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Abstract

We focus on causal discovery in the presence of measurement error in linear sys-
tems where the mixing matrix, i.e., the matrix indicating the independent exogenous
noise terms pertaining to the observed variables, is identified up to permutation and
scaling of the columns. We demonstrate a somewhat surprising connection between
this problem and causal discovery in the presence of unobserved parentless causes,
in the sense that there is a mapping, given by the mixing matrix, between the un-
derlying models to be inferred in these problems. Consequently, any identifiability
result based on the mixing matrix for one model translates to an identifiability
result for the other model. We characterize to what extent the causal models can
be identified under a two-part faithfulness assumption. Under only the first part of
the assumption (corresponding to the conventional definition of faithfulness), the
structure can be learned up to the causal ordering among an ordered grouping of
the variables but not all the edges across the groups can be identified. We further
show that if both parts of the faithfulness assumption are imposed, the structure can
be learned up to a more refined ordered grouping. As a result of this refinement,
for the latent variable model with unobserved parentless causes, the structure can
be identified. Based on our theoretical results, we propose causal structure learning
methods for both models, and evaluate their performance on synthetic data.

1 Introduction

Learning causal structure among the variables of a system from observational data has received
considerable attention in the literature, since subject matter knowledge on causal relationships is often
incomplete or impossible to obtain in many applications [24, 16]. In many real-life systems, not all
variables of interest or all direct common causes of those variables can be observed. This necessitates
approaches for structure learning capable of dealing with latent variables. For the case that no a-priori
restrictions on the functional form of causal mechanisms are imposed, constraint-based algorithms
such as the Fast Causal Inference (FCI) algorithm have been proposed [24]. Such approaches are
often unable to identify the direction of the majority of causal connections in the system, which
motivates placing additional, often parametric, restrictions on the generating model. One of the most
commonly used restrictions is to assume that the model is linear with non-Gaussian exogenous noise
terms [21, 22, 12, 10]. This generating model leads to identification of the existence and orientation
of all edges in a causal model, assuming that no latent variables that are common causes of two or
more variables exist [21, 22]. Moreover, in such models even when latent variable common causes
exist, it is still possible to orient additional edges compared to algorithms such as FCI [12, 19, 1].
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In certain applications, although some of the variables of interest (called underlying variables) are
latent, we may have access to noisy measurements of them [17, 13, 29, 18, 11]. In this case, condi-
tional independence patterns among observed variables (that are noisy measurements of underlying
variables) are different from those among the underlying (measurement-error-free) variables. In
general, constraint-based approaches to causal discovery are not able to correct for the difference in
observed independence due to the presence of measurement error, and thus will produce erroneous
edge adjacencies and orientations. Similarly, naive application of methods based on non-Gaussian
exogenous noise assumption may also fail in recovering the correct causal relations in the presence
of measurement error. This is due to the fact that the extra measurement noise terms break the
asymmetry utilized by those methods.

In this paper, we bring additional insight into the problem of causal discovery under measurement
error by showing a surprising connection between linear structural equation models (SEMs) where
variables are measured with error, and linear SEMs with hidden variables. In particular, we consider
two linear SEMs. In the first model, the unobserved variables are in fact of interest and can appear
in any part of the causal structure of the system, but we assume that noisy measurements of these
unobserved variables are available. We refer to this model as the linear SEM with measurement error
(SEM-ME). The second model does not require measurements of the latent variables, as they are not
of primary interest, yet we assume that all latent variables are root variables, meaning that they are
not causally affected by any other latent or observed variables in the system. We refer to this model
as the linear SEM with unobserved roots (SEM-UR). It is noteworthy that assuming latent variables
are limited to be root variables does not affect the estimated total causal effects among the observed
variables (see Remark 1 in Section 2.2), and provides a representation of a latent variable model that
is consistent with these causal effects. For this reason, this restriction is common in the literature of
causal inference [8, 9, 12, 5].

We study the identification of linear SEM-MEs and SEM-URs in a setup where the independent
exogenous noise terms that causally (directly or indirectly) affect each observed variable can be
identified. That is, the mixing matrix of the linear system that transforms exogenous noise terms to
observed variables is identified up to permutation and scaling of the columns. This can be satisfied,
for example, if all independent exogenous noise terms are non-Gaussian. Our first main contribution
is presenting a mapping between the linear SEM-MEs and SEM-URs, which demonstrates a corre-
spondence between a weighted causal diagram2 generated by SEM-UR and a set of weighted causal
diagrams from the SEM-ME (Theorem 1). The models in this correspondence all possess the same
mixing matrix. Consequently, any identifiability result based on the mixing matrix for one model is
applicable to the other model. This allows us to study the problem of causal discovery in these two
models together.

