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Abstract

A common technique in reinforcement learn-
ing is to evaluate the value function from
Monte Carlo simulations of a given policy, and
use the estimated value function to obtain a
new policy which is greedy with respect to
the estimated value function. A well-known
longstanding open problem in this context is
to prove the convergence of such a scheme
when the value function of a policy is esti-
mated from data collected from a single sam-
ple path obtained from implementing the pol-
icy (see page 99 of [Sutton and Barto, 2018],
page 8 of [Tsitsiklis, 2002]). We present a so-
lution to the open problem by showing that
a first-visit version of such a policy iteration
scheme indeed converges to the optimal policy
provided that the policy improvement step uses
lookahead [Silver et al., 2016, Mnih et al., 2016,
Silver et al., 2017b] rather than a simple greedy
policy improvement. We provide results both for
the original open problem in the tabular setting
and also present extensions to the function ap-
proximation setting, where we show that the pol-
icy resulting from the algorithm performs close
to the optimal policy within a function approxi-
mation error.

1 INTRODUCTION

In many applications of reinforcement learning, the un-
derlying probability transition matrix is known but the
size of the state space is large so that one uses approx-
imate dynamic programming methods to obtain the opti-
mal control policy. Examples of such applications include
game-playing RL agents for playing games such as Chess
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and Go. Abstracting away the details, in essence what
AlphaZero does is the following [Silver et al., 2017b]: it
evaluates the current policy using a Monte Carlo roll-
out and obtains a new policy using the estimate of the
value function of the old policy by using lookahead. We
note that AlphaZero collects and uses Monte Carlo re-
turns for all states in each rollout [Silver et al., 2017b].
Thus, effectively the algorithm performs policy iteration
using Monte Carlo estimates of the value function. If
one ignores the Monte Carlo aspect of policy evaluation
but is interested in the tree search of aspects of roll-
out and lookahead, there are several recent works which
quantify the impact of the depth of rollout and looka-
head on the performance of algorithm [Efroni et al., 2019,
Efroni et al., 2018a, Winnicki et al., 2021]. However, to
the best of our knowledge, there is no analysis of Monte
Carlo policy evaluation when the estimates of the value
function are obtained from trajectories simulated from the
policy. To the best of our knowledge, the only analysis
of such algorithms assume that, at each iteration, either
one estimates the value function starting from every sin-
gle state of the underlying MDP [Tsitsiklis, 2002] or from
a subset of fixed states [Winnicki and Srikant, 2022]. In
fact, studying Monte Carlo policy evaluation using a sin-
gle trajectory from each policy at each step of policy it-
eration is a known open problem [Sutton and Barto, 2018,
Tsitsiklis, 2002, Sutton and Barto, 1998]. In this paper, we
take a significant step in solving this problem: we prove
that, with sufficient lookahead, policy iteration and Monte
Carlo policy evaluation does indeed converge provided we
use sufficient lookahead during the policy improvement
step.

1.1 Main Contributions

Our paper has two main contributions.

Convergence of Monte Carlo ES We prove the conver-
gence of Monte Carlo based policy iteration where a single
trajectory corresponding to each policy is used at each it-
eration to generate returns, or empirical sums of costs that
estimate the value function, for states visited by the tra-
jectory. A formulation of this algorithm, which is called
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Monte Carlo with Exploring Starts (Monte Carlo ES), can
be found on page 99 of [Sutton and Barto, 2018], and its
convergence is “one of the most fundamental open the-
oretical questions in reinforcement learning” (page 99 of
[Sutton and Barto, 2018]). See the Appendix for more on
the connection of Monte Carlo ES to practice. The work of
[Tsitsiklis, 2002] partially solves a variant of Monte Carlo
ES, but the results assume a setting that is a hybrid of
Monte Carlo sampling using a single trajectory and a gen-
erative model. Hence, the convergence of Monte Carlo ES,
as well as related variants such as the “every visit” version
[Singh and Sutton, 1996], remains an open problem. A ma-
jor objective of this work is to solve the open problem.

Modern methods that use policy iteration based algo-
rithms with Monte Carlo methods of policy evaluation
have achieved spectacular empirical success in prob-
lems with very large state spaces [Mnih et al., 2016,
Silver et al., 2017b, Silver et al., 2017a] using lookahead
policies computed using Monte Carlo Tree Search (MCTS)
as opposed to one-step greedy policies. The motivation be-
hind using the lookahead is to significantly speed up the
rate of convergence of the algorithms. The benefits of us-
ing MCTS to compute lookahead policies versus one step
greedy policies far outweigh the additional computational
overhead which is relatively small when the number of next
states and actions is small, which is the case in many prob-
lems such as chess and Go. One of our main results shows
that, with the use of lookahead, Monte Carlo ES converges
asymptotically. We also provide finite-sample error bounds
for the algorithms. Since the prior statement of the open
problem is in the tabular setting, we present the results for
that case. We then extend the results to the case where func-
tion approximation is use. Examples of such applications
include game-playing RL agents for playing games such as
Chess and Go.

Extension To Linear Function Approximation Beyond
settling the open problem by using lookahead, we also ex-
tend the result to the case where one uses feature vectors
to approximate the value function. We show that when
the lookahead is sufficiently large, there is convergence to
within a function approximation error. We also provide in-
terpretable finite-sample convergence guarantees.

Then, we show that our techniques can be easily ex-
tended to incorporate other algorithms for policy evalu-
ation with feature vectors that have recently been ana-
lyzed. For techniques where the mean square error is
known such as TD learning with linear function approxi-
mation [Srikant and Ying, 2019, Bhandari et al., 2018], we
show that the approximation error is approximately equal
to the mean square error corresponding to the policy evalu-
ation method with feature vectors. Analogously to the pre-
vious extension, we show that when the number of steps of
TD learning is very large, the error primarily depends on

the function approximation error due to the feature vectors.

When feature vectors are used, recent approximate policy
iteration algorithms have a bound on the error in approxi-
mate policy iteration as a function of the discount factor «
of 1/(1 — a)? (see [Bertsekas, 2019, Winnicki et al., 2021,
Lagoudakis and Parr, 2003]). When « is very close to 1,
which is often the case in practice, reducing the bound by a
factor of 1/(1 — «) significantly improves the performance
of the algorithms. In our algorithms, our bounds are ap-
proximately of the order 1/(1 — aff=1)(1 — «), where H
is the amount of lookahead.

1.2 Related Works

The connection between Monte Carlo methods and con-
trol methods based on policy iteration has been widely
studied [Sutton and Barto, 2018, Singh and Sutton, 1996].
The work of [Tsitsiklis, 2002] studies Monte Carlo sam-
pling with infinitely long trajectories beginning at all states
or all states with regular frequencies to perform policy
iteration. The works of [Chen, 2018, Liu, 2020] study
a similar method in the setting of the stochastic short-
est path problem. A related result has been obtained
in [Wang et al., 2022, Lubars et al., 2021] under the strong
assumption that for the optimal policy the transient states
of the resulting Markov chain form an acyclic graph.

Monte Carlo methods with infinitely long trajectories
and fixed starting states to perform approximate policy
iteration with feature vectors for function approximation
was studied in [Winnicki and Srikant, 2022]. The use of
rollouts to produce an m-step return, where m is the partial
evaluation parameter in the Monte Carlo simulation, as
opposed to infinitely long trajectories, has been studied in
[Puterman and Shin, 1978, Tsitsiklis and Van Roy, 1997,
Efroni et al., 2019, Winnicki et al., 2021] (see Section
2 for definitions of return and rollout). More broadly
speaking, these methods form a subset of approximate
policy iteration algorithms that have been extensively stud-
ied; see [Bertsekas and Tsitsiklis, 1996, Bertsekas, 2019,
Puterman and Shin, 1978] for results on dynamic program-
ming and [Lesner and Scherrer, 2015, Efroni et al., 2020,
Tomar et al., 2020, Efroni et al., 2018b, Deng et al., 2020]
for applications to reinforcement learning.

