤ cLΓd
K/(nβ(3 + d)3/2) for some c > 0.

Then the generalization error of ZoSS is bounded by

|ϵgen| ≤
(2 + c)L2(eT )Cβ

n
min

{
C + β−1, C log(eT )

}
. (25)

For the proof of Theorem 6 see Appendix A.5. Note that the constant C is free and controls
the learning rate. Furthermore, it quantifies the trade-off between the speed of training and the
generalization of the algorithm. In the next section, we consider the ZoSS algorithm with a mini-
batch of size m for which we provide generalization error bounds. These results hold under the
assumption of unbounded loss and for any batch size m including the case m = 1.

5 Generalization of Mini-Batch ZoSS

For the mini-batch version of ZoSS, at each iteration t, the randomized selection rule (uniformly)
samples a batch Jt of size m and evaluates the new direction of the update by averaging the smoothed
approximation ∆fK,µ

w,z over the samples z ∈ Jt as

∆fK,µ
w,Jt

≡ ∆fK,µ,Ut

w,Jt
≜

1

mK

m∑
i=1

K∑
k=1

f(w + µU t
k,i, zJt,i)− f(w, zJt,i)

µ
U t
k,i, (26)

where U t
k,i ∼ N (0, Id) are i.i.d. (standard normal), and µ ∈ R+. The update rule of the mini-

batch ZoSS is Wt+1 = Wt − αt∆fK,µ
Wt,Jt

for all t ≤ T , and we define G̃Jt(w) ≜ w − αt∆fK,µ
w,Jt

,
G̃′
J′
t
(w) ≜ w − αt∆fK,µ

w,J ′
t

for Jt ⊂ S and J ′
t ⊂ S′ respectively. Due to space limitation, we refer the

reader to Appendix C for the detailed stability analysis of ZoSS with mini-batch. Specifically, we
prove a growth recursion lemma for the mini-batch ZoSS updates (see Appendix C.1 for proof).

Lemma 7 (Mini-Batch ZoSS Growth Recursion) Consider the sequences of updates {G̃Jt
}Tt=1

and {G̃′
Jt
}Tt=1 and µ ≤ cLΓd

K/(nβ(3 + d)3/2). Let w0 = w′
0 be the starting point, wt+1 = G̃Jt

(wt)

and w′
t+1 = G̃′

Jt
(w′

t) for any t ∈ {1, . . . , T}. Then for any wt, w
′
t ∈ Rd and t ≥ 0 the following

recursion holds

E[∥G̃Jt(wt)− G̃′
Jt
(w′

t)∥] ≤
{(

1 + βαtΓ
d
K

)
δt +

cLαt

n Γd
K if G̃Jt(·) = G̃′

Jt
(·)(

1 + m−1
m βαtΓ

d
K

)
δt +

2Lαt

m Γd
K + cLαt

n Γd
K if G̃Jt

(·) ̸= G̃′
Jt
(·).

Although the iterate stability error (at time t) in the growth recursion depends on the batch size m
under the event {G̃Jt

(·) ̸= G̃′
Jt
(·)}, the stability bound on the final iterates is independent of m, and

coincides with the single example updates (m = 1, Lemma 2). Herein, we provide an informal
statement of the result.

Lemma 8 (Mini-Batch ZoSS Stability | Nonconvex Loss) Consider the mini-batch ZoSS with any
batch size m ≤ n, and iterates Wt+1 = Wt −αt∆fK,µ

Wt,Jt
, W ′

t+1 = W ′
t −αt∆fK,µ

W ′
t ,J

′
t
, for all t ≤ T ,

with respect to the sequences S, S′. Then the stability error δT satisfies the inequality of Lemma 2.

We refer the reader to Appendix Section C.1, Theorem 14 for the formal statement of the result.3
Through the Lipschitz condition of the loss and Lemma 8, we show that the mini-batch ZoSS enjoys
the same generalization error bounds as in the case of single-query ZoSS (m = 1). As a consequence,
the batch size does not affect the generalization error.