Additionally, we study the identifiability of linear SEM-MEs and SEM-URs, and show how it benefits
from a two-part faithfulness assumption. The first part prevents existence of zero total causal effects
of a variable on its descendants and the second part prevents cancellation or proportionality among
specific edges. Our second main contribution is to characterize the extent of identifiability of the
causal model under our faithfulness assumption. We demonstrate that if only the first part of the
faithfulness assumption is imposed, the model can be learned up to an equivalence class characterized
by an ordered grouping of the variables which we call ancestral ordered grouping (AOG). In this
grouping, the induced graph on the variables of each group is a star graph (see Section 4.3). Although
the AOG is identified, not all edges across the groups or the group centers (or their exogenous noise
terms) are identifiable (Theorem 2). The AOG characterization is a refined version of the ordered
grouping proposed in [29]. We further show that if both parts of the faithfulness assumption are
imposed, the model can be learned up to an equivalence class characterized by a more refined ordered
grouping which we call direct ordered grouping (DOG). Edges across groups can be identified under
this characterization, yet the the group centers (or their exogenous noise terms) remain unidentified
(Theorem 3). This characterization further implies that the ground-truth structure of a SEM-UR is
uniquely identifiable (Corollary 3). Lastly, we show that models in the DOG equivalence class are
strictly sparser than other models in the AOG equivalence class (Proposition 4). We propose causal
structure learning methods for both SEM-ME and SEM-UR based on this property, and evaluate their
performance on synthetic data.

2A weighted causal diagram is the directed graph corresponding to the linear model which associates the
coefficient of variable X1 in the structural equation for X2 to the edge from X1 to X2.
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2 Model description

In this section, we first introduce the two models considered in this paper, namely linear SEM-ME
and SEM-UR. We then discuss a model assumption needed for our identifiability results.

2.1 Linear structural equation model with measurement error (SEM-ME)

Definition 1 (Linear SEM-ME) A linear SEM-ME consists of a set of “underlying” variables
which can be partitioned into unobserved underlying variables Z = {Z1, ..., Zpz

} and observed
underlying variables Y = {Y1, ..., Yp�pz

}. In addition, we have another set of observed variables
U = {U1, · · · , Upz

} corresponding to the noisy measurements of Z . The underlying variables in
Z [ Y can be arranged in a total (causal) order (such that no later variable in the order can cause
any earlier variable), and variables Vi 2 Z [ Y and Ui 2 U are generated as follows:

Vi =
X

j: Vj2Pa(Vi)

cijVj +NVi
i 2 [p]; Ui = Zi +NUi

, i 2 [pz], (1)

where [n] := {1, 2, · · · , n}, Pa(Vi) ✓ Z [ Y denotes direct causes of Vi. NVi
(resp. NUi

) is the
exogenous noise term (resp. the measurement error) corresponding to Vi (resp. Ui).

We define the weighted causal diagram of the linear SEM-ME as a weighted directed graph where
the nodes are the variables in Z [ Y . There is a directed edge (causal connection) from Vi to Vj

with weight cji if and only if cji 6= 0, for Vi, Vj 2 Z [ Y . Because of our causal order assumption,
the causal diagram will be acyclic. We use the terms node and variable interchangeably. The linear
SEM-ME in this work is a generalization of the linear causal model with measurement error proposed
in [29], in the sense that some of the underlying variables can be observed.

We define an unobserved leaf node (u-leaf node) as an unobserved underlying variable in Z that
does not have any children in Z [ Y . The rest of the underlying variables are referred to as non
u-leaf nodes (nu-leaf nodes): These include unobserved non-leaf underlying variables, which have
children in Z [ Y , and observed underlying variables in Y . Similar to the argument in [29], given
observed data generated by the linear SEM-ME in Equation (1), for a u-leaf node Zi, its exogenous
noise term NZi

is not distinguishable from its measurement error NUi
. This follows because Zi is

not observed, and NZi
only influences one observed variable which is the noisy measurement Ui.

Therefore, we restrict our focus to the following canonical form.

Definition 2 (Canonical form of a linear SEM-ME) The canonical form of a linear SEM-ME is
the one in which all u-leaf nodes have no exogenous noise terms. Specifically,
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where ZNL, ZL, Y are the vectors of unobserved underlying non-leaf variables, u-leaf nodes,
and observed underlying variables, respectively. NZNL , NZL , and NY are the corresponding noise
vectors. ZNU = [ZNL; Y ] is the vector of nu-leaf nodes. U is the vector of noisy measurements
and NUNL and NUL denote the noise vectors corresponding to the measurements of ZNL and ZL,
respectively. C represents the causal connections among nu-leaf nodes, and can be partitioned
into [CZ ; CY ] corresponding to [ZNL; Y ], respectively. D represents the causal connections from
nu-leaf nodes to u-leaf nodes. Note that C can be arranged into a strictly lower triangular matrix
via simultaneous column and row permutations (due to the acyclicity assumption).

