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Abstract Scale variance among different sizes of body parts and objects is a challenging problem for
visual recognition tasks. Existing works usually design a dedicated backbone or apply Neu-
ral architecture Search (NAS) for each task to tackle this challenge. However, existing works
impose significant limitations on the design or search space. To solve these problems, we
present ScaleNAS, a one-shot learning method for exploring scale-aware representations.
ScaleNAS solves the limitation of scale representation by searching multi-scale feature ag-
gregation. ScaleNAS adopts a flexible multi-path search space that allows an arbitrary num-
ber of blocks and cross-scale feature fusions. To cope with the high search cost incurred by
the flexible space, ScaleNAS employs one-shot learning for multi-scale (multi-path) supernet
driven by grouped sampling and evolutionary search. Without further retraining, ScaleNet
can be directly deployed for different visual recognition tasks with superior performance. We
use ScaleNAS to create high-resolution models for two different tasks, ScaleNet-P for human
pose estimation and ScaleNet-S for semantic segmentation. ScaleNet-P and ScaleNet-S out-
perform existing manually crafted and NAS-based methods in both tasks. Using ScaleNet-P
for bottom-up human pose estimation, it achieves a new state-of-the-art on COCO test-dev
and CrowdPose test. In particular, ScaleNet-P4 achieves 71.3% AP on CrowdPose test, sur-
passing the previous best result by a large 3.7% AP margin.

1 Introduction

Deep representation learning can be generally categorized into low-resolution representation learn-
ing and high-resolution representation learning. Low-resolution representation is typically used
in classification tasks while high-resolution representation is essential for visual recognition tasks
such as semantic segmentation and human pose estimation. We focus on the high-resolution rep-
resentation in this paper. There are three important yet challenging considerations when designing
high-resolution representation: 1) the scale variance from different sizes of objects and scenes is
quite large; 2) precise and informative feature maps are critical; 3) the expensive cost in training
and searching multi-path architectures.

1) Challenge of scale variance: Take semantic segmentation as an example, the variance of
object size induces difficulty for pixel-level dense prediction, and thus scale-aware representation is
critical. In human pose estimation, it is challenging to localize human anatomical keypoints when
there is a high scale variance in the scene such as people having different sizes, the large difference
in joint distance. We address this challenge by proposing a new multi-scale search space.

2) Challenge of high-resolution representation: To design high-resolution representations,
earlier efforts recover high-resolution representations from low-resolution outputs, e.g., Hour-
glass [27], SegNet [3], U-Net [32]. Recent works focus on maintaining high-resolution represen-
tation through the whole network and aggregating different scales of representation from parallel
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(a) HRNet Design Space (d) ScaleNAS Search Space(c) Dynamic Routing Search Space (b) Auto-DeepLab Search Space 

Figure 1: Search space comparison. (a) HRNet uses fully connected multi-scale feature fusion. (b,c) Auto-
DeepLab and dynamic routing allow neighbor feature fusion connection. (d) We propose a flexible
feature fusion that allows crossing to remote feature maps to maximize multi-scale aggregation.

paths, e.g., HRNet [33, 34] and its variants. However, multi-scale neural architectures usually have
a large design space to explore and are prone to design redundancies. Our study reveals that when
different scales of representation have different depths, the performance can be greatly improved.
We push the envelope even further by exploring scale-aware representations in a much more flexible
design space.

3) Challenge of the expensive cost in training and searching multi-path architectures: In
order to derive a wide spectrum of models, training and searching cost is prohibitively expensive.
Among various searching methods, one-shot based NAS adopts weight-sharing mechanism to re-
duce the searching cost [24, 16]. State-of-the-art one-shot searching without retraining allows us to
search multiple well-performed neural architectures at a considerably lower searching cost [6, 38].
However, current one-shot based searching1 [6, 38] is only limited to single-path [6, 38] due to the
difficulty and high cost in supernet training [12]. Considering the high-resolution scale-aware repre-
sentation with multi-scale aggregation is very useful for visual recognition tasks, we are motivated
to enhance the one-shot based searching method with multi-path capability. Since training a multi-
path architecture intrinsically has more weights to be maintained, the existing multi-path one-shot
method [12] is only limited to DARTS [24] search space without multi-scale setting in each stage.
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Figure 2: The trade-off between computation cost
(GFLOPs) and model performance. Left:
semantic segmentation mIoU on Cityscapes
val. Right: human pose estimation AP on
COCO val. Our ScaleNet outperforms HR-
Net and NAS-based methods.

To address the above challenges, we pro-
pose ScaleNAS, a multi-path one-shot based
searching method to explore scale-aware neu-
ral architectures. We tackle the scale variance
challenge by proposing multi-scale aggregation
search space to explore multi-scale aggregation
and network depth for high-resolution represen-
tation. While this new search space enables a
more flexible neural architecture design with
better information integration, it also brings
new challenges for the search method. Specif-
ically, such a significantly large search space
causes sub-optimal accuracy of sub-networks
due to inefficient network exploration. To en-
able efficient searching for the proposed multi-
path search space, we further establish a new
searching method to discover multiple architec-
tures simultaneously. Specifically, we introduce two techniques grouped sampling and multi-scale
topology evolution to help the supernet training and architecture searching, respectively.

We name these elite architectures ScaleNet. As demonstrated in Figure 2, ScaleNet outperforms
manually crafted and NAS-based models on semantic segmentation and human pose estimation. In
semantic segmentation, ScaleNet surpasses HRNet, Auto-DeepLab, and dynamic routing by 1.3% -

1In this paper, one-shot NAS refers in particular to NAS without retraining.
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1.7% mIoU on CityScapes dataset with less computation cost. In bottom-up human pose estimation,
our ScaleNet-P4 achieves a new state-of-the-art on COCO test-dev2017 and CrowdPose test. In
particular, ScaleNet-P4 achieves 71.3% AP on CrowdPose test, surpassing the previous best result
by a large 3.7% AP margin.

