
NASRec: Weight Sharing Neural Architecture Search for
Recommender Systems

Tunhou Zhang∗ Dehua Cheng Yuchen He Zhengxing Chen
Duke University Meta AI Meta AI Meta AI
Durham, USA Menlo Park, USA Menlo Park, USA Menlo Park, USA

tunhou.zhang@duke.edu dehuacheng@fb.com yuchenhe@fb.com czxttkl@fb.com

Xiaoliang Dai Liang Xiong Feng Yan Hai Li
Meta AI Meta AI University of Houston Duke University

Menlo Park, USA Menlo Park, USA Houston, USA Durham, USA
xiaoliangdai@fb.com lxiong@fb.com fyan5@central.uh.edu hai.li@duke.edu

Yiran Chen W † ei Wen

Duke University Meta AI
Durham, USA Menlo Park, USA

yiran.chen@duke.edu wewen@fb.com

ABSTRACT
The rise of deep neural networks ofers new opportunities in opti-
mizing recommender systems. However, optimizing recommender
systems using deep neural networks requires delicate architecture
fabrication. We propose NASRec, a paradigm that trains a single su-
pernet and efciently produces abundant models/sub-architectures
by weight sharing. To overcome the data multi-modality and archi-
tecture heterogeneity challenges in the recommendation domain,
NASRec establishes a large supernet (i.e., search space) to search the
full architectures. The supernet incorporates versatile choice of op-
erators and dense connectivity to minimize human eforts for fnd-
ing priors. The scale and heterogeneity in NASRec impose several
challenges, such as training inefciency, operator-imbalance, and
degraded rank correlation. We tackle these challenges by proposing
single-operator any-connection sampling, operator-balancing inter-
action modules, and post-training fne-tuning. Our crafted models,
NASRecNet, show promising results on three Click-Through Rates
(CTR) prediction benchmarks, indicating that NASRec outperforms
both manually designed models and existing NAS methods with
state-of-the-art performance. Our work is publicly available here.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Discrete space search; Neural networks.

∗A majority of this work was done when the frst author was an intern at Meta
Platforms, Inc.
†Corresponding author. Intern Manager.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583446

KEYWORDS
recommender systems, neural architecture search, weight sharing,
regularized evolution, neural networks

ACM Reference Format:
Tunhou Zhang, Dehua Cheng, Yuchen He, Zhengxing Chen, Xiaoliang Dai,
Liang Xiong, Feng Yan, Hai Li, Yiran Chen, and Wei Wen. 2023. NASRec:
Weight Sharing Neural Architecture Search for Recommender Systems. In
Proceedings of the ACM Web Conference 2023 (WWW ’23), April 30–May 04,
2023, Austin, TX, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3543507.3583446

1 INTRODUCTION
Deep learning plays an essential role in designing modern recom-
mender systems at web-scale in real-world applications. For exam-
ple, the most widely used search engines and social medias [5, 17]
harness recommender systems (or ranking systems) to optimize the
Click-Through Rates (CTR) of personalized pages [8, 13, 23]. Deep
learning models rely on delicate neural architecture engineering.

Deep learning based recommender systems, especially CTR pre-
diction, carries a neural architecture design upon multi-modality
features. In practice, various challenges arise. The multi-modality
features, such as foating-point, integer, and categorical features,
present a concrete challenge in feature interaction modeling and
neural network optimization. Finding a good backbone model with
heterogeneous architectures assigning appropriate priors upon
multi-modality features are common practices in deep learning
based recommender systems [7, 14, 16, 19, 23, 25, 27, 28]. Yet, these
approaches still rely on signifcant manual eforts and sufer from
limitations, such as narrow design spaces and insufcient exper-
imental trials bounded by available resources. As a result, these
limitations add difculty in designing a good feature extractor.

The rise of Automated Machine Learning (AutoML), especially
Neural Architecture Search (NAS) [4, 21, 37, 39], in the vision do-
main, sheds light in optimizing models of recommender systems.
Weight-Sharing NAS (WS-NAS) [3, 4, 21] is popularly adopted
in vision domain to tackle the design of efcient vision models.

1199

https://github.com/facebookresearch/NasRec
https://doi.org/10.1145/3543507.3583446
https://doi.org/10.1145/3543507.3583446
https://doi.org/10.1145/3543507.3583446
mailto:wewen@fb.com
mailto:hai.li@duke.edu
mailto:fyan5@central.uh.edu
mailto:czxttkl@fb.com
mailto:yuchenhe@fb.com
mailto:permissions@acm.org
mailto:yiran.chen@duke.edu
mailto:lxiong@fb.com
mailto:xiaoliangdai@fb.com
mailto:dehuacheng@fb.com
mailto:tunhou.zhang@duke.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583446&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

Table 1: Comparison of NASRec vs. existing NAS methods for recommender systems.

Method Building
Operators?

Dense
Connectivity?

Full arch
Search?

Criteo
Log Loss

Training
Cost

DNAS [18]
PROFIT [11]
AutoCTR [30]

NASRec

FC, Dot-Product
FC, FM

FC, Dot-Product, FM, EFC
FC, Gating, Sum, Attention,

Dot-Product, FM, EFC

✓

✓

✓

✓

✓

0.4442
0.4427
0.4413

0.4399

One supernet
One supernet
Many models

One supernet

However, applying weight-sharing NAS to recommendation do-
main is much more challenging than vision domain because of
the multi-modality in data and the heterogeneity in architectures.
For example, (1) in vision, inputs of building blocks in [4, 33] are
homogeneous 3D tensors, but recommender systems take in multi-
modality features generating 2D and 3D tensors. (2) Vision models
simply stack the same building blocks, and thus state-of-the-art
NAS in vision converges to simply searching size confgurations
instead of architecture motifs, such as channel width, kernel sizes,
and layer repeats [4, 38]. However, recommendation models are
heterogeneous with each stage of the model using a completely
diferent building block [7, 14, 19, 23]. (3) Vision models mainly
use convolutional operator as the main building block while rec-
ommender systems are built over heterogeneous operators, such
as, Fully-Connected layer, Gating, Sum, Dot-Product, Multi-Head
Attention, Factorization Machine, etc.