The work of [Efroni et al., 2019] uses rollouts in the al-
gorithms for policy evaluation along with multiple-step
greedy policies, also known as lookahead policies, which
have been featured in recent prominent implementations
[Mnih et al., 2016, Silver et al., 2016, Silver et al., 2017b].
The work of [Winnicki et al., 2021] defines the necess-
sity of depth of lookahead and amount of return required
for approximate policy iteration as a function of the fea-
ture vectors and quanities bounds on the asympotic error.
Here, we build upon the work of [Winnicki et al., 2021]
and further strengthen the bounds using stochastic ap-
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proximation as well as expand the setting of the prob-
lem to more carefully understand the role lookahead plays
on an algorithm that requires only a single trajectory
for each policy at each iteration for convergence. The
work of [Winnicki and Srikant, 2022] provides a partial
connection to the work of [Winnicki et al., 2021] and the
present work as it incorporates stochastic approximation
but only in a partially generative model setting, similar to
the one in [Winnicki et al., 2021]. See [Bertsekas, 2011,
Bertsekas, 2019] for more on feature vectors in approxi-
mate policy iteration. The works of [Bertsekas, 2011] and
[Bertsekas, 2019] also study a variant of policy iteration
wherein a greedy policy is evaluated approximately using
feature vectors at each iteration.

When the model of the state space is not known, looka-
head policies are computed using the Monte Carlo Tree
Search (MCTS) algorithm, which has been studied

in [Shahetal.,, 2020, Maetal.,2019, Munos, 2014,
Browne et al., 2012, Kocsis and Szepesvari, 2006,
Efroni et al., 2018b,  Powell, 2021]. For more

on the use of tree search in RL algorithms, see
[Bertsekas, 2019, Baxter et al., 1999, Veness et al., 2009,
Lanctot et al., 2014]. Lookahead also bears much relation-
ship to Model Predictive Control (MPC) [Bertsekas, 2022].

Our algorithms involve a general framework which al-
lows for general methods of policy evaluation using fea-
ture vectors followed by policy improvement using looka-
head. See [Srikant and Ying, 2019, Bhandari et al., 2018]
for more on policy evaluation with feature vectors.

2 BACKGROUND ON
REINFORCEMENT LEARNING

We consider a finite-state finite-action Markov decision
process (MDP). The state space is S and has cardinality
|S|. The action space is .A and has size |.A|. The probabil-
ity of transitioning to state j from state ¢ when action u is
taken is P;;(u). The associated cost is g(%, u). We assume
g(i,u) € [0,1] Vi, u, with probability 1.

Policy p : & — A prescribes an action to take at state
i € S. When a policy p is fixed, we denote by g, € RIS
the vector of expected costs associated with policy p. We
call P, the probability transition matrix corresponding to
the associated Markov chain. At time k, we call the state
of the Markov chain z,. Consider policy p. The associated
value function with discount factor € (0, 1) is given by
J*# defined as follows:

JH(i) = B> aFglak, p(zx))lwo =i] Vi€ S.
k=0

Herein, we assume that « € (0, 1) for all discount factors
«. It is well known that J# solves the associated Bellman

equation:
Jt =g, +aP,J".

The associated Bellman operator, 7, : S — S, is defined
as follows:
T,J =g, +ab,J

When we apply the Bellman operator to vector .J, the result
is called 7}, J, which has the following property:

[T = oo < T = JH|lco-

If operator T, is applied m times to vector J € RIS! then
we say that we have performed an m-step rollout of the
policy o and the result 7" J of the rollout is called the
return. See [Winnicki et al., 2021] for more on rollout.

Our objective is to find a policy p which minimizes the
expected discounted cost:

B> ag(ak, p(ax))|o =1i] VieS.
k=0

We call the associated value function J*, or the optimal
value function. In other words,

J* := min J*.
o
In order to find J* and a corresponding optimal policy, we
define the Bellman optimality operator 7. When there is
no ambiguity, we call 7" the Bellman operator. We define
the Bellman operator 7 : RIS| — RIS| as follows:

TJ = min E[g,, + P, J].
m

Component-wise, we have the following:

S|
TJ(i) = min [g(i, w)tay Pij(u)J(j)] .

For any vector J, we say that the policy corresponding to
T'J is the greedy policy. When we apply the Bellman oper-
ator H times to vector J, we denote the resulting operator,
TH | as the H-step “lookahead” corresponding to J. We
call the greedy policy corresponding to 77 .J the H-step
lookahead policy, or the lookahead policy, when H is un-
derstood. See [Winnicki et al., 2021] for more definitions
on the lookahead policy. More succinctly, the lookahead
policy p corresponding to vector V' is the following:

p € argmin THTH -1V,
w
We have that every time the Bellman operator is applied to
vector J to obtain T'J,

ITT = T [loo < | =T
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Thus, applying 7" to obtain T'.J gives a better estimate of the
value function than J, and hence, better lookahead policies
than greedy policies.

The Bellman equations state that J* is a solution to
Jr=TJ".

It is well known that every greedy policy with respect to
the optimal value function J* is optimal and vice versa
[Bertsekas and Tsitsiklis, 1996].

3 CONVERGENCE OF FIRST-VISIT
TRAJECTORY-BASED POLICY
ITERATION

The convergence of the Monte Carlo with Explor-
ing Starts (Monte Carlo ES) algorithm (page 99 of
[Sutton and Barto, 2018]) is unknown and is “one of the
most fundamental open theoretical questions in reinforce-
ment learning” (page 99 of [Sutton and Barto, 2018]).

The episodic algorithm iteratively alternates between pol-
icy improvement and evaluation using a single trajectory
corresponding to the policy in each episode. For states
visited by the trajectory, sums of costs beginning at those
states are available and constitute estimates of the value
function at the states visited by the trajectory. Then, the
estimates of the value function at the states visited by the
trajectory are used to update components of a vector which
stores estimates of the optimal value function of all states
for the states visited by the trajectory. Then the next greedy
policy is determined from the updated estimate of the opti-
mal value function and the iterative process continues.

Algorithm: We consider a version of the Monte
Carlo ES algorithm similar to the main algorithm in
[Tsitsiklis, 2002], which provides a “partial solution” of the
open problem. At each iteration, k, the algorithm stores an
estimate of the optimal value function, V3, € RISI. Using
V%, just as in policy iteration, the algorithm obtains a tra-
jectory corresponding to the lookahead policy (see Section
2) corresponding to Vi, 41, where

k41 = arg min THTH =1V
I

We call the set of states visited by the trajectory Dj. Note
that as stated in [Winnicki et al., 2021, Efroni et al., 2019],
the lookahead policy only needs to be computed for states
in Dy,. Additionally, while the computation of 77 =1V}, (4)
for © € Dy may be infeasible, in practice, techniques
such as Monte Carlo Tree Search (MCTS) are employed
[Silver et al., 2017b], which are particularly useful when
the number of next states and actions is small.

The trajectory is then used to obtain estimates of .J#*+1 (i)
for i € Dy, which we call J#¥+1 (7). In order to obtain

j“k+1(z’) for ¢ € Dy, we perform an m-step rollout (see
Section 2) with policy px+1 by obtaining a discounted sum
of m costs beginning at each 7 for ¢ € Dy,. The return gives
us a noisy version of T/THITH’lvk(i) for i € Dy. We
call wy(7) the unbiased noise that arises, noting that 0 <
wy (i) < 2. If a state is encountered more than once by
the trajectory, we consider the rollout from the first visit to
the state. Using T TH=1V, (i) + wy,(i) for i € Dy, we

. . Fhk+1
obtain the next iterate as follows:

Vit (2)
_ O = w)Vie + (T, T Vi +wi) i € Dy
Vi (4) i ¢ Dy,

where 7y;, and is assumed to be square summable and sums
to infinity is the stepsize or learning rate.