2 Related Work
NAS for High-resolution Architectures. Recent works proposed to automate the design of neural
architectures for semantic segmentation and human pose estimation. For example, Auto-DeepLab
and dynamic routing [21] are proposed to search architectures for semantic segmentation models.
PoseNAS [4], AutoPose [15] and PNFS [36] are proposed to search architectures for human pose
estimation. However, the above NAS-based methods can only craft architectures for one task at
a time. Our ScaleNAS supports dealing with multiple tasks simultaneously by searching multi-
scale feature aggregation in a novel multi-path search space. In addition, previous works [14, 21]
are based on a limited multi-scale fusion constraint that each of the scale can only connect to its
neighboring scale. ScaleNAS adopts a more flexible cross-scale fusion to allow better information
gathering resulting in higher accuracy. Moreover, existing methods can only derive one architecture
at a time which leads to 𝑂 (𝑁 ) time to derive 𝑁 models. We propose multi-path one-shot based
searching method to lower the total cost to 𝑂 (1).
Multi-Path One-Shot Neural Architecture Search. Weight-sharing NAS [29, 5, 24, 7, 16] aims at
deriving neural architectures from an over-parameterized neural network (supernet). One-shot NAS
can be generally categorized to single-path one-shot (SPOS) and multi-path one-shot (MPOS) [12].

For SPOS, recent works focus on deriving a family of state-of-the-art neural architectures with-
out extra retraining or post-processing [6, 38]. For example, BigNAS [38] transforms the problem
of training supernet to training a big single-stage model and applies sandwich rule to guarantee the
performance for each sub-network. OFA [6] proposes to use progressive shrinkage together with
distillation to train a one-shot supernet. However, these methods are mainly designed for single-path
neural architecture on relatively simple task (e.g., ImageNet classification).

For MPOS, it intrinsically has more trainable parameters to be maintained. As each of the
sub-network share its weights on supernet, the weight interference from sub-networks and training
instability are significantly amplified in the multi-path setting [12]. Thus, directly applying MPOS
to multi-path search space and more complicated tasks (e.g., segmentation and pose estimation) is
not a feasible solution. In addition, the exponential increase of search space size makes multi-scale
supernet training and architecture searching even more challenging.

In this paper, we take the advantage of the diversity of multi-path search space and develop
new supernet sampling and evolutionary approaches to improve the searching method to enable
exploring a wide spectrum of sub-networks as well as fast searching of elite architectures.

3 Search Space Design
One important observation is that the search spaces in existing work (Figure. 1) have multiple re-
dundancies and lack of representation ability. To address this search space problem, we first perform
a search space exploration. Then we introduce a new multi-scale aggregation search space to over-
come the limitations of exiting search space.

3.1 Search Space Exploration

Existing works that achieve state-of-the-art results on semantic segmentation and human pose esti-
mation impose limitations on the design space. As shown in Figure 1, HRNet supports cross-scale
feature fusions, but it uses four residual blocks in every scale of branchs. Such regular design results
in redundancy and misses optimization opportunities as the depth for each branch can be altered to
improve performance.
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Auto-DeepLab [23] includes multiple scale options in their search space to search
a single-path neural architecture for semantic segmentation. Dynamic routing [21]
reused the search space form Auto-DeepLab to search a multi-path neural architec-
ture to achieve improved performance on semantic segmentation. Although Auto-
DeepLab and dynamic routing search the connections between different scales of
feature maps, the search space for fusion is limited to only neighboring scales.

96 97 98 99 100 101
FLOPS(G)

46

47

48

49

50

51

Ci
ty

sc
ap

es
 m

Io
U 

va
l

ScaleNet-random
Dynamic routing-random

ScaleNet-average
Dyanmic routing-average

HRNet

Figure 3: Search space exploration. ScaleNet-random
and Dynamic routing-random denotes randomly se-
lected architectures. ScaleNet-average and Dynamic
routing-average denotes the average accuracy of each
group.

Such limitation restricts the representation abil-
ity for feature maps and cross-scale feature fu-
sion can provide better information gathering
for each scale of feature maps. To illustrate
our search space, we compare ScaleNet search
space with HRNet and dynamic routing search
space. Different from existing works, we pro-
vide flexible depth (number of residual blocks)
for each scale of branch. In addition, we al-
low feature fusion to cross to any other scale of
branches. We randomly sample several archi-
tectures from our ScaleNet search space and dy-
namic routing search space, and train them on
Cityscapes [13]. With the same random sam-
ple size, ScaleNet search space achieves higher
average accuracy than dynamic routing search
space and HRNet (Figure 3). This reveals the
huge potential of multi-scale feature aggrega-
tion in our ScaleNet search space.

3.2 Multi-Scale Aggregation Search Space

Based on the experimental results shown in Figure 3, we observe that cross scale feature fusion
provides more network diversity and better feature integration that comes with higher accuracy.
Thus we propose a new multi-scale aggregation search space and shows its overview in Figure 4.
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Figure 4: ScaleNAS search space overview. Our search space inherit the spirit of HRNet that has few stages.
ScaleNAS adopts a flexible search space with arbitrary number of blocks and cross-scale feature fusions.

We employ a stage-based search space design, which is inspired by the state-of-the-art architec-
ture HRNet that can be adapted to multiple tasks. Our search space starts from a stem cell as the first
stage and it is composed of two stride-2 3×3 convolutions. There are four stages in our search space.
After the first stage, we gradually add one more high-to-low branch for the following stages, i.e.,
stage2, stage3, and stage4 maintains two-resolution, three-resolution, and four-resolution branches
respectively. As shown in Figure 4, the convolution operation in our search space is the residual
block which is composed of two 3 × 3 convolutions. Searchable fusion includes downsampling and
upsampling. For downsampling, we use strided 3× 3 convolution with stride 2. For upsampling, we
use bilinear upsampling followed by a 1 × 1 convolution for aligning the number of channels [34].
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Figure 5: Workflow of ScaleNAS. ScaleNAS train a SuperScaleNet in the proposed search space and uses
our proposed evolutionary method to explore elite architectures based on the trained SuperScaleNet. (a)
Before training starts, we initialize SuperScaleNet by the teacher model. (b) During each iteration, we
sample ScaleNet from the SuperScaleNet. (c) We use the task loss from true labels and the distillation loss
from soft labels given by teacher to update SuperScaleNet.

