®

Check for
updates

Bunched Fuzz: Sensitivity for Vector Metrics

june wunder! ®9@®, Arthur Azevedo de Amorim?, Patrick Baillot?, and
Marco Gaboardi!

! Boston University, Boston, USA
jwunder@bu.edu
2 Univ. Lille, CNRS, Inria, Centrale Lille, UMR9189 CRIStAL, F-59000 Lille, France
3 Rochester Institute of Technology, Rochester, USA

Abstract. Program sensitivity measures the distance between the out-
puts of a program when run on two related inputs. This notion, which
plays a key role in areas such as data privacy and optimization, has been
the focus of several program analysis techniques introduced in recent
years. Among the most successful ones, we can highlight type systems
inspired by linear logic, as pioneered by Reed and Pierce in the Fuzz
programming language. In Fuzz, each type is equipped with its own dis-
tance, and sensitivity analysis boils down to type checking. In particular,
Fuzz features two product types, corresponding to two different notions
of distance: the tensor product combines the distances of each component
by adding them, while the with product takes their mazimum.

In this work, we show that these products can be generalized to arbi-
trary LP distances, metrics that are often used in privacy and optimiza-
tion. The original Fuzz products, tensor and with, correspond to the
special cases L' and L*. To ease the handling of such products, we
extend the Fuzz type system with bunches—as in the logic of bunched
implications—where the distances of different groups of variables can be
combined using different L? distances. We show that our extension can be
used to reason about quantitative properties of probabilistic programs.

1 Introduction

When developing a data-driven application, we often need to analyze its sensi-
tivity, or robustness, a measure of how its outputs can be affected by varying
its inputs. For example, to analyze the privacy guarantees of a program, we
might consider what happens when we include the data of one individual in its
inputs [11]. When analyzing the stability of a machine-learning algorithm, we
might consider what happens when we modify one sample in the training set [7].
Such applications have spurred the development of several techniques to rea-
son about program sensitivity [23,9]. One successful approach is based on linear-
like [14] type systems, as pioneered in Reed and Pierce’s Fuzz language [23].
The basic idea behind Fuzz is to use typing judgments to track the sensitivity
of a program with respect to each variable. Each type comes equipped with a
notion of distance, and the typing rules explain how to update variable sensi-
tivities for each operation. Because different distances yield different sensitivity
analyses, it is often useful to endow a set of values with different distances, which

© The Author(s) 2023
T. Wies (Ed.): ESOP 2023, LNCS 13990, pp. 451-478, 2023.
https://doi.org/10.1007,/978-3-031-30044-8_17

http://orcid.org/0000-0002-3280-9731
mailto:jwunder@bu.edu
https://doi.org/10.1007/978-3-031-30044-8_17
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30044-8_17&domain=pdf

452 j- wunder et al.

leads to different Fuzz types. For example, like linear logic, Fuzz has two notions
of products: the tensor product ® and the Cartesian product & (with). The first
one is equipped with the L! (or Manhattan) distance, where the distance be-
tween two pairs is computed by adding the distances between the corresponding
components. The second one is equipped with the L> (or Chebyshev) distance,
where the component distances are combined by taking their mazimum.

The reason for focusing on these two product types is that they play a key
role in differential privacy [11], a rigorous notion of privacy that was the motivat-
ing application behind the original Fuzz design. However, we could also consider
equipping pairs with more general LP distances, which interpolate between the
L' and L and are extensively used in convex optimization [8], information the-
ory [10] and statistics [15]. Indeed, other type systems for differential privacy in-
spired by Fuzz [20] include types for vectors and matrices under the L? distance,
which are required to use the Gaussian mechanism, one of the popular building
blocks of differential privacy. Supporting more general LP metrics would allow
us to capture even more such building blocks [17,1], which would enable further
exploration of the tradeoffs between differential privacy and accuracy.

In this paper, we extend these approaches and show that Fuzz can be enriched
with a family of tensor products ®,, for 1 < p < co. These tensor products are
equipped with the LP distance, the original Fuzz products ® and & corresponding
to the special cases ®; and ®o,. Moreover, each connective ®, is equipped with
a corresponding “linear implication” —o),, unlike previous related systems where
such an implication only exists for p = 1. Following prior work [4,3], we give to
our extension a semantics in terms of non-expansive functions, except that the
presence of the implications —o,, forces us to equip input and output spaces with
more general distances where the triangle inequality need not hold.

A novelty of our approach is that, to support the handling of such prod-
ucts, we generalize Fuzz environments to bunches, where each L? distance comes
with its own context former. Thus, we call our type system Bunched Fuzz. This
system, inspired by languages derived from the logic of Bunched Implications
(BI) [22] (e.g. [21]), highlights differences between the original Fuzz design and
linear logic—for example, products distribute over sums in Fuzz and BI, but
not in linear logic. While similar indexed products and function spaces have also
appeared in the literature, particularly in works on categorical grammars [19],
here they are employed to reason about vector distances and function sensitivity.

While designing Bunched Fuzz, one of our goals was to use sensitivity to rea-
son about randomized algorithms. In the original Fuzz, probability distributions
are equipped with the maz divergence distance, which can be used to state dif-
ferential privacy as a sensitivity property [23]. Subsequent work has shown how
Fuzz can also accommodate other distances over probability distributions [3].
However, such additions required variants of graded monads, which express the
distance between distributions using indices (i.e. grades) on the monadic type of
distributions over their results, as opposed to sensitivity indices on their inputs,
as it was done in the original Fuzz. In particular, this makes it more difficult to
reason about distances separately with respect to each input. Thanks to bunches,

Bunched Fuzz: Sensitivity for Vector Metrics 453

however, we can incorporate these composition principles more naturally. For ex-
ample, Bunched Fuzz can reason about the Hellinger distance on distributions
without the need for output grading, as was done in prior systems [3].

We will also see that, by allowing arbitrary LP norms, we can generalize prior
case studies that were verified in Fuzz and obtain more general methods for rea-
soning about differential privacy (Section 5). Consider the LP mechanism [1,17],
which adds noise to the result of a query whose sensitivity is measured in the
LP norm. Since Fuzz does not have the means to analyze such a sensitivity mea-
sure, it cannot implement the LP? mechanism; Bunched Fuzz, however, can ana-
lyze such a measure, and thus allows for a simple implementation in terms of the
exponential mechanism. Such a mechanism, in turn, can be used to implement a
variant of a gradient descent algorithm that works under the LP norm, general-
izing an earlier version that was biased towards the L! norm [25]. Summarizing,
our contributions are:

— We introduce Bunched Fuzz, an extension of Fuzz with types for general LP
distances: we add type constructors of the form ®, (for 1 < p < oo) for
pairs under the LP distance along with constructors of the form —o,, for their
corresponding function spaces. To support the handling of such types, we
generalize Fuzz typing contexts to bunches of variable assignments.

— We give a denotational semantics for Bunched Fuzz by interpreting programs
as non-expansive functions over spaces built on L? distances.

— We show that Bunched Fuzz can support types for probability distributions
for which the sampling primitive, which enables the composition of proba-
bilistic programs, is compatible with LP distances.

— We show a range of examples of programs that can be written in Bunched
Fuzz. Notably, we show that Bunched Fuzz can support reasoning about the
Hellinger distance without the need for grading, and we show generalizations
of several examples from the differential privacy literature.

Check the full version of this paper for more technical details [26].

2 Background

2.1 Metrics and Sensitivity

To discuss sensitivity, we first need a notion of distance. We call extended pseu-
dosemimetric space a pair X = (|X|,dx) consisting of a carrier set |X| and an
extended pseudosemimetric dx : | X|?> — RZ?, which is a function satisfying, for
all z,y € |X|, dx(z,z) = 0 and dx(x,y) = dx(y,). This relaxes the standard
notion of metric space in a few respects. First, the distance between two points
can be infinite, hence the extended. Second, different points can be at distance
zero, hence the pseudo. Finally, we do not require the triangular inequality:

dx(l’,y) SdX(va)+dX(Z’y)7 (1)

454 j- wunder et al.

hence the semi. We focus on extended pseudosemimetrics because they support
constructions that true metrics do not. In particular, they make it possible to
scale the distance of a space by oo and enable more general function spaces.
However, to simplify the terminology, we will drop the “extended pseudosemi”
prefix in the rest of the paper, and speak solely of metric spaces. In some occa-
sions, we might speak of a proper metric space, by which we mean a space where
the triangle inequality does hold (but not necessarily the other two requirements
that are missing compared to the traditional definition of metric space).

