INFINISTORE: Elastic Serverless Cloud Storage

Jingyuan Zhang Ao Wang
George Mason University George Mason University
jzhang33@gmu.edu Alibaba Group
shenlan.wa@alibaba-
inc.com
Nicholas John Newman Ali Anwar

George Mason University
nnewman?@gmu.edu

University of Minnesota
aanwar@umn.edu

Xiaolong Ma
University of Nevada, Reno
xiaolongm@nevada.unr.edu

Benjamin Carver
George Mason University
bcarver2@gmu.edu

Vasily Tarasov
IBM Research
vtarasov(@us.ibm.com

Lukas Rupprecht
IBM Research
lukas.rupprecht@ibm.com

Dimitrios Skourtis Feng Yan Yue Cheng”
Redpanda Data University of Houston University of Virginia
skourtis@soe.ucsc.edu fyan5@central.uh.edu mrz7dp@virginia.edu

ABSTRACT

Cloud object storage such as AWS S3 is cost-effective and highly
elastic but relatively slow, while high-performance cloud storage
such as AWS ElastiCache is expensive and provides limited elastic-
ity. We present a new cloud storage service called ServerlessMem-
ory, which stores data using the memory of serverless functions.
ServerlessMemory employs a sliding-window-based memory man-
agement strategy inspired by the garbage collection mechanisms
used in the programming language to effectively segregate hot/cold
data and provides fine-grained elasticity, good performance, and a
pay-per-access cost model with extremely low cost.

We then design and implement INFINISTORE, a persistent and
elastic cloud storage system, which seamlessly couples the function-
based ServerlessMemory layer with a persistent, inexpensive cloud
object store layer. INFINISTORE enables durability despite function
failures using a fast parallel recovery scheme built on the auto-
scaling functionality of a FaaS (Function-as-a-Service) platform. We
evaluate INFINISTORE extensively using both microbenchmarking
and two real-world applications. Results show that INFINISTORE has
more performance benefits for objects larger than 10 MB compared
to AWS ElastiCache and Anna, and INFINISTORE achieves 26.25%
and 97.24% tenant-side cost reduction compared to INFINICACHE
and ElastiCache, respectively.

PVLDB Reference Format:

Jingyuan Zhang, Ao Wang, Xiaolong Ma, Benjamin Carver,

Nicholas John Newman, Ali Anwar, Lukas Rupprecht, Vasily Tarasov,
Dimitrios Skourtis, Feng Yan, and Yue Cheng. INFINISTORE: Elastic
Serverless Cloud Storage. PVLDB, 16(7): 1629 - 1642, 2023.
doi:10.14778/3587136.3587139

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ds2-lab/infinistore.

*Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 7 ISSN 2150-8097.
doi:10.14778/3587136.3587139

1 INTRODUCTION

Public clouds free tenants from the tedious tasks of IT infrastructure
planning and maintenance and allow tenants to focus on applica-
tion development. These offerings are driving the adoption of public
clouds for hosting massive-scale, data- and compute-intensive ap-
plications, such as Internet-scale web applications [4, 11, 19, 40].

Although cloud providers can simplify the allocation and scaling
of compute resources, there is an excessively wide range of cloud
storage services with various persistence, performance, pricing, and
capacity characteristics to choose from. This choice complicates
resource management and application deployment. For example,
AWS ElastiCache [6] is an AWS-managed memory cache service,
but ElastiCache does not provide data persistence by default. AWS
S3 [9] is a ubiquitous object store service, which offers data dura-
bility and persistence, but S3 is much slower than ElastiCache.

This choice is further complicated by the varying memory and
storage requirements of heterogeneous cloud workloads. For ex-
ample, a production object store workload for accessing Docker
container images [4] exhibits a frequently changing working set
size (WSS) having a wide range of object sizes and strong tempo-
ral reuse patterns—most object reuse happens within one or two
hours of the object’s previous access. In addition, emerging server-
less function applications require large, short-term, elastic storage
capacity that scales based on WSS and object sizes [40]. Similar
dynamic I/O patterns are observed in enterprise network file sys-
tem workloads [30], big data analytics workloads [29, 47], and data
warehouse workloads [49], among others [37, 48].

We argue that today’s clouds are missing an elastic, performant,
and cost-effective cloud storage solution that can fulfill the het-
erogeneous and dynamic storage requirements of a wide variety
of applications. Durable cloud object store solutions such as AWS
S3 [9] and Google Cloud Storage [21] are inexpensive but cannot
provide memory-store-level performance. Faster storage/caches
such as AWS FSx [7] and ElastiCache [6] offer high-bandwidth and
low-latency data access, but these solutions are expensive and lack
the capability to automatically and rapidly grow and shrink storage
capacity in response to changing application demands.

The Function-as-a-Service (FaaS) model is well suited to fill this
gap. FaaS applications are structured as a collection of functions

https://doi.org/10.14778/3587136.3587139
https://github.com/ds2-lab/infinistore
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3587136.3587139

managed by the service provider in terms of resource scaling and
management. The combination of instant scaling, fast access, and
pay-per-use pricing makes Faa$ platforms an appealing foundation
for an elastic, performant, and cost-effective storage service.

INFINICACHE is a distributed memory caching system that ex-
ploits the properties of FaaS [51]. INFINICACHE uses many serverless
functions whose function-memory is used collectively for object
storage with PUT/GET APISs for accessing the objects stored. Server-
less functions are transient and may be reclaimed after a short
period by the FaaS provider. Therefore, INFINICACHE implements a
primary/backup replication protocol to increase data durability at
the serverless function-memory level.

While INFINICACHE has demonstrated the feasibility of using
serverless functions for data caching, INFINICACHE has several
limitations. (1) The serverless-function-based cluster deployed in
INFINICACHE is fixed, and therefore, lacks elasticity: INFINICACHE
randomly assigns old and new data objects to function instances; if
were to be scaled out, this data mapping strategy may lead to ex-
cessive data migration, which we will show later. (2) INFINICACHE
provides best-effort data durability via erasure coding and repli-
cation at the serverless function level; however, the FaaS provider
may reclaim a function instance and its memory at any time, which
causes cache misses and impacts application performance. (3) Data
cached in INFINICACHE is replicated twice, which doubles memory
resources and doubles cost.

In this paper, we introduce a new storage service named Server-
lessMemory. ServerlessMemory uses the collective function-memory
as a storage medium to construct a continuous memory space.
When allocating memory, new functions are invoked and function-
memory are added to memory space. Inspired by the mark-compact
garbage collection (GC) algorithms in programming languages [25],
we apply a fully-automatic, sliding-window-based function-memory
management scheme to separate live/unused (hot/cold) data and
leverage FaaS provider’s function reclaiming mechanism for garbage
collection. Together, the ServerlessMemory achieves high storage
elasticity at function granularity. Differentiated with a cache, which
would typically require an expensive offline tuning process to con-
struct the miss ratio curve to find the optimal cache size for a certain
workload, the ServerlessMemory service can automatically capture
the application’s working set. To the best of our knowledge, the
ServerlessMemory is the first cloud service that leverages the desirable
Faas$ properties to achieve fine-grained elasticity in disaggregated
memory management.

We build INFINISTORE, an elastic, fault-tolerant cloud storage on
top of the ServerlessMemory service. INFINISTORE has two layers:
a ServerlessMemory layer that exposes durable serverless function-
memory to serve application I/Os, and an inexpensive object store
layer that uses a cloud object store for data persistence. We imple-
ment durability via fast parallel recovery and lightweight insertion
logs. When a function instance is reclaimed unexpectedly, INFIN-
ISTORE launches a group of pre-selected peer (recovery function)
instances for parallel data recovery. Each recovery function instance
replays a portion of its assigned insertion log and downloads lost
data from INFINISTORE’s object store layer.

This paper makes the following contributions:

e We introduce a new ServerlessMemory cloud service that is
elastic and pay-per-access at the memory storage level. The

ServerlessMemory is the first cloud service that exploits the FaaS
properties to automatically capture the working set of a stateful
data-intensive application.

o We design and implement INFINISTORE, an elastic, cost-effective,
high-performance, and fault-tolerant cloud storage system that
combines the ServerlessMemory layer with a persistent but in-
expensive object store layer.

o We perform extensive evaluations using YCSB microbenchmark
stress testing and two practical applications: an IBM container
registry workload and an Azure Functions blobs workload.

Experimental results show that INFINISTORE represents a novel
performance-$cost tradeoff in today’s cloud storage landscape. It is
worth noting that INFINISTORE is a memory storage while reducing
cost by 26.25% compared to INFINICACHE, 97.24% compared to
AWS ElastiCache, and offering better performance for large object
requests than Anna [53], AWS S3, and FSx. INFINISTORE is pay-per-
access, which means it incurs a cost proportional to the number of
GET and PUT requests it serves, with a small cost overhead of 26.00%.

2 MOTIVATION

Data-intensive applications have dynamic and heterogeneous work-
loads that benefit from storage elasticity. This section performs a de-
tailed workload analysis on two representative storage workloads:
a cloud object store workload of IBM container registry [4, 31]
and a serverless application workload of Azure Functions blob
accesses [40]. To understand the dynamic characteristics of these
workloads, we will focus along two dimensions: (1) working set size
(WSS) and throughput; and (2) temporal access patterns. WSS here
means the aggregate footprint of the data accessed, re-accessed,
and modified by the application in a given time interval.

2.1 Dynamic WSS and Throughput
We begin our workload analysis by asking these questions:

(1) Does WSS/aggregate throughput dynamically change?
(2) If so, what is the magnitude of this change?

The answers to these questions will help us understand the
elasticity requirement for INFINISTORE.

Both workloads exhibit a highly variable WSS with a maximum
size over 209x and 173X larger than the minimum size for the
container image workload and serverless application workload,
respectively (Figure 1(a)). Additionally, the WSS is shifting every
minute. Such significant temporal WSS variance suggests that a
high degree of elasticity at the storage level is required to be able
to serve the objects in the working set efficiently without excessive
storage overprovisioning.

The container image workload also demonstrates bursty I/O char-
acteristics. Figure 1(b) shows that the aggregate throughput spikes
to 15 GB/s with an average of 1 GB/s. This throughput variability
poses a significant challenge for tenants trying to provision storage
resources that meet the application’s performance requirements.
Implication 1: The WSS variance requires instantaneous provision-
ing of large amounts of storage resources to satisfy the high throughput
and low latency requirements.

2.2 Temporal Access Pattern
We study the temporal access patterns by asking:

<

9 % 102

£ 200 mm container registry 2 m container registry
5 sewerless blob = 101 serverless blob
=100 F

Ll i ;.