Due to the aforementioned challenges, study of NAS in rec-
ommender systems is very limited. For example, search spaces
in AutoCTR [30] and DNAS [18] follow the design principle of
human-crafted DLRM [23] and they only include Fully-Connected
layer and Dot-Product as searchable operators. They also heavily
reply on manually crafted operators, such as Factorization Ma-
chine [30] or feature interaction module [11] in the search space
to increase architecture heterogeneity. Moreover, existing works
sufer from either huge computation cost [30] or challenging bi-
level optimization [18], and thus they only employ narrow design
spaces (sometimes with strong human priors [11]) to craft archi-
tectures, discouraging diversifed feature interactions and harming
the quality of discovered models.

In this paper, we hereby propose NASRec, a new paradigm to
fully enable NAS for Recommender systems via Weight Sharing
Neural Architecture Search (WS-NAS) under data modality and
architecture heterogeneity. Table 1 summarizes the advancement
of NASRec over other NAS approaches. We achieve this by frst
building up a supernet that incorporates much more heterogeneous
operators than previous works, including Fully-Connected (FC)
layer, Gating, Sum, Dot-Product, Self-Attention, and Embedded
Fully-Connected (EFC) layer. In the supernet, we densely connect
a cascade of blocks, each of which includes all operators as options.
As any block can take in any raw feature embeddings and interme-
diate tensors by dense connectivity, the supernet is not limited by
any particular data modality. Such supernet design minimizes the
encoding of human priors by introducing “NASRec Search Space”,
supporting the nature of data modality and architecture hetero-
geneity in recommenders, and covering models beyond popular
recommendation models such as Wide & Deep [7], DeepFM [14],
DLRM [23], AutoCTR [30], DNAS [18], and PROFIT [11].

The supernet essentially forms a search space. We obtain a model
by zeroing out some operators and connections in the supernet, that

is, a subnet of the supernet is equivalent to a model. As all subnets
share weights from the same supernet, it is dubbed as Weight Shar-
ing NAS. To efciently search models/subnets in the NASRec search
space, we advance one-shot approaches [4, 38] to recommendation
domain. We propose Single-operator Any-connection sampling to
decouple operator selections and increase connection coverage,
operator-balancing interaction blocks to fairly train subnets in the su-
pernet, and post-training fne-tuning to reduce weight co-adaptation.
These approaches enable a better training efciency and ranking of
subnet models in the supernet, resulting in ∼0.001 log loss reduction
of searched models on full NASRec search space.

We evaluate our NAS-crafted models, NASRecNets on three pop-
ular CTR benchmarks and demonstrate signifcant improvements
compared to both hand-crafted models and NAS-crafted models.
Remarkably, NASRecNet advances the state-of-the-art with log loss
reduction of ∼ 0.001, ∼ 0.003 on Criteo and KDD Cup 2012, respec-
tively. On Avazu, NASRec advances the state-of-the-art PROFIT [11]
with AUC improvement of ∼ 0.002 and on-par log loss, while out-
performing PROFIT [11] on Criteo by ∼0.003 log loss reduction.

NASRec only needs to train a single supernet thanks to the
efcient weight sharing mechanism, and thus greatly reduces the
search cost. We summarize our major contributions below.

• We propose NASRec, a new paradigm to scale up automated
modeling of recommender systems. NASRec establishes a fexible
supernet (search space) with minimal human priors, overcoming
data modality and architecture heterogeneity challenges in the
recommendation domain.

• We advance weight sharing NAS to recommendation domain by
introducing single-operator any-connection sampling, operator-
balancing interaction modules, and post-training fne-tuning.

• Our crafted models, NASRecNet, outperforms both hand-crafted
models and NAS-crafted models with a smaller search cost.

2 RELATED WORK
Deep learning based recommender systems. Machine-based
recommender systems such as Click-Through Rates (CTR) pre-
diction has been thoroughly investigated in various approaches,
such as Logistic Regression [27], and Gradient-Boosting Decision
Trees [16]. More recent approaches study deep learning based in-
teraction of diferent types of features via Wide & Deep Neural
Networks [7], DeepCrossing [28], Factorization Machines [14, 19],
Dot-Product [23] and gating mechanism [34, 35]. Another line of
research seeks efcient feature interactions, such as feature-wise
multiplications [36] and sparsifcations [9] to build light-weight
recommender systems. Yet, these works operate the cost of tremen-
dous manual eforts and sufer from sub-optimal performance and
constrained design choices due to the limitations in resource sup-
ply. Our work establishes a new paradigm on learning efective
recommender models by crafting a scalable "NASRec search space"

1200

NASRec: Weight Sharing Neural Architecture Search for Recommender Systems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

that incorporates all popular design motifs in existing works. The
new NASRec search space supports a wide range of design choices
and enables scalable optimization to craft recommender models of
varying requirements.
Neural Architecture Search. Neural Architecture Search auto-
mates the design of Deep Neural Networks in various applications:
the popularity of Neural Architecture Search is consistently grow-
ing in brewing Computer Vision [4, 21, 37, 39], Natural Language
Processing [29, 33], and Recommendation Systems [11, 18, 30]. Re-
cently, Weight-Sharing NAS (WS-NAS) [4, 33] attracts the attention
of researchers: it trains a supernet that represents the whole search
space directly on target tasks, and efciently evaluate subnets (i.e.,
sub-architectures of supernet) with shared supernet weights. Yet,
carrying WS-NAS on recommender systems is challenging because
recommender systems are brewed upon heterogeneous architec-
tures that are dedicated to interacting multi-modality data, thus
require more fexible search spaces and efective supernet training
algorithms. Those challenges induce the co-adaptation problem [2]
and operator-imbalance problem [20] in WS-NAS, providing a lower
rank correlation to distinguish models. NASRec addresses them
by proposing single-operator any-connection sampling, operator-
balancing interaction modules, and post-training fne-tuning.

3 HIERARCHICAL NASREC SPACE FOR
RECOMMENDER SYSTEMS

To support data modality and architecture heterogeneity in rec-
ommender systems, the fexibility of search space is the key. We
establish a new paradigm free of human priors by introducing
NASRec search space, a hierarchical search space design that incor-
porates heterogeneous building operators and dense connectivity,
see Figure 1. The major manual process in designing the search
space is simply collecting common operators used in existing ap-
proaches [14, 19, 23, 30, 34, 35]. Beyond that, we further incorporate
the prevailing Transformer Encoder [32] into the NASRec search
space for better fexibility and higher potential in searched architec-
tures, thanks to its dominance in applications such as ViT [10] for
image recognition, Transformer [32] for natural language process-
ing, and its emerging exploration in recommender systems [6, 12].

