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ABSTRACT 
The rise of deep neural networks ofers new opportunities in opti-
mizing recommender systems. However, optimizing recommender 
systems using deep neural networks requires delicate architecture 
fabrication. We propose NASRec, a paradigm that trains a single su-
pernet and efciently produces abundant models/sub-architectures 
by weight sharing. To overcome the data multi-modality and archi-
tecture heterogeneity challenges in the recommendation domain, 
NASRec establishes a large supernet (i.e., search space) to search the 
full architectures. The supernet incorporates versatile choice of op-
erators and dense connectivity to minimize human eforts for fnd-
ing priors. The scale and heterogeneity in NASRec impose several 
challenges, such as training inefciency, operator-imbalance, and 
degraded rank correlation. We tackle these challenges by proposing 
single-operator any-connection sampling, operator-balancing inter-
action modules, and post-training fne-tuning. Our crafted models, 
NASRecNet, show promising results on three Click-Through Rates 
(CTR) prediction benchmarks, indicating that NASRec outperforms 
both manually designed models and existing NAS methods with 
state-of-the-art performance. Our work is publicly available here. 

CCS CONCEPTS 
• Information systems → Recommender systems; • Comput-
ing methodologies → Discrete space search; Neural networks. 
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1 INTRODUCTION 
Deep learning plays an essential role in designing modern recom-
mender systems at web-scale in real-world applications. For exam-
ple, the most widely used search engines and social medias [5, 17] 
harness recommender systems (or ranking systems) to optimize the 
Click-Through Rates (CTR) of personalized pages [8, 13, 23]. Deep 
learning models rely on delicate neural architecture engineering. 

Deep learning based recommender systems, especially CTR pre-
diction, carries a neural architecture design upon multi-modality 
features. In practice, various challenges arise. The multi-modality 
features, such as foating-point, integer, and categorical features, 
present a concrete challenge in feature interaction modeling and 
neural network optimization. Finding a good backbone model with 
heterogeneous architectures assigning appropriate priors upon 
multi-modality features are common practices in deep learning 
based recommender systems [7, 14, 16, 19, 23, 25, 27, 28]. Yet, these 
approaches still rely on signifcant manual eforts and sufer from 
limitations, such as narrow design spaces and insufcient exper-
imental trials bounded by available resources. As a result, these 
limitations add difculty in designing a good feature extractor. 

The rise of Automated Machine Learning (AutoML), especially 
Neural Architecture Search (NAS) [4, 21, 37, 39], in the vision do-
main, sheds light in optimizing models of recommender systems. 
Weight-Sharing NAS (WS-NAS) [3, 4, 21] is popularly adopted 
in vision domain to tackle the design of efcient vision models. 

1199

https://github.com/facebookresearch/NasRec
https://doi.org/10.1145/3543507.3583446
https://doi.org/10.1145/3543507.3583446
https://doi.org/10.1145/3543507.3583446
mailto:wewen@fb.com
mailto:hai.li@duke.edu
mailto:fyan5@central.uh.edu
mailto:czxttkl@fb.com
mailto:yuchenhe@fb.com
mailto:permissions@acm.org
mailto:yiran.chen@duke.edu
mailto:lxiong@fb.com
mailto:xiaoliangdai@fb.com
mailto:dehuacheng@fb.com
mailto:tunhou.zhang@duke.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583446&domain=pdf&date_stamp=2023-04-30


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhang et al. 

Table 1: Comparison of NASRec vs. existing NAS methods for recommender systems. 

Method Building 
Operators? 

Dense 
Connectivity? 

Full arch 
Search? 

Criteo 
Log Loss 

Training 
Cost 

DNAS [18] 
PROFIT [11] 
AutoCTR [30] 

NASRec 

FC, Dot-Product 
FC, FM 

FC, Dot-Product, FM, EFC 
FC, Gating, Sum, Attention, 

Dot-Product, FM, EFC 

✓ 

✓ 

✓ 

✓ 

✓ 

0.4442 
0.4427 
0.4413 

0.4399 

One supernet 
One supernet 
Many models 

One supernet 

However, applying weight-sharing NAS to recommendation do-
main is much more challenging than vision domain because of 
the multi-modality in data and the heterogeneity in architectures. 
For example, (1) in vision, inputs of building blocks in [4, 33] are 
homogeneous 3D tensors, but recommender systems take in multi-
modality features generating 2D and 3D tensors. (2) Vision models 
simply stack the same building blocks, and thus state-of-the-art 
NAS in vision converges to simply searching size confgurations 
instead of architecture motifs, such as channel width, kernel sizes, 
and layer repeats [4, 38]. However, recommendation models are 
heterogeneous with each stage of the model using a completely 
diferent building block [7, 14, 19, 23]. (3) Vision models mainly 
use convolutional operator as the main building block while rec-
ommender systems are built over heterogeneous operators, such 
as, Fully-Connected layer, Gating, Sum, Dot-Product, Multi-Head 
Attention, Factorization Machine, etc. 

Due to the aforementioned challenges, study of NAS in rec-
ommender systems is very limited. For example, search spaces 
in AutoCTR [30] and DNAS [18] follow the design principle of 
human-crafted DLRM [23] and they only include Fully-Connected 
layer and Dot-Product as searchable operators. They also heavily 
reply on manually crafted operators, such as Factorization Ma-
chine [30] or feature interaction module [11] in the search space 
to increase architecture heterogeneity. Moreover, existing works 
sufer from either huge computation cost [30] or challenging bi-
level optimization [18], and thus they only employ narrow design 
spaces (sometimes with strong human priors [11]) to craft archi-
tectures, discouraging diversifed feature interactions and harming 
the quality of discovered models. 