=2 0 £1077

100 200
Timeline (Hour)

0 100 200 300
Timeline (Hour)

(a) Working set size timeline.

1.0 1.0 — container registry 2l
. 0.8 " 0.8 serverless blob /
L 0.6 506
0.4 00.4

(b) Aggregate I/O throughput timeline.

— container registry

0.2 0.2
serverless blob
0.0,_/—/ 0.0 //
1074 1072 10° 102 1072 10° 10t 10

Reuse Interval (Minute) Reuse CoV

(c) Reuse interval distribution. (d) IAT CoV distribution (#reuse > 10).

Figure 1: The container registry and serverless blob workload characteristics: dynamicity (a, b) and temporal (c, d) behaviors.

(1) What is the time interval between two successive accesses to the
same data object?

(2) What is the request inter-arrival time (IAT) pattern for reused
objects?

The answers to these questions will guide the design of INFINIS-
TORE’s elastic data placement strategy, i.e., the mapping between
data objects and serverless functions.

We first study the temporal patterns by measuring the time in-
terval between two successive accesses of the same data object (the
temporal reuse interval). Figure 1(c) shows that for the first 50 hours
of the container image workload, approximately 80% and 94% of all
reuses happen within 10 minutes and 100 minutes, respectively. The
serverless application workload shows a similar reuse pattern but
with much shorter reuse intervals: approximately 98% of requests
revisit the same object within one minute. These patterns suggest
that much of the data accessed is very likely to be reused within a
short time interval.

We next study the IAT pattern by quantifying the coefficient of
variation (CoV) of reused data objects. A CoV of 1 suggests that a
re-access may arrive at an arbitrary time, where the IAT follows
a Poisson distribution. A CoV > 1 indicates a more bursty arrival
pattern than a Poisson distribution. We filter out objects with less
than 10 reuses, which excludes 16% and 2% of the requests from
the container image and serverless blob workloads, respectively.
Figure 1(d) shows that about 80% of reused objects have a CoV
greater than 1, indicating that both workloads are very bursty.
Implication 2: A multi-layer storage system with a fast elastic layer
and a slower persistence layer would be beneficial. Most data become
cold quickly and can be discarded from the faster storage layer if
all data are durably stored in a persistence layer. This also suggests
that hot data must be tracked and hot/cold data segregation would be
beneficial in this context.

3 WHY USE FAAS FOR DATA STORAGE?
3.1 FaaS Properties

The above implications motivate us to rethink the design and im-
plementation of cloud storage systems. The main question we seek
to answer is: How can a cloud storage system be designed to offer
elasticity for dynamically changing workloads while simultaneously
providing high performance and high durability at low cost? In this
section, we first introduce the unique properties of FaaS and ex-
plain how storage services that are built on cloud functions can
take advantage of these properties. We then discuss INFINICACHE
and its limitations.

Quick Startup and Pay-per-Use. Unlike VMs, which can take
minutes to launch, thousands of cloud function instances can be
provisioned in a fraction of a second, without advance notice, via

L’:ac!e pool

Figure 2: INFINICACHE architecture.

an HTTP API. Storage services can use fast and massive instance
provisioning to effectively handle bursty and dynamically-changing
storage access patterns. More importantly, FaaS providers [10, 20,
23] charge tenants on a fine-grained per-use basis. For example,
AWS Lambda bills on a per-invocation basis ($0.02 per 1 million
invocations) and charges for a CPU+memory bundle at a rate of
$0.0000166667 per second (rounding up to the nearest millisecond)
for each GB of bundled memory. This means accessing objects
stored in the memory of function instances will be billed on a
per-access basis.

Exploiting Opportunistic and Elastic Function Memory for
Data Storage. Recent studies [51, 52] report that FaaS providers
support limited, short-term caching of function instances by keep-
ing the instance states “warm” in memory to mitigate cold start
penalties [44]. Idle function instances that are not invoked after a
period of time can be reclaimed by the provider. This period of time
varies, ranging from tens of minutes to hours for AWS Lambda.
A later invocation to the same instance can extend the function’s
lifetime. The memory of a cluster of function instances can be ag-
gregated to enable opportunistic storage services. Furthermore, fast
function startup enables low-latency resource scaling when more
functions need to be provisioned, which provides an elastic storage
foundation for highly dynamic workloads.

3.2 INFINICACHE

Table 1: Summary of terminologies used in INFINICACHE.

Terminology Definition

Chunk A partition of an erasure-coded data object

Function A deployment of AWS Lambda

Instance A Lambda instance w/ bundled compute-memory resources

Function-memory The memory resource in a function instance

INFINICACHE [51] builds on the above insights by exploiting the
collective memory of serverless functions to cache data objects. Fig-
ure 2 shows the architecture of INFINICACHE. INFINICACHE exposes
GET/PUT API via a client library. To PUT an object, the client library
sends erasure-coded chunks of the object to a proxy. The proxy
randomly maps chunks to Lambda function deployments in the
cache pool and streams data to invoked function instances for
chunk storage. The chunk-function mapping is stored in the proxy
for serving GET requests. The terms are summarized in Table 1.
INFINICACHE periodically invokes all functions in the cache pool
to keep idle function instances from being reclaimed by AWS. IN-
FINICACHE uses two fault tolerance techniques, primary/backup

delta-replication and erasure coding, to maximize data durability
at the cache level. The delta-replication technique replicates all
chunks twice between two instances of the same function deploy-
ment. The replication provides instantaneous failover if one of the
two replica instances is failed. Erasure coding complements repli-
cation by providing object-level fault tolerance if no more than a
configurable fraction of an object’s chunks are lost.
INFINICACHE’s Limitations:

e Lack of elasticity: INFINICACHE maintains a static, fixed cache
pool of functions whose collective function-memory is typically
larger than the active WSS of the workload. This strategy may
cause massive data movement if the cache pool were scaling out
and data rebalancing is required.

e Mixed hot/cold object placement and no hot data tracking: IN-
FINICACHE arbitrarily assigns new data objects to functions in
the cache regardless of whether the data will remain hot or be-
come cold. Hot data must be tracked and migrated if a function
were selected to be removed from the cache on scaling-in events.

e Durability is not guaranteed: Function instances reclamation
causes INFINICACHE to suffer data loss at the memory cache
level. INFINISTORE allows no data loss as a memory storage.

4 SERVERLESS MEMORY

We propose a new cloud storage service called ServerlessMemory,
which combines the memory of a cluster of serverless function
instances and exposes this memory to applications as fast, elastic,
inexpensive, and pay-per-access cloud storage. To provide dura-
bility, INFINISTORE combines ServerlessMemory with a persistent
backing object store. In this section, we provide an overview of
ServerlessMemory.

In ServerlessMemory, cloud function instances and their sup-
porting function-memories are automatically allocated when the
tenant application calls the PUT APL This abstraction is analogous
to programming languages that provide automatic memory man-
agement, e.g., Java. Data objects are inserted into the memory of
function instances and accessed by re-invoking functions.

When an application’s storage demand surges, more Serverless-
Memory functions can be invoked. The function-memory of the
new function instances joins the distributed memory pool instantly
without requiring any manual effort for launching and scaling
servers that are otherwise hosted by cloud VMs. A function F’s
function-memory that stores data object O is only billed when O is
accessed by a GET or PUT operation of F, i.e., when an instance of F
is executing. This pay-per-access property is naturally utilized by
ServerlessMemory. Hot data are tracked by the ServerlessMemory
and compacted into a collection of active function instances. If F is
not in the collection and F’s function-memory holds cold data, F is
rarely invoked, and the storage for the data objects in F’s function-
memory is rarely billed. No explicit garbage collection is required
for ServerlessMemory as storage is implicitly garbage collected by
the serverless provider when the instance of F becomes inactive
for a prolonged period and is reclaimed.

5 INFINISTORE DESIGN

INFINISTORE is a co-designed cloud storage system that tightly
couples a serverless, function-based ServerlessMemory store (SMS)
layer and a persistent cloud object store (COS) layer. All data is

Application
Client Library

chunks & insertion nodes

|
|
j Cloud Object Store
|

! Persistent store layer

Figure 3: INFINISTORE architecture.

stored in SMS for fast access and copied to COS for durability. SMS
is highly configurable and implements an adaptive, sliding-window-
based data management mechanism to hold the current working set
of a workload. In this section, we present the design of INFINISTORE
and its SMS and COS components.

5.1 SMS Design Challenges

ServerlessMemory poses two design challenges: elasticity-optimized
data placement and data durability.

Data Placement. The strategy that assigns data objects to func-
tions is critical as it impacts the elasticity and cost-effectiveness of
the storage system. Randomly placing data in function instances
using conventional (serverful) strategies, such as consistent hash-
ing [26], may lead to unnecessary expenses. As cold data would be
co-located with hot/new data in the same function instance, func-
tion warmups would be needed for the entire ServerlessMemory
instance pool, which increases monetary cost. Hence, we need to
design an elasticity-optimized data placement strategy for Server-
lessMemory to minimize function-warmup overhead.

Data Durability in Functions. As mentioned in §3.2, INFINICACHE
does not guarantee durability and best-effort data recovery impacts
cost-effectiveness. ServerlessMemory must handle data durability
issues transparently without noticeably impacting the application’s
performance and the monetary cost. To effectively meet this objec-
tive, we combine SMS with an inexpensive COS.

5.2 Design Overview

Next, we present INFINISTORE’s design. We use AWS Lambda as an
example to illustrate the design of INFINISTORE. In the remainder
of this section, all instances are assumed to be Lambda function in-
stances. It is worth noting that the design of INFINISTORE is generic
and can be easily ported to other cloud platforms. INFINISTORE
consists of four components: a INFINISTORE client library, a client
daemon, an SMS layer, and a persistent COS layer, see Figure 3.
Applications interact with INFINISTORE via a client library that
communicates with the client daemon managing the SMS. The
library exposes GET (key)/PUT (key, value) as read/write APIs to the
application and is responsible for (1) transparently encoding and
decoding data objects with Reed-Solomon erasure coding (EC), and
(2) load balancing incoming application requests across a distributed

set of client daemons. INFINISTORE offers strong consistency. The
PUT API uses versioning provided by the client daemon to support
object updates. Versions of objects are read-only after PUTs return.