Next, we demonstrate the NASRec search space.

3.1 NASRec Search Space
In recommender systems, we defne a dense input as �� ∈ R�×����

which is a 2D tensor from either raw dense features or generated
by operators, such as FC, Gating, Sum, and Dot-Product. A sparse
input �� ∈ R�×�� ×���� is a 3D tensor of sparse embeddings either
generated by raw sparse/categorical features or by operators such
as EFC and self-attention. Similarly, a dense or sparse output (i.e.,
�� or ��) is respectively defned as a 2D or 3D tensor produced via
a corresponding building blocks/operators. In NASRec, all sparse
inputs and outputs share the same ���� , which equals to the di-
mension of raw sparse embeddings. Accordingly, we defne a dense
(sparse) operator as an operator that produces a dense (sparse)
output. In NASRec, dense operators include FC, Gating, Sum, and
Dot-Product which form the “dense branch” (marked in blue), and
sparse operators include EFC and self-attention, which form the
“sparse branch” (marked in red).

A candidate architecture in NASRec search space is a stack of �
choice blocks, followed by a fnal FC layer to compute logit. Each
choice block admits an arbitrary number of multi-modality inputs,
each of which is � = (�� , ��) from a previous block or raw inputs,
and produces a multi-modality output � = (�� , ��) of both a dense
tensor �� and a sparse tensor �� via internal building operators.
Within each choice block, we can sample operators for search.

We construct a supernet to represent the NASRec search space,
see Figure 1. The supernet subsumes all possible candidate mod-
els/subnets and performs weight sharing among subnets to simulta-
neously train all of them. We formally defne the NASRec supernet
S as a tuple of connections C, operators O, and dimensions D as fol-
lows: S = (C, D, O) over all � choice blocks. Specifcally, the oper-
ators: O = [� (1) , ...,� (�)] enumerates the set of building operators
from choice block 1 to � . The connections: C = [� (1) , ...,� (�)]
contains the connectivity < �, � > between choice block � and
choice block � . The dimension: D = [� (1) , ..., � (�)] contains the
dimension settings from choice block 1 to � .

=A subnet ������� (O������ , C������ , D������) in the super-
net S represents a model in NASRec search space. A block uses
addition to aggregate the outputs of sampled operators in each
branch (i.e. “dense branch” or “sparse branch”). When the operator
output dimensions do not match, we apply a zero masking to mask
out the extra dimension. A block uses concatenation ������ to
aggregate the outputs from sampled connections. Given a sampled
subnet ������� , the input � (�) to choice block � is computed as
follows given a list of previous block outputs {� (1) , ..., � (� −1) }

(�)and the sampled connections � :
������

� (�)
= �������

�
=1
−1 [� (�) · 1 (�)], (1)

� � <�,� >∈�
������

��
(�)

= ������ � −1 [��
(�) · 1 (�)] . (2)�=1 <�,� >∈�

������
Here, 1� is 1 when � is true otherwise 0.

(�)A building operator � ∈ � transforms the concatenated
������

input � (�) into an intermediate output with a sampled dimension
(�)

� . This is achieved by a mask function that applied on the
������

last dimension for dense output and middle dimension for sparse
(�)output. For example, a dense output � is obtained as follows:
� ∑ (�) (�) (�)

� = 1 (�) · ���� (� (�), �) . (3)
� � ∈O � ������,�

������ � ∈O

where (
�:,� , if � < �

���� (� , �) = . (4)
0, Otherwise.

Next, we clarify the set of building operators as follows:
• Fully-Connected (FC) layer. Fully-Connected layer is the back-
bone of DNN models for recommender systems [7] that extracts
dense representations. FC is applied on 2D dense inputs, and
followed by a ReLU activation.

• Sigmoid Gating (SG) layer. We follow the intuition in [6, 35]
and employ a dense building operator, Sigmoid Gating, to en-
hance the potential of the search space. Given two dense inputs
��1 ∈ R�×����1 and ��2 ∈ R�×����2 , Sigmoid Gating interacts
these two inputs as follows: �� (��1, ��2) = ������� (�� (��1)) ∗
��2. If the dimension of two dense inputs does not match, a zero
padding is applied on the input with a lower dimension.

1201

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

Block &

Block 1

Block 2

Block N…

FC

Input

Logits

+

+ Addition & Concatenation Fixed Connection Searchable Connection

+

Sparse OpDense Op

FC SG Sum DP EFC Attn

Dense 2D Input Sparse 3D Input

Dense 2D Output Sparse 3D Output

FC

Reshape+
FM

Figure 1: Overview of NASRec search space. NASRec search space enables a full architecture search on building operators and
dense connectivity. Here, “blue” blocks produce a dense output, and “red” blocks produce a sparse output.

• Sum layer. This dense building operator adds two dense inputs:
��1 ∈ R�×���� 1 , ��2 ∈ R�×����2 and merges two features from
diferent levels of the recommender system models by simply per-
forming ���(��1, ��2) = ��1 + ��2. Similar to Sigmoid Gating,
a zero padding is applied on the input with a lower dimension.

• Dot-Product (DP) layer. We leverage Dot-Product to grasp the
interactions among multi-modality inputs via a pairwise inner
products. Dot-Product can take dense and/or sparse inputs, and
produce a dense output. These sparse inputs, after being sent to
“dense branch”, can later take advantage of the dense operators
to learn better representations and interactions. Given a dense
input �� ∈ R�×���� and a sparse input �� ∈ R�×�� ×���� , a Dot-
Product frst concatenate them as � = ������ [�� , ��], and then
performs pair-wise inner products: �� (�� , ��) = ���� (���).
���� is frst projected to ���� if they do not match.