We can write our iterates as follows:
Visr(i) = Zien, [(1 = 3)Vi(3)

(T TV + w0)| + Tign, | ViG]
where Z;cp, denotes the indicator function which equals
one when state ¢ is visited by the trajectory at iteration k
and zero otherwise.

With some algebra, can we rewrite Vj, as follows:

Visr = (I = Y Pryu Vi + Y6 Proyur, (T3 TH Wi 4 21),
(D

where I denotes the S x S identity matrix, py,,, (¢) is the
probability that state ¢ is ever visited by the trajectory un-
der policy fig, Py, ., is the diagonal matrix where diagonal
entries of the matrix correspond to the values of py ,,, (7)
forall i € S, and 2y, satisfies the same properties as wy.

Our algorithm is described in Algorithm 1.

Remark: Note that we need not compute i1 (¢) for all
states ¢ € S at instance k + 1. We only need to compute
r-+1 () for states encountered in the rollout step of the al-
gorithm.

Note the similarity of our algorithm and the algorithm in
[Tsitsiklis, 2002]:
Vierr = (1= ) Vi + (S 4 wy),

where ji;1 denotes the greedy policy with respect to Vj,
(ie., H=1).

The proof of the main algorithm in [Tsitsiklis, 2002] is sim-
ilar to the main steps of the proof of modified policy itera-
tion [Puterman and Shin, 1978] and hinges on showing that

limsupTV; — Vi, < 0.

k—o0
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Algorithm 1 First-Visit Monte Carlo Policy Evaluation For
Policy Iteration

Input: Vo, m, H.
1: Letk =0.
2: Let pg41 be such that T, , , TH=1V}, = THV,.

3: Obtain a trajectory using policy pr+1 and obtain
T TV (i) + wk(i) for i € Dy, where Dy is
the set of states visited by the trajectory and wy, (i) for
1 € Dy, is unbiased noise from sampling.

4: Obtain Vj,y as follows

(1 =) V(i)
Fye(T™ . TH=Y, (i) + w (i)

HEk+1

Vi ()

5: Setk <+ k+1.Goto?2.

Vig1(i) = i €Dy

i ¢ Dy.

To show that lim sup,,_, . TV, — Vi, < 0, the proof relies
on the following steps:

TVii1 < Ty Vet

= Thper (1= 7)Vie + e (JPH 4 wy,))

= G + Py (1= 76) Vi + (4 4 wy))
= (1 = %) (Ganys + Py Vi)

+ Ve (Ganss + Py, (JH 4 wy,))

= (1 — ) (TVi) + (JH+ + aPy,,  wy),

where Pp, ., is the probability transition matrix corre-
sponding to the Markov chain induced by policy fix41. We
can then subtract Vj,_; from both sides and easily obtain the
stochastic approximation paradigm that allows us to show

that limsupy,_, .o TVix — Vi <0:

TViy1 — Vi
—_——
=Xkt1
< (=) (TVi = Vi) + (0P, — Dwr),

=Xk e

where I denotes the identity matrix and the noise vy, satis-
fies similar properties to wy. The purpose of showing that
lim supy,_, ., TVi — Vi < 0 is that asymptotically, we can
use monotonicity to show that J* < J fixt1 < TV Since
JFe+1 is upper and lower bounded by contractions with
fixed point J*, we can use stochastic approximation tech-
niques to obtain convergence of our iterates.

In our algorithm given by its iterates in (1), it is clear that
we cannot perform the steps of the above used in the proof
of [Tsitsiklis, 2002].

We now give Theorem 1, which shows that with suffici-
ciently large lookahead, the iterates in equation (1) con-
verge to the optimal value function.

Assumption 1 (a) The starting state of the trajectory at
each instance is drawn from a fixed distribution, p,
where p(i) > 0Vi € S.

< 1.

_ oH-1
(b) a1 +2(1+ a™m)e—

(c) Doicoi = 00. Also, Y02 72 < 0.

We make several remarks on our assumptions:

(a) The first assusmption is what is denoted as “explor-
ing starts” (see [Sutton and Barto, 2018]), and guaran-
tees for all states to be selected infinitely many times.
We note that it is straightforward to extend our results
to any initial distribution as long as the probability of
visiting any state is lower bounded by a constant. In
particular, we do not require a fixed probability distri-
bution for the initial state.

(b)

We assume the lookahead is sufficiently large, see pre-
vious sections for more on lookahead.

(c) The stepsizes are square summable and sum to infin-
ity, which allows for noise averaging.

Theorem 1 Under Assumption 1, the iterates of Algorithm
1 given in equation (1) converge to J*, the optimal value
Sfunction, almost surely.

The proof is given in the Appendix.

3.1 ProofIdea

The main idea in the proof is the following. With suffi-
ciently large lookahead, we can show that

H(V,) =1 TH 1Y,

Hiet1

2

is a contraction towards J*, and hence we can apply
stochastic approximation techniques to obtain convergence
of Vi, — J*. We note that in equation (1), we have written
tr+1 as a function of Vj, since it is the lookahead policy
with respect to Vj,. The matrix Py, ,, is a diagonal matrix
where each diagonal element indicates if the correspond-
ing state is visited by the trajectory. If the matrix were a
constant, one can use the techniques of [Tsitsiklis, 2002],
but the key challenge for us is that the matrix is history de-
pendent. The key to our proofs lies in the fact that, with
sufficient lookahead, the operator H (V') defined in (2) is a
contraction. For clarify, we can alternatively rewrite T}, as
T,,(v) when p is a lookahead policy corresponding to vec-
tor V. Note that while the operator 7" is a contraction, when
we consider the operator T),(v), u depends on V' because
w is the lookahead policy with respect to V. Therefore, it
is not obvious if || 77}ty \ TH =1V — Tty \ TH Vol is
smaller than ||V} — V3o

Our proof hinges on the following key Lemma:
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Lemma 1

H-1

_ «
|| JHe+r — TH 1Vk||oo < 1 1TVi — Vie|loo,

—

where J#*+1 is the value function corresponding to policy
Wi+1 (see Section 2). We will prove Lemma 1 in the Ap-
pendix. Using Lemma 1, we can show that:

1T T Wi = T Wil s

m+H—1 H-1

<( +a
- 11—«

TV — Villso-
T Ve = Vil

We can now subtract J* from both sides of the inequality
and use the contraction property of the Bellman operator to
get:
H-1
HT;ZZHT Vie = I 0o
H-1

< H-1 21 my &
< (@ 21+ 0™ T—

JIVe = I e

3.2 Novelty of the Proof Technique

Contrasting with the proof technique of [Tsitsiklis, 2002],
we can see that due to the contraction property that follows
from the use of lookahead, we can evade the issues that
arise when the proof of [Tsitsiklis, 2002] is extended to in-
clude trajectory based updates. Additionally, the contrac-
tion based property allows us reduce the asymptotic error
that arises from feature vector representation using looka-
head, which is the topic of the next section.

Remarks: In the special case where the Markov chains
induced by all policies are irreducible and infinitely long
trajectories are obtained, we recover the results of the main
algorithm in [Tsitsiklis, 2002].

Furthermore, suppose we obtain 7" | T =1V}, (i) +wy, (4)

for all i € S, for any m and H. Then, we can write the
following iterative sequence:

Vipr = (L= ) TH 1V, + %(T,THITH_lvk + wg).
3)

We will show in the Appendix that the iterates in (3) con-
verge to J* a.s. Hence, we obtain convergence of a gener-
alized version of the main algorithm in [Tsitsiklis, 2002].