Co-located with the application, a client daemon stores data
objects’ metadata with the versioning information in an in-memory
data structure called metadata table, orchestrates the function in-
stances of SMS, and serves as a rendezvous point for streaming
EC-encoded object chunks between the client library and SMS. The
metadata table can be persisted to the local disk for fault tolerance.
In the distributed application setting, we adopt a multi-VM deploy-
ment in which a client daemon is deployed on each VM that hosts
the application and manages a separate SMS with shared access
among application clients.

SMS consists of a collection of function instances. Unlike INFINI-
CACHE, in SMS, each function instance does not have a peer replica.
The scaling of SMS is driven by the workload’s working set. SMS
manages the active data objects in function-memory and serves all
requests sent from the client daemon (§5.3, §5.4).

COS forms the persistence layer of INFINISTORE. COS stores
all data objects and critical metadata (insertion logs) for SMS data
recovery (§5.5). To persistently store an object, INFINISTORE’s client
library first determines the destination client daemon (and therefore
its corresponding SMS) using consistent hashing. The client library
then streams EC-encoded chunks to SMS via the daemon. Without
compromising the durability and strong consistency, we design a
persistent buffer (§5.3.2) to allow the client application to receive
a response once all chunks are successfully inserted into SMS but
before all chunks are fully persisted to COS. The function instances
in SMS will not return until chunks are fully written to COS.

5.3 ServerlessMemory Store Management

INFINISTORE’s SMS management design is based primarily on the
workload characteristics described in §2 and the requirement to pro-
vide elasticity, performance, and durability (§3.2). Instead of a static
approach, INFINISTORE’s client daemon uses a novel, highly adap-
tive, sliding-window-based SMS management mechanism inspired
by the garbage collector designs used in programming languages.
The ServerlessMemory is regarded as a continuous memory space
of functions, where each function is identified by a global unique
ID;. FaaS platforms offer virtually infinite memory capacity and
new memory can be allocated by simply invoking more functions.
In a garbage-collection-based (GC-based) programming language,
a GC procedure is invoked once every fixed time interval to release
the allocated memory that is no longer referenced. In INFINISTORE
settings, “no longer referenced” data is cold data that has not been
accessed for a specified time period H. Cold data’s memory can
be released by changing the function management policy (e.g.,
by stopping invoking corresponding functions and leaving the in-
stances to be eventually reclaimed by the Faa$S provider). The client
daemon organizes the memory space at the function granularity.
New data is always appended to functions newly added to memory
space. The daemon adds new functions when needed (e.g., out of
function-memory, §5.3.1). Data re-accessed within H is marked and
compacted to newly added functions, too (§5.3.3). These functions
added during the same GC interval construct a new GC-bucket.
With compaction, a GC-bucket contains only cold data after H and
the memory-functions within is released by the GC.

[] : sealed function group of N full functions.
Legends:[| : Scaled-out, open function group, each w/ N functions.

E : Carried-over, open function groups that are not full yet.

6 function groups in a 30-minute window

Degraded | Active
| GC-bucket |

PUT reqgs (a)

3 Latest GC-bucket
!

| I
| I
H |,
1'0—10min | 10—20 min' 20—30 min

| |
30—40 min' 40—50 min'

[Released | Degraded | Active 1

GC-bucket | GC-bucket
{ T
T i i (b)

I

{
{
{
{
!
!
{
{
{
i

N {data compagtion--- 0 _
0—10min ' 10—20 min! 20—30 min? 30—40 min' 40—50 min! o

N Released | Degraded | Active |

i GC-buckets | GC-bucket | GC-buckets !

| | = 3((:)
| [% e tesmm

| | e — ==

i | | I —

I |

I

Figure 4: A sliding-window example of GC execution. The
example shows a configuration in which GC executes every
10 minutes, and the active (M) and degraded (N) window are
configured as 20 and 10 minutes respectively. H in this case
is 30 minutes. Functions are shown as FGs. (a) SMS has been
running for 20+ minutes, with its latest GC-bucket in the
third time slot. (b) Time runs into the 30-40 min slot. The
GC releases the oldest GC-bucket. More functions are added
to the latest GC-bucket due to scaling out. (c) At 40-50 min,
The GC releases one more GC-bucket. Functions not fully
populated keep open in the new GC-bucket.

For a smoother function management policy (FMP) changing
across the function lifespan, the client daemon divides functions
added within H into active and degraded GC-buckets, each lasting
for M and N GC intervals, respectively!. Figure 4 uses a sliding-
window example to illustrate how INFINISTORE’S GC works. For
functions added to memory within M GC intervals in active GC-
buckets, we apply an active FMP that extends instance lifespan
using a no-op heartbeat message (warmup) sent periodically by
the daemon. On executing the GC procedure, (1) the oldest active
GC-bucket created M intervals ago becomes degraded, which is
then applied a degraded FMP with a reduced warmup frequency,
(2) the oldest degraded GC-bucket created H intervals ago becomes
released and all functions in released GC-bucket are immediately
removed from memory space. Any function in a degraded GC-
bucket will be removed if failures are detected (§5.5.1).

!M and N are configurable. Empirically, M and N can be configured based on the
mean and mean + stdev of objects’ reuse interval, respectively.

1 func PlaceChunk(chunk *Chunk):
2 // Initialize a func pointer using the object’s chunk ID.

3 funcPtr := chunk.ID

4 // Ensure at least funcPtr open functions are available.

5 functions := GetOpenFuncs(funcPtr)

6 for:

7 if funcPtr >= len(functions): // Needs to scale out?

8 // Scaling out by ensuring funcPtr open functions available.
9 functions, funcPtr = GetOpenFuncs(funcPtr)

10 else if !TestAndPlace(functions[funcPtr], chunk):

1 funcPtr += chunk.FGSize // Increment func pointer by one FG.
12 else: return

Figure 5: Chunk placement algorithm.

Function Group. Within a GC-bucket, the client daemon manages
functions by function groups (FGs). An FG is a logical scaling unit
that consists of N functions, where N is determined by the number
of chunks of an object. Note that this abstraction is essential to
support objects with various numbers of chunks. The client daemon
scales out the latest GC-bucket at FG granularity.

For clarification, the client daemon serves PUT/GET requests at the
chunk granularity. All chunks of an object are served in parallel.
5.3.1 Serving PUTs. As shown in Figure 4(a), PUTs are served by
the latest GC-bucket. FGs in the current GC-bucket that actively
serve PUTs are referred to as open FGs. When the workload surges,
e.g., the WSS or the number of concurrent PUT requests increases,
the daemon scales out the latest GC-bucket by launching more
FGs (Figure 4(b)). The client daemon keeps track of the memory
consumption of each function in the latest GC-bucket by reconciling
the memory statistics piggybacked on the response of each function
invocation request. When the memory consumption of an FG in
the latest GC-bucket exceeds a predefined HARDCAP threshold?, the
daemon starts the scale-out process and all functions in that FG are
sealed (read-only). Note that the degraded GC-buckets along with
the functions therein are also sealed.

Data Placement under PUTs. INFINISTORE’s SMS management
employs a simple and highly-efficient data placement algorithm,
see Figure 5. To PUT a new object into SMS, the client daemon calls
PlaceChunk() in parallel for each of the N chunks (chunk.FGSize)
in order to determine in which FG the chunk should be stored.
PlaceChunk() tests FGs using a function pointer (funcPtr). Starting
from the IDCh,mkth function (line 3), the algorithm first ensures
that there are at least funcPtr functions open for placement (line
5). The algorithm then tries to place the chunk in the function
identified by funcPtr using TestAndPlace() atomically (line 10, first
iteration). If failed, the algorithm advances funcPtr by N (line 11)
to ensure that at least funcPtr functions open (line 9 in later it-
erations), auto-scales if needed, and probes the next FG (line 10)
until it succeeds. The funcPtr is advanced by FGs to ensure that
INFINISTORE never places any two chunks of an object on the same
function for two reasons: (1) to minimize the chances of multiple
chunks becoming unavailable due to a single function reclamation;
and (2) to parallelize the I/Os across all function instances that will
store the object chunks. To balance the load and minimize network
contention, TestAndPlace() validates (1) if the memory HARDCAP of
the function is reached, and (2) if this function’s request queues
(§5.3.4) are full; Otherwise, the function serves the PUT request.

2The HARDCAP is defined by excluding the Lambda function’s program and runtime
overhead (around 100 MB) and a fraction of the total function-memory reserved for
data recovery (§5.5.2).

PlaceChunk() uses a greedy policy for choosing an available FG
within the latest GC-bucket. Specifically, the algorithm always tries
to use the oldest open FGs for inserting new data. This design is
because older FGs holding relatively cold data are likely to be first
to reach their memory HARDCAP and thus are likely to be sealed
earlier than newer FGs. All the open FGs are carried over to the
new GC-bucket during GC, as depicted in Figure 4(c).
Auto-Scaling under PUTs. INFINISTORE support customized auto-
scaling policies in GetOpenFuncs() to handle PUT spikes (e.g., one
can implement a more aggressive policy that doubles the number of
functions each time an auto-scaling is triggered [18]). INFINISTORE’s
current linear auto-scaling policy works well since deploying and
invoking new functions is fast; a more aggressive auto-scaling
policy may result in lower SMS capacity utilization with a higher
monetary cost.

5.3.2 Daemon-side Versioning and Persistent Buffer. A persistent
buffer is a stream buffer that intercepts the chunk streaming on the
data path of PUT requests and temporarily buffers the intercepted
data on the daemon-local disk. INFINISTORE uses the daemon-side
persistent buffer to accelerate PUT requests without compromising
durability and strong consistency. Since object chunks written to
SMS and COS are read-only, the client daemon uses versioning
to support updates. INFINISTORE uses the consistency increasing
algorithm proposed in SCFS [12] to achieve strong consistency
atop an eventually consistent COS, e.g., AWS S3. Strong consistency
requires a PUT request to return after object chunks have been stored
in both SMS and COS. Since INFINISTORE uses an inexpensive, slow
COS layer, the tail latency of PUT requests is not guaranteed if
the application must wait for the data to be fully stored in COS.
With the persistent buffer, a PUT request can return immediately
after being stored in SMS. The client daemon guarantees that the
chunks will be successfully stored in COS later by retrying the
request using the data stored in the persistent buffer. After the
data is stored in COS, its persistent buffer can then be released. For
performance, a read-after-write GET request can be directly served
from the persistent buffer if the chunk’s buffer has not been released.
Details of the versioning algorithm can be found in the appendix
of the full report [57].