We introduce two controlling factors to form our search space:

1. Branch depth (𝑑). Instead of searching the overall depth for the entire network, we allow a
more flexible search space that can search depth for each branch in individual independent stage
module. For simplicity, the depth of each branch is chosen from {d1, d2, d3, d4}. In this paper,
we currently set it at {2, 3, 4, 5}

2. Fusion percentage (𝑓 ). Here the fusion percentage is defined as the probability of the out-degree
fusion for each feature map. E.g., a feature map with fusion percentage of 50% means this feature
map randomly connects to half of the other scales of feature map at the next depth.

By relaxing the cross-scale feature fusion and enlarging the branch blocks, we have roughly
7×1072 different neural network architectures in our search space.

4 Architecture Search

Our goal is to design multi-scale neural architectures that can be adapted to various visual recogni-
tion tasks without retraining. Instead of searching a single model at a time, we aim at discovering
a wide spectrum of models that have different computation cost for different deployment scenar-
ios. Meanwhile, we also need to address the inefficiency of network exploration brought by the
new multi-path search space. To explain how our multi-path one shot searching method achieve the
above goals, we first introduce how to train a one-shot based SuperScaleNet that contains a wide
spectrum of architecture candidates. Then, we employ multi-scale topology evolution to derive elite
ScaleNet based on a trained SuperScaleNet.

4.1 Training One-Shot SuperScaleNet

The configuration of SuperScaleNet follow the description in Figure 4 with maximum number of
depth (𝑑 = 5) and fully connected feature fusion (𝑓 = 100%). Figure 5 depicts the workflow of
SuperScaleNet training. We follow the common practice of SPOS [6, 38, 11] to use the largest
architecture as a teacher model to provide soft labels during each iteration. In our case, the teacher
model is the same configuration as SuperScaleNet.

Visual recognition tasks usually rely on ImageNet pretrained to stabilize training [34, 31], we
pretrain the teacher model on ImageNet until converge. Then, we initialize SuperScaleNet with
the weights from the teacher model. During each training iteration, we sample a sub-network from
SuperScaleNet, pass one batch of training data to both sampled sub-network and teacher model.
Next, we calculate the task loss, using the true label, distillation loss using the soft label given by
teacher model. Finally, we update the supernet based on the combination of both task loss and
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distillation loss. Our training objective is formulated as follow:

min
𝑊𝑠

∑︁
𝑎𝑟𝑐ℎ𝑖

(L𝑡𝑎𝑠𝑘 (𝑃𝑎𝑟𝑐ℎ𝑖 , 𝑦) + 𝛼 ·𝑀𝑆𝐸 (𝑃𝑎𝑟𝑐ℎ𝑖 , 𝑃𝑡 )) . (1)

Our main goal is to optimize the weights of SuperScaleNet 𝑊𝑠 with the combination of true
label loss and soft label loss. Here 𝑃𝑎𝑟𝑐ℎ𝑖 stands for the prediction for each sampled architecture,
𝑦 is the true label. 𝑃𝑡 stands for the prediction from teacher model. We use mean squared error
(MSE) to calculate the loss between sub-network prediction and teacher network prediction. The
distillation ratio 𝛼 is set to 1.

Grouped Sampling. To train supernet, sampling plays a crucial role. Sandwich rule [37, 38]
is a common way to train supernet, where the smallest model, the largest model, and two randomly
sampled models are trained in every iteration. However, we observe that sandwich rule cannot
guarantee to explore a wide spectrum of neural architectures especially in multi-path search space.
Therefore, we propose grouped sampling by dividing the whole search space into different sub-
groups. According to central limit theorem (CLT) [2], the distribution of sampled architectures 𝐷
can be approximated by a normal distribution with a mean and variance, noted as 𝜇 and 𝜎 . Directly
applying the SPOS based sampling method (sandwich rule), the sampled architecture is mostly
centered at the mean of 𝜇0. Therefore, previous methods cannot fully explore the wide search space
as denoted in Figure 6.

However, our grouped sampling approach overcomes such limitation by dividing the large
search space into several sub-search-spaces. Grouping the entire search space to 𝑖 sub-groups,
we essentially allow the supernet to explore each of the sub-search-space with different distribution
characterized by different mean values, e.g., 𝜇1, 𝜇2, . . . , 𝜇𝑖 .
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Figure 6: The probability density function of architecture sampling. Sandwich rule samples the smallest,
the largest, and two networks from the search space with distribution mean of 𝜇0. Our grouped sampling
divides the large multi-scale search space to sub-groups and perform sampling from each distribution.

Specifically, given a depth choice of {d1, d2, d3, d4}, we group the depth choice to {[d1, d2],
[d2, d3], [d3, d4]} (e.g., {[2, 3], [3, 4], [4, 5]}), the fusion percentage is selected from {f1, f2,
f3} (e.g., {0.2, 0.5, 0.8}). In combination, we have a total of 9 (3×3) sub-groups. Compared
with sandwich rule, grouped sampling is more suitable for multi-scale aggregation search space.
Empirical justification is detailed in Section 5.3.

It is worth noting that unlike in OFA [6] or BigNAS [38], where 4 sub-networks are sampled
and their gradients are aggregated in each update step, our group sampling only get one sub-network
in each iteration. Therefore, the cost of training a SuperScaleNet using group sampling is very low,
e.g., equivalent to a standard model training.