Theorem 9 (Mini-batch ZoSS | Generalization Error) Let the loss function f(·, z) be L-Lipschitz
and β-smooth (possibly nonconvex, possibly unbounded) for all z ∈ Z . Then the bounds of Theorem
5 and Theorem 6 hold for the mini-batch ZoSS with iterate Wt+1 = Wt − αt∆fK,µ

Wt,Jt
, for all t ≤ T

and any batch size m ≤ n.
3As in the single-query (m = 1) ZoSS, under the assumption of convex loss, the stability error of mini-batch

ZoSS satisfies the inequality (46), Appendix B, Lemma 11.
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By letting K → ∞ and c → 0, the generalization error bounds of mini-batch ZoSS reduce to those of
mini-batch SGD, extending results of the single-query (m = 1) SGD that appeared in prior work [1].
Additionally, once K → ∞, c → 0 and m = n we obtain generalization guarantees for full-batch GD.
For the sake of clarity and completeness we provide dedicated stability and generalization analysis of
full-batch GD in Appendix D, Corollary 15.

6 Discussion: Black-box Adversarial Attack Design and Future Work

A standard, well-cited example of ZoSS application is adversarial learning as considered in [5],
when the gradient is not known for the adversary (for additional applications for instance feder-
ated/reinforcement learning, linear quadratic regulators; see also Section 1 for additional references).
Notice that the algorithm in [5] is restrictive in the high dimensional regime since it requires 2d
function evaluations per iteration. In contrast, ZoSS can be considered with any K ≥ 2 functions
evaluations (the trade-off is between accuracy and resource allocation, which is also controlled
through K). If K = d + 1 evaluations are available we recover guarantees for the deterministic
zeroth-order approaches (similar to [5]).

Retrieving a large number of function evaluations often is not possible in practice. When a limited
amount of function evaluations is available, the adversary obtains the solution (optimal attack) with
an optimization error that scales by a factor of

√
d/K, and the generalization error of the attack is

of the order
√
T/n under appropriate choices of the step-size, the smoothing parameter µ and K.

Fine tuning of the these parameters might be useful in practice, but in general K should be chosen as
large as possible. In contrast, µ should be small and satisfy the inequality µ ≤ cLΓd

K/nβ(3 + d)3/2

(Theorem 6). For instance, in practice µ is often chosen between 10−10 and 10−8 (or even lower)
and the ZoSS algorithm remains (numerically) stable.

For neural networks with smooth activation functions [71–73], the ZoSS algorithm does not require
the smoothness parameter β to be necessarily known, however if β is large then the guarantees of
the estimated model would be pessimistic. To ensure that the learning procedure is successful, the
adversary can approximate β (since the loss is not known) by estimating the (largest eigenvalue of
the) Hessian through the available function evaluations [74, Section 4.1].

Although the non-smooth (convex) loss setting lies out of the scope of this work, it is expected to
inherit properties and rates of the SGD for non-smooth losses (at least for sufficiently small smoothing
parameter µ). In fact, [45, page 3, Table 1] developed upper and lower bounds for the SGD in the
non-smooth case, and they showed that standard step-size choices provide vacuous stability bound.
Due to these inherent issues of non-smooth (and often convex only cases), the generalization error
analysis of ZoSS for non-smooth losses remains open. Finally, information-theoretic generalization
error bounds of ZoSS can potentially provide further insight into the problem, due to the noisy
updates of the algorithm, and consist part of future work.

7 Conclusion

In this paper, we characterized the generalization ability of black-box learning models. Specifically,
we considered the Zeroth-order Stochastic Search (ZoSS) algorithm, which evaluates smoothed
approximations of the unknown gradient of the loss by only relying on K +1 loss evaluations. Under
the assumptions of a Lipschitz and smooth (unknown) loss, we showed that the ZoSS algorithm
achieves the same generalization error bounds as that of SGD, while the learning rate is slightly
decreased compared to that of SGD. The efficient generalization ability of ZoSS, together with strong
optimality results related to the optimization error by Duchi et al. [13], makes it a robust and powerful
algorithm for a variety of black-box learning applications and problems.
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