Given a function f : X — Y on metric spaces, we say that it is s-sensitive, for
s in RZY, if we have, for all z1, 25 € X, dy (f(z1), f(z2)) < s-dx (71, 2), where
we extend addition and multiplication to RZ? by setting 0o - s = s - 00 = 0.
We also say that f is s-Lipschitz continuous, though the traditional definition of
Lipschitz continuity assumes s # oo. If a function is s-sensitive, then it is also
s'-sensitive for every s’ > s. Every function of type X — Y is co-sensitive. If a
function is 1-sensitive, we also say that f is non-expansive. We use X — Y to
denote the set of such non-expansive functions. The identity function is always
non-expansive, and non-expansive functions are closed under composition. Thus,
metric spaces and non-expansive functions form a category, denoted Met.

2.2 Distances for Differential Privacy

Among many applications, sensitivity is a useful notion because it provides a con-
venient language for analyzing the privacy guarantees of algorithms—specifically,
in the framework of differential privacy [11]. Differential privacy is a technique
for protecting the privacy of individuals in a database by blurring the results of
a query to the database with random noise. The noise is calibrated so that each
individual has a small influence on the probability of observing each outcome
(while ideally guaranteeing that the result of the query is still useful).

Formally, suppose that we have some set of databases db equipped with a met-
ric. This metric roughly measures how many rows differ between two databases,
though the exact definition can vary. Let f : db — DX be a randomized database
query, which maps a database to a discrete probability distribution over the set
of outcomes X. We say that f is e-differentially private if it is an e-sensitive
function from db to DX, where the set of distributions DX is equipped with
the following distance, sometimes known as the max divergence:

p ()
p2()

MDx (1, p2) = Z In
rzeX

. 2)

(Here, we stipulate that In |0/0] = 0 and In [p/0| = In|0/p| = oo for p # 0.)

To understand this definition, suppose that D; and D5 are two databases at
distance 1—for instance, because they differ with respect to the data of a single
individual. If f is e-differentially private, the above definition implies that f(D;)
and f (D) are at most € apart. When e is large, the probabilities of each outcome
in the result distributions can vary widely. This means that, by simply observing
one output of f, we might be able to guess with good confidence which of the

Bunched Fuzz: Sensitivity for Vector Metrics 455

databases Dy or Dy was used to produce that output. Conversely, if € is small,
it is hard to tell which database was used because the output probabilities will
be close. For this reason, it is common to view € as a privacy loss—the larger it
is, the more privacy we are giving up to reveal the output of f.

Besides providing a strong privacy guarantee, this formulation of closeness
for distributions provides two important properties. First, we can compose dif-
ferentially private algorithms without ruining their privacy guarantee. Note that
DX forms a monad, where the return and bind operations are given as follows:

1 ifz=y 3)

0 otherwise

n(r) =y {
flw)y =y D> @) f@)). (4)

zeX

Intuitively, the return operation produces a deterministic distribution, whereas
bind samples an element = from p and computes f(x). When composing differ-
entially private algorithms, their privacy loss can be soundly added together:

Theorem 1. Suppose that f : db — DX is e;-differentially private and that g :
db — X — DY is such that the mapping 6 — g(8)(x) is ea-differentially private
for every x. Then the composite h : db — DY defined as h(8) = g(8)T(f(9)) is
(e1 + €2)-differentially private.

The other reason why the privacy metric is useful is that it supports many
building blocks for differential privacy. Of particular interest is the Laplace mech-
anism, which blurs a numeric result with noise drawn from the two-sided Laplace
distribution. If z € R, let £(z) be the distribution with density* y — %e—\w—yl'

Theorem 2. The mechanism L is a non-expansive function of type R — DR.5

Thus, to define an e-differentially private numeric query on a database, it suffices
to define an e-sensitive, deterministic numeric query, and then blur its result
with Laplace noise. Differential privacy follows from the composition principles
for sensitivity. This reasoning is justified by the fact that the Laplace mechanism
adds noise proportional to the sensitivity of the numeric query in L' distance.

2.3 Sensitivity as a Resource

Because differential privacy is a sensitivity property, techniques for analyzing
the sensitivity of programs can also be used to analyze their privacy guarantees.
One particularly successful approach in this space is rooted in type systems in-
spired by linear logic, as pioneered by Reed and Pierce in the Fuzz programming
language [16,23]. At its core, Fuzz is just a type system for tracking sensitivity.

4 We use here a Laplace distribution with scale 1.

5 The definitions do not quite match up our setting, since £ is a continuous, and
not discrete distribution. The result can be put on firm footing by working with a
discretized version of the Laplace distribution [12].

456 j- wunder et al.

Typing judgments are similar to common functional programming languages,
but variable declarations are of the form x; i, 7t @1 1oy T, ..., X0 4, T E €1 0.
The annotations 7; € RZ0 are sensitivity indices, whose purpose is to track the
effect that changes to the program input can have on its output: if we have two
substitutions v and +’ for the variables x;, then the metric preservation property
of the Fuzz type system guarantees that

d(e[y/], e[y /7]) < Zri ~d(y (i), (1), (5)

where the metrics d are computed based on the type of each expression and
value. This means that we can bound the distance on the results of the two
runs of e by adding up the distances of the inputs scaled by their corresponding
sensitivities. When this bound is finite, the definition of the metrics guarantees
that the two runs have the same termination behavior. When r; = oo, the above
inequality provides no guarantees if the value of x; varies.

Fuzz includes data types commonly found in functional programming lan-
guages, such as numbers, products, tagged unions, recursive types and functions.
The typing rules of the language explain how the sensitivities of each variable
must be updated to compute each operation. The simplest typing rule says that,
in order to use a variable, its declared sensitivity must be greater than 1:

r>1
e, nAFz:T

As a more interesting example, to construct a pair (e1,ez), the following rule
says that we need to add the sensitivities of the corresponding contexts:

F1|_612’7'1 F2|_62:7_2
N+ Db (er,e) @7

This behavior is a result of the distance of the tensor type ®: the distance
between two pairs in 7 ® 79 is the result of adding the distances between the
first and second components; therefore, the sensitivity of each variable for the
entire expression is the sum of the sensitivities for each component. In this sense,
sensitivities in Fuzz behave like a resource that must be distributed across all
variable uses in a program. For the sake of analogy, we might compare this
treatment to how fractional permissions work in separation logic: the predicate
| 4 z indicates that we own a fraction g € [0, 1] of a resource stating that !
points to x. If ¢ = ¢1 + g2, we can split this predicate as [=4, = *x [=, z,
allowing us to distribute this resource between different threads.

The distance on ® corresponds to the sum in the upper bound in the state-
ment of metric preservation (Equation (5)). This distance is useful because it is
the one that yields good composition principles for differential privacy. This can
be seen in the typing rule for sampling from a probabilistic distribution:

I'ke :Or Az, They: Oo
I'+AFmlet x =€ in ey : Qo

Bunched Fuzz: Sensitivity for Vector Metrics 457

Here, O7 denotes the type of probability distributions over values of type 7.
This operation samples a value z from the distribution e; and uses this value
to compute the distribution es. We can justify the soundness of this rule by
reducing it to Theorem 1: the addition on contexts corresponds to the fact that
the privacy loss of a program degrades linearly under composition.

Besides the tensor product ®, Fuzz also features a with product &, where
the distances between components are combined by taking their maximum. This
leads to a different typing rule for & pairs, which does not add up the sensitivities:

FF6127'1 FFGQZTQ
I't(er,e2):m &7

If we compare these rules for pairs, we see a clear analogy with linear logic: ®
requires us to combine contexts, whereas & allows us to share them. Fuzz’s elim-
ination rules for products continue to borrow from linear logic: deconstructing a
tensor gives both elements but deconstructing a with product returns only one.

I'Fe: 11 ®m Az, T,y,nbe: 7 I'Fe:m1&m
A+rlFlet (z,y)=eine : 7 I'Fme:7

This partly explains why the connectives’ distances involve addition and max-
imum. When using a tensor product, both elements can affect how much the
output can vary, so both elements must be considered. (Note that Fuzz is an
affine type system: we are free to ignore one of the product’s components, and
thus we can write projection functions out of a tensor product.) When projecting
out of a with product, only one of the elements will affect the program’s output,
so we only need to consider the component that yields the maximum distance.

Fuzz uses the ! type for managing sensitivities. Intuitively, ! ;7 behaves like 7,
but with the distances scaled by s; when s = oo, this means that different points
are infinitely apart. The introduction rule scales the sensitivities of variables in
the environment. This can be used in conjunction with the elimination rule to
propagate the sensitivity out of the type and into the environment.