2.2 Linear structural equation model with unobserved roots (SEM-UR)

Definition 3 (Linear SEM-UR) A linear SEM-UR consists of a set of observed variables X =
{X1, · · · , Xq} and another set of latent variables H = {H1, · · · , Hl}. All latent variables are
assumed to be root variables (have no direct causes). The observed variables are arranged in a
causal order, and each observed variable is directly influenced by a linear combination of other
observed and latent variables, plus an independent exogenous noise term.

Hi = NHi
, i 2 [l]; Xj =

X

i2[l]
bjiHi +

X

k<j
ajkXk +NXj

, j 2 [q]. (3)

We define the weighted causal diagram of the linear SEM-UR as a directed graph where the nodes are
the observed and latent variables in X [H. There is a causal connection from Xi (resp. Hi) to Xj

with weight aji (resp. bji) if and only if aji (resp. bji) 6= 0. Because of our causal order assumption,
the causal diagram will be acyclic. Note that unlike in [12] and [19], we consider a broader model
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which allows latent variables to have a single observed child. However, unlike the works considering
relations among latent variables [1, 26, 3, 27], we restrict all latent variables to roots; see Remark 1.

A linear SEM-UR can be written in the following matrix form:

H = NH ; X = BH +AX +NX , (4)

where X = [X1 · · · Xq]
> and H = [H1 · · · Hl]

> are the vectors of observed and latent variables,
respectively. NX = [NX1

· · · NXq
]> and NH = [NH1

· · · NHl
]> represent the vectors of

independent noise terms associated with X and H , respectively. B represents the causal connections
from latent to observed variables, and A represents the causal connections among observed variables,
which can be assumed to be a strictly lower-triangular matrix (due to the acyclicity assumption).

Remark 1 There exist works aiming to find the causal relations among the latent variables (as well
as their relations with the measured variables) [23, 26, 3, 1, 27]. Our definition of a linear SEM-UR
requires all the latent variables to be parentless. This assumption is common in the literature of
causal inference, as it does not restrict the feasible total causal effects (i.e., sum of products of path
coefficients) among the observed variables [8, 9, 5]. Specifically, let us start from a general linear
latent variable model in which some latent variables have parents. Hoyer et al. [12] proposed an
algorithm which maps such general model to one in which latent variables are parentless. They
showed that the resulting model is observationally and causally equivalent to the original model, i.e.,
the joint distributions of observed variables are identical, and all causal effects of observed variables
on other observed variables are identical in the models before and after the mapping.

2.3 Separability assumption

For both models in Sections 2.1 and 2.2, we assume that the noise components can be separated from
observations (i.e., the mixing matrices are recoverable). We first describe the mixing process for each
of the two models, and then state our separability assumption.

From Equation (2), we can write all underlying variables in the linear SEM-ME in terms of the
independent noise terms, as follows.
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I is the identity matrix, and (I�C)�1
Z and (I�C)�1

Y represent the rows of (I�C)�1 corresponding
to ZNL and Y , respectively. Using the relation between U and Z in Equation (2), the two types of
observed variables, i.e., measurements U and observed underlying variables Y , can be written as
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We refer to W as the overall mixing matrix of the system. Given any column permuted and rescaled
version of W, we can recover matrix W

ME by removing the submatrix [I 0]> of size p ⇥ pz
corresponding to U . Recall that pz is the cardinality of Z (which is the same as the cardinality of U ).

Similarly, according to Equation (4), observed variables in the linear SEM-UR can be written in
terms of the independent noise terms as

X = W
UR


NH

NX

�

, where W
UR =

⇥
(I�A)�1

B (I�A)�1
⇤
. (7)

Assumption 1 (Separability) The linear SEM-ME (resp. linear SEM-UR) is separable, that is,
the mixing matrix W

ME in Equation (5) (resp. W
UR in Equation (7)) can be recovered from

observations of [U ; Y ] (resp. X) up to permutation and scaling of its columns.

Separability assumption states that for every observed mixture, the independent exogenous noise
terms pertaining to this mixture can be separated, i.e., the mixing matrix can be recovered up to
permutation and scaling of its columns. An example of a setting where this assumption holds is
when all exogenous noises are non-Gaussian. In this case, if the model satisfies the requirement
in [7, Theorem 1] (SEM-ME always does), overcomplete Independent Component Analysis (ICA)
can be used to recover the mixing matrix up to permutation and scaling of its columns. Another
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example where separability assumption is satisfied is the setup in which the noise terms are piecewise
constant functionals satisfying a set of mild conditions [2]. On the other hand, an example where this
assumption is violated is when all exogenous noise terms have Gaussian distributions. In this case,
the mixing matrix can only be recovered up to an orthogonal transformation.

