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Abstract
This paper addresses the end-to-end sample complexity bound for learning the H2 optimal con-
troller (the Linear Quadratic Gaussian (LQG) problem) with unknown dynamics, for potentially
unstable Linear Time Invariant (LTI) systems. The robust LQG synthesis procedure is performed
by considering bounded additive model uncertainty on the coprime factors of the plant. The closed-
loop identification of the nominal model of the true plant is performed by constructing a Hankel-like
matrix from a single time-series of noisy finite length input-output data, using the ordinary least
squares algorithm from Sarkar and Rakhlin (2019). Next, an H∞ bound on the estimated model
error is provided and the robust controller is designed via convex optimization, much in the spirit of
Boczar et al. (2018) and Zheng et al. (2020a), while allowing for bounded additive uncertainty on
the coprime factors of the model. Our conclusions are consistent with previous results on learning
the LQG and LQR controllers. Reference Zhang et al. (2021) is the extended version of this paper.
Keywords: Robust LQG Control, Coprime Factorization, LTI Systems, Sample Complexity.

1. Introduction

Considerable research efforts have been spent within the last few years towards approaching
classical control problems with modern statistical and optimization tools from the Machine Learn-
ing framework, envisaging practical applications, see for example Dean et al. (2018), Mania et al.
(2019), Dean et al. (2020), Zheng et al. (2020a). The starting point of the aforementioned research
efforts has been the classical LQG control problem, which deals with partially observed linear and
time-invariant dynamical systems driven by Gaussian noise and where the problem is finding the
optimal output feedback law that minimizes the expected value of a quadratic cost.

In this paper an end-to-end sample-complexity bound on learning LQG controllers that stabilize
the true system with high probability is established by incorporating recent advances in finite time
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(non-asymptotic) system identification (Sarkar and Rakhlin (2019)). The contribution resides in
the development of a tractable robust control synthesis procedure, that allows for bounded additive
model uncertainty on the coprime factors of the model of the plant, thus circumventing both the
need for state feedback and the restrictive assumption on the plant’s open loop stability. The resulted
sub-optimality gap is bounded as a function of the level of the model uncertainty. The end-to-end
sample complexity bound for learning robust LQG controllers is O(

√
logT/T ), where T is the time

horizon for learning. For open-loop stable systems, Zheng et al. (2020a) recently proved that the
performance for LQG controllers deteriorates linearly with the model estimation error, starting from
the original analysis of Dean et al. (2018) from the case of learning fully observed LQR controllers.
The robust control synthesis proposed here achieves the same scaling for the sub-optimality gap as
Dean et al. (2018), namely O(γ2), where γ is the model uncertainty level.

The enclosed reference Zhang et al. (2021) provides the extended version of this paper, including
the complete proofs.

1.1. The Linear Quadratic Gaussian Problem

Within the last few years, modern statistical and algorithmic methods led to new solutions for
classical control problems, such as the Linear Quadratic Gaussian problem. For a discrete-time LTI
(Linear ant Time Invariant) systems driven by Gaussian process and sensor noise:

xk+1 = Axk +Buk + δxk,

yk = Cxk +Duk + νk,
(1)

where xk ∈ Rn is the state of the system, uk ∈ Rm is the control input and yk ∈ Rp is the
measurement output with δxk ∈ Rm, νk ∈ Rp are Gaussian noise with zero mean, covariance σ2

δxI
and σ2

νI respectively, the classical LQG control problem is defined as:

min
u0,u1,...

lim
T→∞

E
[
1

T

T∑
t=0

(yTt P1yt + uTt P2ut)

]
subject to (1),

(2)

where, P1, P2 is positive definite. Without loss of generality, it is assumed that P1 = Ip, P2 = Im,
σδx = 1, σν = 1.

In a nutshell, the problem can be stated as learning with high probability and in finite time the
model of an unknown LTI system and subsequently designing its optimal LQG controller, while
accounting for the inherent model uncertainty incurred at the learning stage.

