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Abstract

A common technique in reinforcement learn-
ing is to evaluate the value function from
Monte Carlo simulations of a given policy, and
use the estimated value function to obtain a
new policy which is greedy with respect to
the estimated value function. A well-known
longstanding open problem in this context is
to prove the convergence of such a scheme
when the value function of a policy is esti-
mated from data collected from a single sam-
ple path obtained from implementing the pol-
icy (see page 99 of [Sutton and Barto, 2018],
page 8 of [Tsitsiklis, 2002]). We present a so-
lution to the open problem by showing that
a first-visit version of such a policy iteration
scheme indeed converges to the optimal policy
provided that the policy improvement step uses
lookahead [Silver et al., 2016, Mnih et al., 2016,
Silver et al., 2017b] rather than a simple greedy
policy improvement. We provide results both for
the original open problem in the tabular setting
and also present extensions to the function ap-
proximation setting, where we show that the pol-
icy resulting from the algorithm performs close
to the optimal policy within a function approxi-
mation error.

1 INTRODUCTION

In many applications of reinforcement learning, the un-
derlying probability transition matrix is known but the
size of the state space is large so that one uses approx-
imate dynamic programming methods to obtain the opti-
mal control policy. Examples of such applications include
game-playing RL agents for playing games such as Chess
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and Go. Abstracting away the details, in essence what
AlphaZero does is the following [Silver et al., 2017b]: it
evaluates the current policy using a Monte Carlo roll-
out and obtains a new policy using the estimate of the
value function of the old policy by using lookahead. We
note that AlphaZero collects and uses Monte Carlo re-
turns for all states in each rollout [Silver et al., 2017b].
Thus, effectively the algorithm performs policy iteration
using Monte Carlo estimates of the value function. If
one ignores the Monte Carlo aspect of policy evaluation
but is interested in the tree search of aspects of roll-
out and lookahead, there are several recent works which
quantify the impact of the depth of rollout and looka-
head on the performance of algorithm [Efroni et al., 2019,
Efroni et al., 2018a, Winnicki et al., 2021]. However, to
the best of our knowledge, there is no analysis of Monte
Carlo policy evaluation when the estimates of the value
function are obtained from trajectories simulated from the
policy. To the best of our knowledge, the only analysis
of such algorithms assume that, at each iteration, either
one estimates the value function starting from every sin-
gle state of the underlying MDP [Tsitsiklis, 2002] or from
a subset of fixed states [Winnicki and Srikant, 2022]. In
fact, studying Monte Carlo policy evaluation using a sin-
gle trajectory from each policy at each step of policy it-
eration is a known open problem [Sutton and Barto, 2018,
Tsitsiklis, 2002, Sutton and Barto, 1998]. In this paper, we
take a significant step in solving this problem: we prove
that, with sufficient lookahead, policy iteration and Monte
Carlo policy evaluation does indeed converge provided we
use sufficient lookahead during the policy improvement
step.

1.1 Main Contributions

Our paper has two main contributions.

Convergence of Monte Carlo ES We prove the conver-
gence of Monte Carlo based policy iteration where a single
trajectory corresponding to each policy is used at each it-
eration to generate returns, or empirical sums of costs that
estimate the value function, for states visited by the tra-
jectory. A formulation of this algorithm, which is called
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Monte Carlo with Exploring Starts (Monte Carlo ES), can
be found on page 99 of [Sutton and Barto, 2018], and its
convergence is “one of the most fundamental open the-
oretical questions in reinforcement learning” (page 99 of
[Sutton and Barto, 2018]). See the Appendix for more on
the connection of Monte Carlo ES to practice. The work of
[Tsitsiklis, 2002] partially solves a variant of Monte Carlo
ES, but the results assume a setting that is a hybrid of
Monte Carlo sampling using a single trajectory and a gen-
erative model. Hence, the convergence of Monte Carlo ES,
as well as related variants such as the “every visit” version
[Singh and Sutton, 1996], remains an open problem. A ma-
jor objective of this work is to solve the open problem.

Modern methods that use policy iteration based algo-
rithms with Monte Carlo methods of policy evaluation
have achieved spectacular empirical success in prob-
lems with very large state spaces [Mnih et al., 2016,
Silver et al., 2017b, Silver et al., 2017a] using lookahead
policies computed using Monte Carlo Tree Search (MCTS)
as opposed to one-step greedy policies. The motivation be-
hind using the lookahead is to significantly speed up the
rate of convergence of the algorithms. The benefits of us-
ing MCTS to compute lookahead policies versus one step
greedy policies far outweigh the additional computational
overhead which is relatively small when the number of next
states and actions is small, which is the case in many prob-
lems such as chess and Go. One of our main results shows
that, with the use of lookahead, Monte Carlo ES converges
asymptotically. We also provide finite-sample error bounds
for the algorithms. Since the prior statement of the open
problem is in the tabular setting, we present the results for
that case. We then extend the results to the case where func-
tion approximation is use. Examples of such applications
include game-playing RL agents for playing games such as
Chess and Go.

Extension To Linear Function Approximation Beyond
settling the open problem by using lookahead, we also ex-
tend the result to the case where one uses feature vectors
to approximate the value function. We show that when
the lookahead is sufficiently large, there is convergence to
within a function approximation error. We also provide in-
terpretable finite-sample convergence guarantees.

Then, we show that our techniques can be easily ex-
tended to incorporate other algorithms for policy evalu-
ation with feature vectors that have recently been ana-
lyzed. For techniques where the mean square error is
known such as TD learning with linear function approxi-
mation [Srikant and Ying, 2019, Bhandari et al., 2018], we
show that the approximation error is approximately equal
to the mean square error corresponding to the policy evalu-
ation method with feature vectors. Analogously to the pre-
vious extension, we show that when the number of steps of
TD learning is very large, the error primarily depends on

the function approximation error due to the feature vectors.

When feature vectors are used, recent approximate policy
iteration algorithms have a bound on the error in approxi-
mate policy iteration as a function of the discount factor α
of 1/(1−α)2 (see [Bertsekas, 2019, Winnicki et al., 2021,
Lagoudakis and Parr, 2003]). When α is very close to 1,
which is often the case in practice, reducing the bound by a
factor of 1/(1−α) significantly improves the performance
of the algorithms. In our algorithms, our bounds are ap-
proximately of the order 1/(1 − αH−1)(1 − α), where H
is the amount of lookahead.

1.2 Related Works

The connection between Monte Carlo methods and con-
trol methods based on policy iteration has been widely
studied [Sutton and Barto, 2018, Singh and Sutton, 1996].
The work of [Tsitsiklis, 2002] studies Monte Carlo sam-
pling with infinitely long trajectories beginning at all states
or all states with regular frequencies to perform policy
iteration. The works of [Chen, 2018, Liu, 2020] study
a similar method in the setting of the stochastic short-
est path problem. A related result has been obtained
in [Wang et al., 2022, Lubars et al., 2021] under the strong
assumption that for the optimal policy the transient states
of the resulting Markov chain form an acyclic graph.

Monte Carlo methods with infinitely long trajectories
and fixed starting states to perform approximate policy
iteration with feature vectors for function approximation
was studied in [Winnicki and Srikant, 2022]. The use of
rollouts to produce an m-step return, where m is the partial
evaluation parameter in the Monte Carlo simulation, as
opposed to infinitely long trajectories, has been studied in
[Puterman and Shin, 1978, Tsitsiklis and Van Roy, 1997,
Efroni et al., 2019, Winnicki et al., 2021] (see Section
2 for definitions of return and rollout). More broadly
speaking, these methods form a subset of approximate
policy iteration algorithms that have been extensively stud-
ied; see [Bertsekas and Tsitsiklis, 1996, Bertsekas, 2019,
Puterman and Shin, 1978] for results on dynamic program-
ming and [Lesner and Scherrer, 2015, Efroni et al., 2020,
Tomar et al., 2020, Efroni et al., 2018b, Deng et al., 2020]
for applications to reinforcement learning.

The work of [Efroni et al., 2019] uses rollouts in the al-
gorithms for policy evaluation along with multiple-step
greedy policies, also known as lookahead policies, which
have been featured in recent prominent implementations
[Mnih et al., 2016, Silver et al., 2016, Silver et al., 2017b].
The work of [Winnicki et al., 2021] defines the necess-
sity of depth of lookahead and amount of return required
for approximate policy iteration as a function of the fea-
ture vectors and quanities bounds on the asympotic error.
Here, we build upon the work of [Winnicki et al., 2021]
and further strengthen the bounds using stochastic ap-
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proximation as well as expand the setting of the prob-
lem to more carefully understand the role lookahead plays
on an algorithm that requires only a single trajectory
for each policy at each iteration for convergence. The
work of [Winnicki and Srikant, 2022] provides a partial
connection to the work of [Winnicki et al., 2021] and the
present work as it incorporates stochastic approximation
but only in a partially generative model setting, similar to
the one in [Winnicki et al., 2021]. See [Bertsekas, 2011,
Bertsekas, 2019] for more on feature vectors in approxi-
mate policy iteration. The works of [Bertsekas, 2011] and
[Bertsekas, 2019] also study a variant of policy iteration
wherein a greedy policy is evaluated approximately using
feature vectors at each iteration.

When the model of the state space is not known, looka-
head policies are computed using the Monte Carlo Tree
Search (MCTS) algorithm, which has been studied
in [Shah et al., 2020, Ma et al., 2019, Munos, 2014,
Browne et al., 2012, Kocsis and Szepesvári, 2006,
Efroni et al., 2018b, Powell, 2021]. For more
on the use of tree search in RL algorithms, see
[Bertsekas, 2019, Baxter et al., 1999, Veness et al., 2009,
Lanctot et al., 2014]. Lookahead also bears much relation-
ship to Model Predictive Control (MPC) [Bertsekas, 2022].

Our algorithms involve a general framework which al-
lows for general methods of policy evaluation using fea-
ture vectors followed by policy improvement using looka-
head. See [Srikant and Ying, 2019, Bhandari et al., 2018]
for more on policy evaluation with feature vectors.

2 BACKGROUND ON
REINFORCEMENT LEARNING

We consider a finite-state finite-action Markov decision
process (MDP). The state space is S and has cardinality
|S|. The action space is A and has size |A|. The probabil-
ity of transitioning to state j from state i when action u is
taken is Pij(u). The associated cost is g(i, u). We assume
g(i, u) ∈ [0, 1] ∀i, u, with probability 1.