I'Fe:T I'kFe:lyr AgsThHe o7
sI'Fle: !, A+rFlet lz=eineée : 7’

Finally, the rules for the linear implication —o are similar to the ones from
linear logic, but adjusted to account for sensitivities.

I'zuthe:o I'kFe:T—o0 AFe T
I'FXze:T—o0 I'+AbFee:o

To introduce the linear implication —o, the bound variable needs to have sensi-
tivity 1. When eliminating —o, the environments need to be added. In categorical
language, addition, which is also present in the metric for ®, is connected to the
fact that there is an adjunction between the functors X ® (—) and X —o (—).

458 j- wunder et al.

2.4 LP distances

The L' and L* distances are instances of a more general family of LP distances
(for p € RZ!).6 Given a sequence of distances ¥ = (z1,...,2,) € (RZ9)", we
first define the LP pseudonorm? as follows: ||#||, = (27 2?)}/P. This definition
makes sense whenever the distances x; and p are finite. When p = oo, we define
the right-hand side as the limit max}" ; z;. When x; = oo for some 4, we define
the right-hand side as co. We have the following classical properties:

Proposition 1 (Holder inequality). For all p,q > 1 such that % + % =1,
and for all 7, j € (RZO)", we have: Xz < ||Z||p] |44
For p =2, g =2, this is the Cauchy-Schwarz inequality: X" z;y; < ||Z]|2]|7]|2-

Proposition 2. For 1 < p < q we have, for ¥ € (RZ%)":

1Zllq <117l (6)
- i_1.

1Z[lp < nv |2l (7)
122 < [1Z]]s < v/ [|7]]2 (8)

The LP pseudonorms yield distances on tuples. More precisely, suppose that
(Xi)1<i<n are metric spaces. The following defines a metricon X = Xj x---xX,,:

dp(Z, &) = [|(dx, (z1,21), ..., dx,, (Tn, 27,)) [l

Proposition 3. For 1 < p < q we have, for Bol € X1 XX Xp:

3 Bunched Fuzz: Programming with LP Distances

As we discussed earlier, the L' distance is not the only distance on products
with useful applications. In the context of differential privacy, for example, the
L? distance is used to measure the sensitivity of queries when employing the
Gaussian mechanism, a method for private data release that sanitizes data by
adding Gaussian noise instead of Laplacian noise.®

It is possible to extend a Fuzz-like analysis with L? distances by adding
primitive types and combinators for vectors. This was done, for instance, in

8 The L? distances can be defined with p > 0 but for simplicity of our treatment we
will only consider p > 1.

7 “pseudo-” because it can be infinite.

8 Technically, the Gaussian mechanism is used to achieve a relaxation of differential
privacy known as approzimate, or (e, d)-differential privacy. Though this notion can-
not be analyzed directly by classical verification techniques for differential privacy,
it can be handled by recent extensions of Fuzz [3,20].

Bunched Fuzz: Sensitivity for Vector Metrics 459

the Duet language [20], which provides the Gaussian mechanism as one of the
primitives for differential privacy. Such an extension can help verify a wide class
of algorithms that manipulate vectors in a homogeneous fashion, but it makes
it awkward to express programs that require finer grained access to vectors.

To illustrate this point, suppose that we have a non-expansive function f :
R? — R, where the domain carries the L? metric. Consider the mapping

g(m,y) = f(2$7y) + f(2y,x).

How would we analyze the sensitivity of g? We cannot translate such a program
directly into a system like Duet, since it does not allow us to manipulate L2
vectors at the level of individual components. However, we could rewrite the
definition of g to use matrix operations, which could be easily incorporated in a
variant of Duet. Specifically, consider the following definition:

oo ()

The L? sensitivity of a linear transformation & + MZ can be easily computed
if we know the coefficients of the matrix M. Note that

o » . - M@ —Pll2) - -
d(anMy):||M17*My||2:||M(17*y)||2:m||$*y||2
M
< (s 1521z, .
= 2l

The quantity supz||MZ]|2/]|Z]|2, known as the operator norm of M, gives the
precise sensitivity of the above operation, and can be computed by standard
algorithms from linear algebra. In the case of g, both matrices have a norm of 2.
This means that we can analyze the sensitivity of g compositionally, as in Fuzz:
addition is 1-sensitive in each variable, so we just have to sum the sensitivi-
ties of & in each argument, yielding a combined sensitivity of 4. Unfortunately,
this method of combining the sensitivities of each argument is too coarse when
reasoning with LP distances, which leads to an imprecise analysis. To obtainTa
200 1]

better bound, we can reason informally as follows. First, take M = 0120

We can compute the operator norm of M directly:

22,2 1 02 + 9202 + 22 522 - 02
)| s YEEE AP _ VIE) g

= sup

z,y /Z'2 +y2 z,y /1'2 _|_y2

which implies that M is a v/5-sensitive function of type R? — R* = R? x R2.
Moreover, thanks to Proposition 3, we can view addition (+) as a v/2-sensitive
operator of type R2 — R, since

dr(z1 + 22,y1 + y2) < dr(z1 — y1) + dr(z2 — y2) = di (Z,) < V2da(Z, 7).

460 j- wunder et al.

T,0,pu=1|R |7 | OQpT |QuT |7 —p 0o |TQpo | T 0o (p e RZ', s e RZ)
=z|reR|() | xe|ee]|(ee)]|let (x,y)=eine

o
I

inje| (case eof z.e|y.e)|le|let lx=ecin e

| mlet x = ¢ in e | return e ---

Fig. 1. Types and terms in Bunched Fuzz

Thus, by rewriting the definition of g as (+) o (f x f) o M, where f x f : R* =
R? x R? — R x R denotes the application of f in parallel, we can compute the
sensitivity of ¢ by multiplying the sensitivity of each stage, as v2 x 1 x v/5 =
V10 ~ 3.16, which is strictly better than the previous bound.

Naturally, we could further extend Fuzz or Duet with primitives for internal-
izing this reasoning, but it would be preferable to use the original definition of g
and automate the low-level reasoning about distances. In this section, we demon-
strate how this can be done via Bunched Fuzz, a language that refines Fuzz by
incorporating more general distances in its typing environments. Rather assum-
ing that input distances are always combined by addition, or the L! distance,
Bunched Fuzz allows them to be combined with arbitrary LP distances. This
refinement allows us to analyze different components of a vector as individual
variables, but also to split the sensitivity of these variables while accounting for
their corresponding vector distances. In the remaining of this section, we present
the syntax and type system of Bunched Fuzz, highlighting the main differences
with respect to the original Fuzz design. Later, in Section 4, we will give a
semantics to this language in terms of metric spaces, following prior work [3].

Types and Terms Figure 1 presents the grammar of types and the main term
formers of Bunched Fuzz. They are similar to their Fuzz counterparts; in par-
ticular, there are types for real numbers, products, sums, functions, and a unit
type. The main novelty is in the product type 7 ®, 0, which combines the metrics
of each component using the L? distance (cf. Section 2.4). The types 7 ®; o and
T ®oo 0 subsume the types 7 ® o0 and 7 & o in the original Fuzz language. Note
that there is no term constructor or destructor for the Fuzz type &, since it is
subsumed by ®. The type 7 —o,, 0 represents non-expansive functions endowed
with a metric that is compatible with the LP metric, in that currying works (cf.
Section 5). We will sometimes write ® for ®; and —o for —oy.

Another novelty with respect to Fuzz is that there are two constructors for
probability distributions, Op and ()g. The first one carries the original Fuzz
privacy metric, while the second one carries the Hellinger distance. As we will see
shortly, the composition principle for the Hellinger distance uses a contraction
operator for the L? distance, which was not available in the original Fuzz design.
Both distribution types feature term constructors mlet and return for sampling
from a distribution and for injecting values into distributions. To simplify the
notation, we do not use separate versions of these term formers for each type.

Bunched Fuzz: Sensitivity for Vector Metrics 461

Bunches Before describing its type system, we need to talk about how typing
environments are handled in Bunched Fuzz. In the spirit of bunched logics,
environments are bunches defined with the following grammar:

NAz=-|[z:7],| T ,,A

The empty environment is denoted as -. The form [z : 7] states that the variable
x has type 7 and sensitivity s. The form I",, A denotes the concatenation of I’
and A, which is only defined when the two bind disjoint sets of variables. As
we will see in Section 4, bunches will be interpreted as metric spaces, and the p
index denote which LP metric we will use to combine the metrics of I" and A.