4 EXTENSIONS OF FIRST-VISIT
SIMULATION-BASED POLICY
ITERATION TO LINEAR FUNCTION
APPROXIMATION

When the sizes of the state and action spaces are very large,
we can assign a feature vector ¢(s) € R? to each state s of

the state space S, where d << |S|, and at iteration k obtain
an estimate of the value function corresponding to pix+1,
#(s) TO*++1, where O#++1 € RY and §#++1 is estimated
from the trajectory corresponding to p;11. We define @ to
be a matrix whose rows are the feature vectors.

In this way, instead of storing vectors Vj, € RISI, we can
instead update vectors ), € R?, where d << |S].

When a single trajectory corresponding to the lookahead
policy is available, there are many ways to estimate §#++1.
We will formulate an algorithm that allows us to analyze
general methods of obtaining ###+! and provide conver-
gence guarantees and finite-time bounds for the algorithm.

Our main assumption on the method used to estimate §+++1
is that there exists known x and dp,, such that

| E[@0"++ | Fy] — TH 10y

< HHTHilq)Qk _Juk+1Hoo +5app7 (4)

where 04, > 0and 0 < o~ 4 2071 < 1. We will
later show how & and d,p, can be obtained for different

policy evaluation algorithms.

We present Algorithm 2 and convergence guarantees of the
algorithm for general x and d,p, Where 7}, denotes the fil-
tration associated with the noise of the algorithm until in-
stance k. Note that similarly to Algorithm 1, we only need
to compute Step 2 of Algorithm 2 (computation of fix1)
for states visited by the trajectory.

Algorithm 2 Function Approximation Algorithm With
Trajectory Based Samples and Lookahead

Input: 0y, m, H feature vectors {4(i) }ies, ¢(i) € RY.

1: Letk =0.
2: Let pj41 be such that T),  , T7 @6, = TH 0.
3: Obtain a trajectory using policy jix41 and obtain §#++1
where
| E[@0"+1 | Fi] — TH 10 || oo
< "fHTHflq’ek = JH o + Oapp

for some d,p, > 0 and & such that:

2 H—1
O<ozH71+/£1a <13
4.
Orr1 = (1 — )0k + v (0"*+1). (5)

5: Setk <+ k+1.Goto?2.

Theorem 2 Suppose the following conditions hold:

© Dito i =00, 220 < o0
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* there exist Oqpp > 0, and k > 0 such that

2 H—-1
0<afl='+k @ <1,
11—«
and
| E[@0"5+1|Fy] — TH100, || o
§ /<;||TH_1<I>0k - J“k+1||oo + 5app>

Then, almost surely, the following bound holds for iterates
0k of Algorithm 2:

6‘11717

H-1
1—oH-1_— 52?
—

lim sup|| POy, — J*|| 00 <
k—o0

almost surely and that the policies obtained almost surely
have the following property:

501’?

*
= e < _oH-1 _

2 H-1
lim sup||J#* - [ 3 H—1i|'
k—o0 1 K=

11—«
11—«

The proof of Theorem 2 can be found in the Appendix.

4.1 Proof Idea

Using Lemma 1, we will show that our E[®g#++1|Fy] is
nearly a contraction with respect to J*. To see this, no-
tice that we can use Lemma 1 to further upper bound the
inequality in (4) as follows:

| E[@0H++1| Fr] — TH 10| o0
HozH_l
< o ||T@9k — q)ekHoo + 5app.

We can now subtract J* from both sides of the inequality
and use the contraction property of the Bellman operator to
get:

B[O+ | Fi] = J" [l
_ 2kt "
< (@Mt ﬁ)“q’ek = "o + Gapp-

Roughly speaking, the above inequality states that the re-
sult of the sampling, §#*+1 | contracts towards J* compared
to the previous iterate 0. We can then use stochastic ap-
proximation techniques to obtain convergence of our iter-
ates.

4.2 Finite-Time Bounds

Theorem 3 Let 02 be an upper bound on the variance of
(POHr+1 — E[DOHe+1|Fi]) for all k. Then, we have the

following finite-time error bound for Algorithm 2:

E[II‘M = o]

k—1
<Haz\|‘1’90—=7*||oo+ s 1

j=1 l=j5+1

initial condition error error due to function approximation

+Z’YJ oj1+0j) H ag,

l=j+1

error due to noise

where a; :=1—v;(1—afl~ +2H/1L

recursively as follows:

) and o is defined

i j
o= > v [] @—w2 ©6)

i=1 =i+l
We will now

Interpretation Of Finite-Time Bounds:
interpret the terms of the finite-time bounds:

¢ Initial condition error: This term goes to 0 as k — oo.
To see this, notice that 0 < 1 — o ~1 + 2”‘17 <1
due to our assumptions in Theorem 2. Thus since
Yoo = oo and Y7 77 < oo, we have that
kall a; — 0.

* Error due to function approximation: J,,, can be in-
terpreted as the error that arises from the use of feature
vectors. In our later analysis of dy,, for various algo-
rithms, it can be seen d,p, can be made small if the
feature vectors are sufficiently expressive.

* Error due to noise: This error term is due to Monte
Carlo sampling. Since the discounted infinite horizon
reward is bounded by 1/(1 — «), almost sure conver-
gence in the previous theorem implies that this term
must also go to zero as k — oo. For more discussion,
see the Appendix.

We now obtain x and d,p,, for several methods of comput-
ing OHE+1

4.3 First Visit Monte-Carlo Policy Evaluation With
Feature Vectors

We will now go back to Algorithm 1 and directly extend the
results to include the use of feature vectors and 6, instead
of Vk

Recall in the previous section that a single trajectory cor-
responding to the lookahead policy g1 is obtained. We
denote the states visited by the trajectory as Dy. Just as
in the previous section, for all states ¢ € Dy, we obtain
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T TH=1®0),(i) +wy (7). Note that analogously to Sec-
tion 3, we need only to compute the lookahead for states
visited by the trajectory. Additionally, we do not need
to compute ®f; - we only need to compute POy (i) =
$(i) T 0y for states i visited by the trajectory or involved

in the tree search.

Now, instead of updating Vi (i) for i € Dy, the case in
Section 3, we instead obtain ##*+1 € R<% which uses
T;ZHTH*IJDGIC(Z') + wy, (@) for i € Dy, to construct an es-
timate of 9#++1,

One way we obtain 0#++! uses linear least squares to obtain
the best fitting 051. We now compute 0#++1 with linear
least squares using the term JHs+1 which we will define in
the next paragraph:

1 A
0 = argmin 3 | (Pyu®)0 — Pae |3
6

= (Pl’kq))-’_'])g’kj“k“. 7
We now explain the above terms:

e & is a matrix whose rows are the feature vectors

* Po ;. is a matrix whose elements are a subset of the ele-
ments of J#*+1 corresponding to Dy,. Since the values
of Jrk+1(7) for i ¢ Dy, do not affect Py JH++1, we
can define J#*+1 as follows:

e

Hr+1

TH’1<I>0k + wg,

where wy, := 0 for states ¢ ¢ Dj. Notice that
since Elwy(i)|Fx] = 0 for i € Dy we have that

* Py is a matrix of zeros and ones such that rows of
P1,x® correspond to feature vectors associated with
states in Dy,.

* (P1,x®)7 is the Moore-Penrose inverse of Py ®.

Using the previous paragraph, we rewrite our iterates in (7)
as follows:

PHE+1 — (Pl,kq))+P2,k(Tm

H—1
#k+1T ®o,, +wk).
Our estimate of the value function at iteration k is thus
given by:
TH*1<I>0k + 'LUk),

HE+1

GO+ = &(Py 1 @) Po k(T
~—_— —
=My

where M}, is a projection matrix used to estimate the J##+1
from samples of JHk+1(4) = T;];HTH*“I)Gk(i) + wy(7)
for i € Dy.