Policy µ : S → A prescribes an action to take at state
i ∈ S. When a policy µ is fixed, we denote by gµ ∈ R|S|

the vector of expected costs associated with policy µ. We
call Pµ the probability transition matrix corresponding to
the associated Markov chain. At time k, we call the state
of the Markov chain xk. Consider policy µ. The associated
value function with discount factor α ∈ (0, 1) is given by
Jµ defined as follows:

Jµ(i) := E[
∞∑
k=0

αkg(xk, µ(xk))|x0 = i] ∀i ∈ S.

Herein, we assume that α ∈ (0, 1) for all discount factors
α. It is well known that Jµ solves the associated Bellman

equation:
Jµ = gµ + αPµJ

µ.

The associated Bellman operator, Tµ : S → S , is defined
as follows:

TµJ = gµ + αPµJ.

When we apply the Bellman operator to vector J , the result
is called TµJ, which has the following property:

∥TµJ − Jµ∥∞ ≤ α∥J − Jµ∥∞.

If operator Tµ is applied m times to vector J ∈ R|S|, then
we say that we have performed an m-step rollout of the
policy µ and the result Tm

µ J of the rollout is called the
return. See [Winnicki et al., 2021] for more on rollout.

Our objective is to find a policy µ which minimizes the
expected discounted cost:

E[
∞∑
k=0

αkg(xk, µ(xk))|x0 = i] ∀i ∈ S.

We call the associated value function J∗, or the optimal
value function. In other words,

J∗ := min
µ

Jµ.

In order to find J∗ and a corresponding optimal policy, we
define the Bellman optimality operator T . When there is
no ambiguity, we call T the Bellman operator. We define
the Bellman operator T : R|S| → R|S| as follows:

TJ = min
µ

E[gµ + αPµJ ].

Component-wise, we have the following:

TJ(i) = min
u

[
g(i, u) + α

|S|∑
j=1

Pij(u)J(j)
]
.

For any vector J , we say that the policy corresponding to
TJ is the greedy policy. When we apply the Bellman oper-
ator H times to vector J , we denote the resulting operator,
TH , as the H-step “lookahead” corresponding to J . We
call the greedy policy corresponding to THJ the H-step
lookahead policy, or the lookahead policy, when H is un-
derstood. See [Winnicki et al., 2021] for more definitions
on the lookahead policy. More succinctly, the lookahead
policy µ corresponding to vector V is the following:

µ ∈ argmin
µ

TµTH−1V.

We have that every time the Bellman operator is applied to
vector J to obtain TJ,

∥TJ − J∗∥∞ ≤ α∥J − J∗∥∞.
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Thus, applying T to obtain TJ gives a better estimate of the
value function than J , and hence, better lookahead policies
than greedy policies.

The Bellman equations state that J∗ is a solution to

J∗ = TJ∗.

It is well known that every greedy policy with respect to
the optimal value function J∗ is optimal and vice versa
[Bertsekas and Tsitsiklis, 1996].

3 CONVERGENCE OF FIRST-VISIT
TRAJECTORY-BASED POLICY
ITERATION

The convergence of the Monte Carlo with Explor-
ing Starts (Monte Carlo ES) algorithm (page 99 of
[Sutton and Barto, 2018]) is unknown and is “one of the
most fundamental open theoretical questions in reinforce-
ment learning” (page 99 of [Sutton and Barto, 2018]).

The episodic algorithm iteratively alternates between pol-
icy improvement and evaluation using a single trajectory
corresponding to the policy in each episode. For states
visited by the trajectory, sums of costs beginning at those
states are available and constitute estimates of the value
function at the states visited by the trajectory. Then, the
estimates of the value function at the states visited by the
trajectory are used to update components of a vector which
stores estimates of the optimal value function of all states
for the states visited by the trajectory. Then the next greedy
policy is determined from the updated estimate of the opti-
mal value function and the iterative process continues.

Algorithm: We consider a version of the Monte
Carlo ES algorithm similar to the main algorithm in
[Tsitsiklis, 2002], which provides a “partial solution” of the
open problem. At each iteration, k, the algorithm stores an
estimate of the optimal value function, Vk ∈ R|S|. Using
Vk, just as in policy iteration, the algorithm obtains a tra-
jectory corresponding to the lookahead policy (see Section
2) corresponding to Vk, µk+1, where

µk+1 = argmin
µ

TµTH−1Vk.

We call the set of states visited by the trajectory Dk. Note
that as stated in [Winnicki et al., 2021, Efroni et al., 2019],
the lookahead policy only needs to be computed for states
in Dk. Additionally, while the computation of TH−1Vk(i)
for i ∈ Dk may be infeasible, in practice, techniques
such as Monte Carlo Tree Search (MCTS) are employed
[Silver et al., 2017b], which are particularly useful when
the number of next states and actions is small.

The trajectory is then used to obtain estimates of Jµk+1(i)
for i ∈ Dk, which we call Ĵµk+1(i). In order to obtain

Ĵµk+1(i) for i ∈ Dk, we perform an m-step rollout (see
Section 2) with policy µk+1 by obtaining a discounted sum
of m costs beginning at each i for i ∈ Dk. The return gives
us a noisy version of Tm

µk+1
TH−1Vk(i) for i ∈ Dk. We

call wk(i) the unbiased noise that arises, noting that 0 ≤
wk(i) ≤ 1

1−α . If a state is encountered more than once by
the trajectory, we consider the rollout from the first visit to
the state. Using Tm

µk+1
TH−1Vk(i) + wk(i) for i ∈ Dk, we

obtain the next iterate as follows:

Vk+1(i)

=

{
(1− γk)Vk + γk(T

m
µk+1

TH−1Vk + wk) i ∈ Dk

Vk(i) i /∈ Dk.

where γk and is assumed to be square summable and sums
to infinity is the stepsize or learning rate.

We can write our iterates as follows:

Vk+1(i) = Ii∈Dk

[
(1− γk)Vk(i)

+ γk(T
m
µk+1

TH−1Vk(i) + wk(i))
]
+ Ii/∈Dk

[
Vk(i)

]
,

where Ii∈Dk
denotes the indicator function which equals

one when state i is visited by the trajectory at iteration k
and zero otherwise.

With some algebra, can we rewrite Vk+1 as follows:

Vk+1 = (I − γkPk,µk
)Vk + γkPk,µk

(Tm
µk+1

TH−1Vk + zk),

(1)

where I denotes the S × S identity matrix, pk,µk
(i) is the

probability that state i is ever visited by the trajectory un-
der policy µk, Pk,µk

is the diagonal matrix where diagonal
entries of the matrix correspond to the values of pk,µk

(i)
for all i ∈ S, and zk satisfies the same properties as wk.

Our algorithm is described in Algorithm 1.

Remark: Note that we need not compute µk+1(i) for all
states i ∈ S at instance k + 1. We only need to compute
µk+1(i) for states encountered in the rollout step of the al-
gorithm.

Note the similarity of our algorithm and the algorithm in
[Tsitsiklis, 2002]:

Vk+1 = (1− γk)Vk + γk(J
µ̃k+1 + wk),

where µ̃k+1 denotes the greedy policy with respect to Vk

(i.e., H = 1).

The proof of the main algorithm in [Tsitsiklis, 2002] is sim-
ilar to the main steps of the proof of modified policy itera-
tion [Puterman and Shin, 1978] and hinges on showing that

lim sup
k→∞

TVk − Vk ≤ 0.



Anna Winnicki, R. Srikant

Algorithm 1 First-Visit Monte Carlo Policy Evaluation For
Policy Iteration
Input: V0,m,H.

1: Let k = 0.
2: Let µk+1 be such that Tµk+1

TH−1Vk = THVk.
3: Obtain a trajectory using policy µk+1 and obtain

Tm
µk+1

TH−1Vk(i) + wk(i) for i ∈ Dk, where Dk is
the set of states visited by the trajectory and wk(i) for
i ∈ Dk is unbiased noise from sampling.

4: Obtain Vk+1 as follows

Vk+1(i) =


(1− γk)Vk(i)

+γk(T
m
µk+1

TH−1Vk(i) + wk(i)) i ∈ Dk

Vk(i) i /∈ Dk.

5: Set k ← k + 1. Go to 2.

To show that lim supk→∞ TVk − Vk ≤ 0, the proof relies
on the following steps:

TVk+1 ≤ Tµ̃k+1
Vk+1

= Tµ̃k+1
((1− γk)Vk + γk(J

µ̃k+1 + wk))

= gµ̃k+1
+ αPµ̃k+1

((1− γk)Vk + γk(J
µ̃k+1 + wk))

= (1− γk)(gµ̃k+1
+ αPµ̃k+1

Vk)

+ γk(gµ̃k+1
+ αPµ̃k+1

(J µ̃k+1 + wk))

= (1− γk)(TVk) + γk(J
µ̃k+1 + αPµ̃k+1

wk),

where Pµ̃k+1
is the probability transition matrix corre-

sponding to the Markov chain induced by policy µ̃k+1. We
can then subtract Vk+1 from both sides and easily obtain the
stochastic approximation paradigm that allows us to show
that lim supk→∞ TVk − Vk ≤ 0 :

TVk+1 − Vk+1︸ ︷︷ ︸
=Xk+1

≤ (1− γk)(TVk − Vk︸ ︷︷ ︸
=Xk

) + γk((αPµ̃k+1
− I)wk︸ ︷︷ ︸

=:vk

),

where I denotes the identity matrix and the noise vk satis-
fies similar properties to wk. The purpose of showing that
lim supk→∞ TVk − Vk ≤ 0 is that asymptotically, we can
use monotonicity to show that J∗ ≤ J µ̃k+1 ≤ TVk. Since
J µ̃k+1 is upper and lower bounded by contractions with
fixed point J∗, we can use stochastic approximation tech-
niques to obtain convergence of our iterates.

In our algorithm given by its iterates in (1), it is clear that
we cannot perform the steps of the above used in the proof
of [Tsitsiklis, 2002].

We now give Theorem 1, which shows that with suffici-
ciently large lookahead, the iterates in equation (1) con-
verge to the optimal value function.