In this paper, we hereby propose NASRec, a new paradigm to 
fully enable NAS for Recommender systems via Weight Sharing 
Neural Architecture Search (WS-NAS) under data modality and 
architecture heterogeneity. Table 1 summarizes the advancement 
of NASRec over other NAS approaches. We achieve this by frst 
building up a supernet that incorporates much more heterogeneous 
operators than previous works, including Fully-Connected (FC) 
layer, Gating, Sum, Dot-Product, Self-Attention, and Embedded 
Fully-Connected (EFC) layer. In the supernet, we densely connect 
a cascade of blocks, each of which includes all operators as options. 
As any block can take in any raw feature embeddings and interme-
diate tensors by dense connectivity, the supernet is not limited by 
any particular data modality. Such supernet design minimizes the 
encoding of human priors by introducing “NASRec Search Space”, 
supporting the nature of data modality and architecture hetero-
geneity in recommenders, and covering models beyond popular 
recommendation models such as Wide & Deep [7], DeepFM [14], 
DLRM [23], AutoCTR [30], DNAS [18], and PROFIT [11]. 

The supernet essentially forms a search space. We obtain a model 
by zeroing out some operators and connections in the supernet, that 

is, a subnet of the supernet is equivalent to a model. As all subnets 
share weights from the same supernet, it is dubbed as Weight Shar-
ing NAS. To efciently search models/subnets in the NASRec search 
space, we advance one-shot approaches [4, 38] to recommendation 
domain. We propose Single-operator Any-connection sampling to 
decouple operator selections and increase connection coverage, 
operator-balancing interaction blocks to fairly train subnets in the su-
pernet, and post-training fne-tuning to reduce weight co-adaptation. 
These approaches enable a better training efciency and ranking of 
subnet models in the supernet, resulting in ∼0.001 log loss reduction 
of searched models on full NASRec search space. 

We evaluate our NAS-crafted models, NASRecNets on three pop-
ular CTR benchmarks and demonstrate signifcant improvements 
compared to both hand-crafted models and NAS-crafted models. 
Remarkably, NASRecNet advances the state-of-the-art with log loss 
reduction of ∼ 0.001, ∼ 0.003 on Criteo and KDD Cup 2012, respec-
tively. On Avazu, NASRec advances the state-of-the-art PROFIT [11] 
with AUC improvement of ∼ 0.002 and on-par log loss, while out-
performing PROFIT [11] on Criteo by ∼0.003 log loss reduction. 

NASRec only needs to train a single supernet thanks to the 
efcient weight sharing mechanism, and thus greatly reduces the 
search cost. We summarize our major contributions below. 

• We propose NASRec, a new paradigm to scale up automated 
modeling of recommender systems. NASRec establishes a fexible 
supernet (search space) with minimal human priors, overcoming 
data modality and architecture heterogeneity challenges in the 
recommendation domain. 

• We advance weight sharing NAS to recommendation domain by 
introducing single-operator any-connection sampling, operator-
balancing interaction modules, and post-training fne-tuning. 

• Our crafted models, NASRecNet, outperforms both hand-crafted 
models and NAS-crafted models with a smaller search cost. 

2 RELATED WORK 
Deep learning based recommender systems. Machine-based 
recommender systems such as Click-Through Rates (CTR) pre-
diction has been thoroughly investigated in various approaches, 
such as Logistic Regression [27], and Gradient-Boosting Decision 
Trees [16]. More recent approaches study deep learning based in-
teraction of diferent types of features via Wide & Deep Neural 
Networks [7], DeepCrossing [28], Factorization Machines [14, 19], 
Dot-Product [23] and gating mechanism [34, 35]. Another line of 
research seeks efcient feature interactions, such as feature-wise 
multiplications [36] and sparsifcations [9] to build light-weight 
recommender systems. Yet, these works operate the cost of tremen-
dous manual eforts and sufer from sub-optimal performance and 
constrained design choices due to the limitations in resource sup-
ply. Our work establishes a new paradigm on learning efective 
recommender models by crafting a scalable "NASRec search space" 
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that incorporates all popular design motifs in existing works. The 
new NASRec search space supports a wide range of design choices 
and enables scalable optimization to craft recommender models of 
varying requirements. 
Neural Architecture Search. Neural Architecture Search auto-
mates the design of Deep Neural Networks in various applications: 
the popularity of Neural Architecture Search is consistently grow-
ing in brewing Computer Vision [4, 21, 37, 39], Natural Language 
Processing [29, 33], and Recommendation Systems [11, 18, 30]. Re-
cently, Weight-Sharing NAS (WS-NAS) [4, 33] attracts the attention 
of researchers: it trains a supernet that represents the whole search 
space directly on target tasks, and efciently evaluate subnets (i.e., 
sub-architectures of supernet) with shared supernet weights. Yet, 
carrying WS-NAS on recommender systems is challenging because 
recommender systems are brewed upon heterogeneous architec-
tures that are dedicated to interacting multi-modality data, thus 
require more fexible search spaces and efective supernet training 
algorithms. Those challenges induce the co-adaptation problem [2] 
and operator-imbalance problem [20] in WS-NAS, providing a lower 
rank correlation to distinguish models. NASRec addresses them 
by proposing single-operator any-connection sampling, operator-
balancing interaction modules, and post-training fne-tuning. 