The type system features several operations and relations on bunches, which
are summarized in Figure 2. We write I" «~ I to indicate that we can obtain I’
by rearranging commas up to associativity and commutativity, and by treating
the empty environment as an identity element; Figure 2 has a precise definition.
Observe that associativity only holds for equal values of p. This operation will
be used to state a permutation rule for the type system of Bunched Fuzz.

Like in Fuzz, environments have a scaling operation sI" which scales all sen-
sitivities in the bunch by s. For example,

s([x: 7l [Y i 0l) = (@2 Tlsryp [V 1 0srs)-

The exact definition of scaling in such graded languages is subtle, since minor
variations can quickly lead to unsoundness. The definition we are using (co-0 =
0- 00 = o0), which goes back to prior work [3], is sound, but imprecise, since
it leads to too many variables being marked as oo-sensitive. It would also be
possible to have a more precise variant that uses a non-commutative definition of
multiplication on distances [4], but we keep the current formulation for simplicity.
(For a more thorough discussion on these choices and their tradeoffs, see the
“Zero and Infinity” example in Appendix B of the full version [26] of this paper.)

In the original Fuzz type system, rules with several premises usually have
their environments combined by adding sensitivities pointwise, which corre-
sponds to a use of the L' metric. In Bunched Fuzz, we have instead a family of
contraction operations Contr(p, I, A) for combining environments, one for each
LP metric. Contraction only makes sense if I" and A differ only in sensitivities
and variable names, but have the same structure otherwise. We write this rela-
tion as I' =~ A. When contracting two leaves, sensitivities are combined using
the LP norm, while keeping variable names from the left bunch.

Unlike Fuzz, where contraction is implicit in rules with multiple premises,
Bunched Fuzz has a separate, explicit contraction typing rule. The rule will be
stated using the vars function, which lists all variables in a bunch.

Type System Our type system is similar to the one of Fuzz, but adapted to use
bunched environments. The typing rules are displayed on Figure 3. For example,
in the ®I rule, notice that the p on the tensor type is carried over to the bunch in
the resulting environment. Similarly, in the —oI rule, the value of p that annotates
the bunch in the premise is carried over to the —o,, in the conclusion.

462 j- wunder et al.

vars(:) =]

vars([z : 7s) = [a] [z :7]s
vars((I'n,p I2)) = vars(In) Hvars(Iz2) I plox A1, ifp=qAli=x A

ZZ

ly : o]r ifr=0

I o A ifI'=A
I e A ifI'ews A
I e Al ifI'ews A s§-=-
Iy Ip e Ay, Ag if I e Ay s [T]r = [T]sr
Iy I o Aoy Ay if I e« Ay s(I'pA)=sI,psA
Iy (I, I3) e (Ar,p A2),p Ag if I e A,
I e I if I o~ I
1 if p=o0
elp.g) = {2 P| otherwise

Contr(p, -

v0)
Contr(p, [z : 7]s, [y : T]r) =[x : 7] garrp
COTlt’f‘(p, (F17q FQ) (Alﬂl AQ)) = (,q)(C’ontr(p, F17 Al)vq CO’I’LtT(p, FQ: AQ))

Fig. 2. Bunch Operations

Like in Fuzz, the |E rule propagates the scaling factor, but using the bunch
structure. Rather than adding the two environments, we splice one into the
other: the notation I'(A) denotes a compound bunch where we plug in the
bunch A into another bunch I'(x) that has a single, distinguished hole x. As
we mentioned earlier, Bunched Fuzz has an explicit typing rule for contraction,
whereas contraction in Fuzz is implicit in rules with multiple premises. Note
also that we have unrestricted weakening. Finally, we have the rules for typing
the return and bind primitives of the probabilistic types Oy and (Op. Those
for Op are adapted from Fuzz, by using contraction instead of adding up the
environments. The ones for () g are similar, but use L? contraction instead, since
that is the metric that enables composition for the Hellinger distance.

Let us now explain in which sense ®., corresponds to the & connective of
Fuzz. We will need the following lemma:

Lemma 1 (Renaming). Assume that there is a type derivation of ' Fe: T
and that I =~ I"". Then there exists a derivation of I'' - e[vars(I")/vars(I)] : 7.

Now, the & connective in Fuzz supports two operations, projections and pairing.
The connective ®,, of Bunched Fuzz also supports these operations, but as
derived forms. First, projections can be encoded by defining ;(e) for ¢ = 1,2
as let (x1,29) = e in x;. Second, for pairing assume we have two derivations
of I' - e; : o; for i = 1,2, and let I be an environment obtained from I by

Bunched Fuzz: Sensitivity for Vector Metrics 463

s>1
— AXIOM — RI — 11
[x:7]sFx:T Fr:R ()1
Iylz:mhte:o I 'tf:7—p0o Ate:T
I'EXre:T—op0 I'yAr fe:o
I'kei:r Al—ezza®1 Abe1:TQpo F([x:T]S,p[y:a]s)}—ezzp®E
I' ,AF (e1,e2) : TQp o I'(sA)Flet (z,y) =e1in ez :p
I'e:r o1 I'Fe:o ol
I'Finje:7®0 ! I'Finje: 7@ 0 2
I'tei:7®0 Az :7]ls)Fez:p A([y:a]s)}—egzp@E
A(sI')Fcase e; of z. ez | y.e3:p
I'kFe:r | I'keyp: 7T A([a::r]rs)l—eg:U'E
sFle: o1 A(sINFlet !z =e1 inex: o ’
rAa,AYre:r A A Ir“)kFe:r
; ; CONTR ————— WEAK
I'(Contr(p, A, A") b e[vars(A") Jvars(A)] : T riAyre:r
I'kFe:r I eI
- ExcHu
I"+e:7
I'~ A
I'kep: A, cT]s Fea: I'ke:
e : Op7 vlr] . e2: Oro BinDp-P °r RETURN-P
Contr(1,IA) F mlet x = e; in e2 : Opo ool Freturn e : OpT
I'~ A
I'ker: A :Tls Fea: I'ke:
er: OnT wloi7ls Fea: Ono BIND-H T RETURN-H
Contr(2,I,A) F mlet x =e1 in ex: Quo ool return e: QuT

Fig. 3. Bunched Fuzz typing rules

464 j- wunder et al.

renaming all variables to fresh ones. Then we have I' ~ I’ and thus

T'Fey:oy =1
I'kej:o; I+ exlvars(I”) /vars(I)] : o9
I I F (e1, ea[vars(I) Jvars(I)]) : 01 @0 02
Contr(oco, I, T") F (e1,€2) : 01 Qoo 02

LEMMA 1
®I
CONTR

Note that we have defined %/ +y>* = max(z,y) by taking the limit of
¢/xP + yP when p goes to infinity, and thus we have Contr(co, I, I'') = I'. There-
fore the pairing rule of & is derivable for ®q.

4 Semantics

Having defined the syntax of Bunched Fuzz and its type system, we are ready
to present its semantics. We opt for a denotational formulation, where types 7
and bunches I' are interpreted as metric spaces [7] and [I'], and a derivation
mof I' b e: 7 is interpreted as a non-expansive function] : [I'] — [r]. For
space reasons, we do not provide an operational semantics for the language, but
we foresee no major difficulties in doing so, since the term language is mostly
inherited from Fuzz, which does have a denotational semantics proved sound
with respect to an operational semantics [4].

Types Each type T is interpreted as a metric space [7] in a compositional fashion,
by mapping each type constructor to the corresponding operation on metric
spaces defined in Figure 4. We now explain these definitions.

The operations of the first four lines of Figure 4 come from prior work on
Fuzz [4,3]. The definition of ®, uses as carrier set the cartesian product, just as
® in previous works, but endows it with the LP distance, defined in Section 2.4.
In the particular case of p = 1, ®; is the same as ®.

As for —,, we want to define it in such a way that currying and uncurrying
work with respect to ®,, which will allow us to justify the introduction and
elimination forms for that connective. For that we first choose as carrier set the
set A —o B of non-expansive functions from A to B. This set carries the metric

da—,B(f,9)

=inf{r e RY | Va,y € A, dp(f(x),9(y)) < /17 +dalz,y)r} -
This metric is dictated by the type of the application operator in the LP norm:
(A —, B)®, A — B. Intuitively, if f and g are at distance r, and we want appli-
cation to be non-expansive, we need to satisfy dg(f(z),g(y)) < /7P + da(x,y)?
for every x,y € A. The above definition says that we pick the distance to be the
smallest possible r that makes this work. Note that this choice is forced upon us:
in category-theoretic jargon, the operations of currying and uncurrying, which
are intimately tied to the application operator, correspond to an adjunction be-

tween two functors, which implies that any other metric space that yields a

Bunched Fuzz: Sensitivity for Vector Metrics 465

similar adjunction with respect to ®, must be isomorphic to —o,,. In particular,
this implies that its metric will be the same as the one of —o,,.