3 Mapping between the weighted graphs of the models for identifiability

A key observation in this work is that there exists a mapping between the weighted causal diagrams
of the introduced SEM-ME and SEM-UR, which leads to the corresponding mixing matrices WME

and W
UR being transposes of one another.

Define the mapping ϕ from the set of weighted causal diagrams of linear SEM-URs, denoted by
MUR, to the set of weighted causal diagrams of canonical linear SEM-MEs, denoted by MME ,
where for each diagram M 2 MUR, ϕ(M) ⇢ MME is constructed as follows: (a) Replace each
latent variable in M with a Z variable. (b) Replace each observed root variable in M with a Y
variable. (c) Replace the rest of the observed variables in M with either Z or Y variables. (d) Reverse
all the edges in M . Note that ϕ(M) encompasses a set of models, corresponding to the possible
choices in step (c).

Similarly define the mapping φ from the set MME to the set MUR, where for each diagram
M 0 2 MME , φ(M 0) 2 MUR is constructed as follows. (a) Replace each u-leaf variable in M 0

with a latent variable. (b) Replace the rest of the variables in M 0 with observed variables. (c) Reverse
all the edges in M 0. Note that from the definition of the two mappings, for any given M 2 MUR,
M = φ(ϕ(M)). For any given M 0 2 MME , M 0 2 ϕ(φ(M 0)).

Theorem 1 Let M 2 MUR with mixing matrix W
UR(M) and M 0 be a corresponding element in

MME with mixing matrix W
ME(M 0), where M 0 2 ϕ(M) and M = φ(M 0). Then there exist a

permutation of the columns of WUR(M), denoted by W̃
UR(M), and a permutation of the columns

of WME(M 0), denoted by W̃
ME(M 0), which satisfy W̃

ME(M 0) = (W̃UR(M))>.

The proofs of all the results are provided in the Appendix. Note that as it can be seen from the proof
of Theorem 1, whether the nu-leaf variables, that are non-leaf in the SEM-ME, are observed or not
does not change the corresponding mixing matrix.

Remark 2 The mapping introduced here is between a weighted diagram in SEM-UR and a set of
weighted diagrams in SEM-ME. The elements of the set in fact correspond to different settings of the
non-leaf underlying variables being observed or not. Note that in most applications, it is clear to the
researcher whether an underlying variable is observed or measured with error. Therefore, only one
element of the set is relevant to the application and the set reduces to a single element. Consequently,
in our identifiability results, without loss of generality, we assume the set is a singleton.
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Figure 1: Example explaining the map-
ping.

Theorem 1 implies that under separability assumption,
any identifiability result based on the mixing matrix for
one model is applicable to the other model, by reversing
all edges. This allows us to study the problem of causal
discovery of these two models simultaneously.
Example 1 Consider the linear SEM-UR in Figure 1(a)
comprised of three observed and one latent variable
(denoted by a single circle). The corresponding linear
SEM-ME under the mapping ϕ is shown in Figure 1(b).
Specifically, (i) the latent variable H is mapped to the
u-leaf variable ZL (denoted by a double circle); (ii)
the observed root X1 is mapped to the observed underly-
ing variable Y1; and (iii) observed variables X2 and X3

could be mapped to either observed or unobserved un-
derlying variables; hence the UR graph will be mapped
to a set of 4 graphs in the ME model. The mixing matri-
ces for both models are shown in Figure 1. It can be readily seen that there exists a permutation of
the columns of WUR, which is equal to the transpose of WME .

4 Identifiability of models

In this section, we study the extent of identifiability of linear SEM-ME and SEM-UR under the
separability assumption. We consider both a weaker notion of structure identification, where only
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the graph structure of the model is obtained, and a stronger notion of model identification where, in
addition to the graph structure, model parameters are recovered as well. In Section 4.1, we propose
SEM-ME and SEM-UR faithfulness assumptions, which consist of two parts, the first of which is
identical to the conventional faithfulness in linear causal models. We first discuss model identifiability
under conventional faithfulness (i.e., the first part of our assumptions), which can be characterized
by ancestral ordered grouping (AOG) of the variables, explained in Section 4.2. Next, under both
parts of our proposed faithfulness assumptions, the extent of identifiability can be characterized by
direct ordered grouping (DOG) of the variables, explained in Section 4.3. This leads to a subsequent
result on structure identifiability for SEM-UR. In Section 4.4, we show that the DOG characterization
possesses a sparsity property, which can be used to construct recovery algorithms for both models.

4.1 Faithfulness assumption

Assumption 2 (SEM-ME faithfulness) (a) The total causal effect of any underlying variable on its
descendant is not equal to zero. (b) For each variable V in a SEM-ME, the causal effect of parents of
V on V cannot be replicated by fewer or equal variables due to fine tuning of the parameters. (See
Appendix B.1 for the formal statement.)