With §#++1 defined as the above, we now obtain our corre-
sponding d,,, and k. See Appendix for proofs.

e Kk =1+ a™dpy where dpy := supg||Mg||oo-
* Oapp

= sup || E[Mg(J** +wy) — (S + wi) [ Fr]| o
kypk

where wy, is a martingale difference sequence, mean-
ing that Efwy|Fx] = 0.

How to Interpret Terms In The Error?

* Jgpp : Our error terms in the previous theorems mostly
hinge on 04pp. Since My is a matrix which uses
the feature vectors corresponding to states in Dy to
construct an estimate of 6##+1 based on samples of
Jrws1(4) for states i € Dy , it is easy to see that 84y,
is a measure of the ability of the feature vectors to
approximate the value functions corresponding to the
lookahead policies. Hence, with increasingly expres-
sive feature vectors, the error terms in Theorem 2 go
to 0.

* x : In the presence of sufficiently large lookahead, «
does not drastically alter the results in our theorems.
However, we note that typically the quantity m de-
notes the length of the trajectory starting at each state
in Dy, so typically m is very large, and hence « is
close to 1.

Remarks: In order to compute 7, T"'®6(i) +

wy (1) for ¢ € Dy, we do not need to compute by; we

need only compute ¢(i) ' 6y, for states i € Dy and states i

involved in the computation of the tree search at states vis-

ited by the trajectory. Recall from Section 3 that we only
need to compute the lookahead and p1 for states visited
by the trajectory.

Suppose that My, = I, i.e. when we obtain an estimate of

T, TV (i)
for all i € S. Then, ®0, — J* a.s. This matches the
result of Theorem 1. Additionally, we can see that the error
bounds mostly depend on the ability of the representative
ability of the feature vectors instead of the sizes of the state
and action spaces.

4.4 Extension To Gradient Descent

In order to speed up the rate of convergence of our iterates,
we instead take several steps of gradient descent towards

1 R
OHF+1 = arg min 5\\(771,;.3(1))9 — PoJH+1[3,
0
where Py j, and Py i, are defined in the previous subsection.

In other words, when 7 denotes the number of steps of gra-
dient descent we take, for / = 1,2,...,7n. We recursively



Anna Winnicki, R. Srikant

compute the following:
ekJrl,f = 9k+1,Z71 - §v90(97 juk+1)|9k+1714_17 (8)

where ¢(0; j”k+1) = % ming|| (P11 P)0 — 7327kJA’“~‘+1 3,

0<é< ;
op, &P, max

and op, o max 18 the largest singular value squared of
P1,x®, and 0,110 = 0. We then set §#++1 = 01 ,. We
obtain the following & and §gpp:

s k=14a"0py,dpy = sup||(P1xP)" P2kl co-

* Qapp = 5Dy, [[EIM(JH441 awg) = T [ F [l o

+ (1= &op; 1@ .max)" [ Plloc Vi1 lloo @

IZ5 1 oo UK P41 |oc,

where the singular value decomposition of Py 5 ® is:

17 T
k,2
where Uy, is a unitary matrix, Xy 1 is a rectangular
diagonal matrix, and V}, is a unitary matrix.

Our proof of the above is in the Appendix. Ultimately, the
purpose of gradient descent is to improve the computational
efficiency of the least squares algorithm in Subsection 4.3.
The results show that as 7 — oo, the d,,, of the gradient
descent algorithm equals to the d,,, from Subsection 4.3.
The rate of convergence of d,y,, of the gradient descent al-
gorithm towards ¢, of Subsection 4.3 as a function of the
number of steps of gradient descent is exponential.

4.5 Other Algorithms Including TD-Learning

Now consider a general mechanism of obtaining 6#++1
from a sample trajectory. We make the assumption that
f#++1 is bounded (which is always the case for methods
with a fixed number of iterations for computing 6#++1).
When we have a d such that for all px1 :

[E[@F 1] — JHE+ g <6,

i.e., there exists some ¢ which is an upper bound of the
error of the method of estimating J#*+1, we can obtain a
corresponding d,,, and  as follows:

|B[@gm] = T Wil < 777V = 9441 o
+ [[E[@07 ] — JH o
S ”TH—le _ Jﬂk“”oo _|_5.

Thus, when the mean square error is known, x = 1 and
Oapp = 0.

Recent studies including [Srikant and Ying, 2019,
Bhandari et al., 2018] have obtained finite-time bounds
for TD-learning with linear function approximation. The
finite-time bounds in Theorem 3 of [Bhandari et al., 2018]
are of the following form: for any ug; where the output
of the TD-learning algorithm is 6##+1, we have

B[] @0H=+1" — 2"+ 1] < b7,y

where 07, , depends on the number of iterations T of the
TD-learning algorithm, ||-|| p denotes the weighted 2-norm
with weights corresponding to the stationary distribution of
Hk+1, and

[t — st p < min|[96 — 741,

1
V1—a?
meaning that §#++1* approximates J##+1. From this, it can
be shown that:

|BI@6" 1] — J g < sup 967417 — 7 |
MHik+1

+ \V4 5T7Mk+1 ’
T fig4+1,min
where 7, min denotes the minimum weight of the sta-
tionary distribution of jij 1, thus giving us a ¢ as desired.
See Appendix for proofs with TD-learning.

S CONCLUSION

We study Monte Carlo methods that estimate the value
function corresponding to policies determined in the pol-
icy improvement step of Monte Carlo based policy iteration
methods. We are concerned with trajectory based updates
that involve obtaining estimates of the value function cor-
responding to the greedy policies from states that are vis-
ited by the trajectory. This is noted as an open problem in
[Sutton and Barto, 2018] and [Tsitsiklis, 2002]. We show
that when lookahead policies, which are commonly used in
practice, are employed, we obtain convergence to the opti-
mal value function. We further our analysis to include the
use of feature vectors and also include analyses of general
methods of policy evaluation in feature vector space that
are computationally efficient such as TD learning.
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A  PROOF OF CONVERGENCE OF ITERATES IN EQUATION (2) OF SECTION 3

We write our iterates as follows:

Vier = (1 =) THV, + 4 (T THZIV, + wy,).

Mk+1

We break the proof up into steps as follows.

Step 1:

limsup TV, — Vi <0.

k—o0

Proof of Step 1: We will show that for every € > 0, there exists sufficiently large k() such that the following holds:

A=y )TE W, + 3T T —ce < Vipr < (1= 3)TH W + T THZMW, 4 ce,

Hr+1 He+1
where e is the vector of all 1s.

To do this, we define a sequence of random variables, Y}, as follows:

Yiy1 = (1 — %) Ye + yewp, Yo = 0.

®

It is clear that Y;, — 0 a.s. by standard stochastic approximation theory. Then, we subtract Y}, from both sides of the

iterates as follows:

Vigr = Yipr = (1= ) (TP 7WVe = Vi) + (T3, T VA,

HE+1

Rearranging terms, we have:

Vier = (=) (TP V) + (T T3 + Y — (1 — 72) Vi

HE+41

Since Y}, — 0 a.s., we have that for every € > 0, there exists k() such that for all £ > k() we have the right side of the

inequality in (9). The left side follows accordingly.

Using the inequality in (9), we have that:

TViir < T, [(1 — )T W 4y T THY 4 se}

Hr+1

= (1= )T Vi + T TV + ace.

Furthermore, using the inequality in (9),
TVig1r = Vierr < (1= ) (TVe = THW3) + (TR TV = T2 T + (1 + a)ee.

Hk+1 Hr+1
We recursively define d; such that:
TV, — Vi, < dpe.
For k(e), we have that:

5k(5) = HJ”L@,—— L%||oo-

For k > k(e), we define 0y, as follows:

6p = Op1 (@71 o™= £ (1 4+ )e.
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It is clear that TV, — V}, < §, since

TVi—1 — Vie—1 < dp—1e
— THkal — THilkal < QH715k71€
= T;ZTHVk_l — T/ZZTH_lvk_l < Ozm+H_1(5/C_1e.