• Embedded Fully-Connected (EFC) layer. An EFC layer is a
sparse building operator that applies FC along the middle dimen-
sion. Specifcally, an EFC with weights � ∈ R��� ×���� trans-

to �� ∈ R�×���� ×���� forms an input �� ∈ R�×��� ×����

• Attention (Attn) layer. Attention layer is a sparse building
operator that utilizes Multi-Head Attention (MHA) mechanism
to learn the weighting of sparse inputs and better exploit their
interaction in recommendation systems. Here, We apply Trans-
former Encoder on a given sparse input �� ∈ R�×�� ×���� , with
identical queries, keys, and values.
We observe that the aforementioned set of building operators

provide opportunities for the sparse inputs to transform into the
“dense branch”. Yet, these operators do not permit a transformation
of dense inputs towards the “sparse branch”. To address this limi-
tation, we introduce "dense-sparse merger" allow dense/sparse
outputs to optionally merge into the “sparse/dense branch”. Dense-
sparse merger contains two major components.
• "Dense-to-sparse" merger. This merger frst projects the dense
outputs �� using a FC layer, then uses a reshape layer to reshape
the projection into a 3D sparse tensor. The reshaped 3D tensor is
merged into the sparse output via concatenation.

• "Sparse-to-dense" merger. This merger employs a Factorization
Machine (FM) [14] to convert the sparse output into a dense rep-
resentation, then add the dense representation to dense output.
Beyond the rich choices of building operators and mergers, each

choice block can also receive inputs from any preceding choice
blocks, and raw input features. This involves an exploration of any

connectivity among choice blocks and raw inputs, extending the
wiring heterogeneity for search.

3.2 Search Components
In NASRec search space, we search the connectivity, operator di-
mensions, and building operators in each choice block. We illustrate
the three key search components as follows:
• Connection. We place no restrictions on the number of con-
nections that a choice block can receive: each block can choose
inputs from an arbitrary number of preceding blocks and raw
inputs. Specifcally, the n-th choice block can connect to any
previous � − 1 choice blocks and the raw dense (sparse) features.
The outputs from all preceding blocks are concatenated as inputs
for dense (sparse) building blocks. We separately concatenate the
dense (sparse) outputs from preceding blocks.

• Dimension. In a choice block, diferent operators may produce
diferent tensor dimensions. In NASRec, we set the output sizes
of FC and EFC to ���� and �� , respectively; and other operator
outputs in dense (sparse) branch are linearly projected to ����
(��). This ensures operator outputs in each branch have the same
dimension and can add together. This also give the maximum

∈ R�×���� dimensions ���� and �� for the dense output ��
and the sparse output �� ∈ R�×�� ×���� . Given a dense or sparse
output, a mask in Eq. 4 zeros out the extra dimensions, which
allows fexible selections of dimensions of building operators.

• Operator. Each block can choose at least one dense (sparse)
building operator to transform inputs to a dense (sparse) output.
Each block should maintain at least one operator in the dense
(sparse) branch to ensure the fow of information from inputs to
logit. We independently sample building operators in the dense
(sparse) branch to form a validate candidate architecture. In ad-
dition, we independently sample dense-sparse mergers to allow
optional dense-to-sparse interaction.
We craft two NASRec search spaces as examples to demonstrate

the power of NASRec search space.
• NASRec-Small. We limit the choice of operators within each block
to FC, EFC, and Dot-Product, and allow any connectivity be-
tween blocks. This provides a similar scale of search space as
AutoCTR [30].

• NASRec-Full. We enable all building operators, mergers and con-
nections to construct an aggressive search space for exploration
with minimal human priors. Under the constraint that at least one

1202

NASRec: Weight Sharing Neural Architecture Search for Recommender Systems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Any-operator
Any-connection

Raw Inputs

Block 1

Block 2

Block 3

…

Single-operator
Single-connection

Raw Inputs

Block 1

Block 2

Block 3…

Single-operator
Any-connection

Raw Inputs

Block 1

Block 2

Block 3

…

Sampled Dense-Op Sampled Sparse-Op Sampled Connection

Figure 2: We propose Single-operator Any-connection path
sampling by combining the advantages of the frst two sam-
pling strategies. Here, dashed connections and operators de-

Single-operator Single-connection: Pearson=0.05, Kendall=0.02

Any-operator Any-connection: Pearson=0.367, Kendall=0.280
Single-operator Any-connection: Pearson=0.457, Kendall=0.436

notes a sampled path in supernet.
operator must be sampled in both dense and sparse branch, the
NASRec-Full search space size is 15� × of NASRec-Small, where �
is the number of choice blocks. This full search space extremely
tests the capability of NASRec.
The combination of full dense connectivity search and inde-

pendent dense/sparse dimension confguration gives the NASRec
search space a large cardinality. NASRec-Full has � = 7 blocks,
containing up to 5 × 1033 architectures with strong heterogeneity.
With minimal human priors and such unconstrained search space,
brutal-force sample-based methods may take enormous time to fnd
a state-of-the-art model.

4 WEIGHT SHARING NEURAL
ARCHITECTURE SEARCH FOR
RECOMMENDER SYSTEMS

A NASRec supernet simultaneously brews diferent subnet mod-
els in the NASRec search space, yet imposes challenges to training
efciency and ranking quality due to its large cardinality. In this sec-
tion, we frst propose a novel path sampling strategy, Single-operator
Any-connection sampling, that decouples operator sampling with a
good connection sampling converge. We further observe the opera-
tor imbalance phenomenon induced by some over-parameterized
operators, and tackle this issue by operator-balancing interaction to
improve supernet ranking. Finally, we employ post-training fne-
tuning to alleviate weight co-adaptation, and further utilize regu-
larized evolution to obtain the best subnet. We also provide a set of
insights that efectively explore the best recommender models.

4.1 Single-operator Any-Connection Sampling
The supernet training adopts a drop-out like approach. At each mini-
batch, we sample and train a subnet. During training, we train lots
of subnets under weight sharing, with the goal that subnets are well
trained to predict the performance of models. Sampling strategies
are important to meet the goal. We explore three path sampling
strategies depicted in Figure 2 and discover Single-operator Any-
Connection sampling is the most efective way:
• Single-operator Single-connection strategy. This path sam-
pling strategy has its root in Computer Vision [15]: it uniformly
samples a single dense and a single sparse operator in each choice
block, and uniformly samples a single connection as an input

Figure 3: Ranking evaluation of various path sampling strate-
gies on NASRec-Full supernet. We evaluate all ranking coef-
fcients over 100 randomly sampled subnets on Criteo.
to a block. The strategy is efcient because, on average, only a
small subnet is trained at one mini-batch, however, this strategy
only encourages chain-like formulation of models without extra
connectivity patterns. The lack of connectivity coverage yields
slower convergence, poor performance, and inaccurate ranking
of models as we will show.