Assumption 1 (a) The starting state of the trajectory at
each instance is drawn from a fixed distribution, p,
where p(i) > 0∀i ∈ S.

(b) αH−1 + 2(1 + αm)α
H−1

1−α < 1.

(c)
∑∞

i=0 γi =∞. Also,
∑∞

i=0 γ
2
i <∞.

We make several remarks on our assumptions:

(a) The first assusmption is what is denoted as “explor-
ing starts” (see [Sutton and Barto, 2018]), and guaran-
tees for all states to be selected infinitely many times.
We note that it is straightforward to extend our results
to any initial distribution as long as the probability of
visiting any state is lower bounded by a constant. In
particular, we do not require a fixed probability distri-
bution for the initial state.

(b) We assume the lookahead is sufficiently large, see pre-
vious sections for more on lookahead.

(c) The stepsizes are square summable and sum to infin-
ity, which allows for noise averaging.

Theorem 1 Under Assumption 1, the iterates of Algorithm
1 given in equation (1) converge to J∗, the optimal value
function, almost surely.

The proof is given in the Appendix.

3.1 Proof Idea

The main idea in the proof is the following. With suffi-
ciently large lookahead, we can show that

H(Vk) := Tm
µk+1

TH−1Vk (2)

is a contraction towards J∗, and hence we can apply
stochastic approximation techniques to obtain convergence
of Vk → J∗. We note that in equation (1), we have written
µk+1 as a function of Vk since it is the lookahead policy
with respect to Vk. The matrix Pk,µk

is a diagonal matrix
where each diagonal element indicates if the correspond-
ing state is visited by the trajectory. If the matrix were a
constant, one can use the techniques of [Tsitsiklis, 2002],
but the key challenge for us is that the matrix is history de-
pendent. The key to our proofs lies in the fact that, with
sufficient lookahead, the operator H(V ) defined in (2) is a
contraction. For clarify, we can alternatively rewrite Tµ as
Tµ(V ) when µ is a lookahead policy corresponding to vec-
tor V . Note that while the operator T is a contraction, when
we consider the operator Tµ(V ), µ depends on V because
µ is the lookahead policy with respect to V. Therefore, it
is not obvious if ||Tm

µ(V1)
TH−1V1 − Tm

µ(V2)
TH−1V2||∞ is

smaller than ||V1 − V2||∞.

Our proof hinges on the following key Lemma:
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Lemma 1

∥Jµk+1 − TH−1Vk∥∞ ≤
αH−1

1− α
∥TVk − Vk∥∞,

where Jµk+1 is the value function corresponding to policy
µk+1 (see Section 2). We will prove Lemma 1 in the Ap-
pendix. Using Lemma 1, we can show that:

∥Tm
µk+1

TH−1Vk − TH−1Vk∥∞

≤ (
αm+H−1

1− α
+

αH−1

1− α
)∥TVk − Vk∥∞.

We can now subtract J∗ from both sides of the inequality
and use the contraction property of the Bellman operator to
get:

∥Tm
µk+1

TH−1Vk − J∗∥∞

≤
(
αH−1 + 2(1 + αm)

αH−1

1− α

)
∥Vk − J∗∥∞.

3.2 Novelty of the Proof Technique

Contrasting with the proof technique of [Tsitsiklis, 2002],
we can see that due to the contraction property that follows
from the use of lookahead, we can evade the issues that
arise when the proof of [Tsitsiklis, 2002] is extended to in-
clude trajectory based updates. Additionally, the contrac-
tion based property allows us reduce the asymptotic error
that arises from feature vector representation using looka-
head, which is the topic of the next section.

Remarks: In the special case where the Markov chains
induced by all policies are irreducible and infinitely long
trajectories are obtained, we recover the results of the main
algorithm in [Tsitsiklis, 2002].

Furthermore, suppose we obtain Tm
µk+1

TH−1Vk(i)+wk(i)
for all i ∈ S, for any m and H. Then, we can write the
following iterative sequence:

Vk+1 = (1− γk)T
H−1Vk + γk(T

m
µk+1

TH−1Vk + wk).

(3)

We will show in the Appendix that the iterates in (3) con-
verge to J∗ a.s. Hence, we obtain convergence of a gener-
alized version of the main algorithm in [Tsitsiklis, 2002].

4 EXTENSIONS OF FIRST-VISIT
SIMULATION-BASED POLICY
ITERATION TO LINEAR FUNCTION
APPROXIMATION

When the sizes of the state and action spaces are very large,
we can assign a feature vector ϕ(s) ∈ Rd to each state s of

the state space S, where d << |S|, and at iteration k obtain
an estimate of the value function corresponding to µk+1,
ϕ(s)⊤θµk+1 , where θµk+1 ∈ Rd and θµk+1 is estimated
from the trajectory corresponding to µk+1. We define Φ to
be a matrix whose rows are the feature vectors.

In this way, instead of storing vectors Vk ∈ R|S|, we can
instead update vectors θk ∈ Rd, where d << |S|.

When a single trajectory corresponding to the lookahead
policy is available, there are many ways to estimate θµk+1 .
We will formulate an algorithm that allows us to analyze
general methods of obtaining θµk+1 and provide conver-
gence guarantees and finite-time bounds for the algorithm.

Our main assumption on the method used to estimate θµk+1

is that there exists known κ and δapp such that

∥E[Φθµk+1 |Fk]− TH−1Φθk∥∞
≤ κ∥TH−1Φθk − Jµk+1∥∞ + δapp, (4)

where δapp > 0 and 0 < αH−1 + κ 2αH−1

1−α < 1. We will
later show how κ and δapp can be obtained for different
policy evaluation algorithms.

We present Algorithm 2 and convergence guarantees of the
algorithm for general κ and δapp where Fk denotes the fil-
tration associated with the noise of the algorithm until in-
stance k. Note that similarly to Algorithm 1, we only need
to compute Step 2 of Algorithm 2 (computation of µk+1)
for states visited by the trajectory.

Algorithm 2 Function Approximation Algorithm With
Trajectory Based Samples and Lookahead
Input: θ0,m,H feature vectors {ϕ(i)}i∈S , ϕ(i) ∈ Rd .

1: Let k = 0.
2: Let µk+1 be such that Tµk+1

TH−1Φθk = THΦθk.
3: Obtain a trajectory using policy µk+1 and obtain θµk+1

where

∥E[Φθµk+1 |Fk]− TH−1Φθk∥∞
≤ κ∥TH−1Φθk − Jµk+1∥∞ + δapp

for some δapp > 0 and κ such that:

0 < αH−1 + κ
2αH−1

1− α
< 1.3

4:

θk+1 = (1− γk)θk + γk(θ
µk+1). (5)

5: Set k ← k + 1. Go to 2.

Theorem 2 Suppose the following conditions hold:

•
∑∞

i=0 γi =∞,
∑∞

i=0 γ
2
i <∞
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• there exist δapp > 0, and κ > 0 such that

0 < αH−1 + κ
2αH−1

1− α
< 1,

and

∥E[Φθµk+1 |Fk]− TH−1Φθk∥∞
≤ κ∥TH−1Φθk − Jµk+1∥∞ + δapp,

Then, almost surely, the following bound holds for iterates
θk of Algorithm 2:

lim sup
k→∞

∥Φθk − J∗∥∞ ≤
δapp

1− αH−1 − κ 2αH−1

1−α

almost surely and that the policies obtained almost surely
have the following property:

lim sup
k→∞

∥Jµk − J∗∥∞ ≤
2αH−1

1− α

[ δapp

1− αH−1 − κ 2αH−1

1−α

]
.

The proof of Theorem 2 can be found in the Appendix.

4.1 Proof Idea

Using Lemma 1, we will show that our E[Φθµk+1 |Fk] is
nearly a contraction with respect to J∗. To see this, no-
tice that we can use Lemma 1 to further upper bound the
inequality in (4) as follows:

∥E[Φθµk+1 |Fk]− TH−1Φθk∥∞

≤ καH−1

1− α
∥TΦθk − Φθk∥∞ + δapp.

We can now subtract J∗ from both sides of the inequality
and use the contraction property of the Bellman operator to
get:

∥E[Φθµk+1 |Fk]− J∗∥∞

≤ (αH−1 +
2καH−1

1− α
)∥Φθk − J∗∥∞ + δapp.

Roughly speaking, the above inequality states that the re-
sult of the sampling, θµk+1 , contracts towards J∗ compared
to the previous iterate θk. We can then use stochastic ap-
proximation techniques to obtain convergence of our iter-
ates.

4.2 Finite-Time Bounds

Theorem 3 Let σ2 be an upper bound on the variance of
(Φθµk+1 − E[Φθµk+1 |Fk]) for all k. Then, we have the

following finite-time error bound for Algorithm 2:

E[∥Φθk − J∗∥∞]

≤
k−1∏
i=1

ai∥Φθ0 − J∗∥∞︸ ︷︷ ︸
initial condition error

+ δapp

k−1∑
j=1

γj

k−1∏
ℓ=j+1

aℓ︸ ︷︷ ︸
error due to function approximation

+
k−1∑
j=1

γj(σj+1 + σj)
k−1∏

ℓ=j+1

aℓ︸ ︷︷ ︸
error due to noise

,

where ai := 1−γi(1−αH−1+ 2καH−1

1−α ) and σj is defined
recursively as follows:

σj = σ

√√√√ j∑
i=1

γ2
i

j∏
ℓ=i+1

(1− γℓ)2. (6)

Interpretation Of Finite-Time Bounds: We will now
interpret the terms of the finite-time bounds:

• Initial condition error: This term goes to 0 as k →∞.

To see this, notice that 0 < 1− αH−1 + 2καH−1

1−α < 1
due to our assumptions in Theorem 2. Thus, since∑∞

i=0 γi = ∞ and
∑∞

i=0 γ
2
i < ∞, we have that∏k−1

i=1 ai → 0.

• Error due to function approximation: δapp can be in-
terpreted as the error that arises from the use of feature
vectors. In our later analysis of δapp for various algo-
rithms, it can be seen δapp can be made small if the
feature vectors are sufficiently expressive.

• Error due to noise: This error term is due to Monte
Carlo sampling. Since the discounted infinite horizon
reward is bounded by 1/(1 − α), almost sure conver-
gence in the previous theorem implies that this term
must also go to zero as k →∞. For more discussion,
see the Appendix.