5.3.3 Serving GETs. GET requests are routed from the daemon to SMS
and served by the functions storing chunks. The client daemon
marks chunks of a hot object that has been re-accessed and may
trigger asynchronous migration that compacts the chunks to the
latest GC-bucket. This compaction is performed by loading chunks
from the COS into SMS’ latest GC-bucket. A GET hits on a chunk
in a degraded GC-bucket must trigger the data migration, see Fig-
ure 4(c). The client daemon performs the compaction in multiple
rounds: in each round, the daemon randomly picks a subset (e.g.,
50%) of all marked chunks and migrates the subset to the latest
GC-bucket until all chunks are migrated. The daemon is configured
to bound the maximum compaction interval for each compaction
operation to prevent compaction bursts from consuming too many
SMS resources. There is still a chance that a GET request may hit on
an object with all or part of its chunks residing in a removed func-
tion. In this case, the daemon performs synchronous, on-demand
migration, which restores cold chunks from COS to the latest GC-
bucket. The daemon updates the mapping table after completed the
migration operation.

Auto-Scaling under GETs. Elastic demand caching is triggered
when a function’s request queue is full and the function can not
serve more requests. GET-triggered auto-scaling follows the algo-

rithm in Figure 5 and launches more functions—called cache functions—

if the GET throughput surges. In TestAndPlace(), the client dae-
mon makes an on-demand cache request with the following steps:
(1) check if the function’s request queues are full; (2) check if the
memory HARDCAP of the function is reached; (3) if these two checks
return true, the function caches the requested chunk from COS
into function-memory and returns the chunk. Demand-cached data
under this temporary caching scheme can be evicted to make room
for later caching operations or regular object chunks inserted via
PUT. Function-memory space management is discussed in §5.4.

5.3.4 Request Queues and Handling Large Objects. INFINISTORE’s
client daemon adopts a two-queue scheme for each function, where
each queue is associated with a network connection that connects
the client daemon with a function instance. This scheme separates
small requests from large requests in order to avoid the convoy
effect in which large requests block small requests.

INFINISTORE supports large objects by splitting objects into
smaller fragments no larger than 200 MB. We implement a data
streaming protocol to pipeline object fragments transfer, similar to
HTTP/2’s multiplexing [22], to improve transmission efficiency.

5.4 Function-Memory Space Management

As mentioned earlier, the demand for extra cache functions is tem-
porary and driven by bursty requests. The cache functions will not
be fully utilized for storing regular object chunks until all older FGs
become full and sealed. Simply discarding cache functions from
SMS would impact performance, as a burst of requests may arrive
again anytime. To utilize the memory space of the cache functions,
INFINISTORE divides the memory of a function into two partitions,
a storage partition and a cache space: regular object chunks are
stored in the storage partition, while the cache space is designated
for buffering demand-cached chunks temporarily. There are two
categories of demand-cached chunks: hot chunks cached for serv-
ing bursty GETs (§5.3.3); and cold chunks from released function-
memory (e.g., GC-bucket releasing) temporarily cached for serving
potential out-of-working-set GETs. The size of chunks in the cache
space is not included in a function’s memory consumption, and
therefore, chunks can be evicted if the function’s memory is inade-
quate to serve a new PUT. The cache space is also persisted to COS
and will be recovered if a cache function is reclaimed (§5.5.2).

5.5 Fault Tolerance and Data Recovery

While AWS provides transient function caching that allows a func-
tion instance to be used for multiple invocations [8], it does not
guarantee an instance will be cached and a cached instance can be
reclaimed anytime. Hence, INFINISTORE needs to be robust against
frequent reclamations of function instances.

One possible approach to enable durability in SMS is to replicate
each object in the function-memory [51]. However, this approach
would significantly increase the monetary cost (more than 50%
of the monetary cost of INFINICACHE is for maintaining replica
instances) and reduce the effective memory capacity (half of the
memory is used for storing replicas when using 2-way replication).
Furthermore, in the highly unreliable environment that is created

when users are given no direct control over AWS’ internal reclama-
tion policy, durability is still not guaranteed when replicas are used,
since all instances that store replicas may get reclaimed by AWS.
INFINISTORE takes a different approach to handle frequent recla-
mation of function instances: all objects are backed up in an inex-
pensive, persistent COS layer. Upon an invoked instance detecting
a partial or complete data loss (e.g., an instance has been reclaimed),
this instance recovers, from COS, all of the objects previously stored
in the reclaimed instance. Recovering all objects can be slow given
instance’s bandwidth limit. Inspired by RAMCloud’s fast recovery
mechanism [35], INFINISTORE by default maintains a single copy
for each chunk (replication may exist in cache space) in SMS and
uses tens of recovery functions, each recovering a portion of all the
lost chunks in parallel. The unique challenge and the differences
from RAMCloud are discussed at the end of §5.5.2.
5.5.1 Failure Detection. In order to initiate a data recovery, INFIN-
ISTORE needs to establish that a previously invoked instance has
been reclaimed since its last invocation. INFINISTORE does this by
using an insertion log to keep track of PUT operations for each indi-
vidual function. The log is used to determine whether an instance’s
memory state is up-to-date.

<key, chunkp, size, time, eeseqr ---> ‘

W,]Wz‘SZ‘ F“WSIWAIWJ sz,,z%...—»’ ...‘szw_N

Term 1 Term 2 Term N
Figure 6: An example insertion log. W; denotes the first PUT

record stored under Term 1.

Insertion Log. The insertion log contains one or more insertion
nodes, each of which is a COS object that records the PUT operations
served by a function instance during a single invocation of the
function instance. Each PUT results in the creation of an insertion
node that is stamped with a monotonically increasing counter value
called term. Upon a PUT, the object chunks are inserted into SMS and
then pushed to COS; in the meantime, the function consolidates and
seals concurrent PUT records (received at roughly the same time in
a time window, whose duration is configurable) generated during
its current invocation into an insertion log node and persists the log
node to COS before returning. Figure 6 shows an example insertion
log and the information recorded in each PUT request. On returning,
the function instance creates a snapshot of the chunks it currently
stores to speed up recovery downloading. The snapshot is also
persisted in COS. The most up-to-date insertion node information
is piggybacked onto the GET/PUT response payload sent to the client
daemon. This information includes the term of the insertion node, a
hash that is computed from the insertion node, the diff_rank, which
is discussed in the next paragraph, the size of the last insertion node
stored in COS, and a copy of snapshot information containing all of
the aforementioned fields. The client daemon maintains up-to-date
insertion information for each function it manages.

Triggering a Recovery. On a function invocation for a GET/PUT,
the invoked instance N uses the insertion log information passed
in the invocation parameter to determine whether data recovery
is required. AWS Lambda does not guarantee that an invocation
of a function constantly reuses the function instance P previously
invoked. If P is not reused, the function-memory of N will not con-
tain the most up-to-date object chunks, and these missing chunks
will have to be recovered from COS.

An invoked function instance determines whether its objects
are up-to-date by performing a consistency check that compares
the local term and hash values that it has recorded with the corre-
sponding values passed from the client daemon. If the values are
inconsistent, the instance is considered to have failed.

When a function instance fails, INFINISTORE needs to decide
on an appropriate recovery strategy. Specifically, each instance
maintains a diff_rank that indicates how many object chunks will
be recovered since the first term, which equals the number of all PUTs
including deleted chunks. A difference is calculated by subtracting
the local diff_rank from the diff_rank received from the client
daemon. If the difference is significantly larger than N, where N
equals to the number of recovery functions assigned to the function,
the failed instance notifies the client daemon that a parallel recovery
is required (§5.5.2). Otherwise, the lost data can be recovered locally,
and no further action from the client daemon is required.

INFINISTORE uses the number of chunks rather than the aggre-
gated chunk size as the indicator for parallel recovery because the
recovery process can take advantage of the available massive paral-
lelism of recovery functions only if the number of missing chunks is
large enough. Regardless of whether a parallel recovery is triggered,
the failed function instance will perform recovery locally. The failed
instance recovers data by first downloading an operation manifest
of the function from COS, which is a combination of a chunk list
covered by the last snapshot and operations in the insertion nodes
constructed since the latest snapshot, if any. The instance then
replays all operations to find objects to be recovered and down-
loads objects from COS. Though GET requests will be blocked until
the object has been downloaded, the request latency will not be
affected, as discussed in §5.5.2. To guarantee PUT consistency, the
being-recovered storage instance still serves PUT requests, and any
successive read-after-write GETs that request the chunks inserted
by these new PUTs during the recovery process.

5.5.2 Parallel Recovery. If parallel recovery is required, the failed
function instance notifies the client daemon to start the parallel
recovery process. The process involves three phases: recovery group
selection, chunk recovery, and service resumption.

Phase 1: Recovery Group Selection. Each function in the SMS is
assigned one of two roles. The role of a storage function is to store
data objects in function-memory. The role of a recovery function is
to mitigate the recovery phase’s impact by recovering a part of all
data missing from the failed storage function, in massive parallel,
and delegating GET requests before the restoration of failed func-
tion. Each storage function is initialized with a group of recovery
functions, which are randomly chosen from all the functions in the
SMS (§5.3). The client daemon guarantees that each function may
only serve as a recovery function for one storage function at any
time. The daemon maintains a non-recovering function pool within
the active GC-buckets. Upon starting a parallel recovery process,
if any previously initialized recovery function is not available (i.e.,
serving another storage function), a new function will be selected
from the pool to serve as the recovery function.

Phase 2: Chunk Recovery. Each recovery instance is assigned a
unique ID i and is responsible for recovering a portion of all the
chunks to be recovered, which are the chunks with hashed key
Jj if j modulo the size of the recovery group equals i. Recovery
instances execute the same recovery routine as described for the

failed instance with the exception that they only download objects
they are responsible.

To serve GET requests for chunks that are being recovered, the
client daemon reroutes requests to the corresponding recovery func-
tions. In §6.4, we show that parallel recovery instances will recover
a 3,008 MB function within 1.18 s on average. With erasure coding,
the client daemon can tolerate the loss/delay of up to the num-
ber of p parity chunks, which greatly reduces the possibility that
the instance reclamation impacts the latency of GET requests. PUT
requests are served by the failed instance, as discussed previously.
Phase 3: Service Resumption. Once the failed storage function
instance finishes recovering all missing chunks, it notifies the client
daemon, which then seamlessly redirects all further GET requests
back to the recovered storage instance. The recovered chunks in
the recovery function instances are retained for a certain period
before being freed in case a parallel recovery for the same storage
function is triggered again in the near future.