3 HIERARCHICAL NASREC SPACE FOR 
RECOMMENDER SYSTEMS 

To support data modality and architecture heterogeneity in rec-
ommender systems, the fexibility of search space is the key. We 
establish a new paradigm free of human priors by introducing 
NASRec search space, a hierarchical search space design that incor-
porates heterogeneous building operators and dense connectivity, 
see Figure 1. The major manual process in designing the search 
space is simply collecting common operators used in existing ap-
proaches [14, 19, 23, 30, 34, 35]. Beyond that, we further incorporate 
the prevailing Transformer Encoder [32] into the NASRec search 
space for better fexibility and higher potential in searched architec-
tures, thanks to its dominance in applications such as ViT [10] for 
image recognition, Transformer [32] for natural language process-
ing, and its emerging exploration in recommender systems [6, 12]. 

Next, we demonstrate the NASRec search space. 

3.1 NASRec Search Space 
In recommender systems, we defne a dense input as �� ∈ R�×���� 

which is a 2D tensor from either raw dense features or generated 
by operators, such as FC, Gating, Sum, and Dot-Product. A sparse 
input �� ∈ R�×�� ×���� is a 3D tensor of sparse embeddings either 
generated by raw sparse/categorical features or by operators such 
as EFC and self-attention. Similarly, a dense or sparse output (i.e., 
�� or �� ) is respectively defned as a 2D or 3D tensor produced via 
a corresponding building blocks/operators. In NASRec, all sparse 
inputs and outputs share the same ���� , which equals to the di-
mension of raw sparse embeddings. Accordingly, we defne a dense 
(sparse) operator as an operator that produces a dense (sparse) 
output. In NASRec, dense operators include FC, Gating, Sum, and 
Dot-Product which form the “dense branch” (marked in blue), and 
sparse operators include EFC and self-attention, which form the 
“sparse branch” (marked in red). 

A candidate architecture in NASRec search space is a stack of � 
choice blocks, followed by a fnal FC layer to compute logit. Each 
choice block admits an arbitrary number of multi-modality inputs, 
each of which is � = (�� , �� ) from a previous block or raw inputs, 
and produces a multi-modality output � = (�� , �� ) of both a dense 
tensor �� and a sparse tensor �� via internal building operators. 
Within each choice block, we can sample operators for search. 

We construct a supernet to represent the NASRec search space, 
see Figure 1. The supernet subsumes all possible candidate mod-
els/subnets and performs weight sharing among subnets to simulta-
neously train all of them. We formally defne the NASRec supernet 
S as a tuple of connections C, operators O, and dimensions D as fol-
lows: S = (C, D, O) over all � choice blocks. Specifcally, the oper-
ators: O = [� (1) , ...,� (� ) ] enumerates the set of building operators 
from choice block 1 to � . The connections: C = [� (1) , ...,� (� ) ]
contains the connectivity < �, � > between choice block � and 
choice block � . The dimension: D = [� (1) , ..., � (� ) ] contains the 
dimension settings from choice block 1 to � . 

=A subnet ������� (O������ , C������ , D������ ) in the super-
net S represents a model in NASRec search space. A block uses 
addition to aggregate the outputs of sampled operators in each 
branch (i.e. “dense branch” or “sparse branch”). When the operator 
output dimensions do not match, we apply a zero masking to mask 
out the extra dimension. A block uses concatenation ������ to 
aggregate the outputs from sampled connections. Given a sampled 
subnet ������� , the input � (� ) to choice block � is computed as 
follows given a list of previous block outputs {� (1) , ..., � (� −1) }

(� )and the sampled connections � :
������ 

� (� ) 
= �������

� 
=1 
−1 [� (� ) · 1 (� ) ], (1)

� � <�,� >∈�
������ 

��
(� ) 

= ������ � −1 [��
(� ) · 1 (� ) ] . (2)�=1 <�,� >∈�

������ 
Here, 1� is 1 when � is true otherwise 0. 

(� )A building operator � ∈ � transforms the concatenated 
������ 

input � (� ) into an intermediate output with a sampled dimension 
(� )

� . This is achieved by a mask function that applied on the 
������ 

last dimension for dense output and middle dimension for sparse 
(� )output. For example, a dense output � is obtained as follows: 
� ∑ (� ) (� ) (� )

� = 1 (� ) · ���� (� (� ), � ) . (3)
� � ∈O � ������,� 

������ � ∈O 

where ( 
�:,� , if � < � 

���� (� , � ) = . (4)
0, Otherwise. 

Next, we clarify the set of building operators as follows: 
• Fully-Connected (FC) layer. Fully-Connected layer is the back-
bone of DNN models for recommender systems [7] that extracts 
dense representations. FC is applied on 2D dense inputs, and 
followed by a ReLU activation. 

• Sigmoid Gating (SG) layer. We follow the intuition in [6, 35] 
and employ a dense building operator, Sigmoid Gating, to en-
hance the potential of the search space. Given two dense inputs 
��1 ∈ R�×����1 and ��2 ∈ R�×����2 , Sigmoid Gating interacts 
these two inputs as follows: �� (��1, ��2) = ������� (�� (��1)) ∗ 
��2. If the dimension of two dense inputs does not match, a zero 
padding is applied on the input with a lower dimension. 
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Figure 1: Overview of NASRec search space. NASRec search space enables a full architecture search on building operators and 
dense connectivity. Here, “blue” blocks produce a dense output, and “red” blocks produce a sparse output. 

• Sum layer. This dense building operator adds two dense inputs: 
��1 ∈ R�×���� 1 , ��2 ∈ R�×����2 and merges two features from 
diferent levels of the recommender system models by simply per-
forming ���(��1, ��2) = ��1 + ��2. Similar to Sigmoid Gating, 
a zero padding is applied on the input with a lower dimension. 