Thus,

TVigr — Virr < (1 =)o 16, _1e + v [a™ ™75, _1e] + (1 4 a)ee

< (1= y)dp_1(@ e+ o™ =1 4 (1 + a)ee
= (5ke.

Thus, we have that

limsup TV, — Vi < lim dge.
k—o00

k—o00
We now calculate limy,_, -, 5, as follows:
lim S — 1+«
dim O = i e

Since € can be any value greater than 0, we have that limy_, , TV}, — Vi < 0.
Step 2:
Foralle, e > 0,

H-1
e +ce.

Vier < THW, 4 (i‘
Proof of Step 2:

Hence, for any £ > 0, there exists k() such that for any k > k(£), TV}, — Vi < ée.
Thus:

TV, =V, < ée
— TV, < V. +¢ée

= THV, <TH-1V, + ot 1ze
H—-1

m H—1 H—1 « ~
— Tllk+1T Vi, <T Vi + 1—0466.
Thus, we have for k > k(e) + k(é):
H—1 H-1 afl—t
Vieer < (L= )T Vi + T Vi + ——Ee) +ee
oH-1
<THYWg + v ge + ee
11—«
oH-1
<7V, + T fetee

Step 3:

(10)
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Foralle, & > 0,

H-1
_ a ~
Vigr > Ty, — fe — ce.

Proof of Step 3: Furthermore, since TV, < Vj, + £ for all k > k(£), we have that

aH-1
TH-ly, > pmti-ly, Ze.
-«
Thus:
H-1 aftt H-1
Vi1 > (1 —y) (T 1, — 1= 0&66) + ’Vk(Tlr,:HT Vi) —ee
H-1 af =t H-1
> (1 — ) (T 1y, — T aee) + (T — e
oH-1
=Ty (1 — ) e —ee
1-«a
aH-1
>mHi-ly e — ce.
Step 4:
H-1
@ ~
k+1 — o S0 |V — oo E+e.
[Vir = I lloo < @V = J*loo + T2 +
Proof of Step 4:
Putting the above together, we have:
e aH-1 H-1

~ _ (e
ge—ce < Viyr <TH W, +

ge + ce.
-« 11—«
Subtracting J* and using the contraction property of the Bellman operator, we have:
aH_ 1 H-1
—Oém+H_1 HVk o J* ||ooe o

- _ o
ge—ege <TMHHE-1Yy, _ p* —

e —ce
— _
<Vigr = J”
QH-1
STH_IVk—J*+1 e +ece
Q-1
< a7 Vi = T ||oce + e +ce.
11—«
Thus,
Qf-1
Vit = T loo < @™ 7H[Ve = T*||oo + acte
The above implies that:
oH-1 o
E+¢
. * 11—«
hgisolipuv’f =Sl < amHH—1 § oH-1

Since the above holds for all £ > 0 and all € > 0, we have that:

Vi = J*a.s.
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B PROOF OF LEMMA 1

The following holds:

Ty TPV = THV, =0

— T T W = TV, + TH Y - THLY, = 0

= T T Wi + [TV = TH Vi looe = TH 1V > 0

= T T Wi+ 7TV = Vil e = TH 1V > 0
H—-1

— Juer _pH-Y > 2
=1

ITVi = Vil e,

—

where the last line follows from iteratively applying T,
all 1s.

k+1

We also have:

Ty TPV = TV,
= T, . TV —THV, + TH M, - TH 'Y, =0
= Ty, TV — [TV}, = T 'V || ce = TH 1V, <0
= TNk+1TH_1Vk - aH_lllTVk - VkHOOe - TH_le <0
aHfl
= JHe —THY < T Vi = Villoce.
—

Putting the above two together, we get the following:

H-1
|7t = PPV og < T TVie = Viloo:
C PROOF OF THEOREM 1
We break the proof of Theorem 1 up into steps.
Step 1:
H-1
e = T Wil € T ITVe = Vil

Proof of Step 1: Step 1 is a restatement of Lemma 1 which is proved in Appendix B.
Step 2:

m+H—1 OéH_l

H(WV) — TH W || < (& TVi — Vil
|1 H (V) blloo < (== + 7= TVi = Vil

Proof of Step 2: We have:

IH(Vie) = T Willoo = ITH Vi = I o
<|HVi) = TH Wi + T, — Ji o
= [H (Vi) = I

S am”THfle —Juk+l||oo>

Which implies that

IH (Vi) = T Willoo < (14 a™)|TH Vi — JH4 o

to both sides and using a telescoping sum and e is the vector of
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Plugging in the results of Step 2, we have:

H-1

«
IH (Vi) = T Wil < (L +a™) 7——TVi = Villoc-

-«

Step 3:

H-1

«
IHWR) = I oo < (@7 + (14 ™) T——(1+ @) ) [Vi = T s

—

=8
Proof of Step 3: We have

H-1

«
TH_IVk —(1+a™) 1 [TVie = Vicllooe < H (Vi)

aH—l
ST Wi+ (14 0™) T TVi = Vilooe
o1 aHfl

= 1H(Vi) =17 Villoo < 1+ ™) 7= TVi = Villo
aH_l

= [HVR) = T oo = IT" Ve = [l < (14 ™) T TVie = Vil
O[Hfl

= [HV&) = T oo < TV = Tlloc + (14 @™) T TVie = Voo

= [HVi) = J*[loc < o 7H[Vio = Tl
OéHfl
H-1

— 1H(VD) = Tl < (@7 + (14 a™) T—(1+ ) ) [Vi = I .

—

=:8
Note that above, e is a vector of all 1s.

Step 4:
Vie = J*.
Proof of Step 4:
So far, we have the following rewrite of our iterates:
Vir1(1) = (1= Pk yui (D) Vi (8) + VP i, () (H (Vi) (0) + 25 (2)),
where
HH (Vi) = I oo < BlIVe = T loo-
We define Ay := Vj, — J*. Using Ay, the following holds:
g1 (1) = (1= kP guy, (1) Bk () + VP guy, () (H (Vi) = J* + 25) (2).-
Letting Y}, be a sequence defined recursively as follows:

Yiep1(8) = (1 = Yapro, e (1)) Yie (8) + VP, g, (1) 20 (),
where Yy = 0. Since wy, is bounded for all k, Y, — 0 a.s.

We now define the following sequence X}, as follows: X := Ay — Y.
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Thus,

X1 (8) = (1 = vuPh,pue (1) Xi () + YPk s (0) (H (Vi) = T7) (0).-
Taking absolute values on both sides we have:

[ X1 ()] = (1= YD () X0 (9)] + Vb i ()| (H (Vi) = T7) ()]
(1 = YkPkgus O Xk lloo + VePk g (D IH (Vi) = T [|ow

(1 = 2k i )| Xk oo + 02k i (DBINVE = T loo

(1 = Y0Pk guse DXk lloo + VPk i (D)1 B [l o

(1= s i (D)) 1 Xk lloo + 1Pk i (1) BN Xk lloo + B Ve lloo

max (1= b (DI X low + WP (D Xl + Bl Vil

VAN VAN VAN VAN

IN

We denote by 7, the yipy, ., (i) corresponding to a maximizing 7 in the above expression. Thus,

[ X1 ()] < (1 =3[ Xklloo + 30811 Xkl + B Yeloo

and since the right hand side of the inequality does not depend on 7, we have that:

[ Xkt1lloe < (1= F) 1 Xklloo + 0Bl Xklloo + BIYkloo-

Since Y3, — 0 a.s., we conclude there must exist for all € > 0 some k(¢) such that for all k& > k() :
Villoo < e
So, for k > k(e), the following holds:
[ Xht1lloo < (1= T Xklloo + V& | Bl Xkl + Bz |-

Rearranging terms, we have:

X llo
< (1= 31— ) Xilloe + 5 (62)
= (1= 361 = BPIXelle + 361 - ) 175 .