Note RAMCloud [35] assumes normal datacenter server failure
rates, spreads recovered data across all the recovery nodes, and
serves recovered data from recovery nodes permanently. In contrast,
INFINISTORE deals with a more dynamic and unpredictable FaaS
environment with higher failure frequencies. To prevent cascading
parallel recoveries caused by recovery functions being reclaimed
during the recovery of a storage function instance, a recovery func-
tion instance only stores recovered data objects temporarily to
mitigate the impact of storage instance recovery on request latency.

6 EVALUATION

In this section, we evaluate INFINISTORE on AWS Lambda.
Implementation. We have implemented a production-quality pro-
totype of INFINISTORE atop INFINICACHE by modifying and adding
21,397 lines of Go code [2] using about two person-years: 1,171 LoC
for the client library, 10,296 for the client daemon, 6,429 for the
Lambda runtime, and 3,501 for utilities shared across components.
Client Setup. Unless otherwise specified, we deployed the work-
load replayer and microbenchmarks together with a INFINISTORE
client daemon on a c5n.4xlarge EC2 VM instance.

Goals. We answer the following questions in the evaluation:

e How well does INFINISTORE elastically adapt to real-world pro-
duction storage workload changes (§6.1)?

o Is INFINISTORE cost-effective and pay-per-access (§6.1.1)?

e How does INFINISTORE perform under YCSB [17] stress testing
compared to state-of-the-art cloud storage systems (§6.2)?

e How fast does INFINISTORE scale out and react to throughput
changes compared to state-of-the-art cloud storage systems (§6.3)?

e How fast can INFINISTORE recover from function failures (§6.4)?

e How much do different design options contribute to INFINIS-
TORE’s cost-effectiveness and latency improvement (§6.5)?

6.1 Applications

6.1.1 IBM Container Registry Workload. We now evaluate INFINI-
STORE’s elasticity, cost, and performance using the production IBM
container registry workload®. The original workload contains a
75-day request trace collected from 7 geographically distributed
datacenters. We use the first 50 hours of the workload from the

3§2 describes workload statistics in detail.

1.0 1.0
0.8 0.8
w [Th
5 0.6 a 0.6
O 0.4 O 0.4
0.2 0.2
0.0 0.0
104 1072 10°10'10%103 10° 10! 102 103

Object size (MB) Object size (MB)

Figure 7: IBM container reg- Figure 8: Azure Functions

istry workload. blob workload.
2 150 #Total -Degraded wss[408 0.4 ot GET/PUT-Recovery--Warmup
o ®Active U;
£ 100 I3 0 @
E 205 0.2
« 50 5 S
S} g N ~r N
e T T S e M
* o0 0 - 00F
0 10 20 30 40 50 0 10 20 30 40 50

Timeline (Hour) Timeline (Hour)

Figure 9: Number of functions Figure 10: Timeline of
managed by INFINISTORE. hourly cost.
Total=active+degraded. Total=I/O+recovery+warm.

Table 2: Workload’s memory-level read hit ratio achieved
by INFINISTORE (IS), INFINICACHE (IC), ElastiCache as a stor-
age (EC S), and ElastiCache as a cache (EC C). INFINISTORE’s
read hit ratio is defined as the ratio of the number of object
chunks read directly from the SMS layer against the total
object chunk requests.

Workload IS SMS IC ECS ECC

IBM container registry 95.8% 95.4% 99.96% 93.3%

Dallas datacenter, which features the highest load (with an average
throughput of 3, 654 GET requests per hour). The distribution of
object sizes is shown in Figure 7. Among all objects, 31% are larger
than 10 MB. We compare our results with INFINICACHE [51] and
AWS ElastiCache for Redis [6]. Following workload configurations
are applied to both INFINICACHE and INFINISTORE:

Parse all the GET requests reading a container image layer.
Include all objects (both small and large objects > 10 MB).
Use a Reed-Solomon EC configuration of (10 + 2).

Use Lambda function instances with 1,536 MB memory.

For INFINICACHE, we use a fixed cluster of 400 Lambda functions
and a warmup interval of 1 minute. INFINISTORE applies a warmup
interval of 1 minute for Lambda functions in active GC-buckets and
a longer warmup interval of 5 minutes for degraded GC-buckets.
The GC interval is set to 10 minutes. The number of active (M) and
degraded (N) GC-buckets are set to 6 and 12, respectively, based
on the average reuse interval and the average one-hour WSS.
Elasticity. We start by evaluating INFINISTORE’s ability to adapt to
working set size changes (Figure 1(a)). Figure 9 shows the number
of functions managed by INFINISTORE over the 50-hour workload.
Each curve corresponds to the number of functions managed in
INFINISTORE’s active GC-buckets (green) and degraded GC-buckets
(red) at each 1-minute time interval, regardless of whether the
function instances are invoked or not. Note that the number of total
functions matches 1 hour WSS changes, which are capped at 40
GB out of an aggregate 888 GB of workload’s 50 hours WSS. The
measured SMS-level hit ratio is 95.8% (see Table 2), which indicates
that 95.8% of requests are directly served from SMS without loading

data from COS. The high SMS-level hit ratio also indicates that
INFINISTORE can automatically capture application’s working set.
Cost-effectiveness. Next, we evaluate the overall monetary cost
of INFINISTORE in comparison with INFINICACHE and AWS Elas-
tiCache for serving the container registry workload (Figure 11).
For ElastiCache, we provisioned two Redis clusters: a cluster of 12
cache.r6g.2xlarge instances with 633.64 GB aggregate memory to
provide full in-memory storage and a cluster of 8 cache.m6g. large
instances with 51.04 GB aggregate memory to provide in-memory
caching. For fairness, the cache cluster uses S3 as the backing store
and has reduced hit ratio (Table 2). Both ElastiCache clusters have
up to 10 Gbps network bandwidth per instance.

INFINICACHE costs a total of $18.4, of which 43.48% is spent on
the backup scheme. ElastiCache costs $492.6 (as a storage) and
$61.02 (as a cache with S3 as the backing store), 36.30X and 4.50X
more expensive than INFINISTORE as it is statically provisioned.
INFINISTORE has the lowest cost of $13.57, of which $2.49 is used
for parallel recoveries, $0.31 for warmup, and $1.68 for COS (S3)
storing 1053 GB of data (including overhead of using erasure coding)
in 50 hours. Note that INFINISTORE’s warmup cost is considerably
lower than INFINICACHE, which maintains a fixed-sized function
pool with replicas, whereas INFINISTORE uses a sliding-window
scheme to dynamically adjust the number of functions in SMS.
Pay-per-Access. To find out whether INFINISTORE delivers pay-
per-access, we breakdown the cost per hour over the entire 50
hours (Figure 10). We observe a clear trend in that the total cost is
proportional to the cost of serving GET/PUT requests. INFINISTORE’s
parallel recovery scheme incurs a small portion (18.34%) of the
overall cost, which is the recovery cost for handling 1, 083 function
instance failures during the workload.

INFINISTORE’s cost overhead over an ideally pay-per-access scheme
is 26.00%. This result is calculated using the ratio of the aggregate
cost of recovery + warmup (i.e., the extra activities required to
maintain data durability) to the aggregate cost of serving GET/PUT
requests + S3 cost (i.e., access and storage cost). This overhead
is significantly lower than INFINICACHE, which adds 106.51% for
backup and warmup.

Latency Performance. Figure 12 compares INFINISTORE’s latency
performance against INFINICACHE, ElastiCache as a storage, and
S3. The results of using ElastiCache as a cache are similar to use
as a storage, which are not shown in plots. INFINISTORE achieves
lower latency than INFINICACHE for more than 40% of the requests.
This is because INFINISTORE’s two-queue request scheme effectively
mitigates the convoy effect of large requests against small requests.
INFINISTORE is significantly faster than S3 for more than 70% of
the requests. For objects larger than 10 MB, INFINISTORE is two
orders of magnitude faster than S3. For objects smaller than 1 MB,
INFINISTORE suffers from the overhead of Lambda function invoca-
tion and thus is lower than S3. INFINISTORE exhibits comparable
performance to ElastiCache for around 50% of requests reading ob-
jects over 10 MB (Figure 13). For the rest of the requests accessing
smaller objects, INFINISTORE does not see a benefit compared to
ElastiCache, again because of the high invocation overhead. Overall,
INFINISTORE offers a novel performance-$cost tradeoff in the space
of general-purpose cloud storage services.

6.1.2 Azure Functions Blob I/O Workload. The full Azure Functions
trace contains 14 days of blob accesses in 855 serverless function

GET/PUT 1.0 B 1.0
2+ { EEERecovery $492.6 $ 61.02
B Backup 0.8 0.8
—_ ++Warmup
201753 Sits u 0.6 w 0.6 :
©15{ $13.57 ——- Elast ——- Elasti
3 Q0.4 ElastiCache | G 4 ElastiCache
O 10 — InfiniStore _— InfiniStore
0.2 InfiniCache 0.2 7 InfiniCache
L I N) /N R R U s3 / EAR s3
L 0.0 - 0.0 =iz
InfiniStore InfiniCache EC Storage EC Cache 107t 10 107 10 104 10° 10! 102 103 104

Figure 11: $ cost. EC: ElastiCache.

Latency (ms)
Figure 12: Latency comparison (all obj). Figure 13: Latency comparison (>10 MB).

Latency (ms)

0.121 = EC95%R 2.01 = EC95%R 8 - EC95% R
i 0.10 EC 100% R m EC 100% R m EC 100% R
~ -+ 15 95% R ~ 1.5{+1595%R ~ -+ 15 95% R
>~0.081 1S 100% R a 15 100% R 56 1S 100%
-+ Anna 95% R -+ Anna 95% R -+ Anna 95% R
QC) 286 + Anna 100% R 5 1.0 ~ Anna 100% R (]C) 4 - Anna 100% R
+0.04 ©os L')/z ® 2 L{
—1 0.02 - —
0.001 % S e 0.0 o o 0 -
500 1000 1500 2000 2500 3000 3500 100 200 300 400 10 20 30 40 50

Throughput (RPS)

(a) 1 MB objects.

Throughput (RPS)

(b) 10 MB objects.

Throughput (RPS)

(c) 100 MB objects.

Figure 14: Throughput vs. the p90 read latency obtained under YCSB with various object sizes. IS: INFINISTORE.