• Dot-Product (DP) layer. We leverage Dot-Product to grasp the 
interactions among multi-modality inputs via a pairwise inner 
products. Dot-Product can take dense and/or sparse inputs, and 
produce a dense output. These sparse inputs, after being sent to 
“dense branch”, can later take advantage of the dense operators 
to learn better representations and interactions. Given a dense 
input �� ∈ R�×���� and a sparse input �� ∈ R�×�� ×���� , a Dot-
Product frst concatenate them as � = ������ [�� , �� ], and then 
performs pair-wise inner products: �� (�� , �� ) = ���� (��� ). 
���� is frst projected to ���� if they do not match. 

• Embedded Fully-Connected (EFC) layer. An EFC layer is a 
sparse building operator that applies FC along the middle dimen-
sion. Specifcally, an EFC with weights � ∈ R��� ×���� trans-

to �� ∈ R�×���� ×���� forms an input �� ∈ R�×��� ×���� 

• Attention (Attn) layer. Attention layer is a sparse building 
operator that utilizes Multi-Head Attention (MHA) mechanism 
to learn the weighting of sparse inputs and better exploit their 
interaction in recommendation systems. Here, We apply Trans-
former Encoder on a given sparse input �� ∈ R�×�� ×���� , with 
identical queries, keys, and values. 
We observe that the aforementioned set of building operators 

provide opportunities for the sparse inputs to transform into the 
“dense branch”. Yet, these operators do not permit a transformation 
of dense inputs towards the “sparse branch”. To address this limi-
tation, we introduce "dense-sparse merger" allow dense/sparse 
outputs to optionally merge into the “sparse/dense branch”. Dense-
sparse merger contains two major components. 
• "Dense-to-sparse" merger. This merger frst projects the dense 
outputs �� using a FC layer, then uses a reshape layer to reshape 
the projection into a 3D sparse tensor. The reshaped 3D tensor is 
merged into the sparse output via concatenation. 

• "Sparse-to-dense" merger. This merger employs a Factorization 
Machine (FM) [14] to convert the sparse output into a dense rep-
resentation, then add the dense representation to dense output. 
Beyond the rich choices of building operators and mergers, each 

choice block can also receive inputs from any preceding choice 
blocks, and raw input features. This involves an exploration of any 

connectivity among choice blocks and raw inputs, extending the 
wiring heterogeneity for search. 

3.2 Search Components 
In NASRec search space, we search the connectivity, operator di-
mensions, and building operators in each choice block. We illustrate 
the three key search components as follows: 
• Connection. We place no restrictions on the number of con-
nections that a choice block can receive: each block can choose 
inputs from an arbitrary number of preceding blocks and raw 
inputs. Specifcally, the n-th choice block can connect to any 
previous � − 1 choice blocks and the raw dense (sparse) features. 
The outputs from all preceding blocks are concatenated as inputs 
for dense (sparse) building blocks. We separately concatenate the 
dense (sparse) outputs from preceding blocks. 

• Dimension. In a choice block, diferent operators may produce 
diferent tensor dimensions. In NASRec, we set the output sizes 
of FC and EFC to ���� and �� , respectively; and other operator 
outputs in dense (sparse) branch are linearly projected to ���� 
(�� ). This ensures operator outputs in each branch have the same 
dimension and can add together. This also give the maximum 

∈ R�×���� dimensions ���� and �� for the dense output �� 
and the sparse output �� ∈ R�×�� ×���� . Given a dense or sparse 
output, a mask in Eq. 4 zeros out the extra dimensions, which 
allows fexible selections of dimensions of building operators. 

• Operator. Each block can choose at least one dense (sparse) 
building operator to transform inputs to a dense (sparse) output. 
Each block should maintain at least one operator in the dense 
(sparse) branch to ensure the fow of information from inputs to 
logit. We independently sample building operators in the dense 
(sparse) branch to form a validate candidate architecture. In ad-
dition, we independently sample dense-sparse mergers to allow 
optional dense-to-sparse interaction. 
We craft two NASRec search spaces as examples to demonstrate 

the power of NASRec search space. 
• NASRec-Small. We limit the choice of operators within each block 
to FC, EFC, and Dot-Product, and allow any connectivity be-
tween blocks. This provides a similar scale of search space as 
AutoCTR [30]. 

• NASRec-Full. We enable all building operators, mergers and con-
nections to construct an aggressive search space for exploration 
with minimal human priors. Under the constraint that at least one 
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Figure 2: We propose Single-operator Any-connection path 
sampling by combining the advantages of the frst two sam-
pling strategies. Here, dashed connections and operators de-

Single-operator Single-connection: Pearson=0.05, Kendall=0.02

Any-operator Any-connection: Pearson=0.367, Kendall=0.280
Single-operator Any-connection: Pearson=0.457, Kendall=0.436

notes a sampled path in supernet. 
operator must be sampled in both dense and sparse branch, the 
NASRec-Full search space size is 15� × of NASRec-Small, where � 
is the number of choice blocks. This full search space extremely 
tests the capability of NASRec. 
The combination of full dense connectivity search and inde-

pendent dense/sparse dimension confguration gives the NASRec 
search space a large cardinality. NASRec-Full has � = 7 blocks, 
containing up to 5 × 1033 architectures with strong heterogeneity. 
With minimal human priors and such unconstrained search space, 
brutal-force sample-based methods may take enormous time to fnd 
a state-of-the-art model. 