1.2. Contributions

Recently, LQG control has been studied in a model based Reinforcement Learning framework
(Zheng et al. (2020a)) and the sub-optimality performance degradation of the robust LQG controller
was proved to scale as a function of the modeling error. However, the results in Zheng et al. (2020a)
are valid only for open-loop stable systems, thus excluding many situations of practical interest.
This paper shows how to remove the stability assumption on the unknown system, while at the
same time streamlining the equivalent optimization problem, by reducing the size of the subsequent
linear constraints. The proposed algorithm is consistent with previous results, while allowing for
a much stronger description of the modeling error as bounded additive uncertainty on the coprime
factors of the model of the plant (without restriction on the McMillan degree of the true plant or on
its number of unstable poles). As expected, the presence of additive, norm-bounded factors on the
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Figure 1: Standard unity feedback loop of the plant G with the controller K

coprimes of the plant renders the cost functional non-convex, therefore the derivation of an upper-
bound on the cost functional is needed. This is subsequently exploited to derive a quasi-convex
approximation of the robust LQG problem. An inner approximation of the quasi convex problems
via FIR truncation is employed. Previous results (Mania et al. (2019), Zheng et al. (2020a)) show
that indeed the certainty equivalent controller may achieve superior sub-optimality scaling than
our result, but only for the fully observed LQR settings (Mania et al. (2019)), in the setup of a
stricter requirement on admissible uncertainty. Given the lack of prior gain margin for the optimal
LQG controller, which is known to be notoriously fragile, even under small model uncertainty
the stabilizability of the resulted controller may be lost, thus the availability of a more general
framework for modelling of uncertainty is important.

Existing non-asymptotic identification methods (Sarkar et al. (2020)) have been adapted in or-
der to yield a comparable end-to-end sample complexity. The identification of the unstable plant
is performed in closed loop, directly on its the coprime factors via the dual Youla Parameterization
(Anderson (1998)). The algorithm employed for system identification doesn’t require the knowl-
edge of the model’s order (Oymak and Ozay (2019)), which is the common scenario in many appli-
cations. Pursuing the identification of the plant a H2 bound for Hankel matrix estimation with high
probability is derived, followed by a H∞ bound on the uncertainty on the coprime factors, which
quantifies the modeling error. The robust controller design is recast as convex optimization for es-
timated nominal model within a worst case scenario on the uncertainty. For the output feedback
of potentially unstable plants, the resulted sample complexity result is matched to the same level as
that obtained in recent papers (Boczar et al. (2018), Dean et al. (2020), Zheng et al. (2020a)), where
the robust so-called SLP or IOP procedures (Zheng et al. (2020b)) are used for design.

The paper is organized as follows: the general setup is given in Section II. The robust controller
synthesis with uncertainty on the coprime factors is included in Section III. The sub-optimality
guarantees are discussed in Section IV. A brief discussion on the closed-loop system identification
is provided in Section V with end-to-end sample complexity results. Conclusions and future pos-
sible directions are given in Section V. For the extended version of this manuscript, including the
complete proofs and algorithms we refer to Zhang et al. (2021).

2. General Setup and Technical Preliminaries

A standard unity feedback configuration is depicted in Figure 1, where G ∈ R(z)p×m is a multi-
variable LTI plant and K ∈ R(z)m×p is an LTI controller. Here w, ν and r are the input disturbance,
sensor noise and reference signal respectively while u, z and y are the controls, regulated signals
and measurements vectors, respectively. If all the closed–loop maps from the exogenous signals
[rT wT νT ]T to any point inside the feedback loop of Figure 1 are stable, then K is said to be an
(internally) stabilizing controller of G or equivalently that K stabilizes G.
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Nomenclature of Basic Notation

TFM Transfer Function Matrix
DCF, LCF Doubly Coprime Factorization, Left Coprime Factorization
R(z)p×m Set of p×m TFMs having all entries real–rational transfer functions in z

pt
Superscript for the true model of the plant or for a stabilizing controller designed
on the basis of the aforementioned model (e.g. Gpt, Kpt)

md
Superscript for the nominal/estimated model of the plant or for a stabilizing con-
troller designed on the basis of the aforementioned model (e.g. Gmd, Kmd)

Gpt, Kopt The true plant and its optimal H2 controller

Gmd, Kmd
Q

The estimated/nominal model of the plant and the stabilizing controller designed
on the basis of the aforementioned model, as a function of the Youla parameter Q

Tℓε The TFM of the (closed-loop) map having ε as input and ℓ as output

Tℓε
Q

The TFM of the (closed-loop) map from the exogenous signal ε to the signal ℓ
inside the feedback loop, as a function of the Youla parameter Q

Proposition 2.1 Given a TFM K ∈ R(z)m×p, a fractional representation of the form K = R−1S
with R ∈ R(z)m×m, S ∈ R(z)m×p is called a left factorization of K. If K = Y−1X is a left
factorization of K then any other left factorization of K such as K = R−1S is of the form R =
UY, S = UX, for some invertible TFM U.