:;’y)’C
Now, consider any positive integer N. We define a sequence of random variables ij for k > N, by setting Y% =
I X~ ||oo and

pe
1-p

—N
X=X, +7k[ }Vk>N

We will carry out a comparison of the sequence || Xj||oo with the sequence chv. Consider the event that k(¢) = N, which
we denote by A . We can use an easy inductive argument to show that for any N, for any sample path in A, and for all

<N . . —N
k > N, that || X;|c < X}, . Itis evident from the assumptions that Y .- ;7 = oo and hence X — 1ﬁ 1-geask — oo.

. <N .
To see this, observe that when the terms of X, are written out, we have:

k k

Xe= [T a-wXx+0- I] a-)7

(=N+1 (=N+1

Be
- B

e



On The Convergence Of Policy Iteration-Based Reinforcement Learning With Monte Carlo Policy Evaluation

. . . . —N .
for k > N. Since ;. sums to infinity, we have that limy,_, H]Z:N(l — ) = 0, hence X}, — lé—sﬁe as k — oo. Since €
can be chosen to be arbitrarily close to 0, for all sample paths in Ay, we have that:

lim squi\’ <0.

k—o0

Since the union of the events A is the entire sample space, we have:

lim sup X <0.

k—o0

From the definition of A, and the fact that Y, — 0 a.s., we conclude that:

lim sup||Ag|loo = limsup||Vi — J*||oo < Oa.s,

k—o0 k—o0

and hence V;, — J*a.s.

D PROOF OF THEOREM 2
We define Vj, := @6, and write the sequence of iterates {Vk}z‘;o as follows:
Vierr = (1= v)Vie + e (H (Vi) + 2),

where H(V},) = E[®0#++1|F;] and zj, := ®OFe+1 — E[DOHF++1| Fy].

Proof Outline: We can use our assumption in Theorem 2 to show that:

H-1
_ «
|1 H (Vi) — T 1Vk||oo < Hl o I1TVi — Villoo + dapp,
for some & and dypp,, which implies that:
. _ 20[H71 .
VH(Vi) = T low < (057 4+ 87— ) Vi = T*lloc + Sapy-

=8

Thus, H(V};) becomes almost a contraction with an error term, d,,,. We can then apply stochastic approximation tech-
niques to show that:

J,

< app

S5

lim sup|| Vi — J* || oo
k—o0

To see this, suppose that there is no noise and so our iterates do not involve the noise averaging, i.e.,

Vi1 = JM

=:H (Vi)

where ||J#s+1 — JHr+1|| o < 4. Then, we can trace the steps of the above, defining & and d,,, as we did above and we
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have the following:

H—-1 H-—1
_ « _ «
TH lvk — K ||TVk — VkHoo - 5app < Vit1 < TH 1Vk + K
11—« l—«
H-1

||TVk - Vk”oo + 5app

_ [0
= |Virs = T 'Vitl|oo < w7 TV = Vidlloo + dapp
o1 aHfl
= WVars = lloe = IT77 Vi = T loo < 87— ITVie = Vislloo + dapp
H-1 ot
= Vers = T lloe < NIT77 Vi = oo + 87— TVie = Vislloo + dapp
o1 OéHfl
= Va1 = Tl < 7 IVie = oo + k3= (1 + @) [[Vi = I [loo + Gapp
aH—l
— WVirr = TNl < (@7 + AT (14 @) Vi = lloc + dupp
et aH-1 b k—1 ot af-1 i
— Ve =T < (0¥ 4R T— (14 ) Vo = | + G > (71 + 17— (1+ )
=0
Taking limits, we get the following:
: * Oapp
sl = e S T
_ dapp
1-3

We will now prove our Theorem. We break the proof up into steps.
Step 1: We first obtain an upper bound for || H (V},) — T =1V} as follows:
[H (Vi) = T Walloo < &ITH 71 Vi = #4510 + bapp

Proof of Step 1: We assume the existence of « and d,,;, in the statement of Theorem 2.

Step 2:

H-1

«
||Juk+1 _ TH*IVkHoo < :
—«

1TVi = Villoo-

Proof of Step 2: Step 2 is a restatement of Lemma 1, which is proved in Appendix B.

Step 3:
H-1

_ [0
IH (Vie) = T Wil < (L + 1) = ITVi = Vielloo + Gapp

-«
Proof of Step 3:
We have from Step 1:

IH (Vi) = T Willoo < RITH Wi = T4 oo + Oapp.

Plugging in the result of Step 2, we have:

3 aH—l
[ H (Vi) - 1Vk”oo < "ﬁlianTVk — Villos + Gapp-
Step 4:
* — QQH_l *
VHWR) = I oo < (@7 + 87— Vi = I o0 + Bapy-

=8
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Proof of Step 4: We have

O[Hfl
TH 1y, — L p— I TVi — Villoo€ — Sappe < H(Vi)
aH—l
< TH_le + /431 o ||TVk — Vk||ooe + (5app€
H-1
H-1 «
— [ H(Vi) = T Willoo < 65— [ITVe = Viloo + dupp
H_1 aHfl
= [HVi) = Tl = 777 Vi = Jlloo < 6= ITVie = Vil
+ Oapp
1 aHfl

= [HVi) = Tl < 1T Vi = S lloo + 57— ITVie = Villoo
+ Oapp

= [[H(Vi) = J*[loc < @™ 7HVie = T [loo

OéH_l
+“1_a(1+a)||vk — J|loo + Gapp
2O[H71
— [H(Vi) = Il < (a7 4+ n T ) Vi = Tl
=8
+ dapp-
Step 5:
limsup||Vi — J*||oc < dapp :
k—o0 = 1- 5
Proof of Step 5:

So far, we have the following rewrite of our iterates:
Virr = (1 = 7) Vi + v (H (Vi) + 1),
where

[H (Vi) = J*[loc < BIVi = I lloo + Gapp-

We define Ay := Vj, — J*. Using Ay, the following holds:

Apr1 =1 =) Ak + v (H(V) — I 4+ wy).

Letting Y}, be a sequence defined recursively as follows:

Yir1 = (1 =) Y + yewe,

where Yy = 0. Since wy, is bounded for all k, Y, — 0 a.s.

We now define the following sequence X, as follows:

Xk = Ak—Yk. (11)

Thus,

Xpp1 = (1 =) X + e (H(Vi) = J7).
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Taking norms on both sides gives:

[ Xkt1lloo < (1 =7 Xklloo + il H (Vi) = H(J")[loo
< (1= )1 Xkllo + [ BIVi = T oo + B

=< (1= )| Xklloo + [ BI AL o0 + b

< (1= 901 Xkl + 6 [ B Xkl + BIVillow + bapp)-

Since Y3, — 0 a.s., we conclude there must exist for all € > 0 some k(¢) such that for all k& > k() :
Yilloo <e
So, for k > k(e), the following holds:
1 Xks1lloe < (1= )1 Xelloo + 0 [BI1 Xilloo + B2 + Gap.