4 WEIGHT SHARING NEURAL 
ARCHITECTURE SEARCH FOR 
RECOMMENDER SYSTEMS 

A NASRec supernet simultaneously brews diferent subnet mod-
els in the NASRec search space, yet imposes challenges to training 
efciency and ranking quality due to its large cardinality. In this sec-
tion, we frst propose a novel path sampling strategy, Single-operator 
Any-connection sampling, that decouples operator sampling with a 
good connection sampling converge. We further observe the opera-
tor imbalance phenomenon induced by some over-parameterized 
operators, and tackle this issue by operator-balancing interaction to 
improve supernet ranking. Finally, we employ post-training fne-
tuning to alleviate weight co-adaptation, and further utilize regu-
larized evolution to obtain the best subnet. We also provide a set of 
insights that efectively explore the best recommender models. 

4.1 Single-operator Any-Connection Sampling 
The supernet training adopts a drop-out like approach. At each mini-
batch, we sample and train a subnet. During training, we train lots 
of subnets under weight sharing, with the goal that subnets are well 
trained to predict the performance of models. Sampling strategies 
are important to meet the goal. We explore three path sampling 
strategies depicted in Figure 2 and discover Single-operator Any-
Connection sampling is the most efective way: 
• Single-operator Single-connection strategy. This path sam-
pling strategy has its root in Computer Vision [15]: it uniformly 
samples a single dense and a single sparse operator in each choice 
block, and uniformly samples a single connection as an input 

Figure 3: Ranking evaluation of various path sampling strate-
gies on NASRec-Full supernet. We evaluate all ranking coef-
fcients over 100 randomly sampled subnets on Criteo. 
to a block. The strategy is efcient because, on average, only a 
small subnet is trained at one mini-batch, however, this strategy 
only encourages chain-like formulation of models without extra 
connectivity patterns. The lack of connectivity coverage yields 
slower convergence, poor performance, and inaccurate ranking 
of models as we will show. 

• Any-operator Any-connection Strategy. This sampling strat-
egy increases the coverage of sub-architectures of supernet dur-
ing subnet training: it uniformly samples an arbitrary number 
of dense and sparse operators in each choice block, and uni-
formly sample an arbitrary number of connections to aggregate 
diferent block outputs. Yet, the training efciency is poor when 
training sampled large subnets. More importantly, the weight 
co-adaptation of multiple operators within a choice block may 
afect independent evaluation of the subnets, and thus eventually 
lead to poor ranking quality as we will show. 

• Single-operator Any-connection. We propose this path sam-
pling strategy to combine the strengths from above two strategies. 
Single-operator Any-connection samples a single dense and a sin-
gle sparse operator in each choice block, and samples an arbitrary 
number of connections to aggregate the outputs from diferent 
choice blocks. The key insight of this strategy is separating the 
sampling of parametric operators to avoid the co-adaptation of 
weights, and allowing arbitrarily sample of non-parametric con-
nections to gain a good coverage of the NASRec search space. 
Compared to Any-operator Any-connection sampling, single-

operator Any-connection sampling achieves higher training ef-
ciency: the reduced number of sampled operators reduces the train-
ing cost by up to 1.5×. In addition, Single-operator Any-connection 
samples medium-sized networks more frequently. These medium-
sized networks achieve the best trade-of between model size and 
performance as we will show in Table 5. 

We evaluate the ranking of subnets by WS-NAS on Criteo and 
by 100 randomly sampled networks in Figure 3. Here, we adopt 
the design of operator-balancing interaction modules in Section 
4.2 to maximize the potential of each path sampling strategy. In 
the fgure, the y-axis is the Log Loss of subnets, whose weights are 
copied from corresponding architectures in the trained supernet. 
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DP

FC

EFC

Sparse Features
Dense Features

~ dim𝑑𝑑 Interactions

[ 2d𝑖𝑖𝑖𝑖𝑑𝑑 ] Inputs

𝑁𝑁𝑠𝑠[ 2d𝑖𝑖𝑖𝑖𝑑𝑑] Params

dimd
2 Params

dim𝑑𝑑 Units Interactions

𝑁𝑁𝑠𝑠 Inputs Table 2: Operator-Balancing Interactions reduce supernet 
training cost and improve ranking of subnets. 

Interaction Type Training Cost Pearson’s � Kendall’s � 
Imbalanced DP 4 Hours 0.31 0.32 
Balanced DP 1.5 Hours 0.46 0.43 

Figure 4: Operator-balancing interaction inserts a simple 
EFC layer before Dot-Product to ensure linear parameter 
consumption and balance building operators. 

Single-operator Any-connection achieves at least 0.09 higher Pear-
son’s Rho and 0.15 higher Kendall’s Tau compared to other path 
sampling strategies. In addition, we observe that Single-operator 
Any-connection sampling allows better convergence of the NASRec 
supernet and subnets that inherit weights from supernet achieve 
lower log loss during validation, leading to a better exploitation of 
their ground-truth performance for a better ranking quality. 

4.2 Operator-Balancing Interaction Modules 
Recommender systems involve multi-modality data with an indef-
nite number of inputs, for example, a large number of sparse inputs. 
We defne operator imbalance as the imbalance of the numbers of 
weights between operators within a block. In weight-sharing NAS, 
operator imbalance may cause the issue that supernet training may 
favor operators with more weights. This will ofset the gains due 
to poor ranking correlations of subnets: the subnet performance 
in supernet may deviate from its ground-truth performance when 
trained from scratch. We identify that, in our NASRec, such an 
issue is strongly related to the Dot-Product operator, and provide 
mitigation to address such operator imbalance. 