4.2 Multi-Scale Architecture Topology Evolution

To explore sub-network from a trained supernet, existing one-shot based methods use coarse-to-
fine selection [38], evolutionary method [6], etc. However, these methods are mainly designed for
single-path neural architecture. In comparison, our search space includes multiple path in each
stage and each stage has different number of scales. Therefore, we propose multi-scale architecture
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topology evolution, which provides more reasonable and controllable crossover and mutation over
candidate architectures. As described in Figure 5, our topology evolution include the following four
phases. The detailed algorithm can be found in the supplementary materials.

• Step1 Initialization. We uniformly sample 𝑛0 sub-networks and record their architectures, accu-
racies, and FLOPs as a set D. 𝑛0 equals to 1,000 in our experiments.

• Step2 Selection. We select top 𝑘 models on the Pareto front of cost/accuracy trade-off curve
in D as candidate group C. For each subnetwork in C, we do crossover and mutation to obtain
next-generation offsprings. 𝑘 is set to 100 in our experiments.

• Step3 Crossover. Since different stage module may have different number of branches, our
crossover is inner-stage crossover. For each sub-network archc in C, we allow a probability 𝑝𝑐
to swap stage module settings with another randomly selected sub-network. There are 8 stage
modules (1,4,3 for stage 2, 3, 4, respectively) and 𝑝𝑐 is set to 0.25. Thus, each sub-network is
expected to have 2 modules been replaced.

• Step4 Mutation. After crossover, we do random mutation to switch on and off the fusion con-
nections in every stage module with probability 𝑝𝑚. 𝑝𝑚 is set to 0.5. These 𝐾 offspring models
along with their corresponding accuracies and FLOPs are recorded as set M. Then we update
D = D ∪M. We continue to Step2 until we have 𝑁 sub-networks in D. Here we set 𝑁 as 2,000.

The advantage of our method is twofold: 1) our evolution method maintains a large number
of Pareto front models (100) as parent groups while aging evolution only has one parent in every
generation which limits the search space exploration; 2) our cross-over and mutation allow us to
explore macro and micro architectures in the multi-scale search space. Specifically, our cross-over
serves as a macro architecture search that explores the order of each inner stage modules. Our
mutation provides a micro architecture search by tweaking feature fusion connections. Empirical
justification is detailed in Section 5.3.

5 Experiments
In this section, we evaluate ScaleNAS by searching neural architectures for semantic segmentation
and human pose estimation. First we train SuperScaleNet on semantic segmentation with Cityscapes
dataset [13] and derive ScaleNet-S. Then we apply the same searching routine on top-down human
pose estimation framework with COCO dataset [22] to derive ScaleNet-P. In order to evaluate the
generalizability of ScaleNet, we apply ScaleNet-P to HigherHRNet framework for bottom-up hu-
man pose estimation. Finally, we conduct analysis and ablation studies.

5.1 Semantic Segmentation
We conduct semantic segmentation tasks on Cityscapes [13] dataset. Table 1 reports the comparison
between ScaleNAS and existing manual/NAS methods on semantic segmentation. Comparing with
NAS (Auto-Deeplab and dynamic routing), ScaleNAS is much more efficient for multiple deploy-
ment scenarios. E.g., when there are 40 deployment scenarios, the total cost of ScaleNAS is 12×
fewer than dynamic routing and 19× fewer than Auto-Deeplab, respectively. Without additional
retraining, ScaleNet-S1 outperforms the dynamic routing Layer33-PSP by a 0.8% margin under
the similar cost. When comparing with manually designed HRNet-W48 or Searched-F48-ASPP,
ScaleNet-S4 improves the mIoU to 82.0%, surpassing HRNet and Auto-Deeplab by 0.9% and 1.7%
respectively.

5.2 Human Pose Estimation
For human pose estimation, we first search ScaleNet-P on top-down human pose estimation task
using COCO [22]. Then we reuse ScaleNet-P on MPII [1] and bottom-up pose estimation tasks.
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Table 1: Semantic segmentation results on Cityscapes val (single scale, no flipping). GFLOPs is calculated
on the input size 1024 × 2048. ‘D-X’ equals to ‘Dilated-X’. For existing segmentation NAS works, the cost
grows linear to the number of deployment scenarios 𝑁 , while ScaleNAS cost remains constant.

Method Backbone #Params GFLOPs mIoU Searching Cost Training Cost Total Cost(𝑁=40)
(%) (GPU hours) (GPU hours) (GPU hours)

DeepLabv3 [8] D-ResNet-101 58.0M 1778.73 78.5 - 50𝑁 -
DeepLabv3+ [9] D-Xception-71 43.5M 1444.63 79.6 - - -

PSPNet [39] D-ResNet-101 65.9M 2017.63 79.7 - 100𝑁 -
Auto-DeepLab [23] Searched-F20-ASPP - 333.3 79.7 72𝑁 250𝑁 12.9𝑘

Dynamic Routing [21] Layer33-PSP - 270.0 79.7 180𝑁 0 7.2𝑘
ScaleNAS (Ours) ScaleNet-S1 25.3M 265.5 80.5 200 400 600
ScaleNAS (Ours) ScaleNet-S2 28.5M 309.5 81.1 200 400 600

Auto-DeepLab [23] Searched-F48-ASPP - 695.0 80.3 72𝑁 350𝑁 16.9𝑘
HRNet [34] HRNet-W48 65.8M 696.2 81.1 - 260𝑁 -

ScaleNAS (Ours) ScaleNet-S4 67.5M 673.6 82.0 300 600 900

Table 2: Top-down human pose estimation results.