For OpA and (OgA the carrier set is the set DA of discrete distributions
over A. As to the metric on the carrier set, the interpretation of ()p uses the
max divergence, used in the definition of differential privacy (see Sect. 2.2). The
interpretation of O uses instead the Hellinger distance (see e.g. [3]):

HD 4 (1, v) & le/ — V(@) (12)

IEA
Space X| |X]| dx(z,y)
1 {x} 0
R R lz =yl
s-da(z,y) if s # o0
LA |A| xifs=oc0,z#ycA

Difs=oc0,z=yec A
da(z,y) if z,y € A

A@® B ||A| + |B| dp(z,y) if z,y € B
else 0o
A, B||A| % |BI| /dalm(@), m @) + da(ma(e),)
A—o, BlA—B cf. Equation (11)
OpA DA MD 4(z,y); cf. Equation (2)
OnA DA HD 4 (z,y); cf. Equation (12)

Fig. 4. Operations on metric spaces for interpreting types

Bunches The interpretation of bunches is similar to that of types. Variables
correspond to scaled metric spaces, whereas ,, corresponds to ®p:

[1=1 [l : 7]s] = L[] [y o I2] = [11] @, [12]-

One complication compared to prior designs is the use of an explicit exchange
rule, which is required to handle the richer structure of contexts. Semantically,
each use of exchange induces an isomorphism of metric spaces:

Theorem 3. Each derivation of I' «~ A corresponds to an isomorphism of
metric spaces [I'] = [A].

Before stating the interpretation of typing derivations, we give an overview
of important properties of the above constructions that will help us prove the

soundness of the interpretation.

466 j- wunder et al.

Scaling Much like in prior work [4,3], we can check the following equations:

Proposition 4.
Il A =15 5, A s(A® B)=1,A® ;B 's(A®, B) =1,A®, |;B.

Moreover, an s-sensitive function from A to B is the same thing as a non-
expansive function of type !;A — B.

Proposition 5. For every bunch I', we have [sI'] = Is[I].

Tensors The properties on LP distances allow us to relate product types with
different values of p.

Proposition 6. [Subtyping of tensors]

1. Let A, B be two metric spaces and p,q € RZ} with p < q. Then the identity
map on pairs belongs to the two following spaces:

A®y,B—o A®,B bip-1/4(A®q B) — A®, B.
2. In particular, when p =1 and q = 2, the identity map belongs to:

Proof. For (1), the fact that the identity belongs to the first space follows from
the fact that dy(z,y) < dp(z,y), by Proposition 3 (Equation (9)). The second
claim is derived from Proposition 3 (Equation (9)) in the case n = 2.

Remark 1. Proposition 6 allows us to relate different spaces of functions with
multiple arguments. For example,

(A®;B—C)C(A@ B—C) (A B—C)C(5(Ac; B)—C).

Bunched Fuzz does not currently exploit these inclusions in any significant way,
but we could envision extending the system with a notion of subtyping to further
simplify the use of multiple product metrics in a single program.

We also have the following result, which is instrumental to prove the sound-
ness of the contraction rule.

Proposition 7. Let X,Y,Z, W be metric spaces, and p,q € RZ! with p # oo.
The canonical isomorphism of sets (X xY) x (Zx W) =2 (X x Z) x (Y x W),
which swaps the second and third components, is a mon-expansive function of
type le(p,g) (X ®qY) @p (Z @4 W)) = (X ®p Z) ®q (Y @p W), where c(p,q) is
defined as in Figure 2.

Bunched Fuzz: Sensitivity for Vector Metrics 467

Proof. First, suppose that p < ¢. Then we can write the isomorphism as a
composite of the following non-expansive functions:

lep.g) (X ®qY) ®, (Z @4 W)

=l (X ®qY) ®y (Z @, W)) Proposition 6
2l (X B Z2) ®q (Y ®4 W)) assoc., comm. of ®,
=) (X @ Z) ®q le(p,q) (Y @ W) Proposition 4
=(X®pZ)Qy (Y ®, W) Proposition 6.

Otherwise, p > ¢, and we reason as follows.

!C(p,q)((X Qq Y) ®p (z ®q W)

= lep,) (X @, Y) ®@g (Z @, W)) Proposition 6
2) (X ®p Z2) @, (Y @, W)) assoc., comm. of ®,,
=(X®p2Z)Qe (Y ®, W) Proposition 6.

One can then prove the following property:

Proposition 8. Suppose that we have two bunches I' = A. The carrier sets of
[I'] and [A] are the same. Moreover, for any p, the diagonal function é6(x) =
(x,) is a non-expansive function of type [Contr(p, I, A)] — [I'] ®, [A].

Function Types The metric on —o,, can be justified by the following result:

Proposition 9. For every metric space X and every p € RZ!, there is an ad-
Junction of type (—)®, X 4 X —o, (=) in Met given by currying and uncurrying.
(Both constructions on metric spaces are extended to endofunctors on Met in the
obvious way.)

Because right adjoints are unique up to isomorphism, this definition is a direct
generalization of the metric on functions used in Fuzz [23,4,3], which corresponds
to —oq.

Theorem 4. Suppose that A and B are proper metric spaces, and let f,g: A —
B be non-expansive. Then da—, g(f,g) = sup, dp(f(x),g(x)).

We conclude with another subtyping result involving function spaces.

Theorem 5. For all non-expansive functions f,g € A — B and p > 1, we
have da—o, B(f,9) < da—,B(f,9). In particular, the identity function is a non-
expansive function of type (A —op, B) — (A —o1 B).

Probability Distributions Prior work [3] proves that the return and bind opera-
tions on probability distributions can be seen as non-expansive functions:

N : 1A — OpA
(_)T(_) : ('ooA —1 OPB) ®1 OPA — OPB-

These properties ensure the soundness of the typing rules for Op in Fuzz, and
also in Bunched Fuzz. For (g, we can use the following composition principle.

468 j- wunder et al.

Theorem 6. The following types are sound for the monadic operations on dis-
tributions, seen as non-expansive operations, for any p > 1:

N:leA— QOuA
(—)1(=) : (lscA —op O B) ®2 OuA — OuB.

Derivations Finally, a derivation tree builds a function from the context’s space
to the subject’s space. In the following definition, we use the metavariables v
and J to denote variable assignments—that is, mappings from the variables of
environments I" and A to elements of the corresponding metric spaces. We use
~(8) to represent an assignment in [I(A)] that is decomposed into two assign-
ments v(*) and § corresponding to the I'(x) and A portions. Finally, we use the
A-calculus notation f x to denote a function f being applied to the value x.

Definition 1. Given a derivation m proving I' & e : T, its interpretation [r] €
[— [7] is given by structural induction on 7 as follows:

[Aziom] £ \z. [RITZX).7€R

[I 7] £ Ay Az [x] (v,2) [~ Em ma] 2 A(7,6). [m2] v ([m] o)

[11] £ X0- 0 [®1 1 m2] £ A(v,6). ([mi] v), ([7=] 6)
[®F m1 mo] & My(8). [m2] v([m1]0)

[®:l 7] 2 Ny. ing;[n] v [©E m1 mo] £ Mo (). [[ma], [ma]}(8([m1]))

[7] £ [7] ['E 7 ma] 2 6(7)- [r2] o([m1])

[Contr] £ Xy(8). [x] 7(68,0) [Weak 7] & Xy(3). [x] ~(())

[Exch 7] 2 M [7]éy () [Bind-Pmy ma] 2 Xy ([ma]') ([m]y)
[Return-P 7] = \y. n([x] 7)

where in [Exch 7], the map ¢, is the isomorphism defined by Theorem 3.

and for the two last cases see definitions in equations (3) and (4) (Bind-H and
Return-H are defined in the same way).

Theorem 7 (Soundness). Given a derivation ™ proving I' b e : 7, then [r]
is a non-expansive function from the space [I'] to the space [7].