Given �� sparse embeddings, a Dot-Product block produces 
�� 
2/2 pairwise interactions as a quadratic function on the number of 

sparse embeddings. As detailed in Section 3.1, the supernet requires 
a linear projection layer (i.e., FC) to match the output dimensions 
of operators within each choice block. Typically for Dot-Product, 
this leads to an extra (� 2 · ���� /2) trainable weights. � 

However, the weight consumption of such projection layer is 
large given a large number of sparse embeddings. For example, 
given �� = 448 and ���� = 512 in a 7-block NASRec supernet, 
the projection layer induces over 50� parameters in the NASRec 
supernet, which has a similar scale of parameter consumption with 
sparse embedding layers. Such tremendous weight parameteriza-
tion is a quadratic function of the number of sparse inputs �� , yet 
other building operators have much fewer weights, such as, the 
number of trainable weights in EFC is a linear function of the num-
ber of sparse inputs �� . As a result, the over-parameterization in 
Dot-Product leads to an increased convergence rate for the Dot-
Product operator and consequently favor parameter-consuming 
subnets with a high concentration of Dot-Product operations as we 
observed. In addition, the ignorance of other heterogeneous oper-
ators other than Dot-Product provides a poor ranking of subnets, 
leading to sub-optimal performance on recommender systems. 

We insert a simple EFC as a projection layer before the Dot-
Product to mitigate such over-parameterization, see Figure 4. Our 
intuition is projecting the number of sparse embeddings in Dot-√ 
Product to [ 2���� ], such that the following Dot-Product operator 
produces approximately ���� outputs that later requires a minimal 
projection layer to match the dimension. As such, the Dot-Product√ 
operator consumes at most (���2 +�� [ 2���� ]) trainable weights 

�
and ensures a linear growth of parameter consumption with the 
number of sparse EFC �� . Thus, we balance interaction operator 
to allow a more similar convergence rate of all building opera-
tors. Table 2 refects a signifcant enhancement on the training 
efciency and ranking quality of the NASRec-Full supernet with 
Single-operator Any-connection path sampling strategy. 

4.3 Post-training Fine-tuning 
Although dropout-like subnet training provide a great way to re-
duce the adaptation of weights for a specifc subnet, the subnet 
performance prediction by supernet can fail when weights should 
not share across some subnets. After the supernet training and 
during a stand alone subnet evaluation, we carry a post-training 
fne-tuning that re-adapt its weights back to the specifc subnet. 
This can re-calibrate the weights which are corrupted when train-
ing other subnets during the supernet training. In practice, we fnd 
that fne-tuning the last FC on the target dataset for a few training 
steps (e.g., 0.5K) is good enough. With only marginal additional 
search cost, this novel post-training fne-tuning technique boosts 
the ranking of subnets by addressing the underlying weight adap-
tation issue, and thus provides a better chance to discover better 
models for recommender systems. 

Table 3 demonstrates the improvement of post-training fne-
tuning on diferent path sampling strategies. Surprisingly, post-
training fne-tuning achieves decent ranking quality improvement 
under Single-operator Single-connection and Any-operator Any-
connection path sampling strategy. This is because subnets under 
these strategies do not usually converge well in supernet: they 
either sufer from poor supernet coverage, or poor convergence 
induced by co-adaptation. The fne-tuning process releases their po-
tential and approaches their real performance on the target dataset. 
Remarkably, Single-operator Any-connection path sampling strat-
egy cooperates well with post-training fne-tuning, and achieves 
the global optimal Pearson’s � and Kendall’s � ranking correla-
tion among diferent approaches, with at least 0.14 Pearson’s � 

Table 3: Efects of post-training fne-tuning on diferent path 
sampling strategies on NASRec-Full. We demonstrate Pear-
son’s � and Kendall’s � over 100 random subnets on Criteo. 

No Fine-tuning Fine-tuningPath Sampling Strategy Pearson’s � Kendall’s � Pearson’s � Kendall’s � 
Any-operator Any-connection 0.37 0.28 0.46 0.43 

Single-operator Single-connection 0.05 0.02 0.43 0.29 
Single-operator Any-connection 0.46 0.43 0.57 0.43 
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and Kendall’s � improvement on NASRec-Full search space over 
Single-operator Single-connection sampling with fne-tuning. 

4.4 Evolutionary Search on Best Models 
We utilize regularized evolution [24] to obtain the best child subnet 
in NASRec search space, including NASRec Small and NASRec-Full. 
Here, we frst introduce a single mutation of a hierarchical genotype 
with the following sequence of actions in one of the choice blocks: 
• Re-sample the dimension of one dense building operator. 
• Re-sample the dimension of one sparse building operator. 
• Re-sample one dense building operator. 
• Re-sample one sparse building operator. 
• Re-sample its connection to other choice blocks. 
• Re-sample the choice of dense-to-sparse/sparse-to-dense merger 
that enables the communication between dense/sparse outputs. 

5 EXPERIMENTS 
We frst show the detailed confguration that NASRec employs 
during architecture search, model selection and fnal evaluation. 
Then, we demonstrate empirical evaluations on three popular rec-
ommender system benchmarks for Click-Through Rates (CTR) pre-
diction: Criteo1, Avazu2 and KDD Cup 20123. All three datasets are 
pre-processed in the same fashion as AutoCTR [30]. 

5.1 Search Confguration 
We frst demonstrate the detailed confguration of NASRec-Full 
search space as follows: 
• Connection Search Components. We utilize � = 7 blocks in 
our NASRec search space. This allows a fair comparison with re-
cent NAS methods [30]. All choice blocks can arbitrarily connect 
to previous choice blocks or raw features. 