Assumption 3 (SEM-UR faithfulness) (a) The total causal effect of any observed or latent variable
on its descendant is not equal to zero. (b) For each variable V in a SEM-UR, the causal effect of V
on children of V cannot be replicated by fewer or equal variables due to fine tuning of the parameters.
(See Appendix B.1 for the formal statement.)

Assumptions 2(a) and 3(a) are identical to conventional faithfulness in linear causal models. They
require that when multiple causal paths exist from any (observed or unobserved) variable to its
descendants, their combined effect (i.e., sum of products of path coefficients) is not equal to zero,
see [24]. Assumptions 2(b) and 3(b) prevent certain path cancellation or parameter proportionality.
Importantly, Assumptions 2 and 3 are violated with probability zero if all model coefficients are
drawn randomly and independently from continuous distributions; see Appendix B.3 for the proof.
As an example for violation of Assumption 2(b), consider the linear SEM-ME generated by the graph
in Figure 2(a), which satisfies Assumption 2(a). However, we can write Z4 as (b + c)Z2 + NZ3

,
which is caused by the path cancellation of the triangle (Z1, Z3, Z4). This means that that the causal
effect of Z1 and Z2 on Z4 can be summarized by Z2 alone. Therefore, the model violates Assumption
2(b). Lastly, Assumption 3 is strictly weaker than bottleneck faithfulness in [1]; see Appendix B.4
for the proof. Please refer to Appendix B for more discussion about our faithfulness assumption and
Appendix D for a detailed comparison between our identifiability results and the results in [1].
4.2 Ancestral ordered grouping
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Figure 2: Example explaining AOG and
SEM-ME faithfulness assumption.

We first study the extent of identifiability of the models
only under conventional faithfulness, i.e., Assumptions
2(a) and 3(a).

Definition 4 (Ancestral ordered grouping (AOG))
The AOG of a SEM-ME (resp. SEM-UR) is a partition
of Z [ Y (resp. H [X ) into distinct sets. This partition
is described as follows: (1) Assign each nu-leaf node
(resp. observed node) to a distinct group. (2) SEM-ME:
For each u-leaf node Zj 2 Z , if there exists one
parent Vi such that Zj has no other parents, or all other
parents of Zj are also ancestors of Vi, assign Zj to the
same group as Vi. Otherwise, assign Zj to a separate
group (with no nu-leaf node). (2) SEM-UR: For each
latent variable Hj , if there exists one child Xi such that Hj has no other children, or all other
children of Hj are also descendants of Xi, assign Hj to the same group as Xi. Otherwise, assign
Hj to a separate group (with no observed variable).

Definition 5 (AOG equivalence class) The AOG equivalence class of a linear SEM-ME (resp. SEM-
UR) is a set of models where the elements of this set all have the same mixing matrix (up to permutation
and scaling) and same ancestral ordered groups.

For example, the two models represented by the graphs in Figure 2 have the same mixing matrix and
ancestral ordered groups. The elements of an AOG equivalence class possess the following property.

Proposition 1 Models in the same AOG equivalence class have the same causal order among the
groups, but not necessarily all the same edges across the groups.
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The AOG characterization is a refined version of the original ordered grouping proposed in [29],
where no variables in later groups cause variables in earlier groups. Yet, the grouping introduced
in that work is order dependent and hence in general not unique. Moreover, it does not always
characterize the extent of identifiability. Our AOG characterization also uses a similar idea as the
learning approach in [19]; however, that work allows for latent variables which have parents and in
general does not recover the full structure. Note that the AOG can be recovered based on the support
of the mixing matrix under Assumption 2(a) (or 3(a)). Please refer to Appendix A for more details.

According to Definition 4, there is at most one nu-leaf node in each ancestral ordered group of a
SEM-ME. Furthermore, each u-leaf node Zj is assigned to the ancestral ordered group of at most
one of its parents: Following the true causal order among nu-leaf nodes, only the last parent of Zj

may have the same ancestor set. Hence, if a group has more than one node, then there must be exactly
one nu-leaf node, and the rest of the nodes are u-leaf nodes which are children of this node. This
concludes that the induced structure on each ancestral ordered group is a star graph. Similar property
holds for SEM-UR. Define the center of the ancestral ordered group as the nu-leaf node (resp. the
observed node), or the u-leaf node (resp. latent node) if the group is of size one. The following
result illustrates that fixing the center of the ancestral ordered groups for SEM-ME, and fixing the
exogenous noise term of the center of the ancestral ordered groups as well as the choice of scaling
and permutation of the columns of B for SEM-UR, leads to unique identification of the models.
Proposition 2 (i) Models in an AOG equivalence class of a SEM-ME can be identified by the choice
of the centers of the groups. That is, for a given choice of the centers, there is only one corresponding
model. (ii) Models in an AOG equivalence class of a SEM-UR can be identified (up to the permutation
and scaling of the columns of B in (4)) by the choice of the exogenous noise terms associated to the
centers of the groups. That is, for a given assignment of the exogenous noise terms, all corresponding
models have the same A in (4), and have the same B up to permutation and scaling of the columns.