Given a plant G ∈ R(z)p×m, a left coprime factorization of G is defined by G = M̃−1Ñ, with
Ñ ∈ R(z)p×m, M̃ ∈ R(z)p×p both stable and satisfying M̃Ỹ + ÑX̃ = Ip, for certain stable
TFMs X̃ ∈ R(z)m×p, Ỹ ∈ R(z)p×p. Analogously, a right coprime factorization of G is defined by
G = NM−1 with both factors N ∈ R(z)p×m, M ∈ R(z)m×m being stable and for which there
exist X ∈ R(z)m×p, Y ∈ R(z)m×m also stable, satisfying YM +XN = Im (Vidyasagar, 1985,
Ch. 4, Corollary 17), with Im being the identity matrix.

Definition 2.2 (Vidyasagar, 1985, Ch.4, Remark pp. 79) A collection of eight stable TFMs
(
M,N,

M̃, Ñ, X,Y, X̃, Ỹ
)

is called a doubly coprime factorization of G if M̃ and M are invertible, yield
the factorizations G = M̃−1Ñ = NM−1, and satisfy the following equality (Bézout’s identity):[

M̃ Ñ
−X Y

] [
Ỹ −N

X̃ M

]
= Ip+m, (3)

Theorem 2.3 (Youla-Kuc̆era) (Vidyasagar, 1985, Ch.5, Theorem 1) Let
(
M,N, M̃, Ñ, X,Y,

X̃, Ỹ
)

be a doubly coprime factorization of G. Any controller KQ stabilizing the plant G, in the
feedback interconnection of Figure 1, can be written as

KQ = Y−1
Q XQ = X̃QỸ−1

Q , (4)

where XQ, X̃Q, YQ and ỸQ are defined as:

XQ
def
= X+QM̃, X̃Q

def
= X̃+MQ, YQ

def
= Y −QÑ, ỸQ

def
= Ỹ −NQ (5)

for some stable Q in R(z)m×p. It also holds that KQ from (4) stabilizes G, for any stable Q in
R(z)m×p.
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Proposition 2.4 Starting from any doubly coprime factorization (3), the following identity[
U1M̃ U1Ñ

−U2XQ U2YQ

][
ỸQU−1

1 −NU−1
2

X̃QU−1
1 MU−1

2

]
= Ip+m. (6)

provides the class of all doubly coprime factorizations of G, where Q is stable in R(z)m×p and
U1 ∈ R(z)p×p, U2 ∈ R(z)m×m are both unimodular (i.e. stable with stable inverses).

Theorem 2.5 (Dual Youla-Kuçera)(Hof and Schrama (1992)) Let
(
M,N, M̃, Ñ, X,Y, X̃, Ỹ

)
be a doubly coprime factorization of G. Any plant GR stabilized by a fixed controller K, can be
written as

GR = M̃−1
R ÑR = NRMR

−1, (7)

where MR, M̃R, NR and ÑR are defined as:

MR
def
= M− X̃R, M̃R

def
= M̃−RX,NR

def
= N+ ỸR, ÑR

def
= Ñ+RY (8)

for some stable R in R(z)p×m.

3. The LQG Robust Controller Synthesis

Given a DCF of the nominal model of the plant Gmd, we can write the Bezout identity that
incorporates the corresponding Youla parameterization of all stabilizing controller as:[

M̃md Ñmd

−Xmd
Q Ymd

Q

][
Ỹmd

Q −Nmd

X̃md
Q Mmd

]
=

[
Ip 0
0 Im

]
, (9)

where Q denotes as usually the Youla parameter.

Definition 3.1 (Model Uncertainty Set) The γ-radius model uncertainty set (for the nominal plant
Gmd with ∆

M̃
, ∆

Ñ
both stable) is defined as:

Gγ
def
= {G = M̃−1Ñ

∣∣ M̃ = (M̃md+∆
M̃
), Ñ = (Ñmd+∆

Ñ
);

∥∥∥ [ ∆
M̃

∆
Ñ

] ∥∥∥
∞

< γ} (10)

Definition 3.2 (γ-Robustly Stabilizable) A stabilizing controller Kmd of the nominal plant is said
to be γ-robustly stabilizable iff Kmd stabilizes not only Gmd but also all plants G ∈ Gγ .