• Operator Search Components. In each choice block, our search 
space contains 6 distinct building operators, including 4 dense 
building operators: FC, Gating, Sum, Dot-Product and 2 distinct 
sparse building operators: EFC and Attention. The dense-sparse 
merger option is fully explored. 

• Dimension Search Components. For each dense building op-
erator, the dense output dimension can choose from {16, 32, 64, 
128, 256, 512, 768, 1024}. For each sparse building operator, the 
sparse output dimension can be chosen from {16, 32, 48, 64}. 

In NASRec-Small, we employ the same settings except that we use 
only 2 dense building operators: FC, Dot-Product and 1 sparse build-
ing operator: EFC. Then, we illustrate some techniques on brewing 
the NASRec supernet, including the confguration of embedding, 
supernet warm-up, and supernet training settings. 
• Capped Embedding Table. We cap the maximum embedding 
table size to 0.5M during supernet training for search efciency. 
During the fnal evaluation, we maintain the full embedding table 
to retrieve the best performance, i.e., a total of 540M parameters 
in DLRM [23] on Criteo to ensure a fair comparison. 

• Supernet Warm-up. We observe that the supernet may collapse 
at initial training phases due to the varying sampled paths and 

1https://www.kaggle.com/c/criteo-display-ad-challenge 
2https://www.kaggle.com/c/avazu-ctr-prediction/data 
3https://www.kaggle.com/c/kddcup2012-track2/data 

uninitialized embedding layers. To mitigate the initial collapsing 
of supernet, we randomly sample the full supernet at the initial 
1/5 of the training steps, with a probability � that linearly decays 
from 1 to 0. This provides dimension warm-up, operator warm-
up [3] and connection warm-up for the supernet with minimal 
impact on the quality of sampled paths. 

• Supernet Training Settings. We insert layer normalization [1] 
into each building operator to stablize supernet training. Our 
choice of hyperparameters is robust over diferent NASRec search 
spaces and recommender system benchmarks. We train the super-
net for only 1 epoch with Adagrad optimizer, an initial learning 
rate of 0.12, a cosine learning rate schedule [22] on target recom-
mender system benchmarks. 
Finally, we present the details of regularized evolution and model 

selection strategies over NASRec search spaces. 
• Regularized Evolution. Despite the large size of NASRec-Full 
and NASRec-small, we employ an efcient confguration of reg-
ularized evolution to seek the optimal subnets from supernet. 
Specifcally, we maintain a population of 128 architectures and 
run regularized evolution for 240 iterations. In each iteration, we 
frst pick up the best architecture from 64 sampled architectures 
from the population as the parent architecture, and generate 8 
child architectures to update the population. 

• Model Selection. We follow the evaluation protocols in Au-
toCTR [30] and split each target dataset into 3 sets: training 
(80%), validation (10%) and testing (10%). During weight-sharing 
neural architecture search, we train the supernet on the training 
set and select the top-15 subnets on the validation set. We train 
the top-15 models from scratch, and select the best subnet as the 
fnal architecture, namely, NASRecNet. 

5.2 Recommender System Benchmark Results 
We train NASRecNet from scratch on three classic recommender 
system benchmarks, and compare the performance of models that 
are crafted by NASRec on three general recommender system bench-
marks. In Table 4, we report the evaluation results of our end-to-end 
NASRecNets and a random search baseline which randomly sam-
ples and trains models in our NASRec search space. 
State-of-the-art Performance. Even within an aggressively large 
NASRec-Full search space, NASRecNets achieve record-breaking 
performance over hand-crafted CTR models [14, 19, 23] with mini-
mal human priors as shown in Table 4. Compared with AutoInt [31], 
the hand-crafted model that fabricates feature interactions with 
delicate engineering eforts, NASRecNet achieves ∼ 0.003 Log Loss 
reduction on Criteo, ∼ 0.007 Log Loss reduction on Avazu, and 
∼ 0.003 Log Loss reduction on KDD Cup 2012, with minimal hu-
man expertise and interventions. 

Next, we compare NASRecNet to the more recent NAS-crafted 
models. Compared to AutoCTR [30], NASRecNet achieves the state-
of-the-art (SOTA) Log Loss and AUC on all three recommender 
system benchmarks. With the same scale of search space as Au-
toCTR (i.e., NASRec-Small search space), NASRecNet yields 0.001 
Log Loss reduction on Criteo, 0.005 Log Loss reduction on Avazu, 
and 0.003 Log Loss reduction on KDD Cup 2012. Compared to 
DNAS [18] and PROFIT [11] which only focuses on confguring 
part of the architectures, such as dense connectivity, NASRecNet 
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Table 4: Performance of NASRec on General CTR Predictions Tasks. 

Method Criteo 
Log Loss AUC 

Avazu 
Log Loss AUC 

KDD Cup 2012 
Log Loss AUC 

Search Cost 
(GPU days) 

Hand-crafted Arts 

DLRM [23] 
xDeepFM [19] 
AutoInt+ [31] 
DeepFM [14] 

0.4436 0.8085 
0.4418 0.8052 
0.4427 0.8090 
0.4432 0.8086 

0.3814 0.7766 
- -

0.3813 0.7772 
0.3816 0.7767 

0.1523 0.8004 
- -

0.1523 0.8002 
0.1529 0.7974 

-
-
-
-

NAS-crafted Arts 

DNAS [18] 
PROFIT [11] 
AutoCTR [30] 

Random Search @ NASRec-Small 
Random Search @ NASRec-Full 
NASRecNet @ NASRec-Small 
NASRecNet @ NASRec-Full 

0.4442 -
0.4427 0.8095 
0.4413 0.8104 
0.4411 0.8105 
0.4418 0.8098 
0.4399 0.8118 
0.4408 0.8107 

- -
0.3735 0.7883 
0.3800 0.7791 
0.3748 0.7885 
0.3767 0.7853 
0.3747 0.7887 
0.3737 0.7903 

- -
- -

0.1520 0.8011 
0.1500 0.8123 
0.1509 0.8071 
0.1495 0.8135 
0.1491 0.8154 

-
∼0.5 
∼0.75 
1.0 
1.0 

∼0.25 
∼0.3 

achieves at least ∼ 0.002 Log Loss reduction on Criteo, justifying the 
signifcance of full architecture search on recommender systems. 