Equipped with Proposition 2, we are now ready to state our identifiability results for SEM-ME and
SEM-UR under Assumptions 2(a) and 3(a)), respectively.
Theorem 2 Under Assumptions 1 and 2(a) (resp. 3(a)), the linear SEM-ME (resp. SEM-UR) can be
identified up to its AOG equivalence class.

Corollary 1 (i) Denote the AOG of a linear SEM-ME (resp. SEM-UR) as {G(g)}g2[gk], where gk
is the number of ancestral ordered groups. The size of the AOG equivalence class, described in
Theorem 2, is equal to

Q

g2[gk]
|G(g)|. (ii) Under Assumptions 1 and 2(a), a linear SEM-ME can be

uniquely identified if and only if no u-leaf node has precisely the same ancestors as any nu-leaf
node. (iii) Under Assumptions 1 and 3(a), a linear SEM-UR can be identified up to the permutation
and scaling of the columns of B if and only if no latent variable has precisely the same descendants
as any observed variable.

As stated in Theorem 2, in general, the edges across the groups cannot all be discovered and the
centers of the groups (or their corresponding exogenous noise terms) are not identifiable. This
is due to the fact that when only Assumption 2(a) holds, certain path cancellation or parameter
proportionality in the model can occur. This is illustrated in the following example.

Example 2 Consider the SEM-ME generated by causal graph shown in Figure 2(a). The AOG is
{{Z1}, {Z2}, {Z3, Z4}}. Because either Z3 or Z4 can be the center of the last group, the AOG
equivalence class includes the ground-truth and the model represented by Figure 2(b). Since both
models have the same mixing matrix, an identification algorithm merely based on the mixing matrix
and Assumption 2(a) cannot distinguish these two models. Note that not only can we not learn the
direction of the edge in group {Z3, Z4}, but also the existence of some of the edge across groups,
such as Z1 ! Z4, cannot be established in the ground-truth because Assumption 2(b) is violated.

4.3 Identifiability of the model up to equivalence classes

Under Assumptions 1 and 2 (resp. 3), the extent of identifiability of a SEM-ME (resp. SEM-UR) can
be characterized by the direct ordered grouping defined in Definition 6 below. We first present two
conditions that are used to implement the DOG. We then give the formal definition of DOG. In the
following, we use Ch(V ) to denote the set of children of variable V in the causal diagram.

Condition 1 (SEM-ME edge identifiability) For a given edge from an nu-leaf node Vi to a
u-leaf node Zl, at least one of the following two conditions is satisfied: (a) Pa(Zl) \ {Vi} is
not a subset of Pa(Vi). That is, there exists another parent Vj of Zl, which is not a parent of Vi. (b)
Pa(Zl) is not a subset of \Vk2Ch(Vi)\{Zl}Pa(Vk). That is, there exists a child Vk of Vi and a parent
Vj of Zl such that Vj is not a parent of Vk.
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Condition 2 (SEM-UR edge identifiability) For a given edge from a latent variable Hl to an ob-
served variable Xi, at least one of the following two conditions is satisfied: (a) Ch(Hl) \ {Xi} is
not a subset of Ch(Xi). That is, there exists another observed child Xj of Hl, which is not a child of
Xi. (b) Ch(Hl) is not a subset of \Xk2Pa(Xi)\{Hl}Ch(Xk). That is, there exists an observed (or
latent) parent Xk (or Hk) of Xi and a child Xj of Hl such that Xj is not a child of Xk (or Hk).

Figure 3(b) demonstrates an example of a graph structure which satisfies Assumption 2 while
containing an edge which violates Condition 1. Condition 1 is an equivalent formulation of the
conditions for unique identifiability derived in [29]. In that work, Zhang et al. proved that a linear
SEM-ME can be uniquely recovered if Condition 1 is satisfied for every edge from an nu-leaf node
to a u-leaf node.3 They also conjectured that this condition is necessary for identifiability. We prove
their conjecture here under a slightly different faithfulness assumption. Furthermore, we demonstrate
that the conditions can be used to characterize an equivalence class of the models which characterizes
the extent of identifiability under Assumptions 1 and 2; the same assertion holds for linear SEM-UR.
This characterization is done based on the notion of direct ordered grouping, defined as follows.

Definition 6 (Direct ordered grouping (DOG)) The DOG of a linear SEM-ME (resp. SEM-UR) is
a partition of Z [ Y (resp. H [ X ) into distinct sets. This partition is described as follows:
(1) Assign each nu-leaf node (resp. observed node) to a distinct ordered group.
(2) SEM-ME: For each u-leaf node Zj 2 Z , if there exists one parent Vi such that the edge from Vi

to Zj violates Condition 1, assign Zj to the same ordered group as Vi. Otherwise, assign Zj to a
separate ordered group (with no nu-leaf node).
(2) SEM-UR: For each latent variable Hj , if there exists one child Xi such that the edge from Hj

to Xi violates Condition 2, assign Hj to the same ordered group as Xi. Otherwise, assign Hj to a
separate ordered group (with no observed variable).