• Any-operator Any-connection Strategy. This sampling strat-
egy increases the coverage of sub-architectures of supernet dur-
ing subnet training: it uniformly samples an arbitrary number
of dense and sparse operators in each choice block, and uni-
formly sample an arbitrary number of connections to aggregate
diferent block outputs. Yet, the training efciency is poor when
training sampled large subnets. More importantly, the weight
co-adaptation of multiple operators within a choice block may
afect independent evaluation of the subnets, and thus eventually
lead to poor ranking quality as we will show.

• Single-operator Any-connection. We propose this path sam-
pling strategy to combine the strengths from above two strategies.
Single-operator Any-connection samples a single dense and a sin-
gle sparse operator in each choice block, and samples an arbitrary
number of connections to aggregate the outputs from diferent
choice blocks. The key insight of this strategy is separating the
sampling of parametric operators to avoid the co-adaptation of
weights, and allowing arbitrarily sample of non-parametric con-
nections to gain a good coverage of the NASRec search space.
Compared to Any-operator Any-connection sampling, single-

operator Any-connection sampling achieves higher training ef-
ciency: the reduced number of sampled operators reduces the train-
ing cost by up to 1.5×. In addition, Single-operator Any-connection
samples medium-sized networks more frequently. These medium-
sized networks achieve the best trade-of between model size and
performance as we will show in Table 5.

We evaluate the ranking of subnets by WS-NAS on Criteo and
by 100 randomly sampled networks in Figure 3. Here, we adopt
the design of operator-balancing interaction modules in Section
4.2 to maximize the potential of each path sampling strategy. In
the fgure, the y-axis is the Log Loss of subnets, whose weights are
copied from corresponding architectures in the trained supernet.

1203

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

…

DP

FC

EFC

Sparse Features
Dense Features

~ dim𝑑𝑑 Interactions

[2d𝑖𝑖𝑖𝑖𝑑𝑑] Inputs

𝑁𝑁𝑠𝑠[2d𝑖𝑖𝑖𝑖𝑑𝑑] Params

dimd
2 Params

dim𝑑𝑑 Units Interactions

𝑁𝑁𝑠𝑠 Inputs Table 2: Operator-Balancing Interactions reduce supernet
training cost and improve ranking of subnets.

Interaction Type Training Cost Pearson’s � Kendall’s �
Imbalanced DP 4 Hours 0.31 0.32
Balanced DP 1.5 Hours 0.46 0.43

Figure 4: Operator-balancing interaction inserts a simple
EFC layer before Dot-Product to ensure linear parameter
consumption and balance building operators.

Single-operator Any-connection achieves at least 0.09 higher Pear-
son’s Rho and 0.15 higher Kendall’s Tau compared to other path
sampling strategies. In addition, we observe that Single-operator
Any-connection sampling allows better convergence of the NASRec
supernet and subnets that inherit weights from supernet achieve
lower log loss during validation, leading to a better exploitation of
their ground-truth performance for a better ranking quality.

4.2 Operator-Balancing Interaction Modules
Recommender systems involve multi-modality data with an indef-
nite number of inputs, for example, a large number of sparse inputs.
We defne operator imbalance as the imbalance of the numbers of
weights between operators within a block. In weight-sharing NAS,
operator imbalance may cause the issue that supernet training may
favor operators with more weights. This will ofset the gains due
to poor ranking correlations of subnets: the subnet performance
in supernet may deviate from its ground-truth performance when
trained from scratch. We identify that, in our NASRec, such an
issue is strongly related to the Dot-Product operator, and provide
mitigation to address such operator imbalance.

Given �� sparse embeddings, a Dot-Product block produces
��
2/2 pairwise interactions as a quadratic function on the number of

sparse embeddings. As detailed in Section 3.1, the supernet requires
a linear projection layer (i.e., FC) to match the output dimensions
of operators within each choice block. Typically for Dot-Product,
this leads to an extra (� 2 · ���� /2) trainable weights. �

However, the weight consumption of such projection layer is
large given a large number of sparse embeddings. For example,
given �� = 448 and ���� = 512 in a 7-block NASRec supernet,
the projection layer induces over 50� parameters in the NASRec
supernet, which has a similar scale of parameter consumption with
sparse embedding layers. Such tremendous weight parameteriza-
tion is a quadratic function of the number of sparse inputs �� , yet
other building operators have much fewer weights, such as, the
number of trainable weights in EFC is a linear function of the num-
ber of sparse inputs �� . As a result, the over-parameterization in
Dot-Product leads to an increased convergence rate for the Dot-
Product operator and consequently favor parameter-consuming
subnets with a high concentration of Dot-Product operations as we
observed. In addition, the ignorance of other heterogeneous oper-
ators other than Dot-Product provides a poor ranking of subnets,
leading to sub-optimal performance on recommender systems.

We insert a simple EFC as a projection layer before the Dot-
Product to mitigate such over-parameterization, see Figure 4. Our
intuition is projecting the number of sparse embeddings in Dot-√
Product to [2����], such that the following Dot-Product operator
produces approximately ���� outputs that later requires a minimal
projection layer to match the dimension. As such, the Dot-Product√
operator consumes at most (���2 +�� [2����]) trainable weights

�
and ensures a linear growth of parameter consumption with the
number of sparse EFC �� . Thus, we balance interaction operator
to allow a more similar convergence rate of all building opera-
tors. Table 2 refects a signifcant enhancement on the training
efciency and ranking quality of the NASRec-Full supernet with
Single-operator Any-connection path sampling strategy.

4.3 Post-training Fine-tuning
Although dropout-like subnet training provide a great way to re-
duce the adaptation of weights for a specifc subnet, the subnet
performance prediction by supernet can fail when weights should
not share across some subnets. After the supernet training and
during a stand alone subnet evaluation, we carry a post-training
fne-tuning that re-adapt its weights back to the specifc subnet.
This can re-calibrate the weights which are corrupted when train-
ing other subnets during the supernet training. In practice, we fnd
that fne-tuning the last FC on the target dataset for a few training
steps (e.g., 0.5K) is good enough. With only marginal additional
search cost, this novel post-training fne-tuning technique boosts
the ranking of subnets by addressing the underlying weight adap-
tation issue, and thus provides a better chance to discover better
models for recommender systems.