Bandwidth —WL RPS —IS RPS --# of Lambdas

7150 150
oM

Z

=100/ 1100,
5 &
S 50] L50
©

C

@ O 0

0 100 200 300
Timeline (Minute)
Figure 15: Timeline of the bandwidth and RPS (request per
second) changes of the Azure Functions blob access work-
load. INFINISTORE(IS)’s trace replayer faithfully replays the
workload in real-time (IS RPS) with the same I/O concurrency
as recorded in original traces (WL RPS).

applications and is highly-bursty (Figure 1(d)). We selected a 5-hour
trace (hour 179-184), which contains the most bursty I/O pattern
(with a mean CoV > 1) blob access information issued by a total
of 37 function applications. We increased the blob size by 10, 000X
to highlight how INFINISTORE elastically scales in response to in-
creasing bandwidth requirements. Figure 8 shows that 45% of the
objects are larger than 10 MB. Since the Azure workload has much
shorter object reuse intervals (see Figure 1(c)) than that of the con-
tainer registry workload, we set the GC interval as 1 minute, and
the number of active (M) and degraded (N) GC-buckets as 8 and
15, respectively. As shown in Figure 15, INFINISTORE dynamically
adjusts the number of Lambda functions based on the bandwidth re-
quirement and the RPS (requests per second) changes. INFINISTORE
can effectively scale to the bandwidth requirement, thanks to IN-
FINISTORE’s optimization for handling large objects (§5.3.4), which
splits large objects into smaller pieces. This way, a large request
gets converted into multiple smaller requests that can be quickly
absorbed in parallel by scaled out Lambda function instances.

6.2 YCSB Microbenchmarking

Next, we stress-test the throughput-latency performance trade-
off using the commonly-used YCSB [17] benchmark. We compare
INFINISTORE against two state-of-the-art cloud storage systems:
(1) AWS ElastiCache for Redis, and (2) Anna [53], an auto-scaled,
multi-tier cloud storage system used by Cloudburst [46] to support

stateful serverless workloads. For both ElastiCache and Anna, we
deploy a small serverful cluster consisting of three 8-vCPU, 50-GB-
memory EC2 VMs with up to 30 Gbps aggregated, cluster-wide
network bandwidth. The ElastiCache deployment and the Anna
deployment use slightly different VM instance types due to limited
options. Specifically, ElastiCache uses the cache.rég.2xlarge cache
node type, while Anna uses the r4.2xlarge EC2 instance type. The
Anna deployment uses one additional r4.2xlarge EC2 instance as
the routing server and one m4.x1large EC2 instance for management
and monitoring services. Both of the two deployments are config-
ured with a replication factor of 1. YCSB runs on a c5n.9xlarge
client VM with a fixed 50 Gbps network bandwidth to ensure that
the client’s network does not become a performance bottleneck. We
configure Anna to use 8 worker threads for each of the three nodes
in the storage cluster. INFINISTORE uses a GC interval of 1 minute.
For Anna, since there is no Anna-based YCSB binding available,
we modified Anna’s own benchmarking utility to make it generate
YCSB-styled I/O tests. We use two read/update ratios: 95 : 5 and
100 : 0, and the Zipfian key popularity distribution with a Zipfian
coefficient of 0.99. We run each YCSB test for 30 seconds for the
following three object sizes: 1 MB, 10 MB, and 100 MB. For each
test, the concurrency (i.e., number of YCSB threads) is configured
to start from 1 and then gradually increase to 5, 10, 25, 50, 75, and
finally 100. Figure 14 reports the performance results.

ElastiCache is highly optimized for AWS-hosted I/O workloads
in that the YCSB benchmark can easily saturate the aggregated
30 Gbps cluster bandwidth for all three object sizes. ElastiCache
also achieves the lowest p90 (90th—percentile) latency for the 1-
MB-object tests. Anna cannot fully utilize the cluster bandwidth.
As the object size increases, Anna tends to have a reduced net-
work bandwidth utilization (see Figure 14(b)-14(c)). To figure out
the reason, we investigate Anna’s implementation and observe
that Anna incurs extra serialization/deserialization overhead when
passing large messages through Anna’s ZeroMQ service [56]. Such
overhead increases significantly when object sizes increase. INFINI-
STORE’s elastic, scaled-out serverless design offers ample network
bandwidth resources for applications. That is why (1) INFINISTORE’s

\
)

10t

P90 InfiniStore —-P50 EC P90 FSx
— P50 InfiniStore P90 S3 --:P50 FSx
P90 EC P50 53 —

—— InfiniStore
—— ElastiCache

10 0 30 40 50 60
Timeline (second)

N

Throughput (GB/s
O NWRAUO

10 20 30 40 50 60
Timeline (second)

Figure 16: Throughput. Figure 17: Latency (log).

throughput is only capped by the bandwidth limit of the client VM
for both the 10 MB and 100 MB objects, and (2) INFINISTORE achieves
the lowest p90 latency compared to both ElastiCache and Anna.
For the 100%-read, 1-MB-object workloads, INFINISTORE achieves
on-par throughput as Anna, with the highest throughput between
2,500-3,000 RPS and a slightly higher p90 latency (see Figure 14(a)).
This is because INFINISTORE fetches data from serverless functions
but not a stable serverful cluster. The YCSB results show that IN-
FINISTORE is well suited for large-object-intensive workloads with
object size larger than 10 MB.

6.3 Elasticity Microbenchmarking

In this section, we setup a multi-VM deployment using 10 c5n.4x1large
EC2 VMs to simulate a realistic use case in which a tenant has mul-
tiple microservices that concurrently issue GET requests for 10 MB
objects. To evaluate INFINISTORE’s ability to scale out on demand,
we vary the number of I/O threads on each client VM from 1 to 5 to
10. The load increases every 20 seconds. The WSS of the workload is
211 GB. We compare INFINISTORE with three cloud storage services,
an ElastiCache deployment of one 314.32 GB cache.m5.24x1arge
instance (the smallest ElastiCache instance that provides 25 Gbps
network bandwidth), a baseline FSx deployment of 1.2 TB, and S3.
Figure 16 shows that INFINISTORE’s throughput scales instantly
as more clients are added. We can also see that S3 scales but with a
much lower throughput. ElastiCache and FSx, on the other hand, hit
a network bandwidth bottleneck with a capped throughput of 1.52
GB/s and 489 MB/s (FSx provides burst throughput), respectively.
Both ElastiCache and FSx see a linear increase in latency (Figure 17),
since they both need to be manually re-configured to scale out. At
P90, we see a latency spike when the load increases. This is because
more functions need to be invoked on demand to sustain the burst.
As shown, INFINISTORE quickly scales out to sustain the latency
spike. INFINISTORE achieves 46.72% and 81.84% lower latency at
the 90t/ percentile compared to ElastiCache and FSx, respectively.

6.4 Parallel Recovery

Next, we evaluate the performance and effectiveness of INFINIS-
TORE’s parallel recovery scheme.

Lambda Throughput. To better understand the limitations of the
parallel recovery performance, we examine the network through-
put of the Lambda function instances. Each Lambda instance runs
10 threads that concurrently fetch data from S3 and we vary the
Lambda function-memory size from 512 MB to 3008 MB while mea-
suring the throughput of downloading objects with sizes ranging
from 2 MB to 100 MB. Figure 18 reports the results. We observe
that: (1) downloading objects of 2 MB cannot saturate a Lambda’s
network bandwidth, and (2) for all memory configurations, the
sustained network throughput can reach up to around 75 MB/s,

w

3 Insertion log
= 512M

0 n
2 z
Q o
=75 c == 1024M
= =2 B 1536M
5 [B 2048M
250 — B 3008M
5 o
325 z!
[o
< Q
= 0 x0

512 1024 1536 2048 3008 10 20 40 80

Lambda memories (MB)
Figure 18: A throughput.

of backup functions

Figure 19: Recovery time.

g w300
8 é 200 ms
24 g 1s
‘g_ 2 200 — 2s
2, g
g 5
3 100
£ b
£o G]
10 20 40 80 0 reclaimed 20 40 60
of backup functions Timeline (s)

Figure 20: Recovery thpt. Figure 21: Impact on GETs.

suggesting that a single recovery function instance is capable of
recovering 100 MB of data in 1 or 2 seconds.

Performance of Parallel Recovery. To analyze INFINISTORE’S
parallel recovery performance, we measure the time it takes to
recover the data objects stored in a Lambda function instance with
various memory configurations from 512 MB to 3, 008 MB. As shown
in Figure 19, recovering a 3, 008 MB Lambda function instance takes,
on average, 1.18 s when using 20 parallel recovery functions. The
recovery time is reduced by only 39.9% if the number of recovery
functions scales from 20 to 80. Insertion log downloading takes, on
average, 271.4 ms of the average recovery time for each recovery
function. To balance the gain and overhead, we choose to use 20
recovery functions in other experiments.

Accordingly, Figure 20 shows that the aggregate recovery through-

put achieved to recover a 3,008 MB function increases from 2.25
GB/s to 3.51 GB/s when scaling the recovery group from 20 to 80
functions. Similar trends can be observed for other Lambda config-
urations and recovery group sizes.
Impact of Recovery on Latency. We next evaluate the impact
of parallel recovery on GET latency. In this test, we first load 2, 400
unique 10 MB objects into a INFINISTORE deployment of one FG
(Function Group) of 12 3,008 MB Lambda instances with an EC code
of (10 + 2). We then run a client that issues random GET requests in
a fixed interval. We choose three different intervals: 200 ms, 1 s, and
2 s. For each test run, we kill one Lambda function 5 s after the start
of the GET workload to simulate a reclamation event performed by
the provider. On detecting the reclamation of the Lambda instance,
INFINISTORE is configured to invoke a group of 20 independent
recovery instances to perform the parallel recovery.

As shown in Figure 21, the client does not experience any service
interruptions during the run with a 2 s request interval. Because
INFINISTORE finishes parallel recovery within 2 s, and the requests
for the lost object chunks were seamlessly served by the 20 re-
covery instances while waiting for the storage instance to fully
recover from S3. In the tests with a request interval of 200 ms or
an interval of 1 s, we observe a latency increase of about 200 ms.
This is because, although the build-in erasure coding feature can
tolerate losing 2 out of (10 + 2) chunks, the process of decoding
and reconstructing the object has an impact on latency. However,
after parallel recovery, the GET latency decreases, demonstrating
the effectiveness of INFINISTORE’s parallel recovery scheme.

GET/PUT
[Recovery 0.8
12 = \Warmup . —4— SNR 400
$9.14 AS3 E 0.6 SR 400

—k— SR 95
—k- ISNC
—e-- InfiniStore

@
g 8/$6.63 $691¢621| Oo04
(@]

® SNR'400 SR 400 SR 95 InfiniStore 10? 102 103
InfiniStore configurations Latency (ms)

Figure 22: Cost of different Figure 23: Latency of differ-
configurations. ent configurations.