Assumption 1 It is assumed that the true plant, denoted by Gpt, belongs to the model uncertainty
set introduced in Definition 3.1, i.e. that there exist stable ∆

M̃
, ∆

Ñ
with

∥∥∥ [ ∆
M̃

∆
Ñ

] ∥∥∥
∞

< γ

for which Gpt = (M̃md +∆
M̃
)−1(Ñmd +∆

Ñ
).

In the presence of additive uncertainty on the coprime factors the Bezout identity in (9) no longer
holds, however, the following holds for certain stable ∆M, ∆N factors:[

(M̃md +∆
M̃
) (Ñmd +∆

Ñ
)

−Xmd
Q Ymd

Q

][
Ỹmd

Q −(Nmd +∆N)

X̃md
Q (Mmd +∆M)

]
=

[
Φ11 O
O Φ22

]
. (11)

The block diagonal structure of the right hand side term in (11) is due to the fact that Gpt =
(M̃md+∆

M̃
)−1(Ñmd+∆

Ñ
) = (Nmd+∆N)(Mmd+∆M)−1 for the aforementioned certain stable

∆M, ∆N factors.
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Lemma 3.3 A stabilizing controller of the nominal plant Kmd
Q = (Ymd

Q )−1Xmd
Q = X̃md

Q (Ỹmd
Q )−1 is

γ-robustly stabilizing iff for any stable model perturbations ∆
M̃
,∆

Ñ
with

∥∥∥ [ ∆
M̃

∆
Ñ

] ∥∥∥
∞

< γ

the TFM

Φ11 = Ip +
[
∆

M̃
∆

Ñ

] [ Ỹmd
Q

X̃md
Q

]
(12)

from (11) is unimodular (i.e. it is square, stable and has a stable inverse).

Since Φ11 in (12) clearly depends on the Youla parameter (via the right coprime factors of the con-
troller), the condition for the γ-robust stabilizability of the controller can be recast in the following
particular form, which will be instrumental in the sequel:

Theorem 3.4 The Youla parameterization yields a γ-robustly stabilizing controller iff its corre-

sponding Youla parameter satisfies

∥∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥∥
∞

≤ 1

γ
.

Proposition 3.5 The square root of the LQG cost function from (2) can be assimilated to:

H(Gpt,Kmd
Q )

def
=

∥∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]
Φ−1

11

[
(M̃md +∆

M̃
) (Ñmd +∆

Ñ
)
] ∥∥∥∥∥

H2

(13)

whereas, H(Gpt,Kmd
Q ) denotes the following closed loop responses:

[
Tyν

Q Tyw
Q

Tuν
Q Tuw

Q

]
=

[
(Ip +GptKmd

Q )−1 (Ip +GptKmd
Q )−1Gpt

Kmd
Q (Ip +GptKmd

Q )−1 Kmd
Q (Ip +GptKmd

Q )−1Gpt

]
. (14)

In this setup, the robust LQG control problem reads:

min
Q stable

max∥∥∥[ ∆
M̃

∆
Ñ

]∥∥∥
∞
<γ

H(Gpt,Kmd
Q )

s.t.

∥∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥∥
∞

≤ 1

γ
.

(15)

whose solution, obtained for the optimal Youla parameter Q∗ in (15) will be denoted by Ỹmd
Q∗

, X̃md
Q∗

such that the optimal, robust controller reads Kmd
Q∗

= X̃md
Q∗

(Ỹmd
Q∗

)−1. Note that the non-convexity
of the robust LQG problem is caused by the additive uncertainty on the coprime factors. In order to
circumvent this, an upper bound on the H(Gpt,Kmd

Q ) cost functional will be derived, much in the
spirit of Dean et al. (2018) and Zheng et al. (2020a). This bound will further be exploited to derive
a quasi-convex approximation for the robust LQG control problem in the next subsection.
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3.1. Quasi-convex formulation

Proposition 3.6 Given any γ-robustly stabilizing controller satisfying

∥∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥∥
∞

<
1

γ
then

for any additive model perturbations
∥∥∥ [ ∆

M̃
∆

Ñ

] ∥∥∥
∞

< γ, the cost functional of the robust
LQG problem from (15) admits the upper bound:

H(Gpt,Kmd
Q ) ≤ 1

1− γ

∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥
∞

[
h
(
γ,

∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥
∞

)∥∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥
H2

]
(16)

where h

(
γ,

∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥
∞

)
def
=

(
1 + γ

∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥
∞

)(∥∥∥∥ [ M̃md Ñmd
] ∥∥∥∥

∞
+ γ

)
.