By extending NASRec to an extremely large NASRec-Full search 
space, NASRecNet further improves its result on Avazu and out-
performs PROFIT by ∼ 0.002 AUC improvement with on-par Log 
Loss, justifying the design of NASRec-Full with aggressively large 
cardinality and minimal human priors. On Criteo and KDD Cup 
2012, NASRec maintains the edge in discovering state-of-the-art 
CTR models compared to existing NAS methods [11, 18, 30]. 
Efcient Search within a Versatile Search Space. Despite a 
larger NASRec search space that presents more challenges to fully 
explore, NASRec achieves at least 1.7× searching efciency com-
pared to state-of-the-art efcient NAS methods [11, 30] with sig-
nifcant Log Loss improvement on all three benchmarks. This is 
greatly attributed to the efciency of Weight-Sharing NAS applied 
on heterogeneous operators and multi-modality data. 

We observe that a compact NASRec-Small search space produces 
strong random search baselines, while a larger NASRec-Full search 
space has a weaker baseline. This is because with limited search 
budget, it is more challenging to discover promising models within a 
large search space. Yet, the scalable WS-NAS tackles the exploration 
of full NASRec-Full search space thanks to the broad coverage of 
the supernet. With an efective Single-Operator Any-connection 
path sampling strategy, WS-NAS improves the quality of discovered 
models on Criteo, and discovers a better model on Avazu and KDD 
Cup 2012 compared to the NASRec-Small search space. 

5.3 Discussion 
In this section, we analyze the complexity of NASRecNet, and 
demonstrate the impact of our proposed techniques that mitigates 
ranking disorders and improve the quality of searched models. 
Model Complexity Analysis. We compare the model complexity 
of NASRecNets with SOTA hand-crafted and NAS models. We 
collect all baselines from AutoCTR [30], and compare performance 
versus the number of Floating-point Operations (FLOPs) in Table 5. 

We profle all FLOPS of NASRecNets using FvCore [26]. Even 
without any FLOPs constraints, NASRecNets outperform existing 
arts in efciency. Despite achieving lower Log Loss, NASRecNets 
achieve 8.5×, 3.8×, and 2.8× FLOPS reduction on Criteo, Avazu, and 
KDD Cup 2012 benchmarks. One possible reason lies in the use 
of operator-balancing interaction modules: it projects the sparse 

Table 5: Model Complexity Analysis. 

Method Criteo 
Log Loss 
Avazu KDD 

FLOPS(M) 
Criteo Avazu KDD 

DLRM 0.4436 0.3814 0.1523 26.92 18.29 25.84 
DeepFM 0.4432 0.3816 0.1529 22.74 22.50 21.66 
AutoInt+ 0.4427 0.3813 0.1523 18.33 17.49 14.88 
AutoCTR 0.4413 0.3800 0.1520 12.31 7.12 3.02 

NASRecNet @ NASRec-Small 0.4399 0.3747 0.1495 2.20 3.08 3.48 
NASRecNet @ NASRec-Full 0.4408 0.3737 0.1491 1.45 1.87 1.09 

Table 6: Efects of diferent training techniques on NASRec-
Net, evaluated on Criteo. 

Method Log Loss FLOPS(M) 
Baseline (Single-operator Any-connection + Fine-tuning) 0.4408 1.45 

Single-operator Single-connection + Fine-tuning 0.4417 1.78 
Any-operator Any-connection + Fine-tuning 0.4413 2.04 

Single-operator Any-connection, NO Fine-tuning 0.4410 3.62 

inputs to a smaller dimension before carrying cross-term feature 
interaction. This leads to signifcantly lower computation costs, 
contributing compact yet high-performing recommender models. 
Efects of Path Sampling & Fine-tuning. We discussed the path 
sampling and fne-tuning techniques in Section 4.2, and demon-
strate the empirical evaluation of these techniques on the quality 
of searched models in Table 6. The results show that, (1) the impor-
tance of path sampling far outweigh the importance of fne-tuning 
in deciding the quality of searched models, and (2) a higher Kendall’s 
� that correctly ranks subnets in NASRec search space (i.e., Table 
6) indicates a consistent improvement on searched models. 

6 CONCLUSION 
In this paper, we propose NASRec, a new paradigm to fully enable 
NAS for Recommender systems via Weight Sharing Neural Ar-
chitecture Search (WS-NAS) under data modality and architecture 
heterogeneity. NASRec establishes a large supernet to represent 
the full architecture space, and incorporates versatile building op-
erators and dense block connections to minimize human priors in 
automated architecture design for recommender systems. NASRec 
identifes the scale and heterogeneity challenges of large-scale NAS-
Rec search space that compromises supernet and proposes a series 
of techniques to improve training efciency and mitigate ranking 
disorder. Our crafted models, NASRecNet, achieve state-of-the-
art performance on 3 popular recommender system benchmarks, 
demonstrate promising prospects on full architecture search space, 
and direct motivating research towards fully automated architec-
ture fabrication with minimal human priors. 
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