Definition 7 (DOG equivalence class) The DOG equivalence class of a linear SEM-ME (resp. SEM-
UR) is a set of models where the elements of this set all have the same mixing matrix (up to permutation
and scaling) and same direct ordered groups.

For example, the two models represented by the graphs in Figure 2 have the same mixing matrix,
but different direct ordered groups. We have the following property regarding elements of an DOG
equivalence class.

Proposition 3 Models in the same DOG equivalence class have the same edges across the groups.

The counterpart of Proposition 2 holds for the case of direct ordered groups as well and we avoid
repeating it. Based on that counterpart, we have the following result regarding identifiability of linear
SEM-ME and SEM-UR under Assumptions 2 and 3, respectively.

Theorem 3 Under Assumptions 1 and 2 (resp. 3), the linear SEM-ME (resp. SEM-UR) can be
identified up to its DOG equivalence class.

Theorem 3 states that we can learn the structure among the groups, but the center of the group (or the
noise term corresponding to it) will remain unidentified. Unlike the case of the AOG equivalence
class, all the edges across the groups will be identified. That is, the choice of center does not change
the edges across groups in DOG equivalence class, while it may change the edges in AOG equivalence
class. Further, the sizes of the direct ordered groups are smaller than the sizes of the ancestral ordered
groups. As an example, for the model shown in Figure 2(b), all direct ordered groups are of size one.

Corollary 2 (i) The counterpart of Corollary 1(i) is true for the case of DOG as well and we do
not repeat it here. (ii) Under Assumptions 1 and 2, a SEM-ME can be uniquely identified if and
only if for every edge from an nu-leaf node to a u-leaf node, Condition 1 is satisfied. (iii) Under
Assumptions 1 and 3, a SEM-UR can be identified up to the permutation and scaling of the columns of
B if and only if for every edge from a latent variable to an observed variable, Condition 2 is satisfied.

Identifiability of the structure of the SEM-UR. As shown in Theorem 3, for a SEM-UR, the only
undetermined part in the DOG equivalence class pertains to the assignment of the exogenous noises
and coefficients, but the structure is the same. Consequently, if only the identification of the structure
without weights is of interest, Assumptions 1 and 3 are sufficient. See Figure 3(a) for an example of
two DOG equivalent SEM-URs. This identifiability result is summarized in the following corollary.

Corollary 3 Under Assumptions 1 and 3, the structure of a SEM-UR can be uniquely recovered.

3Note that in their model, Zhang et al. assumed that all the underlying variables are unobserved.
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4.4 Recovery algorithm
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Figure 3: DOG Equivalence classes.

We note that our faithfulness assumption implies that
the ground-truth model has strictly fewer edges than
any model that has the same mixing matrix and satisfies
conventional faithfulness (i.e., in the AOG equivalence
class) but does not belong to the DOG equivalence class.
This property can be leveraged to recover the ground-
truth model or a member of its DOG equivalence class.

Proposition 4 Suppose a SEM-ME (resp. SEM-UR)
satisfies Assumptions 1 and 2 (resp. 3). Any model
that belongs to the same AOG equivalence class but
does not belong to the same DOG equivalence class
has strictly more edges than any member in the DOG
equivalence class.

The steps of our recovery algorithm are as follows: (1)
Recover the mixing matrix W

ME (resp. WUR) from observational data. (2) Return the AOG of the
true model by comparing the support across different rows/columns in W

ME (resp. WUR). See
Appendix A.2 for details and pseudo-code for AOG recovery. (3) For all possible choices of the
center (resp. noise term associated to the center) of each ancestral ordered group, find a choice that
leads to the graph with fewest number of edges in the recovery output (see the proof of Lemma 1).

5 Simulations

We evaluated the performance of our recovery algorithm on randomly generated linear SEM-MEs and
SEM-URs with different number of variables.4 We considered two cases: (1) when a noisy version of
the mixing matrix is given, where the noise is Gaussian with different choices of variance denoted
by d

2, and (2) when synthetic data comes from a linear generating model with non-Gaussian noises
with different sample sizes, and the mixing matrix needs to be estimated. We used the Reconstruction
ICA algorithm [14] as our overcomplete ICA method. For Case (1), we compared our recovery
method (which we refer to as DOG) with an approach based on AOG equivalence class (similar to
the learning method in [19]). In addition to the AOG method, for Case (2), we compared our method
with ICA-LiNGAM [21]. Note that the ICA-LiNGAM method is not designed for systems with
latent variables, but benefits from strong performance for recovering the mixing matrix in causally
sufficient settings. The goal of this comparison was to demonstrate the necessity of using methods
designed specifically to handle latent variables.