Comparison on COCO val2017. AutoPose* reports results without ImageNet pretraining.
Method Backbone Input size #Params GFLOPs AP AP50 AP75 AP𝑀 AP𝐿 AR

SimpleBaseline [35] ResNet-152

256×192

68.6M 15.7 72.0 89.3 79.8 68.7 78.9 77.8
AutoPose [15] AutoPose* - 10.65 73.6 90.6 80.1 69.8 79.7 78.1

HRNet [34] HRNet-W48 63.6M 14.6 75.1 90.6 82.2 71.5 81.8 80.4
ScaleNAS (Ours) ScaleNet-P2 35.6M 8.0 75.2 90.4 82.4 71.6 81.9 80.4

PNFS [36] PoseNFS-3

384×288

- 14.8 73.0 - - - -
SimpleBaseline [35] ResNet-152 68.6M 35.6 74.3 89.6 81.1 70.5 79.7 79.7

HRNet [34] HRNet-W48 63.6M 32.9 76.3 90.8 82.9 72.3 83.4 81.2
ScaleNAS (Ours) ScaleNet-P3 26.2M 14.3 76.3 90.7 82.9 72.5 83.3 81.3
ScaleNAS (Ours) ScaleNet-P4 64.3M 32.6 77.0 90.9 83.6 73.0 84.2 81.8

Comparison on MPII val. The GFLOPs is calculated on the input size 256 × 256. We reuse the ScaleNet-P and apply it to MPII .
Method Backbone #Params GFLOPs mean Head Shoulder Elbow Wrist Hip Knee

SimpleBaseline [35] ResNet-152 68.6M 20.9 88.5 96.4 95.3 89.0 83.2 88.4 84.0
HRNet [34] HRNet-W32 28.5M 9.5 90.3 97.1 95.9 90.3 86.4 89.1 87.1

ScaleNAS (Ours) ScaleNet-P1 28.5M 9.3 91.0 97.3 96.5 91.5 87.3 90.0 87.5

Top-down Methods. Table 2 summarizes the results of top-down methods on COCO val2017 and
MPII val, compared with other state-of-the-art methods. Under 256×192 input resolution, ScaleNet-
P2 outperforms manually designed SimpleBaseline [35] (+3.2%) and NAS based AutoPose [15]
(+1.6%) by a large margin. In addition, ScaleNet-P2 is comparable with the strong HRNet [34]
baseline but with only 56% parameters and 55% FLOPs. With 384×288 input resolution, ScaleNet-
P3 achieves 76.3% AP on COCO val2017, outperforming PoseNFS-3 [36] by 3.3% AP with less
computation cost. ScaleNet-P3 has the same accuracy as HRNet-W48 but uses only 42% parameters
and 43% FLOPs. ScaleNet-P4 obtains 77.0% AP, surpassing its strong HRNet counterpart by 0.7%
AP. For MPII, ScaleNet-P1 performs the best comparing with SimpleBaseline and HRNet.

Table 3: Bottom-up human pose estimation results.

Comparison on COCO val2017 w/o multi-scale test.
Method Backbone Input size #Params GFLOPs AP

HigherHRNet [10]

HRNet-W32 512 28.6M 47.9 67.1
ScaleNet-P1(Ours) 512 28.6M 46.9 67.8

HRNet-W48 640 63.8M 154.3 69.9
ScaleNet-P4(Ours) 640 64.4M 141.5 70.4

Comparison on COCO test-dev 2017 w/ multi-scale test.
Method Backbone Input size #Params GFLOPs AP

PersonLab [28] ResNet-152 1401 68.7M 405.5 68.7
HigherHRNet [10] HRNet-W48 640 63.8M 154.3 70.5
ScaleNAS (ours) ScaleNet-P4(Ours) 640 64.4M 141.5 71.6

Comparison on CrowdePose test w/ multi-scale test.
Method Backbone Input size #Params GFLOPs AP

HigherHRNet [10] HRNet-W48 640 63.8M 154.0 67.6
ScaleNAS (ours) ScaleNet-P4(Ours) 640 64.4M 141.2 71.3

Bottom-up Methods. As shown in
Table 3, by utilizing our ScaleNet-P
as feature extractor, we boost the per-
formance of bottom-up pose estima-
tion. Our ScaleNet-P4 and ScaleNet-
P1 outperform their counterparts by
0.7% AP and 0.5% AP on COCO
val2017 ,respectively. When perform-
ing evaluation on COCO test-dev2017
and CrowdePose test, our ScaleNet-P4
achieves a new state-of-the-art. In par-
ticular, ScaleNet-P4 achieves 71.3%
AP on CrowdPose test, surpassing the

8



220 240 260 280 300 320
FLOPS(G)

77

78

79

80

81
Ci

ty
sc

ap
es

 m
Io

U 
va

l

Group Sampling Frontier(Ours)
ScaleNAS with Group Sampling(Ours)
Sandwich Rule Frontier
ScaleNAS with Sandwich Rule
Dynamic Routing

Figure 7: Ablation study of grouped sampling. The
Pareto front of grouped sampling steadily higher than
the Pareto front achieved by sandwich rule.
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Figure 8: Ablation study of topology evolution. The
Pareto front of our topology evolution is consistently
higher than other existing works.

previous best result by a large 3.7%
AP margin. We find that our ScaleNet
performs even better with multi-scale
test and crowded scenes, suggesting its superior ability to learn scale-aware representation to tackle
large scale variance in these scenarios.

5.3 Ablation Study
We perform ablation study on each proposed technique. All results are conducted with
SuperScaleNet-Seg-W32 on Cityscapes. For simplicity, we denote SuperScaleNet-Seg-W32 as su-
pernet in this part.
Impact of grouped sampling. To study the impact of sampling technique, we train two supernets:
one is based on our grouped sampling (Section 4.1), the other is based on state-of-the-art sampling
method – sandwich rule [38]. We derive the Pareto front from these two supernets based on our
proposed evolutionary search. In Figure 7, we show elite architectures and their corresponding
accuracy from 220G to 320G. The Pareto front results suggest grouped sampling perform the best
for multi-scale aggregation search space which has a wide spectrum of architectures.
Impact of topology evolution. We demonstrate the performance contribution from our topology
evolution by comparing with random search and aging evolution [30, 6]. We use the same sampling
size for each of the method and plot its Pareto front. Aging Evolution is implemented following
the hyperparameters in [30]. While aging evolution only has mutation to generate offsprings, our
evolution method highly benefits from inner-stage crossover. As shown in Figure 8, under the same
searching budget, our multi-scale topology evolution consistently achieves better performance on
Pareto front thanks to our inner-stage crossover and mutation techniques.