5 Examples
We now look at examples of programs that illustrate the use of LP metrics.

Currying and Uncurrying Let us illustrate the use of higher-order functions with
combinators for currying and uncurrying.

curry : (1 ®p 0) —op p) —o (T —0p 0 0} p)
curry f xy = f(x,y)
uncurry : (T —op, 0 —op, p) — ((T ®p 0) —op p).

uncurry f z=1et (z,y)=zin fzy

Bunched Fuzz: Sensitivity for Vector Metrics 469

Note that the indices on ® and — need to be the same. The reason can be traced
back to the — E rule (cf. Figure 3), which uses the ,, connective to eliminate
—o,, (cf. the currying and uncurrying derivation in the appendix of the full paper
for a detailed derivation). If the indices do not agree, currying is not possible; in
other words, we cannot in general soundly curry a function of type 7 ®, 0 —o4 p
to obtain something of type 7 —o,, 0 —o, p. However, if ¢ < p, note that it would
be possible to soundly view 7®40 as a subtype of T®,,0, thanks to Proposition 6.
In this case, we could then convert from 7 ®, 0 —o4 p to T ®4 0 —o4 p (note the
variance), and then curry to obtain a function of type 7 —o, 0 —o p.

Precise sensitivity for functions with multiple arguments Another useful feature
of Bunched Fuzz is that its contraction rule allows us to split sensitivities more
accurately than if we used the contraction rule that is derivable in the original
Fuzz. Concretely, suppose that we have a program Ap.let (z,y) =p in f(z,y)+
g(x,y), where f and g have types f: (LR) ®2 R — R and g : R ®s (13R) — R,
and where we have elided the wrapping and unwrapping of ! types, for simplicity.

Let us sketch how this program is typed in Bunched Fuzz. Addition belongs to
R®; R — R, so by Proposition 6 it can also be given the type ! 5(R®2R) — R.
Thus, we can build the following derivation for the body of the program:

I' f(xy,91) + g(x2,92) - R

[z :R] 55 2y : Rl 5 flz,y) +9(z,y) : R

CONTR

where I' = ([z1 : R]y g2 [y1 ¢ Rl 5)2([v2 @ R] 52 [y2 : Ry 5), and where
we used contraction twice to merge the xs and ys. Note that ||(2v/2,v/2)|]2 =
/842 = /10, which is why the final sensitivities have this form. By contrast,
consider how we might attempt to type this program directly in the original
Fuzz. Let us assume that we are working in an extension of Fuzz with types for
expressing the domains of f and g, similarly to the L? vector types of Duet [20].
Moreover, let us assume that we have coercion functions that allow us to cast
from (12R) ®2 (12R) to (1LR) @2 R and R®2 (12R). If we have a pair p :l2((12R) ®2
(13R)), we can split its sensitivity to call f and g and then combine their results
with addition. However, this type is equivalent to !4(R ®3 R), which means that
the program was given a worse sensitivity (since v/10 < 4). Of course, it would
also have been possible to extend Fuzz with a series of primitives that implement
precisely the management of sensitivities performed by bunches. However, here
this low-level reasoning is handled directly by the type system.

Programming with matrices The Duet language [20] provides several matrix
types with the L', L2, or L™ metrics, along with primitive functions for manip-
ulating them. In Bunched Fuzz, these types can be defined directly as follows:
M,[m,n] = @ @7 R. Following Duet, we use the L' distance to combine the
rows and the LP distance to combine the columns. One advantage of having
types for matrices defined in terms of more basic constructs is that we can pro-
gram functions for manipulating them directly, without resorting to separate

470 j- wunder et al.

primitives. For example, we can define the following terms in the language:

addrow : Mp[1,n] @1 M,[m,n| — Mpy[m +1,n]
addcolumn : M1[1, m] ® M [m,n] — Mj[m,n + 1]
addition : Mj[m,n] ®1 Mj[m,n] — Mj[m, n].

The first program, addrow, appends a vector, represented as a 1 X n matrix, to
the first row of a m X m matrix. The second program, addcolumn, is similar,
but appends the vector as a column rather than a row. Because of that, it is
restricted to L' matrices. Finally, the last program, addition, adds the elements
of two matrices pointwise.

Vector addition over sets Let us now show an example of a Fuzz term for which
using LP metrics allows to obtain a finer sensitivity analysis. We consider sets
of vectors in R% and the function wvectorSum which, given such a set, returns
the vectorial sum of its elements. In Fuzz, this function can be defined via a
summation primitive sum : lo(loo™ — R) —o set 7 — R, which adds up the
results of applying a function to each element of a set [23]. The definition is:

vectorSum : g set(@IR) —o1 @IR

vectorSum s = (sum 71 S, ..., Sum T4 S).

Here, 7; : ®/R — R denotes the i-th projection, which can be defined by
destructing a product. Set types in Fuzz are equipped with the Hamming metric
[23], where the distance between two sets is the number of elements by which
they differ. Note that, to ensure that sum has bounded sensitivity, we need to
clip the results of its function argument to the interval [—1,1]. Fuzz infers a
sensitivity of d for this function because its argument is used with sensitivity
1 in each component of the tuple. In Bunched Fuzz, we can define the same
function as above, but we also have the option of using a different LP distance
to define wvectorSum, which leads to the type !j/» set(®gR) —o ®gR, with a
sensitivity of d*/?. For the sake of readability, we’ll show how this term is typed
in the case d = 2. By typing each term (sum m; z;) and applying (®I) we get:

[21 : set(R®p R)]1 ,p [22 : set(R @, R)|1 F (sum mq 21, sum w2 22) : R®, R.

By applying contraction we get: [z : set(R @, R)]g1/p F (sum m 2, sum mg 2) :
R ®, R. The claimed type is finally obtained by (!E) and (— I).

Computing distances Suppose that the type X denotes a proper metric space
(that is, where the triangle inequality holds). Then we can incorporate its dis-
tance function in Bunched Fuzz with the type X ®1 X —o R. Indeed, let z, 2/,
y and y’ be arbitrary elements of X. Then

dx (z,y) —dx(2',y') < dx(z,2') +dx(2",y) + dx (v, y) — dx (2", y)
= dx(ﬂﬂ, I/) + dX(y7 y/) = dl((ma y)v (xlv y,))

Bunched Fuzz: Sensitivity for Vector Metrics 471

By symmetry, we also know that dx (z/,y') —dx (z,y) < d1((z,y), (2',y")). Com-
bined, these two facts show

dR(dX(x’y)vdX(xl7yl)) = |dX($7y) - dX(xl7y/)| < dl((xvy)a (x/ay/))v

which proves that dx is indeed a non-expansive function.

Calibrating noise to LPdistance Hardt and Talwar [17] have proposed a gener-
alization of the Laplace mechanism, called the K-norm mechanism, to create a
differentially private variant of a database query f : db — R?. The difference is
that the amount of noise added is calibrated to the sensitivity of f measured with
the K norm, as opposed to the L' distance used in the original Laplace mecha-
nism. When K corresponds to the LP norm, we will call this the LP-mechanism,
following Awan and Slavkovich [1].

Definition 2. Given f : db — R? with LP sensitivity s and € > 0, the LP-
mechanism is a mechanism that, given a database D € db, returns a probability
distribution over y € R with density given by:

exp(=ID)vle

f exp(—E\lf(Z)—pr)dy

This mechanism returns with high probability (which depends on € and on the
sensitivity s) a vector y € R? which is close to f(D) in LP distance. Such a
mechanism can be easily integrated in Bunched Fuzz through a primitive:

LpMech : o (1,dB — ®IR) —o l.dB — Op(®IR)

(Strictly speaking, we would need some discretized version of the above distribu-
tion to incorporate the mechanism in Bunched Fuzz, but we’ll ignore this issue
in what follows.) The fact that LpMech satisfies e-differential privacy follows from
the fact that this mechanism is an instance of the exponential mechanism [18], a
basic building block of differential privacy. It is based on a scoring function as-
signing a score to every pair consisting of a database and a potential output, and
it attempts to return an output with approximately maximal score, given the
input database. As shown by Gaboardi et al. [13], the exponential mechanism
can be added as a primitive to Fuzz with type:

expmech : | set(0) —o (o @ —o!3dB — R) —o!.dB — O pO,

where O is the type of outputs. The function LpMech is an instance of the
exponential mechanism where O is ®%R and the score is AyAD.|[f(D) — y||,,.

To define the LP mechanism with this recipe, we need to reason about the
sensitivity of this scoring function. In Fuzz, this would not be possible, since the
language does not support reasoning about the sensitivity of f measured in the
LP distance. In Bunched Fuzz, however, this can be done easily. Below, we will
see an example (Gradient descent) of how the LP mechanism can lead to a finer
privacy guarantee.

472 j- wunder et al.

Gradient descent Let us now give an example where we use the LP mechanism.
An example of differentially private gradient descent example with linear model
in Fuzz was given in [25] (see Sect. 4.1, 4.2 and Fig. 6 p. 16, Fig. 8 p.19). This
algorithm proceeds by iteration. Actually it was given for an extended language
called Adaptative Fuzz, but the code already gives an algorithm in (plain) Fuzz.
We refer the reader to this reference for the description of all functions, and here
we will only describe how one can adapt the algorithm to Bunched Fuzz.