We now obtain κ and δapp for several methods of comput-
ing θµk+1 .

4.3 First Visit Monte-Carlo Policy Evaluation With
Feature Vectors

We will now go back to Algorithm 1 and directly extend the
results to include the use of feature vectors and θk instead
of Vk.

Recall in the previous section that a single trajectory cor-
responding to the lookahead policy µk+1 is obtained. We
denote the states visited by the trajectory as Dk. Just as
in the previous section, for all states i ∈ Dk, we obtain



On The Convergence Of Policy Iteration-Based Reinforcement Learning With Monte Carlo Policy Evaluation

Tm
µk+1

TH−1Φθk(i) +wk(i). Note that analogously to Sec-
tion 3, we need only to compute the lookahead for states
visited by the trajectory. Additionally, we do not need
to compute Φθk - we only need to compute Φθk(i) =
ϕ(i)⊤θk for states i visited by the trajectory or involved
in the tree search.

Now, instead of updating Vk(i) for i ∈ Dk, the case in
Section 3, we instead obtain θµk+1 ∈ Rd, which uses
Tm
µk+1

TH−1Φθk(i) + wk(i) for i ∈ Dk to construct an es-
timate of θµk+1 .

One way we obtain θµk+1 uses linear least squares to obtain
the best fitting θk+1. We now compute θµk+1 with linear
least squares using the term Ĵµk+1 which we will define in
the next paragraph:

θµk+1 := argmin
θ

1

2
∥(P1,kΦ)θ − P2,kĴ

µk+1∥22

= (P1,kΦ)
+P2,kĴ

µk+1 . (7)

We now explain the above terms:

• Φ is a matrix whose rows are the feature vectors

• P2,k is a matrix whose elements are a subset of the ele-
ments of Ĵµk+1 corresponding toDk. Since the values
of Ĵµk+1(i) for i /∈ Dk do not affect P2,kĴ

µk+1 , we
can define Ĵµk+1 as follows:

Ĵµk+1 := Tm
µk+1

TH−1Φθk + wk,

where wk := 0 for states i /∈ Dk. Notice that
since E[wk(i)|Fk] = 0 for i ∈ Dk we have that
E[wk|Fk] = 0.

• P1,k is a matrix of zeros and ones such that rows of
P1,kΦ correspond to feature vectors associated with
states in Dk.

• (P1,kΦ)
+ is the Moore-Penrose inverse of P1,kΦ.

Using the previous paragraph, we rewrite our iterates in (7)
as follows:

θµk+1 = (P1,kΦ)
+P2,k(T

m
µk+1

TH−1Φθk + wk).

Our estimate of the value function at iteration k is thus
given by:

Φθµk+1 = Φ(P1,kΦ)
+P2,k︸ ︷︷ ︸

=:Mk

(Tm
µk+1

TH−1Φθk + wk),

whereMk is a projection matrix used to estimate the Jµk+1

from samples of Ĵµk+1(i) = Tm
µk+1

TH−1Φθk(i) + wk(i)
for i ∈ Dk.

With θµk+1 defined as the above, we now obtain our corre-
sponding δapp and κ. See Appendix for proofs.

• κ = 1 + αmδFV where δFV := supk∥Mk∥∞.

• δapp

= sup
k,µk

∥E[Mk(J
µk+1 + wk)− (Jµk+1 + wk)|Fk]∥∞,

where wk is a martingale difference sequence, mean-
ing that E[wk|Fk] = 0.

How to Interpret Terms In The Error?

• δapp : Our error terms in the previous theorems mostly
hinge on δapp. Since Mk is a matrix which uses
the feature vectors corresponding to states in Dk to
construct an estimate of θµk+1 based on samples of
Ĵµk+1(i) for states i ∈ Dk , it is easy to see that δapp
is a measure of the ability of the feature vectors to
approximate the value functions corresponding to the
lookahead policies. Hence, with increasingly expres-
sive feature vectors, the error terms in Theorem 2 go
to 0.

• κ : In the presence of sufficiently large lookahead, κ
does not drastically alter the results in our theorems.
However, we note that typically the quantity m de-
notes the length of the trajectory starting at each state
in Dk, so typically m is very large, and hence κ is
close to 1.

Remarks: In order to compute Tm
µk+1

TH−1Φθk(i) +
wk(i) for i ∈ Dk, we do not need to compute Φθk; we
need only compute ϕ(i)⊤θk for states i ∈ Dk and states i
involved in the computation of the tree search at states vis-
ited by the trajectory. Recall from Section 3 that we only
need to compute the lookahead and µk+1 for states visited
by the trajectory.

Suppose thatMk = I, i.e. when we obtain an estimate of

Tm
µk+1

TH−1Vk(i)

for all i ∈ S . Then, Φθk → J∗ a.s. This matches the
result of Theorem 1. Additionally, we can see that the error
bounds mostly depend on the ability of the representative
ability of the feature vectors instead of the sizes of the state
and action spaces.

4.4 Extension To Gradient Descent

In order to speed up the rate of convergence of our iterates,
we instead take several steps of gradient descent towards

θµk+1 = argmin
θ

1

2
∥(P1,kΦ)θ − P2,kĴ

µk+1∥22,

where P1,k and P2,k are defined in the previous subsection.
In other words, when η denotes the number of steps of gra-
dient descent we take, for ℓ = 1, 2, . . . , η. We recursively
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compute the following:

θk+1,ℓ = θk+1,ℓ−1 − ξ∇θc(θ; Ĵ
µk+1)|θk+1,ℓ−1

, (8)

where c(θ; Ĵµk+1) := 1
2 minθ∥(P1,kΦ)θ − P2,kĴ

µk+1∥22,

0 < ξ <
1

σP1,kΦ,max
,

and σP1,kΦ,max is the largest singular value squared of
P1,kΦ, and θk+1,0 = 0. We then set θµk+1 = θk+1,η. We
obtain the following κ and δapp:

• κ = 1 + αmδFV , δFV := supk∥(P1,kΦ)
+P2,k∥∞.

• δapp = supk,µk
∥E[Mk(J

µk+1 +wk)−Jµk+1 |Fk]∥∞

+ (1− ξσP1,kΦ,max)
η∥Φ∥∞∥Vk,1∥∞×

∥Σ−1
k,1∥∞∥U

⊤
k P2,kĴ

µk+1∥∞,

where the singular value decomposition of P1,kΦ is:

P1,kΦ = Uk

[
Σk,1 0

] [V ⊤
k,1

V ⊤
k,2

]
= UkΣk,1V

⊤
k,1.

where Uk is a unitary matrix, Σk,1 is a rectangular
diagonal matrix, and Vk is a unitary matrix.

Our proof of the above is in the Appendix. Ultimately, the
purpose of gradient descent is to improve the computational
efficiency of the least squares algorithm in Subsection 4.3.
The results show that as η → ∞, the δapp of the gradient
descent algorithm equals to the δapp from Subsection 4.3.
The rate of convergence of δapp of the gradient descent al-
gorithm towards δapp of Subsection 4.3 as a function of the
number of steps of gradient descent is exponential.

4.5 Other Algorithms Including TD-Learning

Now consider a general mechanism of obtaining θµk+1

from a sample trajectory. We make the assumption that
θµk+1 is bounded (which is always the case for methods
with a fixed number of iterations for computing θµk+1 ).
When we have a δ such that for all µk+1 :

∥E[Φθµk+1 ]− Jµk+1∥∞ ≤ δ,

i.e., there exists some δ which is an upper bound of the
error of the method of estimating Jµk+1 , we can obtain a
corresponding δapp and κ as follows:

∥E[Φθµk+1 ]− TH−1Vk∥∞ ≤ ∥TH−1Vk − Jµk+1∥∞
+ ∥E[Φθµk+1 ]− Jµk+1∥∞
≤ ∥TH−1Vk − Jµk+1∥∞ + δ.

Thus, when the mean square error is known, κ = 1 and
δapp = δ.

Recent studies including [Srikant and Ying, 2019,
Bhandari et al., 2018] have obtained finite-time bounds
for TD-learning with linear function approximation. The
finite-time bounds in Theorem 3 of [Bhandari et al., 2018]
are of the following form: for any µk+1 where the output
of the TD-learning algorithm is θµk+1 , we have

E[∥Φθµk+1∗ − Φθµk+1∥2D] ≤ δT,µk+1
,

where δT,µk+1
depends on the number of iterations T of the

TD-learning algorithm, ∥·∥D denotes the weighted 2-norm
with weights corresponding to the stationary distribution of
µk+1, and

∥Φθµk+1∗ − Jµk+1∥D ≤
1√

1− α2
min
θ
∥Φθ − Jµk+1∥D,

meaning that θµk+1∗ approximates Jµk+1 . From this, it can
be shown that:

∥E[Φθµk+1 ]− Jµk+1∥∞ ≤ sup
µk+1

∥Φθµk+1∗ − Jµk+1∥∞

+

√
δT,µk+1

πµk+1,min
,

where πµk+1,min denotes the minimum weight of the sta-
tionary distribution of µk+1, thus giving us a δ as desired.
See Appendix for proofs with TD-learning.

5 CONCLUSION

We study Monte Carlo methods that estimate the value
function corresponding to policies determined in the pol-
icy improvement step of Monte Carlo based policy iteration
methods. We are concerned with trajectory based updates
that involve obtaining estimates of the value function cor-
responding to the greedy policies from states that are vis-
ited by the trajectory. This is noted as an open problem in
[Sutton and Barto, 2018] and [Tsitsiklis, 2002]. We show
that when lookahead policies, which are commonly used in
practice, are employed, we obtain convergence to the opti-
mal value function. We further our analysis to include the
use of feature vectors and also include analyses of general
methods of policy evaluation in feature vector space that
are computationally efficient such as TD learning.
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A PROOF OF CONVERGENCE OF ITERATES IN EQUATION (2) OF SECTION 3

We write our iterates as follows:

Vk+1 = (1− γk)T
H−1Vk + γk(T

m
µk+1

TH−1Vk + wk).

We break the proof up into steps as follows.

Step 1:

lim sup
k→∞

TVk − Vk ≤ 0.

Proof of Step 1: We will show that for every ε > 0, there exists sufficiently large k(ε) such that the following holds:

(1− γk)T
H−1Vk + γkT

m
µk+1

TH−1Vk − εe ≤ Vk+1 ≤ (1− γk)T
H−1Vk + γkT

m
µk+1

TH−1Vk + εe, (9)

where e is the vector of all 1s.