6.5 Factor Analysis

Finally, we measure how different design options affect INFINIS-
TORE’s cost effectiveness and latency. We use the following INFINI-
STORE configurations: (1) SNR 400: a static cluster of 400 Lambda
functions with no parallel recovery; (2) SR 400: a static cluster of
400 Lambda functions with parallel recovery to emulate a static IN-
FINICACHE setup; (3) SR 95: a static cluster of 95 Lambda functions
with parallel recovery; the rationale of using 95 functions is that
we observe that INFINISTORE uses an average of 95 functions per
minute during the 24-hour workload, though with dynamic adapta-
tions throughout; thus, for comparison, we also test the baseline
SR 95 to highlight the benefits brought by INFINISTORE’s sliding-
window management; (4) IS NC: INFINISTORE with no temporary
cache functions for serving bursty request; (5) INFINISTORE with all
features enabled. We drive the tests using a 24-hour IBM container
workload with all workload configurations the same as used in
§6.1.1. Figure 22 and 23 report the results. IS NC’s cost is omitted in
Figure 22 as it is almost the same as that of INFINISTORE. Figure 23
omits the latency results of objects larger than 10 MB as they show
negligible differences across all configurations.

Impact of Parallel Recovery. As shown in Figure 23, SNR 400
observes increased latency as data objects lost due to function
reclamation must be fetched from S3. Interestingly, SNR 400 costs
even more than INFINISTORE despite the smaller cost overhead of
warmup (Figure 22): SNR 400 spends more money serving GET/PUT
requests as significantly more SMS misses lead to prolonged Lambda
execution time for fetching missed objects from S3.

Impact of Sliding-window Management and Cache Functions.
INFINISTORE dynamically adjusts SMS capacity based on the work-
load’s WSS, while SR 95 uses a fixed function instance pool whose
capacity is on average slightly larger than the actual WSS: SR 95
costs 11.3% more than INFINISTORE (Figure 22). Recall that tempo-
rary cache functions are launched to serve request bursts (§5.3.1
and §5.3.3). IS NC has an object chunks miss rate of 18.3% at the SMS
layer with cache functions disabled, compared to a much lower miss
rate of 1.73% under INFINISTORE. As a result, we see from Figure 23
that IS NC suffers a big latency penalty.

7 RELATED WORK

Serverless Data Services. Fully-managed cloud storage services [5,
9, 21, 33, 48] transparently manage storage resources for tenants.
Researchers have also explored offloading data services to server-
less functions. Starling [37] supports database query processing
using serverless functions. Zion [43] extends object storage by of-
floading data processing to stateless serverless functions. Unlike
INFINISTORE, these systems do not directly store data in functions,
which presents new challenges that INFINISTORE addresses.

Caches/Storage for Serverless Applications. OFC [34] is an op-
portunistic memory cache that leverages overbooked host memory
of serverless functions to accelerate function execution. Faa$T [40]
is a distributed cache co-located with Faa$S applications. Faa$T scales
as the application scales. Pocket [28, 29] is an elastic ephemeral
storage for serverless analytics [13, 14, 24, 38]. SONIC [32] opti-
mizes data exchange among chained functions. AFT [45] is a fault-
tolerant shim providing atomic transaction guarantees to serverless
applications that store data in cloud storage. Shedder [58] moves
function computation directly to cloud storage. Anna’s lattice sup-
port can achieve coordination-free causal consistency [53]. Cloud-
burst [46] adds host-local cache atop Anna to support stateful func-
tion pipelines. FAASNET [50] accelerates container provisioning for
serverless functions using a P2P tree. In contrast, INFINISTORE’s
SMS layer leverages serverless functions to achieve rapid and find-
grained storage-level scaling and is designed to serve the I/Os of
general cloud applications.

Cost-effective Cloud Storage. Prior works exploit the perfor-
mance and cost heterogeneity of a combination of cloud storage
services (e.g., VM-local block drives, memory caches, and object
stores) offered by hybrid cloud providers in order to minimize the
cost of data services [1, 3, 15, 16, 36, 39, 54, 55]. INFINISTORE takes
a new route—exploiting the pay-per-use pricing model of FaaS to
achieve pay-per-access storage.

Garbage Collection in Storage Systems. LFS [41] designs a scav-
enging GC-style segment cleaner to defragment log segments in the
file system. RAMCloud [42] inherits the idea and uses the cleaner
to free the space in its log-structured memory. Jiffy [27] uses leases
to identify live data and reclaims memory if the leases expire. Data
repartitioning is needed for Jiffy to be elastic. INFINISTORE is the
first cloud memory storage that combines the traditional garbage
collection technique and the FaaS properties to achieve fine-grained
elasticity in disaggregated memory management.

8 CONCLUSION

In this paper, we rethink the fundamental design of cloud stor-
age systems and propose ServerlessMemory, a new cloud storage
service. ServerlessMemory fills a gap in cloud storage services by
offering a truly elastic, highly performant, yet low-cost with a pay-
per-access memory storage layer. By seamlessly combining Server-
lessMemory with a cost-effective cloud object store, we present a
generic and novel cloud storage system, INFINISTORE, which sup-
ports uninterrupted data services by employing an automated, fast,
and reliable parallel recovery scheme. Extensive evaluation via
real-world production storage workloads and microbenchmarks
demonstrates that INFINISTORE outperforms existing systems while
lowering costs with its pay-per-access pricing model. Furthermore,
INFINISTORE presents a new performance-$cost tradeoff in the cloud
storage landscape. INFINISTORE is open source and publicly avail-
able at: https://github.com/ds2-lab/infinistore.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their valuable feed-
back and comments. This work was sponsored in part by NSF grants:
CNS-2045680 (an NSF CAREER Award), CAREER-2048044, an NSF
CloudBank grant, CCF-1919075, CCF-1919113, OAC-2106446, and
supported by an Adobe Research gift.

https://github.com/ds2-lab/infinistore

REFERENCES

(1]

A

[12

[13]

[14]

[15]

[16]

[17]

[18]

Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. 2010.
RACS: A Case for Cloud Storage Diversity. In Proceedings of the 1st ACM Sympo-
sium on Cloud Computing (Indianapolis, Indiana, USA) (SoCC ’10). ACM, New
York, NY, USA, 229-240. https://doi.org/10.1145/1807128.1807165

AlDanial. 2022. CLOC: Count Lines of Code. https://github.com/AlDanial/cloc/.
Ali Anwar, Yue Cheng, Aayush Gupta, and Ali R. Butt. 2016. MOS: Workload-
Aware Elasticity for Cloud Object Stores. In Proceedings of the 25th ACM Inter-
national Symposium on High-Performance Parallel and Distributed Computing
(Kyoto, Japan) (HPDC ’16). Association for Computing Machinery, New York,
NY, USA, 177-188. https://doi.org/10.1145/2907294.2907304

Ali Anwar, Mohamed Mohamed, Vasily Tarasov, Michael Littley, Lukas Rup-
precht, Yue Cheng, Nannan Zhao, Dimitrios Skourtis, Amit S. Warke, Heiko
Ludwig, Dean Hildebrand, and Ali R. Butt. 2018. Improving Docker Registry
Design Based on Production Workload Analysis. In 16th USENIX Conference
on File and Storage Technologies (FAST 18). USENIX Association, Oakland, CA,
265-278. https://www.usenix.org/conference/fast18/presentation/anwar
AWS. 2022. Amazon DynamoDB: Fast, flexible NoSQL database service for single-
digit millisecond performance at any scale. https://aws.amazon.com/dynamodb/.
AWS. 2022. AWS ElastiCache: Unlock microsecond latency and scale with in-
memory caching. https://aws.amazon.com/elasticache/.

AWS. 2022. AWS FSx: Launch and run feature-rich and highly-performant file
systems with just a few clicks. https://aws.amazon.com/fsx/.

AWS. 2022. AWS Lambda execution context. https://docs.aws.amazon.com/
lambda/latest/dg/runtimes-context.html.

AWS. 2022. AWS S3: Object storage built to retrieve any amount of data from
anywhere. https://aws.amazon.com/s3/.

AWS. 2023. AWS Lambda: Run code without thinking about servers or clusters.
https://aws.amazon.com/lambda/.

Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. 2010.
Finding a Needle in Haystack: Facebook’s Photo Storage. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation (Vancouver,
BC, Canada) (OSDI'10). USENIX Association, Berkeley, CA, USA, 47-60. http:
//dl.acm.org/citation.cfm?id=1924943.1924947

Alysson Bessani, Ricardo Mendes, Tiago Oliveira, and Nuno Neves. 2014. SCFS:
A Shared Cloud-backed File System. Proceedings of the 2014 USENIX Annual
Technical Conference (2014), 169-180. https://www.usenix.org/conference/atc14/
technical-sessions/presentation/bessani

Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue
Cheng. 2020. Wukong: A Scalable and Locality-Enhanced Framework for Server-
less Parallel Computing. In Proceedings of the 11th ACM Symposium on Cloud
Computing (Virtual Event, USA) (SoCC °20). Association for Computing Machin-
ery, New York, NY, USA, 1-15. https://doi.org/10.1145/3419111.3421286
Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue Cheng. 2019. In Search
of a Fast and Efficient Serverless DAG Engine. In 4th International Parallel Data
Systems Workshop (PDSW 2019).

Yue Cheng, M. Safdar Igbal, Aayush Gupta, and Ali R. Butt. 2015. CAST: Tiering
Storage for Data Analytics in the Cloud. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing (Portland,
Oregon, USA) (HPDC ’15). ACM, New York, NY, USA, 45-56. https://doi.org/10.
1145/2749246.2749252

Yue Cheng, M. Safdar Igbal, Aayush Gupta, and Ali R. Butt. 2015. Pricing
Games for Hybrid Object Stores in the Cloud: Provider vs. Tenant. In 7th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 15). USENIX Association,
Santa Clara, CA. https://www.usenix.org/conference/hotcloud15/workshop-
program/presentation/cheng

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). ACM, New York, NY, USA, 143-154. https://doi.org/10.1145/1807128.
1807152

Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, Jodo Paulo, José
Pereira, and Ricardo Vilaga. 2013. MeT: Workload Aware Elasticity for NoSQL.
In Proceedings of the 8th ACM European Conference on Computer Systems (Prague,
Czech Republic) (EuroSys ’13). Association for Computing Machinery, New York,
NY, USA, 183-196. https://doi.org/10.1145/2465351.2465370

Docker. 2022. Docker Hub: Container Image Library. https://www.docker.com/
products/docker-hub.