We state next one of the main results, providing an aptly designed approximation of the robust LQG
control problem by means of the LQG cost upper bound from (16).

Theorem 3.7 For the true plant, Gpt ∈ Gγ and (∀)α > 0, the robust LQG control problem in (15)
admits the following upper bound:

min
δ∈[0,1/γ)

1

1− γδ
min

Q stable

(
h
(
γ, α

)∥∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥
H2

)

s.t.

∥∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥∥
∞

≤ min{δ, α},
(17)

where as before, h
(
γ, α

)
= (1 + γα)

(∥∥∥∥ [ M̃md Ñmd
] ∥∥∥∥

∞
+ γ

)
.

Remark 1 For each fixed δ, the inner optimization is convex but the dimension of Q(z) remains
infinite. For numerical computation, a (FIR) truncation is considered on Q(z) which will convert
the inner optimization problem into a Semi-Definite Program (Zhang et al., 2021, Appendix E).

Remark 2 (Feasibility) The optimization problem proposed in Theorem-3.7 is a quasi-convex re-

laxation of the original robust LQG problem (15), due to the added constraint:
∥∥∥∥
[

Ỹmd
Q

X̃md
Q

]∥∥∥∥
∞

< α,

where α is a given positive constant. Since the relaxation bound is proportional to α, it should be
chosen as small as possible, however, α can’t be made arbitrarily small and therefore the feasibility
of the quasi-convex program from Theorem-3.7 cannot be guaranteed. This is caused by the fact
that α must be assimilated to the norm of a LCF of a stabilizing controller for the true plant, whose
H∞ attenuation is simultaneously greater or equal to the one of the optimal H∞ controller for the
nominal model (see Theorem 3.4). This reflects the fact that the feasibility of the closed loop "learn-
ing" problem depends inherently on the performance (with respect to the model uncertainty of the
plant) of the initially chosen stabilizing controller (the one with which the closed loop "learning" is
being performed).

7
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4. Analysis of End-to-End Performance

If we denote by Kopt the optimal H2 controller for the true plant, then by Assumption 1 there exist
stable additive factors such that Gpt = (M̃md+∆

M̃
)−1(Ñmd+∆

Ñ
) = (Nmd+∆N)(Mmd+∆M)−1

and furthermore, there always exists a Bezout identity of the true plant that features the optimal
controller Kopt = (Yopt)−1Xopt = X̃opt(Ỹopt)−1 as its “central controller”, thus reading:[

(M̃md +∆
M̃
) (Ñmd +∆

Ñ
)

−Xopt Yopt

] [
Ỹopt −(Npt +∆N)

X̃opt (Mpt +∆M)

]
=

[
Ip 0
0 Im

]
(18)

Consequently, the square root of the LQG cost functional for optimal controller is given by:

H(Gpt,Kopt)
def
=

∥∥∥∥∥
[

Ỹopt

X̃opt

] [
(M̃md +∆

M̃
) (Ñmd +∆

Ñ
)
] ∥∥∥∥∥

H2

(19)

Next, the main result on the sub-optimality guarantee for the performance of the robust controller
with model uncertainty of radius γ is stated:

Theorem 4.1 Let Kopt be the optimal LQG controller and Gpt be the model of the true plant, with
modeling error uncertainty satisfying

∥∥∥ [ ∆
M̃

∆
Ñ

] ∥∥∥
∞

< γ. Furthermore, let Q∗ and δ∗ denote

the solution to (17). Then, when applying the resulting controller Kmd
Q∗

in feedback interconnection
with the true plant Gpt, the relative error in the LQG cost is upper bounded by:

H(Gpt,Kmd
Q∗

)2 −H(Gpt,Kopt)2

H(Gpt,Kopt)2
≤ 1(

1− γ

∥∥∥∥
[

Ỹmd
Q∗

X̃md
Q∗

]∥∥∥∥
∞

)2
× g

(
γ,

∥∥∥∥
[

Ỹmd
Q∗

X̃md
Q∗

]∥∥∥∥
∞

)2

− 1, (20)

where g
(
γ,

∥∥∥∥
[

Ỹmd
Q∗

X̃md
Q∗

] ∥∥∥∥
∞

)
def
=

∥∥∥∥
[

Ỹmd
Q∗

X̃md
Q∗

] ∥∥∥∥
∞

(
1+γ

∥∥∥∥
[

Ỹmd
Q∗

X̃md
Q∗

] ∥∥∥∥
∞

)(∥∥∥∥ [ M̃md Ñmd
] ∥∥∥∥

∞
+γ

)
.

Remark 3 (Optimality vs Robustness) If γ
∥∥∥∥
[

Ỹmd
Q∗

X̃md
Q∗

]∥∥∥∥
∞

= η, it’s easy to observe that η ∈ (0, 1).

Then it’s immediate to see that the upper bound of the relative error in the LQG cost increases as
a function of η. The price of obtaining a faster rate is that the controller becomes less robust to
model uncertainty as pointed out in Mania et al. (2019), Zheng et al. (2020a). It holds for this case
too as shown in Theorem 4.1. In practice, using a relatively large value for η forces a trade-off of
optimality for robustness in the controller design procedure. In general, optimality stands i.e. better
controller performance is guaranteed as η goes closer to 0 and better robustness performance is
guaranteed as η goes closer to 1 with the upper bound (20) of relative error in LQG cost might be
large. This is shown with an example below.

Let’s set η =
1

5
. Then by Theorem 4.1 relative error in the LQG cost is

H(Gpt,Kmd
Q∗

)2 −H(Gpt,Kopt)2

H(Gpt,Kopt)2
≤ 2× g

(
γ,

∥∥∥∥
[

Ỹmd
Q∗

X̃md
Q∗

]∥∥∥∥
∞

)]2
− 1. (21)

Hence, the the relative error in the LQG cost grows as O(γ2) as long as γ
∥∥∥∥
[

Ỹmd
Q∗

X̃md
Q∗

]∥∥∥∥
∞

<
1

5
.

8
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5. Closed Loop Identification Scheme (Zhang et al., 2021, Appendix G)

Figure 2 in (Zhang et al., 2021, Subsection 4.2) depicts the closed-loop identification setup
of a potentially unstable noise contaminated plant Gmd with control input u, noise ν (taken w =
0) and output measurement y (where u and ν are assumed independent and stationary), provided
that some initial stabilizing controller Kmd is available beforehand. The key idea dating back to
Anderson (1998) is to identify the stable dual-Youla parameter Rmd from Theorem 2.5 rather than
Gmd, thus recasting the problem in a standard, open-loop identification form. More specifically,
direct inspection of Figure 2 from (Zhang et al., 2021, Subsection 4.2) shows that

e2 = Rmde1 + (M̃md −RmdXmd)ν = Rmd(e1 −Xmdν) + M̃mdν. (22)

In (22) we have the knowledge of Xmd; e1 and e2 are available from measurements with noise ν.
The recent algorithm from Sarkar and Rakhlin (2019) given below is employed toward identifying
the dual-Youla parameter.

5.1. Identification Algorithm (Sarkar and Rakhlin (2019))

The state space representation of Rmd in e2 = Rmdu+ M̃mdν with u = e1 −Xmdν is:

lt+1 = ARlt +BRut + ηt+1

zt = CRlt + M̃mdνt
(23)

Assumption 2 The noise process {ηt}∞t=1 in the dynamics of Rmd are i.i.d., and isotropic with sub-
gaussian parameter 1. The noise process {rt}∞t=1, {wt}∞t=1 and {νt}∞t=1 are Gaussian processes
with mean mr(t) = mw(t) = mν(t) = 0, and their spectral density ϕr(ω), ϕw(ω) and ϕν(ω).

Assumption 3 There exist constants β,R ≥ 1 s.t. ∥T0,∞∥2 < β and
∥T Ok,d∥2
∥T0,∞∥2

≤ R.

Note that β exists since Rmd is stable.