To do this, we define a sequence of random variables, Yk as follows:

Yk+1 = (1− γk)Yk + γkwk, Y0 = 0.

It is clear that Yk → 0 a.s. by standard stochastic approximation theory. Then, we subtract Yk+1 from both sides of the
iterates as follows:

Vk+1 − Yk+1 = (1− γk)(T
H−1Vk − Yk) + γk(T

m
µk+1

TH−1Vk).

Rearranging terms, we have:

Vk+1 = (1− γk)(T
H−1Vk) + γk(T

m
µk+1

TH−1Vk) + Yk+1 − (1− γk)Yk.

Since Yk → 0 a.s., we have that for every ε > 0, there exists k(ε) such that for all k > k(ε) we have the right side of the
inequality in (9). The left side follows accordingly.

Using the inequality in (9), we have that:

TVk+1 ≤ Tµk+1

[
(1− γk)T

H−1Vk + γkT
m
µk+1

TH−1Vk + εe
]

= (1− γk)T
HVk + γkT

m+1
µk+1

TH−1Vk + αεe.

Furthermore, using the inequality in (9),

TVk+1 − Vk+1 ≤ (1− γk)(T
HVk − TH−1Vk) + γk(T

m+1
µk+1

TH−1Vk − Tm
µk+1

TH−1Vk) + (1 + α)εe.

We recursively define δk such that:

TVk − Vk ≤ δke.

For k(ε), we have that:

δk(ε) := ∥TVk − Vk∥∞.

For k > k(ε), we define δk as follows:

δk = δk−1(α
H−1 + αm+H−1) + (1 + α)ε.
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It is clear that TVk − Vk ≤ δk since

TVk−1 − Vk−1 ≤ δk−1e

=⇒ THVk−1 − TH−1Vk−1 ≤ αH−1δk−1e

=⇒ Tm
µk
THVk−1 − Tm

µk
TH−1Vk−1 ≤ αm+H−1δk−1e.

Thus,

TVk+1 − Vk+1 ≤ (1− γk)α
H−1δk−1e+ γk[α

m+H−1δk−1e] + (1 + α)εe

≤ (1− γk)δk−1(α
H−1e+ αm+H−1) + (1 + α)εe

= δke.

Thus, we have that

lim sup
k→∞

TVk − Vk ≤ lim
k→∞

δke.

We now calculate limk→∞ δk as follows:

lim
k→∞

δk =
1 + α

αH−1 + αm+H−1
ε.

Since ε can be any value greater than 0, we have that limk→∞ TVk − Vk ≤ 0.

Step 2:

For all ε, ε̃ > 0,

Vk+1 ≤ TH−1Vk +
αH−1

1− α
ε̃e+ εe. (10)

Proof of Step 2:

Hence, for any ε̃ > 0, there exists k(ε̃) such that for any k > k(ε̃), TVk − Vk ≤ ε̃e.

Thus:

TVk − Vk ≤ ε̃e

=⇒ TVk ≤ Vk + ε̃e

=⇒ THVk ≤ TH−1Vk + αH−1ε̃e

=⇒ Tm
µk+1

TH−1Vk ≤ TH−1Vk +
αH−1

1− α
ε̃e.

Thus, we have for k > k(ε) + k(ε̃):

Vk+1 ≤ (1− γk)T
H−1Vk + γk(T

H−1Vk +
αH−1

1− α
ε̃e) + εe

≤ TH−1Vk + γk
αH−1

1− α
ε̃e+ εe

≤ TH−1Vk +
αH−1

1− α
ε̃e+ εe.

Step 3:
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For all ε, ε̃ > 0,

Vk+1 ≥ Tm+H−1Vk −
αH−1

1− α
ε̃e− εe.

Proof of Step 3: Furthermore, since TVk ≤ Vk + ε̃ for all k > k(ε̃), we have that

TH−1Vk ≥ Tm+H−1Vk −
αH−1

1− α
ε̃e.

Thus:

Vk+1 ≥ (1− γk)(T
m+H−1Vk −

αH−1

1− α
ε̃e) + γk(T

m
µk+1

TH−1Vk)− εe

≥ (1− γk)(T
m+H−1Vk −

αH−1

1− α
ε̃e) + γk(T

m+H−1Vk)− εe

= Tm+H−1Vk − (1− γk)
αH−1

1− α
ε̃e− εe

≥ Tm+H−1Vk −
αH−1

1− α
ε̃e− εe.

Step 4:

∥Vk+1 − J∗∥∞ ≤ αH−1∥Vk − J∗∥∞ +
αH−1

1− α
ε̃+ ε.

Proof of Step 4:

Putting the above together, we have:

Tm+H−1Vk −
αH−1

1− α
ε̃e− εe ≤ Vk+1 ≤ TH−1Vk +

αH−1

1− α
ε̃e+ εe.

Subtracting J∗ and using the contraction property of the Bellman operator, we have:

−αm+H−1∥Vk − J∗∥∞e− αH−1

1− α
ε̃e− εe ≤ Tm+H−1Vk − J∗ − αH−1

1− α
ε̃e− εe

≤ Vk+1 − J∗

≤ TH−1Vk − J∗ +
αH−1

1− α
ε̃e+ εe

≤ αH−1∥Vk − J∗∥∞e+
αH−1

1− α
ε̃e+ εe.

Thus,

∥Vk+1 − J∗∥∞ ≤ αH−1∥Vk − J∗∥∞ +
αH−1

1− α
ε̃+ ε.

The above implies that:

lim sup
k→∞

∥Vk − J∗∥∞ ≤
αH−1

1−α ε̃+ ε

αm+H−1 + αH−1

Since the above holds for all ε > 0 and all ε̃ > 0, we have that:

Vk → J∗a.s.
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B PROOF OF LEMMA 1

The following holds:

Tµk+1
TH−1Vk − THVk = 0

=⇒ Tµk+1
TH−1Vk − THVk + TH−1Vk − TH−1Vk = 0

=⇒ Tµk+1
TH−1Vk + ∥THVk − TH−1Vk∥∞e− TH−1Vk ≥ 0

=⇒ Tµk+1
TH−1Vk + αH−1∥TVk − Vk∥∞e− TH−1Vk ≥ 0

=⇒ Jµk+1 − TH−1Vk ≥ −
αH−1

1− α
∥TVk − Vk∥∞e,

where the last line follows from iteratively applying Tµk+1
to both sides and using a telescoping sum and e is the vector of

all 1s.

We also have:

Tµk+1
TH−1Vk = THVk

=⇒ Tµk+1
TH−1Vk − THVk + TH−1Vk − TH−1Vk = 0

=⇒ Tµk+1
TH−1Vk − ∥THVk − TH−1Vk∥∞e− TH−1Vk ≤ 0

=⇒ Tµk+1
TH−1Vk − αH−1∥TVk − Vk∥∞e− TH−1Vk ≤ 0

=⇒ Jµk+1 − TH−1Vk ≤
αH−1

1− α
∥TVk − Vk∥∞e.

Putting the above two together, we get the following:

∥Jµk+1 − TH−1Vk∥∞ ≤
αH−1

1− α
∥TVk − Vk∥∞.

C PROOF OF THEOREM 1

We break the proof of Theorem 1 up into steps.

Step 1:

∥Jµk+1 − TH−1Vk∥∞ ≤
αH−1

1− α
∥TVk − Vk∥∞.

Proof of Step 1: Step 1 is a restatement of Lemma 1 which is proved in Appendix B.

Step 2:

∥H(Vk)− TH−1Vk∥∞ ≤ (
αm+H−1

1− α
+

αH−1

1− α
)∥TVk − Vk∥∞

Proof of Step 2: We have:

∥H(Vk)− TH−1Vk∥∞ − ∥TH−1Vk − Jµk+1∥∞
≤ ∥H(Vk)− TH−1Vk + TH−1Vk − Jµk+1∥∞
= ∥H(Vk)− Jµk+1∥∞
≤ αm∥TH−1Vk − Jµk+1∥∞,

Which implies that

∥H(Vk)− TH−1Vk∥∞ ≤ (1 + αm)∥TH−1Vk − Jµk+1∥∞.
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Plugging in the results of Step 2, we have:

∥H(Vk)− TH−1Vk∥∞ ≤ (1 + αm)
αH−1

1− α
∥TVk − Vk∥∞.

Step 3:

∥H(Vk)− J∗∥∞ ≤
(
αH−1 + (1 + αm)

αH−1

1− α
(1 + α)

)
︸ ︷︷ ︸

=:β

∥Vk − J∗∥∞.

Proof of Step 3: We have

TH−1Vk − (1 + αm)
αH−1

1− α
∥TVk − Vk∥∞e ≤ H(Vk)

≤ TH−1Vk + (1 + αm)
αH−1

1− α
∥TVk − Vk∥∞e

=⇒ ∥H(Vk)− TH−1Vk∥∞ ≤ (1 + αm)
αH−1

1− α
∥TVk − Vk∥∞

=⇒ ∥H(Vk)− J∗∥∞ − ∥TH−1Vk − J∗∥∞ ≤ (1 + αm)
αH−1

1− α
∥TVk − Vk∥∞

=⇒ ∥H(Vk)− J∗∥∞ ≤ ∥TH−1Vk − J∗∥∞ + (1 + αm)
αH−1

1− α
∥TVk − Vk∥∞

=⇒ ∥H(Vk)− J∗∥∞ ≤ αH−1∥Vk − J∗∥∞

+ (1 + αm)
αH−1

1− α
(1 + α)∥Vk − J∗∥∞

=⇒ ∥H(Vk)− J∗∥∞ ≤
(
αH−1 + (1 + αm)

αH−1

1− α
(1 + α)

)
︸ ︷︷ ︸

=:β

∥Vk − J∗∥∞.

Note that above, e is a vector of all 1s.

Step 4:

Vk → J∗.

Proof of Step 4:

So far, we have the following rewrite of our iterates:

Vk+1(i) = (1− γkpk,µk
(i))Vk(i) + γkpk,µk

(i)(H(Vk)(i) + zk(i)),

where

∥H(Vk)− J∗∥∞ ≤ β∥Vk − J∗∥∞.