We compared the recovery of the adjacency matrix to the ground-truth, where we used normalized
structural Hamming distance (SHD/Edge) and F1 score as our performance metrics. Our results for
Cases (1) and (2) are shown in top and bottom two rows in Figure 4, respectively. As seen in these
figures, our recovery algorithm outperforms recovery algorithm based on AOG. In particular, our
method recovers the structure in SEM-UR model, and can recover part of the structure in SEM-ME
that is shared among DOG equivalence classes. Moreover, both methods outperform ICA-LiNGAM.
Please refer to Appendix E for additional results and analysis.

6 Conclusion and Discussion

In real-world applications, we do not observe the exact value of all relevant variables; the measure-
ments of some variables are prone to errors, or some other variables cannot be observed altogether.
For example, in neuroscience and genomics, measured brain signals obtained by functional magnetic
resonance imaging (fMRI) or the measured gene expression using RNA sequencing usually contain
errors through the measurement process [18, 29]. Other examples include responses to psychometric
questionnaires where the questions represent noisy views of various traits [1, 20], and returns in stock
market, where they may be confounded by several unmeasured economic and political factors [1].

In this work, we considered the problem of causal discovery in setups with such challenges, par-
ticularly under two settings: (1) in the presence of measurement error, and (2) with unobserved
parentless causes. Unlike previous work, our proposed SEM-ME allows for applications containing a
mixture of variables measured exactly (without error) or measured with error. We demonstrated a
mapping between these two models that preserves their mixing matrix. Based on this mapping, we
derived identifiability results for both models under different faithfulness assumptions, and proposed

4Our code is available at: https://github.com/Yuqin-Yang/SEM-ME-UR.
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Figure 4: Simulation results for Case (1), noisy mixing matrix (with noise variance d2), and Case (2),
raw observational data (with sample size N·p for ME and N·q for UR). In Case (1), x-axis corresponds
to |Y [ Z| in SEM-ME, and |H [ X| in SEM-UR. In Case (2), x-axis corresponds to |Y [ U| in
SEM-ME, and |X | in SEM-UR. We compare the recovery of both adjacency matrices A and B (cf.
Equation (4)) for SEM-UR. Lower SHD/Edge value and higher F1 score indicate better performances.

structure learning algorithms. Our results further implied conditions for unique identifiability of the
structure in SEM-UR. These conditions do not pose any restrictions on the graphical model, and
hence significantly relax the existing graphical conditions in the literature [19, 1, 25, 4].

Our results have several implications in the literature of causal discovery including the following:
The mapping proposed in our work between linear SEM-ME and SEM-UR allows us to translate
identifiability results for one model to the other. We note that linear SEM-UR has been widely
studied in the literature, while only a few works considered linear SEM-ME. Therefore, an important
implication of our work is that the introduced mapping can be utilized to fill the gaps for the less
studied model. Another important implication of our result is that it can be used for evaluating
new algorithms: We showed that under two different faithfulness assumptions, the model can
only be identified up to AOG and DOG equivalence classes. This result provides the extent of
identifiability, and can serve as a basis for characterizing theoretical guarantees such as consistency
of new algorithms. Finally, we showed in Proposition 4 that under our faithfulness assumptions, the
true generating model is always sparser than any other model in the same AOG equivalence class
(of the ground-truth) but does not belong to the DOG equivalence class. This serves as a ground for
positing sparsity assumptions that appear frequently in the literature without rigorous justification.

Similar to other causal discovery methods which are based on the mixing matrix, the performance
of our proposed recovery algorithms relies on the accuracy of the utilized mixing matrix estimation
approach. Hence, the recovered structure should be interpreted with caution if the mixing matrix
estimation approach is unreliable. Devising more accurate approaches for estimating the mixing
matrix, as well as extending the method proposed in this work to non-linear models are important
directions of future research.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please refer to Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [No] We believe that

causal structure learning from observational data avoids potential negative societal impacts in
causal discovery that might be associated with conducting randomized experiments.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions 1 and 2
(resp. 3) are our identifiability assumptions for linear SEM-ME (resp. SEM-UR).

(b) Did you include complete proofs of all theoretical results? [Yes] Please refer to Appendix C.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] Please refer to Appendix E for
instructions. Our code is available at: https://github.com/Yuqin-Yang/SEM-ME-UR.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] This is explained in detail in Appendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] Please refer to Appendix E.4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [No] Simulations are conducted using the CPU of a
MacBook laptop.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the original paper of
the baseline algorithm.

(b) Did you mention the license of the assets? [N/A] Our simulations are conducted on synthetic
data only.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re using/cu-

rating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]
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5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]
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