Google. 2022. Google Cloud Functions. https://cloud.google.com/functions/.
Google. 2022. Google Cloud Storage. https://cloud.google.com/storage.

IETF HTTP Working Group. 2022. HTTP/2. https://http2.github.io/.

IBM. 2022. IBM Cloud Functions. https://console.bluemix.net/openwhisk/.
Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
ACM, New York, NY, USA, 445-451. https://doi.org/10.1145/3127479.3128601

[27]

(28]

[29]

(30]

[31]

(32]

[35

[36]

[38

[39

[40

[41]

Richard Jones and Rafael. Lins. 1996. Garbage collection : algorithms for auto-
matic dynamic memory management. (1996), 377.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing (El Paso, Texas,
USA) (STOC *97). Association for Computing Machinery, New York, NY, USA,
654-663. https://doi.org/10.1145/258533.258660

Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion
Stoica. 2022. Jiffy: Elastic Far-Memory for Stateful Serverless Analytics. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys 22). Association for Computing Machinery, New York, NY,
USA, 697-713. https://doi.org/10.1145/3492321.3527539

Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. 2018. Understanding Ephemeral Storage for Serverless
Analytics. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 789-794. https://www.usenixorg/conference/atc18/
presentation/klimovic-serverless

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427-444. https:
//www.usenix.org/conference/osdi18/presentation/klimovic

Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L. Miller.
2008. Measurement and Analysis of Large-Scale Network File System Workloads.
In USENIX 2008 Annual Technical Conference (Boston, Massachusetts) (ATC’08).
USENIX Association, USA, 213-226.

M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz, V. Tarasov, L. Rupprecht, D. Skourtis,
M. Mohamed, H. Ludwig, Y. Cheng, and A. R. Butt. 2019. Bolt: Towards a
Scalable Docker Registry via Hyperconvergence. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). 358-366. https://doi.org/10.1109/
CLOUD.2019.00065

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained
Serverless Applications. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, 285-301. https://www.usenix.org/conference/
atc21/presentation/mahgoub

Microsoft. 2022. Azure Blob Storage. https://azure.microsoft.com/en-us/services/
storage/blobs/.

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel
Hagimont, Noél De Palma, Bernabé Batchakui, and Alain Tchana. 2021. OFC: An
Opportunistic Caching System for FaaS Platforms. In Proceedings of the Sixteenth
European Conference on Computer Systems, Vol. 21. ACM, New York, NY, USA,
17. https://doi.org/10.1145/3447786.3456239

Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. 2011. Fast Crash Recovery in RAMCloud. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (Cascais, Portugal)
(SOSP °11). Association for Computing Machinery, New York, NY, USA, 29-41.
https://doi.org/10.1145/2043556.2043560

T. G. Papaioannou, N. Bonvin, and K. Aberer. 2012. Scalia: An adaptive scheme for
efficient multi-cloud storage. In SC ’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. 1-10. https:
//doi.org/10.1109/SC.2012.101

Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden.
2020. Starling: A Scalable Query Engine on Cloud Functions. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD °20). Association for Computing Machinery, New York, NY,
USA, 131-141. https://doi.org/10.1145/3318464.3380609

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 193-206. https://www.usenix.org/conference/nsdi19/presentation/
pu

Krishna P.N. Puttaswamy, Thyaga Nandagopal, and Murali Kodialam. 2012.
Frugal Storage for Cloud File Systems. In Proceedings of the 7th ACM European
Conference on Computer Systems (Bern, Switzerland) (EuroSys ’12). ACM, New
York, NY, USA, 71-84. https://doi.org/10.1145/2168836.2168845

Francisco Romero, Gohar Irfan Chaudhry, iﬂigo Goiri, Pragna Gopa, Paul Ba-
tum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo
Bianchini. 2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Appli-
cations. Association for Computing Machinery, New York, NY, USA, 122-137.
https://doi.org/10.1145/3472883.3486974

Mendel Rosenblum and John K. Ousterhout. 1992. The design and implemen-
tation of a log-structured file system. ACM Transactions on Computer Systems
(TOCS) 10 (2 1992), 26-52. Issue 1. https://doi.org/10.1145/146941.146943

https://doi.org/10.1145/1807128.1807165
https://github.com/AlDanial/cloc/
https://doi.org/10.1145/2907294.2907304
https://www.usenix.org/conference/fast18/presentation/anwar
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/fsx/
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
http://dl.acm.org/citation.cfm?id=1924943.1924947
http://dl.acm.org/citation.cfm?id=1924943.1924947
https://www.usenix.org/conference/atc14/technical-sessions/presentation/bessani
https://www.usenix.org/conference/atc14/technical-sessions/presentation/bessani
https://doi.org/10.1145/3419111.3421286
https://doi.org/10.1145/2749246.2749252
https://doi.org/10.1145/2749246.2749252
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/cheng
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/cheng
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2465351.2465370
https://www.docker.com/products/docker-hub
https://www.docker.com/products/docker-hub
https://cloud.google.com/functions/
https://cloud.google.com/storage
https://http2.github.io/
https://console.bluemix.net/openwhisk/
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/3492321.3527539
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1109/CLOUD.2019.00065
https://doi.org/10.1109/CLOUD.2019.00065
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1145/2043556.2043560
https://doi.org/10.1109/SC.2012.101
https://doi.org/10.1109/SC.2012.101
https://doi.org/10.1145/3318464.3380609
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1145/2168836.2168845
https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1145/146941.146943

[42

[43

[44

[45]

[46]

[47]

[48]

[49

Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. 2014. Log-structured
Memory for DRAM-based Storage. In 12th USENIX Conference on File and Storage
Technologies (FAST 14). USENIX Association, Santa Clara, CA, 1-16. https:
//www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
Josep Sampé, Marc Sanchez-Artigas, Pedro Garcia-Lopez, and Gerard Paris. 2017.
Data-Driven Serverless Functions for Object Storage. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (Las Vegas, Nevada) (Middleware ’17).
Association for Computing Machinery, New York, NY, USA, 121-133. https:
//doi.org/10.1145/3135974.3135980

Mikhail Shilkov. 2018. Serverless: Cold Start War. https://mikhail.io/2018/08/
serverless-cold-start-war/.

Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E. Gonzalez,
Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A Fault-Tolerance Shim for
Serverless Computing. In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys "20). Association for Computing
Machinery, New York, NY, USA, Article 15, 15 pages. https://doi.org/10.1145/
3342195.3387535

Vikram Sreekanti, Chenggang Wu, Charles Lin, Johann Schleier-Smith, Joseph E
Gonzalez, Joseph M Hellerstein, Alexey Tumanov, U C Berkeley, Georgia Tech,
and Jose M Faleiro. [n.d.]. Cloudburst: Stateful Functions-as-a-Service. ([n. d.]).
https://doi.org/10.14778/3407790.3407836

Huangshi Tian, Yunchuan Zheng, and Wei Wang. 2019. Characterizing and
Synthesizing Task Dependencies of Data-Parallel Jobs in Alibaba Cloud. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)
(SoCC ’19). Association for Computing Machinery, New York, NY, USA, 139-151.
https://doi.org/10.1145/3357223.3362710

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey, Kamal Gupta,
Murali Brahmadesam, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice,
Tengiz Kharatishvilli, and Xiaofeng Bao. 2018. Amazon Aurora: On Avoiding
Distributed Consensus for I/Os, Commits, and Membership Changes. In Proceed-
ings of the 2018 International Conference on Management of Data (Houston, TX,
USA) (SIGMOD °18). Association for Computing Machinery, New York, NY, USA,
789-796. https://doi.org/10.1145/3183713.3196937

Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Mo-
tivala, and Thierry Cruanes. 2020. Building An Elastic Query Engine on Dis-
aggregated Storage. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 449-462.
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

[50

[51]

[53

(54]

[55]

(58]

Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba Li,
Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast Provisioning of Custom
Serverless Container Runtimes at Alibaba Cloud Function Compute. In 2021
USENIX Annual Technical Conference (USENLX ATC 21). USENIX Association,
443-457. https://www.usenix.org/conference/atc21/presentation/wang-ao
Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020. InfiniCache: Exploiting
Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache. In
18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX
Association, Santa Clara, CA, 267-281. https://www.usenix.org/conference/
fast20/presentation/wang-ao

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133-146. https://www.usenix.org/conference/atc18/presentation/wang-liang
Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. 2021. Anna:
A KVS for Any Scale. IEEE Transactions on Knowledge and Data Engineering 33
(2 2021), 344-358. Issue 2. https://doi.org/10.1109/TKDE.2019.2898401

Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. 2013. SPANStore: Cost-effective Geo-replicated Storage Spanning
Multiple Cloud Services. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). ACM, New
York, NY, USA, 292-308. https://doi.org/10.1145/2517349.2522730

Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. 2015. CosTLO: Cost-Effective Re-
dundancy for Lower Latency Variance on Cloud Storage Services. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 543-557. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/wu

ZeroMQ. 2022. ZeroMQ. https://zeromq.org/.

Jingyuan Zhang, Ao Wang, Xiaolong Ma, Benjamin Carver, Nicholas John
Newman, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov,
Feng Yan, and Yue Cheng. 2022. InfiniStore: Elastic Serverless Cloud Storage.
https://doi.org/10.48550/ARXIV.2209.01496

Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing the Gap
Between Serverless and its State with Storage Functions. In Proceedings of the
ACM Symposium on Cloud Computing - SoCC ’19. Association for Computing
Machinery (ACM), New York, New York, USA, 1-12. https://doi.org/10.1145/
3357223.3362723

https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://mikhail.io/2018/08/serverless-cold-start-war/
https://mikhail.io/2018/08/serverless-cold-start-war/
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3183713.3196937
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1109/TKDE.2019.2898401
https://doi.org/10.1145/2517349.2522730
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/wu
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/wu
https://zeromq.org/
https://doi.org/10.48550/ARXIV.2209.01496
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1145/3357223.3362723

	Abstract
	1 Introduction
	2 Motivation
	2.1 Dynamic WSS and Throughput
	2.2 Temporal Access Pattern

	3 Why Use FaaS for Data Storage?
	3.1 FaaS Properties
	3.2 InfiniCache

	4 Serverless Memory
	5 InfiniStore Design
	5.1 SMS Design Challenges
	5.2 Design Overview
	5.3 ServerlessMemory Store Management
	5.4 Function-Memory Space Management
	5.5 Fault Tolerance and Data Recovery

	6 Evaluation
	6.1 Applications
	6.2 YCSB Microbenchmarking
	6.3 Elasticity Microbenchmarking
	6.4 Parallel Recovery
	6.5 Factor Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