We define ∆k := Vk − J∗. Using ∆k, the following holds:

∆k+1(i) = (1− γkpk,µk
(i))∆k(i) + γkpk,µk

(i)(H(Vk)− J∗ + zk)(i).

Letting Yk be a sequence defined recursively as follows:

Yk+1(i) = (1− γkpk,µk
(i))Yk(i) + γkpk,µk

(i)zk(i),

where Y0 = 0. Since wk is bounded for all k, Yk → 0 a.s.

We now define the following sequence Xk as follows: Xk := ∆k − Yk.
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Thus,

Xk+1(i) = (1− γkpk,µk
(i))Xk(i) + γkpk,µk

(i)(H(Vk)− J∗)(i).

Taking absolute values on both sides we have:

|Xk+1(i)| = (1− γkpk,µk
(i))|Xk(i)|+ γkpk,µk

(i)|(H(Vk)− J∗)(i)|
≤ (1− γkpk,µk

(i))∥Xk∥∞ + γkpk,µk
(i)∥H(Vk)− J∗∥∞

≤ (1− γkpk,µk
(i))∥Xk∥∞ + γkpk,µk

(i)β∥Vk − J∗∥∞
≤ (1− γkpk,µk

(i))∥Xk∥∞ + γkpk,µk
(i)β∥∆k∥∞

≤ (1− γkpk,µk
(i))∥Xk∥∞ + γkpk,µk

(i)β∥Xk∥∞ + β∥Yk∥∞

≤ max
i

[
(1− γkpk,µk

(i))∥Xk∥∞ + γkpk,µk
(i)β∥Xk∥∞ + β∥Yk∥∞

]
.

We denote by γ̃k the γkpk,µk
(i) corresponding to a maximizing i in the above expression. Thus,

|Xk+1(i)| ≤ (1− γ̃k)∥Xk∥∞ + γ̃kβ∥Xk∥∞ + β∥Yk∥∞,

and since the right hand side of the inequality does not depend on i, we have that:

∥Xk+1∥∞ ≤ (1− γ̃k)∥Xk∥∞ + γ̃kβ∥Xk∥∞ + β∥Yk∥∞.

Since Yk → 0 a.s., we conclude there must exist for all ε > 0 some k(ε) such that for all k > k(ε) :

∥Yk∥∞ ≤ ε.

So, for k > k(ε), the following holds:

∥Xk+1∥∞ ≤ (1− γ̃k)∥Xk∥∞ + γ̃k

[
β∥Xk∥∞ + βε

]
.

Rearranging terms, we have:

∥Xk+1∥∞
≤ (1− γ̃k(1− β))∥Xk∥∞ + γ̃k(βε)

= (1− γ̃k(1− β)︸ ︷︷ ︸
=:γ′

k

)∥Xk∥∞ + γ̃k(1− β)
[ βε

1− β

]
.

Now, consider any positive integer N . We define a sequence of random variables X
N

k for k ≥ N, by setting X
N

N =
∥XN∥∞ and

X
N

k+1 = (1− γ′
k)X

N

k + γ′
k

[ βε

1− β

]
∀k > N.

We will carry out a comparison of the sequence ∥Xk∥∞ with the sequence X
N

k . Consider the event that k(ε) = N, which
we denote by AN . We can use an easy inductive argument to show that for any N , for any sample path in AN , and for all
k ≥ N, that ∥Xk∥∞ ≤ X

N

k . It is evident from the assumptions that
∑∞

k=0 γ
′
k = ∞ and hence X

N

k →
βε
1−β e as k → ∞.

To see this, observe that when the terms of X
N

k are written out, we have:

X
N

k =

k∏
ℓ=N+1

(1− γ′
ℓ)X

N

N + (1−
k∏

ℓ=N+1

(1− γ′
ℓ))

βε

1− β
e
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for k > N. Since γ′
k sums to infinity, we have that limk→∞

∏k
ℓ=N (1 − γ′

ℓ) = 0, hence X
N

k →
βε
1−β e as k → ∞. Since ε

can be chosen to be arbitrarily close to 0, for all sample paths in AN , we have that:

lim sup
k→∞

X
N

k ≤ 0.

Since the union of the events AN is the entire sample space, we have:

lim sup
k→∞

Xk ≤ 0.

From the definition of ∆k and the fact that Yk → 0 a.s., we conclude that:

lim sup
k→∞

∥∆k∥∞ = lim sup
k→∞

∥Vk − J∗∥∞ ≤ 0a.s,

and hence Vk → J∗a.s.

D PROOF OF THEOREM 2

We define Vk := Φθk and write the sequence of iterates {Vk}∞k=0 as follows:

Vk+1 = (1− γk)Vk + γk(H(Vk) + zk),

where H(Vk) = E[Φθµk+1 |Fk] and zk := Φθµk+1 − E[Φθµk+1 |Fk].

Proof Outline: We can use our assumption in Theorem 2 to show that:

∥H(Vk)− TH−1Vk∥∞ ≤ κ
αH−1

1− α
∥TVk − Vk∥∞ + δapp,

for some κ and δapp, which implies that:

∥H(Vk)− J∗∥∞ ≤
(
αH−1 + κ

2αH−1

1− α

)
︸ ︷︷ ︸

=:β

∥Vk − J∗∥∞ + δapp.

Thus, H(Vk) becomes almost a contraction with an error term, δapp. We can then apply stochastic approximation tech-
niques to show that:

lim sup
k→∞

∥Vk − J∗∥∞ ≤
δapp
1− β

.

To see this, suppose that there is no noise and so our iterates do not involve the noise averaging, i.e.,

Vk+1 = Ĵµk+1︸ ︷︷ ︸
=:H(Vk)

,

where ∥Ĵµk+1 − Jµk+1∥∞ ≤ δ. Then, we can trace the steps of the above, defining κ and δapp as we did above and we
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have the following:

TH−1Vk − κ
αH−1

1− α
∥TVk − Vk∥∞ − δapp ≤ Vk+1 ≤ TH−1Vk + κ

αH−1

1− α
∥TVk − Vk∥∞ + δapp

=⇒ ∥Vk+1 − TH−1Vk∥∞ ≤ κ
αH−1

1− α
∥TVk − Vk∥∞ + δapp

=⇒ ∥Vk+1 − J∗∥∞ − ∥TH−1Vk − J∗∥∞ ≤ κ
αH−1

1− α
∥TVk − Vk∥∞ + δapp

=⇒ ∥Vk+1 − J∗∥∞ ≤ ∥TH−1Vk − J∗∥∞ + κ
αH−1

1− α
∥TVk − Vk∥∞ + δapp

=⇒ ∥Vk+1 − J∗∥∞ ≤ αH−1∥Vk − J∗∥∞ + κ
αH−1

1− α
(1 + α)∥Vk − J∗∥∞ + δapp

=⇒ ∥Vk+1 − J∗∥∞ ≤
(
αH−1 + κ

αH−1

1− α
(1 + α)

)
∥Vk − J∗∥∞ + δapp

=⇒ ∥Vk − J∗∥ ≤
(
αH−1 + κ

αH−1

1− α
(1 + α)

)k

∥V0 − J∗∥+ δapp

k−1∑
i=0

(
αH−1 + κ

αH−1

1− α
(1 + α)

)i

Taking limits, we get the following:

lim sup
k→∞

∥Vk − J∗∥∞ ≤
δapp

1− αH−1 − κ 2αH−1

1−α

=
δapp
1− β

.

We will now prove our Theorem. We break the proof up into steps.

Step 1: We first obtain an upper bound for ∥H(Vk)− TH−1Vk∥∞ as follows:

∥H(Vk)− TH−1Vk∥∞ ≤ κ∥TH−1Vk − Jµk+1∥∞ + δapp

Proof of Step 1: We assume the existence of κ and δapp in the statement of Theorem 2.

Step 2:

∥Jµk+1 − TH−1Vk∥∞ ≤
αH−1

1− α
∥TVk − Vk∥∞.

Proof of Step 2: Step 2 is a restatement of Lemma 1, which is proved in Appendix B.

Step 3:

∥H(Vk)− TH−1Vk∥∞ ≤ (1 + κ)
αH−1

1− α
∥TVk − Vk∥∞ + δapp

Proof of Step 3:

We have from Step 1:

∥H(Vk)− TH−1Vk∥∞ ≤ κ∥TH−1Vk − Jµk+1∥∞ + δapp.

Plugging in the result of Step 2, we have:

∥H(Vk)− TH−1Vk∥∞ ≤ κ
αH−1

1− α
∥TVk − Vk∥∞ + δapp.

Step 4:

∥H(Vk)− J∗∥∞ ≤
(
αH−1 + κ

2αH−1

1− α

)
︸ ︷︷ ︸

=:β

∥Vk − J∗∥∞ + δapp.
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Proof of Step 4: We have

TH−1Vk − κ
αH−1

1− α
∥TVk − Vk∥∞e− δappe ≤ H(Vk)

≤ TH−1Vk + κ
αH−1

1− α
∥TVk − Vk∥∞e+ δappe

=⇒ ∥H(Vk)− TH−1Vk∥∞ ≤ κ
αH−1

1− α
∥TVk − Vk∥∞ + δapp

=⇒ ∥H(Vk)− J∗∥∞ − ∥TH−1Vk − J∗∥∞ ≤ κ
αH−1

1− α
∥TVk − Vk∥∞

+ δapp

=⇒ ∥H(Vk)− J∗∥∞ ≤ ∥TH−1Vk − J∗∥∞ + κ
αH−1

1− α
∥TVk − Vk∥∞

+ δapp

=⇒ ∥H(Vk)− J∗∥∞ ≤ αH−1∥Vk − J∗∥∞

+ κ
αH−1

1− α
(1 + α)∥Vk − J∗∥∞ + δapp

=⇒ ∥H(Vk)− J∗∥∞ ≤
(
αH−1 + κ

2αH−1

1− α

)
︸ ︷︷ ︸

=:β

∥Vk − J∗∥∞

+ δapp.

Step 5:

lim sup
k→∞

∥Vk − J∗∥∞ ≤
δapp
1− β

.

Proof of Step 5:

So far, we have the following rewrite of our iterates:

Vk+1 = (1− γk)Vk + γk(H(Vk) + zk),

where

∥H(Vk)− J∗∥∞ ≤ β∥Vk − J∗∥∞ + δapp.