Table 3 demonstrates the improvement of post-training fne-
tuning on diferent path sampling strategies. Surprisingly, post-
training fne-tuning achieves decent ranking quality improvement
under Single-operator Single-connection and Any-operator Any-
connection path sampling strategy. This is because subnets under
these strategies do not usually converge well in supernet: they
either sufer from poor supernet coverage, or poor convergence
induced by co-adaptation. The fne-tuning process releases their po-
tential and approaches their real performance on the target dataset.
Remarkably, Single-operator Any-connection path sampling strat-
egy cooperates well with post-training fne-tuning, and achieves
the global optimal Pearson’s � and Kendall’s � ranking correla-
tion among diferent approaches, with at least 0.14 Pearson’s �

Table 3: Efects of post-training fne-tuning on diferent path
sampling strategies on NASRec-Full. We demonstrate Pear-
son’s � and Kendall’s � over 100 random subnets on Criteo.

No Fine-tuning Fine-tuningPath Sampling Strategy Pearson’s � Kendall’s � Pearson’s � Kendall’s �
Any-operator Any-connection 0.37 0.28 0.46 0.43

Single-operator Single-connection 0.05 0.02 0.43 0.29
Single-operator Any-connection 0.46 0.43 0.57 0.43

1204

NASRec: Weight Sharing Neural Architecture Search for Recommender Systems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

and Kendall’s � improvement on NASRec-Full search space over
Single-operator Single-connection sampling with fne-tuning.

4.4 Evolutionary Search on Best Models
We utilize regularized evolution [24] to obtain the best child subnet
in NASRec search space, including NASRec Small and NASRec-Full.
Here, we frst introduce a single mutation of a hierarchical genotype
with the following sequence of actions in one of the choice blocks:
• Re-sample the dimension of one dense building operator.
• Re-sample the dimension of one sparse building operator.
• Re-sample one dense building operator.
• Re-sample one sparse building operator.
• Re-sample its connection to other choice blocks.
• Re-sample the choice of dense-to-sparse/sparse-to-dense merger
that enables the communication between dense/sparse outputs.

5 EXPERIMENTS
We frst show the detailed confguration that NASRec employs
during architecture search, model selection and fnal evaluation.
Then, we demonstrate empirical evaluations on three popular rec-
ommender system benchmarks for Click-Through Rates (CTR) pre-
diction: Criteo1, Avazu2 and KDD Cup 20123. All three datasets are
pre-processed in the same fashion as AutoCTR [30].

5.1 Search Confguration
We frst demonstrate the detailed confguration of NASRec-Full
search space as follows:
• Connection Search Components. We utilize � = 7 blocks in
our NASRec search space. This allows a fair comparison with re-
cent NAS methods [30]. All choice blocks can arbitrarily connect
to previous choice blocks or raw features.

• Operator Search Components. In each choice block, our search
space contains 6 distinct building operators, including 4 dense
building operators: FC, Gating, Sum, Dot-Product and 2 distinct
sparse building operators: EFC and Attention. The dense-sparse
merger option is fully explored.

• Dimension Search Components. For each dense building op-
erator, the dense output dimension can choose from {16, 32, 64,
128, 256, 512, 768, 1024}. For each sparse building operator, the
sparse output dimension can be chosen from {16, 32, 48, 64}.

In NASRec-Small, we employ the same settings except that we use
only 2 dense building operators: FC, Dot-Product and 1 sparse build-
ing operator: EFC. Then, we illustrate some techniques on brewing
the NASRec supernet, including the confguration of embedding,
supernet warm-up, and supernet training settings.
• Capped Embedding Table. We cap the maximum embedding
table size to 0.5M during supernet training for search efciency.
During the fnal evaluation, we maintain the full embedding table
to retrieve the best performance, i.e., a total of 540M parameters
in DLRM [23] on Criteo to ensure a fair comparison.

• Supernet Warm-up. We observe that the supernet may collapse
at initial training phases due to the varying sampled paths and

1https://www.kaggle.com/c/criteo-display-ad-challenge
2https://www.kaggle.com/c/avazu-ctr-prediction/data
3https://www.kaggle.com/c/kddcup2012-track2/data

uninitialized embedding layers. To mitigate the initial collapsing
of supernet, we randomly sample the full supernet at the initial
1/5 of the training steps, with a probability � that linearly decays
from 1 to 0. This provides dimension warm-up, operator warm-
up [3] and connection warm-up for the supernet with minimal
impact on the quality of sampled paths.

• Supernet Training Settings. We insert layer normalization [1]
into each building operator to stablize supernet training. Our
choice of hyperparameters is robust over diferent NASRec search
spaces and recommender system benchmarks. We train the super-
net for only 1 epoch with Adagrad optimizer, an initial learning
rate of 0.12, a cosine learning rate schedule [22] on target recom-
mender system benchmarks.
Finally, we present the details of regularized evolution and model

selection strategies over NASRec search spaces.
• Regularized Evolution. Despite the large size of NASRec-Full
and NASRec-small, we employ an efcient confguration of reg-
ularized evolution to seek the optimal subnets from supernet.
Specifcally, we maintain a population of 128 architectures and
run regularized evolution for 240 iterations. In each iteration, we
frst pick up the best architecture from 64 sampled architectures
from the population as the parent architecture, and generate 8
child architectures to update the population.

• Model Selection. We follow the evaluation protocols in Au-
toCTR [30] and split each target dataset into 3 sets: training
(80%), validation (10%) and testing (10%). During weight-sharing
neural architecture search, we train the supernet on the training
set and select the top-15 subnets on the validation set. We train
the top-15 models from scratch, and select the best subnet as the
fnal architecture, namely, NASRecNet.

5.2 Recommender System Benchmark Results
We train NASRecNet from scratch on three classic recommender
system benchmarks, and compare the performance of models that
are crafted by NASRec on three general recommender system bench-
marks. In Table 4, we report the evaluation results of our end-to-end
NASRecNets and a random search baseline which randomly sam-
ples and trains models in our NASRec search space.
State-of-the-art Performance. Even within an aggressively large
NASRec-Full search space, NASRecNets achieve record-breaking
performance over hand-crafted CTR models [14, 19, 23] with mini-
mal human priors as shown in Table 4. Compared with AutoInt [31],
the hand-crafted model that fabricates feature interactions with
delicate engineering eforts, NASRecNet achieves ∼ 0.003 Log Loss
reduction on Criteo, ∼ 0.007 Log Loss reduction on Avazu, and
∼ 0.003 Log Loss reduction on KDD Cup 2012, with minimal hu-
man expertise and interventions.