6 Conclusion
We present ScaleNAS, a multi-path one-shot learning method for scale-aware representations. To
the best of our knowledge, ScaleNAS is the first of its kind one-shot NAS method that considers
scale variance for multiple vision recognition tasks. To efficiently search a wide spectrum of neural
architectures for different vision tasks, we rest upon the following key ideas: (i) A novel multi-
scale feature aggregation search space that includes cross scale feature fusions and flexible depths.
(ii) One-shot based training method driven by an efficient sampling technique to train multi-scale
supernet. (iii) Multi-scale architecture topology evolution to efficiently search elite neural architec-
tures. All the above novel ideas coherently make ScaleNAS outperform existing hand crafted and
NAS-based methods on semantic segmentation and human pose estimation.
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7 Limitations and Broader Impact Statement

Limitation. We observe that larger elite models require more fusions than blocks. This might
impose future design constraints as larger models require more computation cost on feature fusions.
The deployability and on-device performance can be further studied as future works.
Broader Impact. Designing high resolution representation models is computation consuming
which may cause potential environmental impact (e.g., carbon footprint and global warming). This
research vastly reduces the design and evaluation time and brings positive environmental impact by
enabling a more flexible design space with the proposed efficient one-shot searching method.

8 Reproducibility Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] This paper proposes a multi-scale one-shot searching method
for dense prediction. The main claim and results mentioned in the abstract and introdcution
are fully supported by the exensive study in experiment, ablation. In addition, full code is
provided for review.

(b) Did you describe the limitations of your work? [Yes] The limitation is mentioned in Section
7. We leave this as part of our future work.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] There are no
negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes] All authors have a clear understanding of the ethics review guidelines and try their
best to follow these guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical
results are involved in this paper.

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results are
involved in this paper.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] Please see supplementary
material for more details. We release the code and searched models for easy reproduction,
and will open-source code upon acceptance of this paper.

(b) Did you include the raw results of running the given instructions on the given code and data?
[Yes] see the submitted code and README.md

(c) Did you include scripts and commands that can be used to generate the figures and tables in
your paper based on the raw results of the code, data, and instructions given? [Yes] see the
submitted code and README.md

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes] we provide a high quality code in supplementary ma-
terial with well-structured documentation.
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(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] see the submitted code and
README.md

(f) Did you ensure that you compared different methods (including your own) exactly on the
same benchmarks, including the same datasets, search space, code for training and hyper-
parameters for that code? [Yes] we compare with the most relevant works with the same
datasets, search space, training method, etc.

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] Ablation study is shown in Section 5.3 and supplementary material.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We follow
the same training pipeline as previous works. No extra data, training iteration, tricks are
added.

(i) Did you compare performance over time? [Yes] see Table 1, we compare performance over
searching time in terms of GPU hours.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We
perform multiple runs for our experiments. We also provide a training script and random
seeds in the supplementary material.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] We report error bars during search space exploration as shown in
Figure 9.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]. Not available
for this work.

(m) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The amount of compute and type of
resource are well documented in table 1 and supplementary material.

(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a NAS approach;
and also hyperparameters of your own method)? [Yes] all the hyperparameters, time, and
resources are provided in the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] our training pipeline reuses
HRNet’s GitHub repository to have fair comparison

(b) Did you mention the license of the assets? [No] All assets are publicly available.

(c) Did you include any new assets either in the supplemental material or as a URL? [No] All
assets are publicly available.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] We only use public available data (e.g., COCO dataset) and its cited.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] The data we used (e.g., COCO dataset) has been
widely adopted in computer vision community. In the best of our understanding, it does not
contain personally identifiable information.

5. If you used crowdsourcing or conducted research with human subjects...
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(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A] Not relevant to this work

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A] Not relevant to this work

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A] Not relevant to this work

A Supplementary Material
This supplementary material provides more details of evolutionary algorithm, training on each task
and also the extension of object detection task. For reproducibility, we provide full searching
and training codes, as well as pretrained models. Please refer to README.md to see detailed
instructions.

A.1 Algorithm Description of Multi-Scale Architecture Topology Evolution

Our Multi-Scale Architecture Topology Evolution is described in Algorithm 1. Detail code imple-
mentation can be found in tools/evo_server.py

Algorithm 1 Multi-Scale Topology Evolution

Input: Search space 𝑆 , Trained SuperScaleNet, initial population size 𝑛0, number of offspring 𝑘 ,
crossover probability 𝑝𝑐 , mutation probability 𝑝𝑚, number of final elite architectures 𝑁 .

Output: 𝑁 Elite ScaleNet
1: Sample 𝑛0 sub-networks to obtain initial population D = {𝑎𝑟𝑐ℎ𝑑 , 𝑑 = 1, 2, 3, . . . , 𝑛0}
2: while len(D) < 𝑁 do
3: Select top 𝑘 models on the Pareto front as candidate group C = {𝑎𝑟𝑐ℎ𝑐 , 𝑐 = 1, 2, 3, . . . , 𝑘}
4: for every sub-networks archc in C do
5: Do crossover under probability 𝑝𝑐
6: Do mutation under probability 𝑝𝑚
7: Get offspring model 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔_𝑎𝑟𝑐ℎ𝑐
8: Gather 𝑘 offspring models as set Mk = {𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔_𝑎𝑟𝑐ℎ𝑐 , 𝑐 = 1, 2, . . . , 𝑘}
9: Update D = D ∪M

A.2 Details of Search Space Exploration

In our main submission, we conduct initial search space exploration on semantic segmentation using
Cityscapes. All models are trained from scratch for 48 epochs. Data augmentation strategies and
other training protocols are the same as the teacher training part of Section A.8 in this supplementary
material.