Given a set of n records z; € R?, each with a label y; € R, the goal is to find
a parameter vector § € R? that minimizes the difference between the labels and
their estimates, where the estimate of a label y; is the inner product (z;, 6). That
is, the goal is to minimize the loss function L(6, (z,y)) = + - X, ((x;,0) — y;)*.
The algorithm starts with an initial parameter vector (0, ..., 0) and it iteratively
produces successive 8 vectors until a termination condition is reached.

The Fuzz program uses the data-type bag T representing bags or multisets
over 7. A bagmap primitive is given for it. The type I is the unit interval [0, 1].
The main function is called update Parameter and updates one component of
the model 0; it is computed in the following way:

— with the function calcGrad : db — R, compute a component (VL(6, (z,y)));
of the R vector VL(6, (z,y)) °.

— then Laplacian noise is postcomposed with calcGrad in the update Parameter
function. This uses a privacy budget of 2¢. It has to be done for each one of
the d components of VL (6, (x,y)), thus on the whole, for one step, a privacy
budget of 2de.

— The iterative procedure of gradient descent is given by the function gradient
in Fig. 8 p. 19 of [25]. We forget here about the adaptative aspect and just
consider iteration with a given number n of steps. In this case by applying
n times update Parameter one gets a privacy budget of 2dne.

We modify the program as follows to check it in Bunched Fuzz and use the
LP-mechanism. Instead of computing over R we want to compute over ®$R for
a given p > 1, so R? equipped with L? distance. The records z; are in ®ZI and
the labels y; in I. The database type is dB = bag (I ®, (®%I)). The distance
between two bags in dB is the number of elements by which they differ.

We assume a primitive bagVectorSum with type !;1,,bag (®$I) —o ®ZR (it
could be defined as the vectorSum defined above for sets, using a sum primitive
for bags). Given a bag m, (bagVectorSum m) returns the vectorial sum of all
elements of m. We can check that the sensitivity of bagVectorSum is indeed
d!/? because given two bags m and m’ that are at distance 1, if we denote by u
the vector by which they differ, we have:

d(®gR)(bagVectorSum(m),bagVectorSum(m’)) =lull, < (Zlel)l/p = d'/r

By adapting the calcGrad Fuzz term of [25] using bagVectorSum we obtain
a term VectcalcGrad with the Bunched Fuzz type ! ®g R —o!lj1/p,db —o ®ZR.

9 Actually calcGrad computes (VL(0, (z,y))); up to a multiplicative constant, 2/n,
which is mutliplied afterwards in the update Parameter function.

Bunched Fuzz: Sensitivity for Vector Metrics 473

Given a vector 6 and a database (y, z), VectcalcGrad computes the updated vec-
tor §’. Finally we define the term updateV ector by adding noise to VectcalcGrad
using the the LP-mechanism. Recall the type of LpMech: ! (!sdb —o ®$R) —o
lddb — O p(®gR). We define updateVector and obtain its type as follows:

updateVector = M\0.(LpMech (VectcaleGrad 0)) : 1 ®$ R —ol.db —o Op(@gR)

By iterating updateV ector n times one obtains a privacy budget of ne.

6 Implementation

To experiment with the Bunched Fuzz design, we implemented a prototype for
a fragment of the system based on DFuzz [13,2].19 The type-checker generates
a set of numeric constraints that serve as verification conditions to guarantee a
valid typing. The implementation required adapting some of the current rules
to an algorithmic formulation (found in the full version). In addition to the
modifications introduced in the DFuzz type checker compared to its original
version [13,2], we also made the following changes and simplifications:

— We did not include explicit contraction and weakening rules. Instead, the
rules are combined with those for checking other syntactic constructs. To
do away with an explicit contraction rule, in rules that have multiple an-
tecedents, such as the ®I rule, we used the Contr operator to combine the
antecedents’ environments, rather than using the p-concatenation operator
for bunches.

— We did not include the rules for checking probabilistic programs with the
Hellinger distance.

— Bound variables are always added at the top of the current environment,
as in the —ol rule of the original rules; it is not possible to introduce new
variables arbitrarily deep in the environment.

While, strictly speaking, the resulting system is incomplete with respect to the
rules presented here, it is powerful enough to check an implementation of K-
means that generalizes a previous version implemented for Fuzz [23]. On the
other hand, because our implementation is based on the one of DFuzz, which
features dependent types, we allow functions that are polymorphic on types, sizes
and p parameters, which allows us to infer sensitivity information that depends
on run-time sizes.

7 Related Work

Bunched Fuzz is inspired by BI, the logic of bunched implications [22], which
has two connectives for combining contexts. Categorically, one of these connec-
tives corresponds to a Cartesian product, whereas the other corresponds to a

10 yttps://github. com/junewunder/bunched-fuzz

https://github.com/junewunder/bunched-fuzz

474 j- wunder et al.

monoidal, or tensor product. While related to linear logic, the presence of the
two context connectives allows BI to derive some properties that are not valid
in linear logic. For example, the cartesian product does not distribute over sums
in linear logic but it does distribute over sums in BI.

We have shown how the rules for such type systems are reminiscent of the
ones used in type systems for the calcuclus of bunched implications [21], and
for reasoning about categorical grammars [19]. Specifically, O’Hearn introduces
a type system with two products and two arrows [21]. Typing environments are
bunches of variable assignments with two constructors, corresponding to the two
products. Our work can be seen as a generalization of O’'Hearn’s work to handle
multiple products and to reason about program sensitivity.

Moot and Retoré [19, Chapter 5] introduce the multimodal Lambek calculus,
which extends the non-associative Lambek calculus, a classical tool for describing
categorical grammars. This generalization uses an indexed family of connectives
and trees to represent environments. The main differences with our work are:
our indexed products are associative and commutative, while theirs are not;
our type system is affine; our type system includes a monad for probabilities
which does not have a correspondent construction in their logic; our type system
also possesses the graded comonad ! corresponding to the ! modality of linear
logic, the interaction between this comonad and the bunches is non-trivial and
it requires us to explicitly define a notion of contraction. Besides the fact that
the main properties we study, metric interpretation and program sensitivity, are
very different from the ones studied by the above authors, there are some striking
similarities between the two systems.

A recent work by Bao et al. [5] introduced a novel bunched logic with indexed
products and magic wands with a preorder between the indices. This logic is used
as the assertion logic of a separation logic introduced to reason about negative
dependence between random variables. The connectives studied in this work
share some similarities with the ones we study here and it would be interesting to
investigate further the similarities, especially from a model-theoretic perspective.

Because contexts in the original Fuzz type system are biased towards the L’
distance, it is not obvious how Fuzz could express the composition principles of
the Hellinger distance. Recent work showed how this could be amended via a path
construction that recasts relational program properties as sensitivity proper-
ties [3]. Roughly speaking, instead of working directly with the Hellinger distance
dp, the authors consider a family of relations R, = { (11, p2) | du (1, p2) < a}.
Such a relation induces another metric on distributions, dq, z, where the distance
between two distributions is the length of the shortest path connecting them in
the graph corresponding to R,. This allows them to express the composition
principles of the Hellinger distance directly in the Fuzz type system, albeit at a
cost: the type constructor for probability distributions is graded by the distance
bound «. Thus, the sensitivity information of a randomized algorithm with re-
spect to the Hellinger distance must also be encoded in the codomain of the
function, as opposed to using just its domain, as done for the original privacy
metric of Fuzz. By contrast, Bunched Fuzz does not require the grading « be-

Bunched Fuzz: Sensitivity for Vector Metrics 475

cause it can express the composition principle of the Hellinger distance directly,
thanks to the use of the L? distance on bunches.

Duet [20] can be seen as an extension of Fuzz to deal with more general
privacy distances. It consists of a two-layer language: a sensitivity language and
a privacy language. The sensitivity language is very similar to Fuzz. However, it
also contains some basic primitives to manage vectors and matrices. As in Fuzz,
the vector types come with multiple distances but differently from Fuzz, Duet
also uses the L? distance. The main reason for this is that Duet also supports
the Gaussian mechanism which calibrates the noise to the L? sensitivity of the
function. Our work is inspired by this aspect of Duet, but it goes beyond it by
giving a logical foundation to L? vector distances. Another language inspired by
Fuzz is the recently proposed Jazz [24]. Like Duet, this language has two prod-
ucts and primitives tailored to the L? sensitivity of functions for the Gaussian
mechanism. Interestingly, this language uses contextual information to achieve
more precise bounds on the sensitivities. The semantics of Jazz is different from
the metric semantics we study here; however, it would be interesting to explore
whether a similar contextual approach could be also used in a metric setting.