Next, we compare NASRecNet to the more recent NAS-crafted
models. Compared to AutoCTR [30], NASRecNet achieves the state-
of-the-art (SOTA) Log Loss and AUC on all three recommender
system benchmarks. With the same scale of search space as Au-
toCTR (i.e., NASRec-Small search space), NASRecNet yields 0.001
Log Loss reduction on Criteo, 0.005 Log Loss reduction on Avazu,
and 0.003 Log Loss reduction on KDD Cup 2012. Compared to
DNAS [18] and PROFIT [11] which only focuses on confguring
part of the architectures, such as dense connectivity, NASRecNet

1205

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al.

Table 4: Performance of NASRec on General CTR Predictions Tasks.

Method Criteo
Log Loss AUC

Avazu
Log Loss AUC

KDD Cup 2012
Log Loss AUC

Search Cost
(GPU days)

Hand-crafted Arts

DLRM [23]
xDeepFM [19]
AutoInt+ [31]
DeepFM [14]

0.4436 0.8085
0.4418 0.8052
0.4427 0.8090
0.4432 0.8086

0.3814 0.7766
- -

0.3813 0.7772
0.3816 0.7767

0.1523 0.8004
- -

0.1523 0.8002
0.1529 0.7974

-
-
-
-

NAS-crafted Arts

DNAS [18]
PROFIT [11]
AutoCTR [30]

Random Search @ NASRec-Small
Random Search @ NASRec-Full
NASRecNet @ NASRec-Small
NASRecNet @ NASRec-Full

0.4442 -
0.4427 0.8095
0.4413 0.8104
0.4411 0.8105
0.4418 0.8098
0.4399 0.8118
0.4408 0.8107

- -
0.3735 0.7883
0.3800 0.7791
0.3748 0.7885
0.3767 0.7853
0.3747 0.7887
0.3737 0.7903

- -
- -

0.1520 0.8011
0.1500 0.8123
0.1509 0.8071
0.1495 0.8135
0.1491 0.8154

-
∼0.5
∼0.75
1.0
1.0

∼0.25
∼0.3

achieves at least ∼ 0.002 Log Loss reduction on Criteo, justifying the
signifcance of full architecture search on recommender systems.

By extending NASRec to an extremely large NASRec-Full search
space, NASRecNet further improves its result on Avazu and out-
performs PROFIT by ∼ 0.002 AUC improvement with on-par Log
Loss, justifying the design of NASRec-Full with aggressively large
cardinality and minimal human priors. On Criteo and KDD Cup
2012, NASRec maintains the edge in discovering state-of-the-art
CTR models compared to existing NAS methods [11, 18, 30].
Efcient Search within a Versatile Search Space. Despite a
larger NASRec search space that presents more challenges to fully
explore, NASRec achieves at least 1.7× searching efciency com-
pared to state-of-the-art efcient NAS methods [11, 30] with sig-
nifcant Log Loss improvement on all three benchmarks. This is
greatly attributed to the efciency of Weight-Sharing NAS applied
on heterogeneous operators and multi-modality data.

We observe that a compact NASRec-Small search space produces
strong random search baselines, while a larger NASRec-Full search
space has a weaker baseline. This is because with limited search
budget, it is more challenging to discover promising models within a
large search space. Yet, the scalable WS-NAS tackles the exploration
of full NASRec-Full search space thanks to the broad coverage of
the supernet. With an efective Single-Operator Any-connection
path sampling strategy, WS-NAS improves the quality of discovered
models on Criteo, and discovers a better model on Avazu and KDD
Cup 2012 compared to the NASRec-Small search space.

5.3 Discussion
In this section, we analyze the complexity of NASRecNet, and
demonstrate the impact of our proposed techniques that mitigates
ranking disorders and improve the quality of searched models.
Model Complexity Analysis. We compare the model complexity
of NASRecNets with SOTA hand-crafted and NAS models. We
collect all baselines from AutoCTR [30], and compare performance
versus the number of Floating-point Operations (FLOPs) in Table 5.

We profle all FLOPS of NASRecNets using FvCore [26]. Even
without any FLOPs constraints, NASRecNets outperform existing
arts in efciency. Despite achieving lower Log Loss, NASRecNets
achieve 8.5×, 3.8×, and 2.8× FLOPS reduction on Criteo, Avazu, and
KDD Cup 2012 benchmarks. One possible reason lies in the use
of operator-balancing interaction modules: it projects the sparse

Table 5: Model Complexity Analysis.

Method Criteo
Log Loss
Avazu KDD

FLOPS(M)
Criteo Avazu KDD

DLRM 0.4436 0.3814 0.1523 26.92 18.29 25.84
DeepFM 0.4432 0.3816 0.1529 22.74 22.50 21.66
AutoInt+ 0.4427 0.3813 0.1523 18.33 17.49 14.88
AutoCTR 0.4413 0.3800 0.1520 12.31 7.12 3.02

NASRecNet @ NASRec-Small 0.4399 0.3747 0.1495 2.20 3.08 3.48
NASRecNet @ NASRec-Full 0.4408 0.3737 0.1491 1.45 1.87 1.09

Table 6: Efects of diferent training techniques on NASRec-
Net, evaluated on Criteo.

Method Log Loss FLOPS(M)
Baseline (Single-operator Any-connection + Fine-tuning) 0.4408 1.45

Single-operator Single-connection + Fine-tuning 0.4417 1.78
Any-operator Any-connection + Fine-tuning 0.4413 2.04

Single-operator Any-connection, NO Fine-tuning 0.4410 3.62

inputs to a smaller dimension before carrying cross-term feature
interaction. This leads to signifcantly lower computation costs,
contributing compact yet high-performing recommender models.
Efects of Path Sampling & Fine-tuning. We discussed the path
sampling and fne-tuning techniques in Section 4.2, and demon-
strate the empirical evaluation of these techniques on the quality
of searched models in Table 6. The results show that, (1) the impor-
tance of path sampling far outweigh the importance of fne-tuning
in deciding the quality of searched models, and (2) a higher Kendall’s
� that correctly ranks subnets in NASRec search space (i.e., Table
6) indicates a consistent improvement on searched models.