We further validate the effectiveness of our search space by studying the influence of number of
feature fusions and residual blocks and compare with HRNet baseline. These models are denoted
as ScaleNet-G series as shown in Figure 9. Original HRNet has 108 residual blocks [18] and 62
feature fusions. Residual block is composed of two 3 × 3 convolutions. Multi-scale fusion includes
downsampling and upsampling. For downsampling, we use strided 3 × 3 convolution with stride
2. For upsampling, we use bilinear upsampling followed by a 1 × 1 convolution for aligning the
number of channels [34].

We create ScaleNet-G1 by using the same number of blocks as HRNet while using 12 less fea-
ture fusions with our proposed search space, we observe that there are some ScaleNet-G1 models
perform better than HRNet while having less number of fusions. Therefore, the feature fusion posi-
tion of HRNet may not be optimal. Based on ScaleNet-G1, we create ScaleNet-G2 and ScaleNet-G3
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Figure 9: Search space exploration. We train HRNet five times and record the mean and variance of their
accuracy. HRNet has 108 resblocks (denoted as ‘D’) and 62 fusions(denoted as ‘F’). We randomly
sample 5 groups of ScaleNet with different resblocks and fusions based on our search space. ‘ED’
and ‘EF’ represents the expectation of blocks and fusions, respectively.

by increasing the number of fusions to the expectation of 124 and 198, respectively. We notice that
more feature fusions comes with a higher mIoU and inevitable comes with higher FLOPs. To study
the redundancy of number of blocks, we create G4 and G5 by decreasing number of blocks while
keeping higher number of fusions. We observe that the mean accuracy of ScaleNet-G4, G5 are
still higher than the original HRNet setting. Based on this observation, we envision that we can
use neural architecture search to explore the trade-offs and relationships between blocks and fusion
connection.

A.3 Elite Architecture Pattern Analysis

Different hardware platforms have different computation constraints. We analyze the deployability
of elite architectures with different computation cost. We record FLOPs, the number of fusions, and
the number of blocks of Pareto front from the 2000 elite ScaleNets collected by our evolutionary
method.

In Figure 10(a)(c), we observe larger elite models have more fusions than blocks. In addi-
tion, the number of fusions increases faster than the number of blocks. To further analyze the
relationship between number of fusions and number of blocks, we demonstrate block-fusion ratio
in Figure 10(b)(d).We observe that for the largest elite model, it requires two times more fusions
than blocks. However, for small elite models, the number of fusions is only half of the number of
blocks. This interesting observation provides important future design insights: 1) For edge devices,
we should invest more computation cost on blocks than fusions. 2) To design larger models, it is
preferable to invest computation cost on fusions over blocks.

A.4 Impact of Distillation

We further study whether distillation plays an important role in accuracy gain. Based on the same
training procedure in Section A.8, we train ScaleNet-S1 from ImageNet pretrained weights (stand-
alone) with and without distillation. We use the mean squared error (MSE) loss with distillation
ratio 1 and the teacher model pretrained on Cityscapes. As shown in Table 4, the accuracy of
the stand-alone training is only slightly lower than directly taken from supernet. It suggests that
distillation is beneficial but not a dominant factor in the final accuracy.
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Figure 10: The network pattern of elite sub-networks. We show the relationship between number of blocks
and fusions for the elite sub-networks.

Table 4: Ablation study of distillation. Comparison with stand-alone training with and without distillation.
The performance mIoU(%) is obtained on Cityscapes val.

Model from stand-alone stand-alone
supernet w/o distillation w/ distillation

ScaleNet-S1 80.5 80.2 80.4

A.5 Results on Object Detection
We directly apply the ScaleNet-S2, which is obtained from semantic segmentation, to object de-
tection task. We plug in the ScaleNet-S2 to two classic object detection frameworks, Faster R-
CNN [31] and Mask R-CNN [17] as shown in Table 5. We use the whole COCO trainval135 as
training set and validate on COCO minival. For both Faster R-CNN and Mask R-CNN, the input
images are resized to a short side of 800 pixels and a long side not exceeding 1333 pixels. We use
SGD as optimizer with 0.9 momentum. For a fair comparison, all our models are trained for 12
epochs, known as 1× scheduler. We use 8 TESLA V100 GPUs for training with 16 global batch
size. The initial learning rate is 0.02 and is divided by 10 at 8 and 11 epochs.

In the Faster R-CNN framework, our networks perform better than HRNet-w32 with less pa-
rameters and computation cost. Our ScaleNet-S2 is especially effective for small objects (1.1%
improvement for AP𝑆 ). The reason is that our ScaleNet-S2 learns more high-resolution features
which are beneficial for small objects.

A.6 Details of Found Architectures
Here we provide the architecture structures of our crafted architecture ScaleNet-P1 for human pose
estimation and ScaleNet-S1 for semantic segmentation, see Figure 11 and Figure 12, respectively.
The interesting observation is that both architectures have more multi-scale feature fusion at later
stages while with a relatively simple network structure at the early stages.

A.7 Details of Training Teacher Model on ImageNet
Following the instructions in [34], we use stochastic gradient descent (SGD) as the optimizer with
0.9 nesterov momentum and 0.0001 weight decay. The model is trained for 100 epochs with batch
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Table 5: Object detection results on COCO 𝑚𝑖𝑛𝑖𝑣𝑎𝑙 in Faster R-CNN [31] and Mask R-CNN [17]. LS
denotes learning rate scheduler. GFLOPs is calculated on the input size 800×1280. HRNet-w32*
denotes our reimplementation.