We define ∆k := Vk − J∗. Using ∆k, the following holds:

∆k+1 = (1− γk)∆k + γk(H(Vk)− J∗ + wk).

Letting Yk be a sequence defined recursively as follows:

Yk+1 = (1− γk)Yk + γkwk,

where Y0 = 0. Since wk is bounded for all k, Yk → 0 a.s.

We now define the following sequence Xk as follows:

Xk := ∆k − Yk. (11)

Thus,

Xk+1 = (1− γk)Xk + γk(H(Vk)− J∗).
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Taking norms on both sides gives:

∥Xk+1∥∞ ≤ (1− γk)∥Xk∥∞ + γk∥H(Vk)−H(J∗)∥∞

≤ (1− γk)∥Xk∥∞ + γk

[
β∥Vk − J∗∥∞ + δapp

]
=≤ (1− γk)∥Xk∥∞ + γk

[
β∥∆k∥∞ + δapp

]
≤ (1− γk)∥Xk∥∞ + γk

[
β∥Xk∥∞ + β∥Yk∥∞ + δapp

]
.

Since Yk → 0 a.s., we conclude there must exist for all ε > 0 some k(ε) such that for all k > k(ε) :

∥Yk∥∞ ≤ ε.

So, for k > k(ε), the following holds:

∥Xk+1∥∞ ≤ (1− γk)∥Xk∥∞ + γk

[
β∥Xk∥∞ + βε+ δapp

]
.

Rearranging terms, we have:

∥Xk+1∥∞
≤ (1− γk(1− β))∥Xk∥∞ + γk(βε+ δapp)

= (1− γk(1− β)︸ ︷︷ ︸
=:γ′

k

)∥Xk∥∞ + γk(1− β)
[βε+ δapp

1− β

]
.

Now, consider any positive integer N . We define a sequence of random variables X
N

k for k ≥ N, by setting X
N

N =
∥XN∥∞ and

X
N

k+1 = (1− γ′
k)X

N

k + γ′
k

[βε+ δapp
1− β

]
∀k > N.

We will carry out a comparison of the sequence ∥Xk∥∞ with the sequence X
N

k . Consider the event that k(ε) = N, which
we denote by AN . We can use an easy inductive argument to show that for any N , for any sample path in AN , and for
all k ≥ N, that ∥Xk∥∞ ≤ X

N

k . It is evident from the assumption that
∑∞

k=0 γk = ∞ and thus
∑∞

k=0 γ
′
k = ∞ that

X
N

k →
βε+δapp

1−β as k →∞. Since ε can be chosen to be arbitrarily close to 0, for all sample paths in AN , we have that

lim sup
k→∞

X
N

k ≤
δapp
1− β

.

Since the union of the events AN is the entire sample space, we have:

lim sup
k→∞

Xk ≤
δapp
1− β

.

From the definition of ∆k and the fact that Yk → 0 a.s., we conclude that

lim sup
k→∞

∥∆k∥∞ = lim sup
k→∞

∥Vk − J∗∥∞ ≤
δapp
1− β

.

Furthermore, since Vk = Φθk, we have that

lim sup
k→∞

∥Φθk − J∗∥∞ ≤
δapp
1− β

.
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Step 6:

lim sup
k→∞

∥Jµk − J∗∥∞ ≤
δapp
1− β

.

Proof of Step 6: Choose any ε > 0. Then, there exists k(ε) such that the following holds for all k > k(ε):

∥Vk − J∗∥∞ ≤ ∆+ ε. (12)

Using (12), we can see that:

∥Vk − TVk∥∞ − ∥TVk − J∗∥∞ ≤ ∥Vk − TVk + TVk − J∗∥∞∥Vk − J∗∥∞ ≤ ∆+ ε

=⇒ ∥Vk − TVk∥∞ ≤ ∥TVk − J∗∥∞ +∆+ ε

=⇒ ∥Vk − TVk∥∞ ≤ α∥Vk − J∗∥∞ +∆+ ε

=⇒ ∥Vk − TVk∥∞ ≤ α(∆ + ε) + ∆ + ε

=⇒ ∥Vk − TVk∥∞ ≤ (1 + α)(∆ + ε).

Thus,

− TVk ≤ −Vk + (1 + α)(∆ + ε)e

=⇒ − THVk ≤ −TH−1Vk + αH−1(1 + α)(∆ + ε)e

=⇒ − Tµk+1
TH−1Vk ≤ −TH−1Vk + αH−1(1 + α)(∆ + ε)e.

Suppose that we apply the Tµk+1
operator ℓ − 1 times. Then, due to monotonicity and the fact that Tµ(J + ce) =

Tµ(J) + αce, for any policy µ, we have the following:

−T ℓ
µk+1

TH−1Vk ≤ −T ℓ−1
µk+1

TH−1Vk + αℓ−1αH−1(1 + α)(∆ + ε)e.

Using a telescoping sum, we get the following inequality:

−T j
µk+1

TH−1Vk + TH−1Vk ≤ −
j∑

ℓ=1

αℓ−1αH−1(α+ 1)(∆ + ε)e.

Taking the limit as j →∞ on both sides, we have the following:

−Jµk+1 + TH−1Vk ≤ −
αH−1(α+ 1)(∆ + ε)

1− α
e.

Rearranging terms and subtracting J∗ from both sides, we get the following:

− Jµk+1 + TH−1Vk ≤ −
αH−1(α+ 1)(∆ + ε)

1− α
e

=⇒ J∗ − Jµk+1 ≤ J∗ − TH−1Vk −
αH−1(α+ 1)(∆ + ε)

1− α
e

Since Jµ ≤ J∗ for all policies µ, the above line implies that:

∥J∗ − Jµk+1∥∞ ≤ ∥J∗ − TH−1Vk∥∞ +
αH−1(α+ 1)(∆ + ε)

1− α

≤ αH−1∥J∗ − Vk∥∞ +
αH−1(α+ 1)(∆ + ε)

1− α

≤ αH−1(∆ + ε) +
αH−1(α+ 1)(∆ + ε)

1− α

=
2αH−1(∆ + ε)

1− α
.

Since the above holds for all ε > 0, we have the following conclusion:

lim sup
k→∞

∥Jµk+1 − J∗∥∞ ≤
2αH−1∆

1− α
.
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E PROOF OF THEOREM 3 AND EXPLANATION

Our iterates are:

Vk+1 = (1− γk)Vk + γk(H(Vk) + zk).

We have

Xk+1 = (1− γk)Xk + γk(H(Vk))

=⇒ ∥Xk+1 − J∗∥∞ = (1− γk)∥Xk − J∗∥∞ + γk∥H(Vk)− J∗∥∞

=⇒ ∥Xk+1 − J∗∥∞ ≤ (1− γk)∥Xk − J∗∥∞ + γk((α
H−1 +

2καH−1

1− α
)∥Vk − J∗∥∞

+ δapp)

=⇒ ∥Xk+1 − J∗∥∞ ≤ (1− γk(1− αH−1 +
2καH−1

1− α
))∥Xk − J∗∥∞ + γkδapp

=⇒ E[∥Xk+1 − J∗∥∞] ≤ (1− γk(1− αH−1 +
2καH−1

1− α
))E[∥Xk − J∗∥∞] + γkδapp

=⇒ E[∥Vk+1 − J∗∥∞] ≤ (1− γk(1− αH−1 +
2καH−1

1− α
))E[∥Vk − J∗∥∞] + γk(E[∥Yk+1∥∞] + E[∥Yk∥∞] + δapp),

where the last line follows from using the triangle inequality and the definition in (11).

Iterating, we have:

E[∥Vk − J∗∥∞] ≤
k−1∏
i=1

ai∥V0 − J∗∥∞︸ ︷︷ ︸
initial condition error

+ δapp

k−1∑
j=1

γj

k−1∏
ℓ=j+1

aℓ︸ ︷︷ ︸
error due to function approximation

+

k−1∑
j=1

γj(E[∥Yj+1∥∞] + E[∥Yj∥∞])

k−1∏
ℓ=j+1

aℓ︸ ︷︷ ︸
error due to noise

.

We note that since γk is square summable and sums to infinity, Yk → 0 a.s. and hence the error due to noise decreases over
time. Additionally, since γk is square summable and sums to infinity, we have that

∏k−1
i=1 ai → 0, hence only the function

approximation error remains.

We now obtain an upper bound for the ∥Yj∥∞ as follows. From the definition of Yk in Appendix D, we have the following:

E(∥Yk + 1∥2) ≤ (1− γk)
2E(∥Yk∥2) + γkσ

2.

Furthermore, since ∥Y0∥ = 0, we can iterate over k to get σj in Section 4.2.

F SECTION 4.3 - PROOFS

Recall that from the equation in (6), we rewrite our iterates as follows:

θµk+1 = (P1,kΦ)
+P2,k(T

m
µk+1

TH−1Vk + wk),

and thus,

Φθµk+1 = Φ(P1,kΦ)
+P2,k︸ ︷︷ ︸

=:Mk

(Tm
µk+1

TH−1Vk + wk)



On The Convergence Of Policy Iteration-Based Reinforcement Learning With Monte Carlo Policy Evaluation

We have:

∥H(Vk)− Jµk+1∥∞
= ∥E[Mk(T

m
µk+1

TH−1Vk + wk)− Jµk+1 |Fk]∥∞
= ∥E[Mk(T

m
µk+1

TH−1Vk + wk)−Mk(J
µk+1 + wk) +Mk(J

µk+1 + wk)− Jµk+1 |Fk]∥∞
≤ ∥E[Mk(T

m
µk+1

TH−1Vk + wk)−Mk(J
µk+1 + wk)|Fk]∥∞ + ∥E[Mk(J

µk+1 + wk)− Jµk+1 |Fk]∥∞
≤ ∥E[Mk(T

m
µk+1

TH−1Vk + wk)−Mk(J
µk+1 + wk)|Fk]∥∞

+ sup
k,µk

∥E[Mk(J
µk+1 + wk)− Jµk+1 |Fk]∥∞︸ ︷︷ ︸

=:δapp

= ∥E[Mk(T
m
µk+1

TH−1Vk)−Mk(J
µk+1)|Fk]∥∞ + δapp

= E[∥Mk(T
m
µk+1

TH−1Vk)−Mk(J
µk+1)∥∞|Fk] + δapp

≤ E[sup
k
∥Mk∥∞∥Tm

µk+1
TH−1Vk − Jµk+1∥∞|Fk] + δapp

= sup
k
∥Mk∥∞︸ ︷︷ ︸
=:δFV

∥Tm
µk+1

TH−1Vk − Jµk+1∥∞ + δapp

≤ αmδFV ∥TH−1Vk − Jµk+1∥∞ + δapp.