8 Conclusion and Future work

In this work we have introduced Bunched Fuzz, a type system for reasoning
about program sensitivity in the style of Fuzz [23]. Bunched Fuzz extends the
type theory of Fuzz by considering new type constructors for LP distances and
bunches to manage different products in typing environments. We have shown
how this type system supports reasoning about both deterministic and proba-
bilistic programs.

There are at least two directions that we would like to explore in future works.
On the one hand, we would like to understand if the typing rules we introduced
here could be of more general use in the setting of probabilistic programs. We
have already discussed the usefulness for other directions in the deterministic
case [19]. One way to approach this problem could be by looking at the family
of products recently identified in [5]. These products give a model for a logic to
reason about negative dependence between probabilistic variables. It would be
interesting to see if the properties of these products match the one we have here.

On the other hand, we would like to understand if Bunched Fuzz can be used
to reason about more general examples in differential privacy. One way to ap-
proach this problem could be to consider examples based on the use of Hellinger
distance that have been studied in the literature on probabilistic inference [6].

Acknowledgements This material is based upon work supported by the NSF
under Grant No. 1845803 and 2040249. The third author was partially supported
by the french Program “Investissements d’avenir” (I-ULNE SITE / ANR-16-
IDEX-0004 ULNE) managed by the National Research Agency.

476

j- wunder et al.

References

10.

11.

12.

. Awan, J., Slavkovic, A.: Structure and sensitivity in differential privacy: Com-

paring k-norm mechanisms. Journal of the American Statistical Association
(2020). https://doi.org/10.1080/01621459.2020.1773831, https://par.nsf.
gov/biblio/10183971

Azevedo de Amorim, A., Gaboardi, M., Arias, E.J.G., Hsu, J.: Really natural
linear indexed type checking. In: Tobin-Hochstadt, S. (ed.) Proceedings of the 26th
2014 International Symposium on Implementation and Application of Functional
Languages, IFL 14, Boston, MA, USA, October 1-3, 2014. pp. 5:1-5:12. ACM
(2014). https://doi.org/10.1145/2746325.2746335

Azevedo de Amorim, A., Gaboardi, M., Hsu, J., Katsumata, S.: Probabilistic re-
lational reasoning via metrics. In: 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp.
1719.IEEHE(2019).httpS://dOi.org/lo.1109/LICS.2019.8785715

. Azevedo de Amorim, A., Gaboardi, M., Hsu, J., Katsumata, S., Cherigui, I.: A

semantic account of metric preservation. In: POPL 2017. ACM (2017), http://
dl.acm.org/citation.cfm?id=3009890

Bao, J., Gaboardi, M., Hsu, J., Tassarotti, J.: A separation logic for negative
dependence. Proc. ACM Program. Lang. 6(POPL) (jan 2022). https://doi.org/
10.1145/3498719

Barthe, G., Farina, G.P., Gaboardi, M., Arias, E.J.G., Gordon, A., Hsu, J., Strub,
P.: Differentially private bayesian programming. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016. pp. 68-79. ACM (2016). https://doi.org/10.1145/
2976749.2978371

Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2,
499-526 (2002), http://jmlr.org/papers/v2/bousquet02a.html

Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(March 2004)

Chaudhuri, S., Gulwani, S., Lublinerman, R., NavidPour, S.: Proving programs
robust. In: Gyiméthy, T., Zeller, A. (eds.) SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged,
Hungary, September 5-9, 2011. pp. 102-112. ACM (2011). https://doi.org/10.
1145/2025113.2025131

Csiszar, 1., Shields, P.: Information theory and statistics: A tutorial. Foun-
dations and Trends® in Communications and Information Theory 1(4),
417-528 (2004). https://doi.org/10.1561/0100000004, http://dx.doi.org/10.
15661/0100000004

Dwork, C., McSherry, F.; Nissim, K., Smith, A.D.: Calibrating noise to sensitivity
in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings. Lecture Notes in Computer Science, vol. 3876, pp. 265—284.
Springer (2006). https://doi.org/10.1007/11681878_14

Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3-4), 211-407 (2014). https://doi.org/10.1561/
0400000042

https://doi.org/10.1080/01621459.2020.1773831
https://doi.org/10.1080/01621459.2020.1773831
https://par.nsf.gov/biblio/10183971
https://par.nsf.gov/biblio/10183971
https://doi.org/10.1145/2746325.2746335
https://doi.org/10.1145/2746325.2746335
https://doi.org/10.1109/LICS.2019.8785715
https://doi.org/10.1109/LICS.2019.8785715
http://dl.acm.org/citation.cfm?id=3009890
http://dl.acm.org/citation.cfm?id=3009890
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3498719
https://doi.org/10.1145/2976749.2978371
https://doi.org/10.1145/2976749.2978371
https://doi.org/10.1145/2976749.2978371
https://doi.org/10.1145/2976749.2978371
http://jmlr.org/papers/v2/bousquet02a.html
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1561/0100000004
https://doi.org/10.1561/0100000004
http://dx.doi.org/10.1561/0100000004
http://dx.doi.org/10.1561/0100000004
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Bunched Fuzz: Sensitivity for Vector Metrics 477

Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent
types for differential privacy. In: POPL ’13. ACM (2013). https://doi.org/10.
1145/2429069.2429113

Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1-102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

Gonin, R., Money, A.H.: Nonlinear Lp-Norm Estimation. Marcel Dekker, Inc., USA
(1989)

Haeberlen, A., Pierce, B.C., Narayan, A.: Differential privacy under fire. In:
20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011,
Proceedings. USENIX Association (2011), http://static.usenix.org/events/
secll/tech/full_papers/Haeberlen.pdf

Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Schulman, L.J.
(ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010. pp. 705-714. ACM (2010).
https://doi.org/10.1145/1806689.1806786

McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS 2007), Octo-
ber 20-23, 2007, Providence, RI, USA, Proceedings. pp. 94-103. IEEE Computer
Society (2007). https://doi.org/10.1109/F0CS.2007.41

Moot, R., Retoré, C.: The Logic of Categorial Grammars - A Deductive Account
of Natural Language Syntax and Semantics, Lecture Notes in Computer Science,
vol. 6850. Springer (2012). https://doi.org/10.1007/978-3-642-31555-8

Near, J.P., Darais, D., Abuah, C., Stevens, T., Gaddamadugu, P., Wang, L.,
Somani, N., Zhang, M., Sharma, N., Shan, A., Song, D.: Duet: an expressive
higher-order language and linear type system for statically enforcing differential
privacy. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.org/10.
1145/3360598

O’Hearn, P.W.: On bunched typing. J. Funct. Program. 13(4), 747-796 (2003).
https://doi.org/10.1017/50956796802004495

O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symb. Log.
5(2) (1999). https://doi.org/10.2307/421090

Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differ-
ential privacy. In: ICFP 2010. ACM (2010). https://doi.org/10.1145/1863543.
1863568

Toro, M., Darais, D., Abuah, C., Near, J., Olmedo, F., Tanter, E.:. Contex-
tual linear types for differential privacy. CoRR abs/2010.11342 (2020), https:
//arxiv.org/abs/2010.11342

Winograd-Cort, D., Haeberlen, A., Roth, A., Pierce, B.C.: A framework for adap-
tive differential privacy. Proc. ACM Program. Lang. 1(ICFP), 10:1-10:29 (2017).
https://doi.org/10.1145/3110254

june wunder, Azevedo de Amorim, A., Baillot, P., Gaboardi, M.: Bunched fuzz:
Sensitivity for vector metrics. CoRR abs/2202.01901 (2022), https://arxiv.
org/abs/2202.01901

https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
http://static.usenix.org/events/sec11/tech/full_papers/Haeberlen.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Haeberlen.pdf
https://doi.org/10.1145/1806689.1806786
https://doi.org/10.1145/1806689.1806786
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1145/3360598
https://doi.org/10.1145/3360598
https://doi.org/10.1145/3360598
https://doi.org/10.1145/3360598
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.2307/421090
https://doi.org/10.2307/421090
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://arxiv.org/abs/2010.11342
https://arxiv.org/abs/2010.11342
https://doi.org/10.1145/3110254
https://doi.org/10.1145/3110254
https://arxiv.org/abs/2202.01901
https://arxiv.org/abs/2202.01901

478 j- wunder et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Bunched Fuzz: Sensitivity for Vector Metrics