Backbone Params(M) GFLOPs box mask
AP AP𝑆 AP𝑀 AP𝐿 AP AP𝑆 AP𝑀 AP𝐿

Faster R-CNN [31]
HRNet-w32* 47.2 285.4 39.8 22.8 43.7 51.0 / / / /
ScaleNet-S2 46.3 271.3 40.1 23.9 44.2 51.7 / / / /

Mask R-CNN [17]
HRNet-w32* 49.9 353.9 40.8 23.8 44.5 52.4 36.4 19.5 39.7 48.9
ScaleNet-S2 49.0 339.8 40.9 24.4 44.6 52.5 36.5 19.7 40.0 49.0

Stage 2 Stage3_module2Stage3_module1 Stage3_module3 Stage3_module4 Stage4_module1 Stage4_module2 Stage4_module3

Figure 11: The full model of ScaleNet-S1.

Stage4_module1 Stage4_module2 Stage4_module3Stage 2 Stage3_module2Stage3_module1 Stage3_module3 Stage3_module4

Figure 12: The full model of ScaleNet-P1.

size 768. The initial learning rate is set to 0.3 and is reduced by 10 at epoch 30, 60, and 90. It takes
∼30 hours to train on 16 TESLA V100 GPUs.

A.8 Details of Training SuperScaleNet on Semantic Segmentation

Cityscapes dataset. The Cityscapes [13] is a widely used dataset for semantic segmentation tasks,
which contains 5,000 high quality pixel-level finely annotated scene images. The dataset is divided
into 2975/500/1525 images for training, validation, and testing, respectively. There are 30 classes,
and 19 classes among them are used for evaluation. The mean of class-wise intersection over union
(mIoU) is adopted as our evaluation metric.
Teacher model training. For a fair comparison, we follow the same training protocols in [34]. We
adopt the SGD optimizer with the momentum of 0.9 and the weight decay of 0.0005. The model
is trained for 484 epochs with the batch size of 24 on 8 TESLA V100 GPUs. The initial learning
rate is set to 0.01 and the cosine annual decay [25] is used for decaying the learning rate. For data
preprocessing, the training and validation image size is 512×1024 and 1024×2048, respectively.
For data augmentation strategies, we use random cropping (from 1024×2048 to 512×1024), random
scaling (between [0.5, 2]), and random horizontal flipping.
SuperScaleNet-Seg training: We follow the same training protocols as teacher training except the
initial learning rate is set to 0.001. This is because the SuperScaleNet-Seg is initialized from the
well-trained teacher, we only need to fine-tune each sub-network using a small learning rate. It takes
∼40 (60) hours to obtain SuperScaleNet-Seg-W32 (W48), including the teacher training. With only
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twice the training cost as stand-alone model training, we can obtain a series of segmentation models
in a wide spectrum of FLOPs without additional retraining. We further use multi-scale topology
evolution to explore elite ScaleNet-Seg.

A.9 Details of Training SuperScaleNet on Top-Down Human Pose Estimation
COCO dataset. We train SuperScaleNet-Pose on COCO [22] train2017 dataset (57K images and
150K person instances) and evaluate it on COCO val2017. To evaluate object keypoints, we use
Object Keypoint Similairty (OKS). We break down the performance on different OKS: 𝐴𝑃50 and
𝐴𝑃75. We also report the performance on different sizes of object. 𝐴𝑃𝑀 and 𝐴𝑃𝐿 stands for AP of
medium object and large object, respectively.
MPII dataset. The MPII Human Pose dataset [1] consists real-world full-body pose and annota-
tions. There are around 25K images with 40K subjects, where 12K subjects are used for testing
and the remaining subjects are used for training. We use the PCKh (head-normalized probability of
correct keypoint) score as our evaluation metric, following [35, 33]
Teacher model training. Following the training protocols of HRNet [34], we train the model
for 210 epochs using the Adam optimizer [19] with step learning rate decay [35, 34]. The initial
learning rate is set as 0.001, and is dropped to 0.0001 and 0.00001 at the 170th and 200th epochs,
respectively. For data preprocessing, we extend the human detection box in height or width to a
fixed aspect ratio – height : width = 4 : 3, and then crop the box from the image, which is resized
to a fixed size, 256 × 192 or 384 × 288. For data augmentation strategies, we use random rotation
([-45◦, 45◦]), random scale ([0.65, 1.35]), and flipping.
SuperScaleNet-Pose training. We follow the same training protocols in teacher training. We do
not reduce the learning rate as in SuperScaleNet-Seg training because the Adam optimizer can
adjust the learning rate adaptively [19]. The models are trained on 8 TESLA V100 GPUs. It
takes ∼50(75) hours to train SuperScaleNet-Pose-W32(W48), including the teacher training. After
topology evolution, we further fine-tune the ScaleNet-P for 20 epochs (around 3 hours) for better
performance.
MPII training. We use the same data augmentation and training strategy for MPII, except that the
input size is cropped to 256 × 256 for a fair comparison with SimpleBaseline [35] and HRNet [33].

A.10 Details of Training Found Architectures on Bottom-Up Human Pose Estimation
CrowdPose dataset. The CrowdPose [20] dataset consists of 20K images, containing about 80K
persons. The training, validation and testing subset are split in proportional to 5:1:4. CrowdPose has
more crowded scenes than the COCO keypoint dataset, posing more challenges to pose estimation
methods. The evaluation metric is the same as COCO [22].
Implementation details. We adopt the standard training procedure on COCO train2017 and
CrowdePose trainval as in [26, 10], then report results on COCO val2017/ test-dev2017 and
CrowdePose test. The models are trained for 300 epochs. We train ScaleNet-P series on bottom-up
human pose estimation framework, HigherHRNet [10]. For a fair comparison, we use the exact
same training routine as HigherHRNet. Specifically, we train our model for 300 epochs using the
Adam optimizer [19] with step learning rate decay. The base learning rate is set to 0.001, and
dropped to 1e-4 and 1e-5 at the 200th and 260th epochs, respectively. For data augmentation strate-
gies, we use random rotation ([-30◦, 30◦]), random scale ([0.75, 1.5]), random translation ([-40,
40]), random crop (512 × 512), and random flip. We use the top-down SuperScaleNet-Pose to
initialize weights.
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