5.1.1. PROBABILISTIC GUARANTEES

Let’s define, T∗(δ) = inf{T |d∗(T, δ) ∈ D(T ), d∗(T, δ) ≤ 2d∗(
T
256 , δ)} where, d∗(T, δ) = inf{d|

16βRα(d) ≥
∥∥∥Ĥ0,d̂,d̂

− Ĥ0,∞,∞

∥∥∥
2
}, with Ĥp,q,r is the (p, q, r) - dimensional estimated Hankel

matrix. Whenever T ≥ T∗(δ) for the failure probability δ, then it follows with the probability at
least (1− δ) that

∥∥∥Ĥ0,d̂,d̂
− Ĥ0,∞,∞

∥∥∥
2
≤ 12cβR

(√
md̂+ pd̂2 + d̂log(T/δ)

T

)
. (24)

5.2. Sample Complexity

Lemma 5.1 The norm of the identification error incurred by the proposed scheme is bounded by:∥∥∥Rmd −Rpt
∥∥∥
∞

≤
∥∥∥Ĥ0,d̂,d̂

− Ĥ0,∞,∞

∥∥∥
2
≤ 12cβR

(√
md̂+ pd̂2 + d̂log(T/δ)

T

)
9



SAMPLE COMPLEXITY OF THE ROBUST LQG REGULATORWITH COPRIME FACTORS UNCERTAINTY

Finally, the error on the model uncertainty can be directly checked using Lemma 5.1 as:∥∥∥ [∆M̃
∆Ñ

] ∥∥∥
∞

=
∥∥∥ [(M̃md +XmdRmd) (Ñmd −YmdRmd)

]
−
[
(M̃md +XmdRpt) (Ñmd −YmdRpt)

] ∥∥∥
∞

=
∥∥∥ [ Xmd Ymd

]
(Rmd −Rpt)

∥∥∥
∞

≤
∥∥∥ [ Xmd Ymd

] ∥∥∥
∞

∥∥∥Rmd −Rpt
∥∥∥
∞

Consequently, the uncertainty level on the LCF of the model satisfies
∥∥∥ [ ∆

M̃
∆

Ñ

] ∥∥∥
∞

< γ.

Theorem 5.2 Define s = 144
∥∥∥ [ Xmd Ymd

] ∥∥∥2
∞
c2β2R2. Then, the robust controller will achieve

the relative cost within the bound with probability (1− δ) provided T ≥ max{Ts, T∗(δ)}. Here, Ts

is the right most zero of g(T ) = γ2T − sd̂log(T/δ)− s(md̂+ pd̂2). If g(T ) doesn’t have any zero
for T > 0, then define Ts = 0 and T∗(δ) = inf{T |d∗(T, δ) ∈ D(T ), d∗(T, δ) ≤ 2d∗(

T
256 , δ)},

where, d∗(T, δ) = inf{d|16βRα(d) ≥
∥∥∥Ĥ0,d,d − Ĥ0,∞,∞

∥∥∥
2
},

D(T ) = {d ∈ N|d ≤ T

cm2log3(Tm/δ)
} and α(h) =

√
h.
(√m+ hp+ log(T/δ)

T

)
.

Combining Theorem 5.2 with Theorem 4.1, it follows that with high probability the suboptimality
gap behaves as

H(Gpt,Kmd
Q∗

)2 −H(Gpt,Kopt)2

H(Gpt,Kopt)2
∼ O

(√ logT

T

)
Finally, we note here that the resulted sample complexity is on par with the existing methods
fromZheng et al. (2020a) and Dean et al. (2018).

6. Conclusion and Future work

In this paper, we have provided the sample complexity bounds for a robust controller synthesis pro-
cedure for LQG problems with unknown dynamics, able to cope with unstable plants. We combined
finite-time, non-parametric LTI system identification with the Youla parameterization for robust sta-
bilization under uncertainty on the coprime factors of the plant. One exciting avenue for future
research is the online learning LQG control problem under the same type of model uncertainty. An-
other direction is to work out the sample complexity of learning the optimal state feedback (LQR)
controller in tandem with the optimal state-observer (Kalman Filter (Tsiamis et al. (2020))) for a
potentially unstable system. Combining these two results, should yield precisely the optimal LQG
controller discussed above and reveal the separation principle within this framework.
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