6 CONCLUSION
In this paper, we propose NASRec, a new paradigm to fully enable
NAS for Recommender systems via Weight Sharing Neural Ar-
chitecture Search (WS-NAS) under data modality and architecture
heterogeneity. NASRec establishes a large supernet to represent
the full architecture space, and incorporates versatile building op-
erators and dense block connections to minimize human priors in
automated architecture design for recommender systems. NASRec
identifes the scale and heterogeneity challenges of large-scale NAS-
Rec search space that compromises supernet and proposes a series
of techniques to improve training efciency and mitigate ranking
disorder. Our crafted models, NASRecNet, achieve state-of-the-
art performance on 3 popular recommender system benchmarks,
demonstrate promising prospects on full architecture search space,
and direct motivating research towards fully automated architec-
ture fabrication with minimal human priors.

1206

NASRec: Weight Sharing Neural Architecture Search for Recommender Systems

ACKNOWLEDGMENTS
Yiran Chen’s work is partially supported by the following grants:
NSF-2120333, NSF-2112562, NSF-1937435, NSF-2140247 and ARO
W911NF-19-2-0107. Feng’s work is partially supported by the fol-
lowing grants: NSF CAREER-2048044 and IIS-1838024. We also
thank Maxim Naumov, Jef Hwang and Colin Taylor in Meta Plat-
forms, Inc. for their kind help on this project.

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geofrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc

Le. 2018. Understanding and simplifying one-shot architecture search. In Inter-
national Conference on Machine Learning. PMLR, 550–559.

[3] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan
Kindermans, and Quoc V Le. 2020. Can weight sharing outperform random
architecture search? an investigation with tunas. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14323–14332.

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019. Once-
for-all: Train one network and specialize it for efcient deployment. arXiv preprint
arXiv:1908.09791 (2019).

[5] Ben Carterette and Rosie Jones. 2007. Evaluating search engines by modeling
the relationship between relevance and clicks. Advances in neural information
processing systems 20 (2007).

[6] Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior
sequence transformer for e-commerce recommendation in alibaba. In Proceedings
of the 1st International Workshop on Deep Learning Practice for High-Dimensional
Sparse Data. 1–4.

[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[8] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[9] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin.
2021. DeepLight: Deep lightweight feature interactions for accelerating CTR
predictions in ad serving. In Proceedings of the 14th ACM international conference
on Web search and data mining. 922–930.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[11] Chen Gao, Yinfeng Li, Quanming Yao, Depeng Jin, and Yong Li. 2021. Progres-
sive Feature Interaction Search for Deep Sparse Network. Advances in Neural
Information Processing Systems 34 (2021).

[12] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Modularized transfomer-based
ranking framework. arXiv preprint arXiv:2004.13313 (2020).

[13] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2015. Trustsvd: Collaborative
fltering with both the explicit and implicit infuence of user trust and of item
ratings. In Proceedings of the AAAI conference on artifcial intelligence, Vol. 29.

[14] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[15] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,
and Jian Sun. 2020. Single path one-shot neural architecture search with uniform
sampling. In European Conference on Computer Vision. Springer, 544–560.

[16] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the eighth international workshop on
data mining for online advertising. 1–9.

[17] Dominik Kowald, Subhash Chandra Pujari, and Elisabeth Lex. 2017. Temporal
efects on hashtag reuse in twitter: A cognitive-inspired hashtag recommendation
approach. In Proceedings of the 26th International Conference on World Wide Web.
1401–1410.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[18] Ravi Krishna, Aravind Kalaiah, Bichen Wu, Maxim Naumov, Dheevatsa Mudigere,
Misha Smelyanskiy, and Kurt Keutzer. 2021. Diferentiable NAS Framework and
Application to Ads CTR Prediction. arXiv preprint arXiv:2110.14812 (2021).

[19] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 1754–1763.

[20] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen
Zhuang, and Zhenguo Li. 2019. Darts+: Improved diferentiable architecture
search with early stopping. arXiv preprint arXiv:1909.06035 (2019).

[21] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Diferentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[22] Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with
warm restarts. arXiv preprint arXiv:1608.03983 (2016).

[23] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[24] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifer architecture search. In Proceedings of the aaai
conference on artifcial intelligence, Vol. 33. 4780–4789.

[25] Stefen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. Fast context-aware recommendations with factorization machines. In Pro-
ceedings of the 34th international ACM SIGIR conference on Research and develop-
ment in Information Retrieval. 635–644.

[26] Facebook Research. 2022. fvcore. https://github.com/facebookresearch/fvcore,.
[27] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting

clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. 521–530.

[28] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016.
Deep crossing: Web-scale modeling without manually crafted combinatorial
features. In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. 255–262.

[29] David So, Quoc Le, and Chen Liang. 2019. The evolved transformer. In Interna-
tional Conference on Machine Learning. PMLR, 5877–5886.

[30] Qingquan Song, Dehua Cheng, Hanning Zhou, Jiyan Yang, Yuandong Tian, and
Xia Hu. 2020. Towards automated neural interaction discovery for click-through
rate prediction. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 945–955.

[31] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[33] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan,
and Song Han. 2020. Hat: Hardware-aware transformers for efcient natural
language processing. arXiv preprint arXiv:2005.14187 (2020).

[34] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[35] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. DCN V2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. In Proceedings of the Web Conference 2021.
1785–1797.

[36] Zhiqiang Wang, Qingyun She, and Junlin Zhang. 2021. MaskNet: introducing
feature-wise multiplication to CTR ranking models by instance-guided mask.
arXiv preprint arXiv:2102.07619 (2021).

[37] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kin-
dermans. 2020. Neural predictor for neural architecture search. In European
Conference on Computer Vision. Springer, 660–676.

[38] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans,
Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. 2020.
Bignas: Scaling up neural architecture search with big single-stage models. In
European Conference on Computer Vision. Springer, 702–717.

[39] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

1207

https://github.com/facebookresearch/fvcore

	Abstract
	1 Introduction
	2 Related Work
	3 Hierarchical NASRec Space for Recommender Systems
	3.1 NASRec Search Space
	3.2 Search Components

	4 Weight sharing Neural Architecture Search for Recommender Systems
	4.1 Single-operator Any-Connection Sampling
	4.2 Operator-Balancing Interaction Modules
	4.3 Post-training Fine-tuning
	4.4 Evolutionary Search on Best Models

	5 Experiments
	5.1 Search Configuration
	5.2 Recommender System Benchmark Results
	5.3 Discussion

	6 Conclusion
	Acknowledgments
	References