Using the above, we furthermore have that

∥H(Vk)− TH−1Vk∥∞ ≤ (1 + αmδFV )︸ ︷︷ ︸
=:κ

∥TH−1Vk − Jµk+1∥∞ + δapp.

G SECTION 4.4 - PROOFS

First, we will show that the gradient descent converges to

θk+1
∗ := min

θ

1

2
∥(P1,kΦ)︸ ︷︷ ︸

=:Ak

θ − P2,kĴ
µk+1︸ ︷︷ ︸

=:bk

∥22

︸ ︷︷ ︸
=:fk(θ)

= (P1,kΦ)
+P2,k(T

m
µk+1

TH−1Vk + wk). (13)

To do so, we will show that

∥θk+1,η − θ∗k+1∥∞ ≤ (1− ξσP1,kΦ,max)
η∥Φ∥∞∥Vk,1∥∞∥Σ−1

k,1∥∞∥U
⊤
k P2,kĴ

µk+1∥∞,

where the singular value decomposition of Ak is:

Ak = Uk

[
Σk,1 0

] [V ⊤
k,1

V ⊤
k,2

]
= UkΣk,1V

⊤
k,1.

where Uk is a unitary matrix, Σk,1 is a rectangular diagonal matrix, and Vk is a unitary matrix.

Note that using the singular value decomposition of Ak, we can rewrite θ∗k+1 as follows:

θ∗k+1 = Vk,1Σ
−1
k,1U

⊤
k bk.

The gradient of fk(θ) is:

∇fk(θ) = A⊤
k (Akθ − bk).

Using gradient descent with step size ξ > 0, our iterates of gradient descent are given by:
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θk+1,ℓ = θk+1,ℓ−1 − ξ∇fk(θk+1,ℓ−1)

= (I − ξA⊤
k Ak)θk+1,ℓ−1 + ξA⊤

k b.

Hence,

θk+1,ℓ = ξ
ℓ−1∑
ℓ=0

(I − ξA⊤
k Ak)

ℓA⊤
k b.

From the singular value decomposition of Ak, we have that

(I − ξA⊤
k Ak)

ℓ = Vk(I − ξΣ2
k)

ℓ
V ⊤
k ,

we can rewrite θk+1,ℓ as follows:

θk+1,ℓ = ξ
ℓ−1∑
ℓ=0

Vk(I − ξΣ2
k)

ℓ
V ⊤
k A⊤

k bk

= ξ

ℓ−1∑
ℓ=0

Vk(I − ξΣ2
k)

ℓΣkU
⊤
k bk

= ξ

ℓ−1∑
ℓ=0

Vk

[
(I − ξΣ2

k,1)
ℓ 0

0 0

] [
Σk,1

0

]
U⊤
k bk

= ξ
ℓ−1∑
ℓ=0

Vk,1(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk.

Since

Σ−1
k,1 = ξ(I − I + ξΣ2

k,1)
−1Σk,1 = ξ

∞∑
ℓ=0

(I − ξΣ2
k,1)

ℓΣk,1,

we further rewrite θ∗k+1 as follows:

θ∗k+1 =
∞∑
ℓ=0

ξVk,1(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk.
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We now compute

∥θµk+1 − θ∗k+1∥∞
≤ ∥θk+1,η − θ∗k+1∥∞

= ∥ξ
η∑

ℓ=0

Vk,1(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk − ξ

∞∑
ℓ=0

Vk,1(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk∥∞

= ∥ξ
∞∑
ℓ=η

Vk,1(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk∥∞

≤ ∥Vk,1∥∞∥ξ
∞∑
ℓ=η

(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk∥∞

= ∥Vk,1∥∞∥ξ(I − ξΣ2
k,1)

η
∞∑
ℓ=0

(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk∥∞

= ∥Vk,1∥∞∥(I − ξΣ2
k,1)

η∥∞∥ξ
∞∑
ℓ=0

(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk∥∞

≤ ∥Vk,1∥∞∥I − ξΣ2
k,1∥η∞∥ξ

∞∑
ℓ=0

(I − ξΣ2
k,1)

ℓ
Σk,1U

⊤
k bk∥∞

= ∥Vk,1∥∞∥I − ξΣ2
k,1∥η∞∥Σ−1

k,1U
⊤
k bk∥∞

≤ (1− ξσP1,kΦ,max)
η∥Vk,1∥∞∥Σ−1

k,1∥∞∥U
⊤
k bk∥∞

≤ (1− ξσP1,kΦ,max)
η∥Vk,1∥∞∥Σ−1

k,1∥∞∥U
⊤
k P2,kĴ

µk+1∥∞,

where σP1,kΦ,max is the largest singular value squared of P1,kΦ.

Note that the above implies that in order to obtain convergence of θk+1,η to θ∗k+1 as a function of η, we must have that
0 < ξσP1,kΦ,max < 1.

Thus, we have:

∥H(Vk)− Φθ∗k+1∥∞ ≤ (1− ξσP1,kΦ,max)
η∥Φ∥∞∥Vk,1∥∞∥Σ−1

k,1∥∞∥U
⊤
k P2,kĴ

µk+1∥∞.

Defining ε := (1 − ξσP1,kΦ,max)
η∥Φ∥∞∥Vk,1∥∞∥Σ−1

k,1∥∞∥U⊤
k P2,kĴ

µk+1∥∞ and usingMk and δapp as defined in Ap-
pendix E, we obtain:

∥H(Vk)− Jµk+1∥∞
= ∥E[Mk(T

m
µk+1

TH−1Vk + wk)− Jµk+1 |Fk]∥∞ + ε

= ∥E[Mk(T
m
µk+1

TH−1Vk + wk)−Mk(J
µk+1 + wk) +Mk(J

µk+1 + wk)− Jµk+1 |Fk]∥∞ + ε

≤ ∥E[Mk(T
m
µk+1

TH−1Vk + wk)−Mk(J
µk+1 + wk)|Fk]∥∞ + ∥E[Mk(J

µk+1 + wk)− Jµk+1 |Fk]∥∞ + ε

≤ ∥E[Mk(T
m
µk+1

TH−1Vk + wk)−Mk(J
µk+1 + wk)|Fk]∥∞

+ sup
k,µk

∥E[Mk(J
µk+1 + wk)− Jµk+1 |Fk]∥∞︸ ︷︷ ︸

=:δapp

+ε

= ∥E[Mk(T
m
µk+1

TH−1Vk)−Mk(J
µk+1)|Fk]∥∞ + δapp + ε

= E[∥Mk(T
m
µk+1

TH−1Vk)−Mk(J
µk+1)∥∞|Fk] + δapp + ε

≤ E[sup
k
∥Mk∥∞∥Tm

µk+1
TH−1VkJ

µk+1∥∞|Fk] + δapp + ε

= sup
k
∥Mk∥∞︸ ︷︷ ︸
=:δFV

∥Tm
µk+1

TH−1VkJ
µk+1∥∞ + δapp + ε

≤ αmδFV ∥TH−1Vk − Jµk+1∥∞ + δapp + ε.
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Using the above, we furthermore have that

∥H(Vk)− TH−1Vk∥∞ ≤ (1 + αmδFV )︸ ︷︷ ︸
=:κ

∥TH−1Vk − Jµk+1∥∞ + δapp

+ (1− ξσP1,kΦ,max)
η∥Φ∥∞∥Vk,1∥∞∥Σ−1

k,1∥∞∥U
⊤
k P2,kĴ

µk+1∥∞.

The new κ and δapp are apparent from the above.

H SECTION 4.5 - PROOFS

(πµk+1,min)
2E[∥Φθµk+1∗ − Φθµk+1∥2∞] ≤ (πµk+1,min)

2E[∥Φθµk+1∗ − Φθµk+1∥22] ≤ E[∥Φθµk+1∗ − Φθµk+1∥2D] ≤ δT,µk+1
.

Using Jensen’s inequality, we have:

(πµk+1,min)
2(E[∥Φθµk+1∗ − Φθµk+1∥∞])2 ≤ (πµk+1,min)

2E[∥Φθµk+1∗ − Φθµk+1∥2∞] ≤ δT,µk+1

=⇒ πµk+1,minE[∥Φθµk+1∗ − Φθµk+1∥∞] ≤
√

δT,µk+1

=⇒ E[∥Φθµk+1∗ − Φθµk+1∥∞] ≤
√

δT,µk+1

πµk+1,min

=⇒ E[∥Φθµk+1∗ − Jµk+1 + Jµk+1 − Φθµk+1∥∞] ≤
√

δT,µk+1

πµk+1,min

=⇒ E[∥Jµk+1 − Φθµk+1∥∞] ≤ sup
µk+1

∥Φθµk+1∗ − Jµk+1∥∞ +

√
δT,µk+1

πµk+1,min
,

where the last inequality follows from applying the reverse triangle inequality and then taking the supremum over all
policies µk+1.

Finally, we use Jensen’s inequality again to obtain the following:

∥E[Φθµk+1 ]− Jµk+1∥∞ = ∥E[Jµk+1 − Φθµk+1 ]∥∞ ≤ sup
µk+1

∥Φθµk+1∗ − Jµk+1∥∞ +

√
δT,µk+1

πµk+1,min
.

Thus, we can combine the δT,µk+1
in (Bhandari et al., 2018) with the above terms to obtain a δapp and our calculations in

Section 4.5 give κ = 1.

I CONNECTION OF MONTE CARLO ES TO PRACTICE

We make several remarks regarding the connection of Monte Carlo ES to practice. While AlphaZero [Silver et al., 2017b]
uses techniques such as function approximation and lookahead through planning algorithms in the form of Monte Carlo
Tree Search (MCTS), Monte Carlo ES is nonetheless a Monte Carlo algorithm since it uses full trajectories and their returns
to estimate loss functions. Additionally, the AlphaZero algorithm uses returns from all states visited by the trajectories to
make updates instead of only the first state.