Rearranging terms, we have:

Xl
< (1= = BNIXklloo + vr(Be + bapp)
dapp
= (1 900 = B Xl + 1 — )| 0],
N 5

=y

Now, consider any positive integer /N. We define a sequence of random variables Yiv for £ > N, by setting Y% =
I X~ || and

Be + dapp

—N =N
Xiy1 = (1 =) X, +’YI/€|: -8 }Vk>N~

. . . <N . .
We will carry out a comparison of the sequence || X || with the sequence X, . Consider the event that k(¢) = N, which
we denote by Ax. We can use an easy inductive argument to show that for any N, for any sample path in A, and for

all £ > N, that || Xkl < YkN It is evident from the assumption that Y, ;v = oo and thus Y, 7, = oo that

<N . L .
X, — 58%5;’”’ as k — oo. Since € can be chosen to be arbitrarily close to 0, for all sample paths in Ay, we have that

— )
limsupXivg abp_

Since the union of the events A is the entire sample space, we have:

_ 5a
limsup X < _—apP
k—oo I_B

From the definition of Ay, and the fact that Y, — 0 a.s., we conclude that

1)
lim sup| Al oo = lim sup|| Vi — J*[|og < —222

k— oo k— oo —1- B

Furthermore, since V, = ®0;, we have that

dapp

1-§

lim sup|| @0y, — J*||oo <
k—oco
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Step 6:
lim sup|| J** — J*[|oc < M.
k—o0 —1- ﬂ
Proof of Step 6: Choose any € > 0. Then, there exists k(¢) such that the following holds for all k > k(e):
[Vie = T [loc < A +te. (12)

Using (12), we can see that:
Vi = TVilloo = 1TV = T |loo < Vi =TV + TV — T |oo |V = T ||loc < A+¢
= Vi = TVilloo < |TVk — J*||loc + A+ ¢
= Vi = TVi|loo < a||[Vk — J||oo + A + ¢
= Vi =TVi|loo Sa(A+e)+A+e
= ||Vk — TVi|loo < (14 @)(A+¢).

Thus,
—TVi < Vi + (1+ )(A +e)e
— —THV, < —THW 4 o711 + ) (A +e)e
T, < —TH7W + o711 + a) (A + €)e.

= — Ty

Suppose that we apply the T}, ., operator £ — 1 times. Then, due to monotonicity and the fact that T, (J + ce) =
T,,(J) + ace, for any policy p, we have the following:
-7t THW, < Tl THAIY 4 o 7 ha T (14 @) (A + e)e.

HEk4+1 HE+1

Using a telescoping sum, we get the following inequality:

Hk41

J
~T) TP W+ TP < =) ot a + 1)(A +e)e.
=1

Taking the limit as ;7 — oo on both sides, we have the following:

H-1
— JHk+1 +TH_1Vk S _Oé (0&1+ 1)(A +8)€.
-

Rearranging terms and subtracting J* from both sides, we get the following:

= Ha+1)(A+¢)

— JHE+1 +TH_1Vk < _ .
- 1—a
— JF — JHe+1 < JF TH—lvk B OéHil(Ck-i- 1)(A +€)e
N l—«a
Since J# < J* for all policies p, the above line implies that:
H-1

[T = JHe41 | oo < [|T* = THWi|oo + a (OélJr_lc)y(A +¢)
< aHT Vi + SO DA )
- k|loco 1—a

H-1
<ol Ay et DA
11—«

- 1-—« '

Since the above holds for all € > 0, we have the following conclusion:

20T A
lim sup|| J#*+! — J*|| 00 < ° 2
k—o0 1-«a
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E PROOF OF THEOREM 3 AND EXPLANATION
Our iterates are:

Vier1 = (1 — ) Vi + v (H(Vk) + 21)-
We have

Xit1 = (1 — v) X + v (H (Vi)
= [[Xks1 — oo = (1= )Xk — T oo + Yl H (Vi) = I |o

* * H—-1 QKO‘H71 *
= || X1 — S loo < (L =) [[ Xk — T [loo + (@™ + ﬁ)”vk =l
+6app)

* H-1 2’40‘H71 *
= | Xit1 =l <1 =1 -a +ﬁ))||Xk-—J oo + VGapp

* H—-1 2HaH_1 *
= E[|Xpr1— S loo] = A =m(1—a" 7"+ - NEN Xk = I |loo] + Yeapp
2kt 1

= Bl[Vit1 = I o] < (1 = (1 = a1+ DBV = I ool + (Bl Yat1lloc] + Ell[Yelloo] + dapp),

1-—

where the last line follows from using the triangle inequality and the definition in (11).

Iterating, we have:

k—1
E[[[Vie = T[] < HazHVo—J*HooﬂL Sapp ), H ar +Z% Yitilloo] + EllIYloc]) H ag -
j=1 {=j+1 l=j+1
initial condition error error due to function approximation error due to noise

We note that since vy, is square summable and sums to infinity, Y, — 0 a.s. and hence the error due to noise decreases over
time. Additionally, since ~y;, is square summable and sums to infinity, we have that Hf;ll a; — 0, hence only the function
approximation error remains.

We now obtain an upper bound for the ||Y} || as follows. From the definition of Y}, in Appendix D, we have the following:
E(|Y +11%) < (1= )2 E(|Ye]?) + 0.

Furthermore, since ||Yp|| = 0, we can iterate over & to get o; in Section 4.2.

F SECTION 4.3 - PROOFS
Recall that from the equation in (6), we rewrite our iterates as follows:

GrE+1 = (Pqu)) PQ k(Tm TH 1Vk —|—wk)

HE+1

and thus,

HE+1

POHE+L = (I)('PL]C(I)) Pa k(Tm TH- 1Vk erk)
N —

=My
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We have:

1H (Vi) = JH oo

= “E[Mk(T$+1TH_1Vk + wg) — T F] oo
= HE[MK(TﬂHTH*le + wg) — Mg (JF*+ + wg) + Mg (JH 4 wg) — T Filll oo
< IBIMAT, TV + w0) = Mu(P5 4 00|l + BRI + 1) = I 7]
< NEM (T, TP Wi+ wi) = Mi(J 4 wi) | Fe] |
+ sup|| EIM (J**4 4wy ) — JH Fi]||oo

ks p

=:0app

= [|EM(T, T V) = Mi(J") | Fellloo + dapp
= E[|Mx(T}; T Vi) = Mi (") ]| o] Fie] + Gapp
< E[SléPHMkHooHTumkHTH_le — J" oo | Fk] + bapp
= SI;P||Mk||oo||T,ZZHTH_1Vk — J 5 oo + bapp

—_———

=i0Fv

< Oém(SF‘/HTH_lvk — JHE+L Hoo + 6app.
Using the above, we furthermore have that

||H(Vk) - TH71Vk||oo < (1 + Oém(spv)||TH71Vk - J/“H'IHOO + 5app.
———

=K

G SECTION 4.4 - PROOFS

First, we will show that the gradient descent converges to

« .1 A m _
O 41" = min = || (P x®) 0 — PopJ** 1|5 = (PLx®)t Pos(Tyr TH Vi + wy). (13)
0 2 2 ————
::Ak ::bk
=:fr(0)

To do so, we will show that
16541, = O 1lloe < (1= €y sotman) 1@ oo Vi tlloo | S oo 1UF Po i /#4 oc,
where the singular value decomposition of Ay is:

VT
Ak = Uk [Ek,l O] |:Vk-f—1:| = UkEkJVle.
k,2

where Uy, is a unitary matrix, 2, 1 is a rectangular diagonal matrix, and V}, is a unitary matrix.

Note that using the singular value decomposition of Ay, we can rewrite ¢, ; as follows:

QZH = Vk,lEﬁUkak-

The gradient of fi(0) is:

V() = Al (Af — by).

Using gradient descent with step size £ > 0, our iterates of gradient descent are given by:
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Ort1,0 = Oky1.0-1 — EV i (Okyi1,0-1)
= (I — AL Ap)Ory1,0-1 + EALD.

Hence,

£—1

Ok41,0 = 52(1 — CAL AR ALD.
(=0

From the singular value decomposition of Ay, we have that
¢
(I = €43 AR = Vil = €5) Vi,

we can rewrite 0,1 ¢ as follows:

—1
¢
Ory1,0=§ E VeI = £53) Vi AL by
=0

£—1

=&Y Vil = €30) kU by,
=0
—1

_ (I-¢53,)" 0] [k,
L
-1

¢
= §ZVk,1(I — 5% 1) Sk Uy b
=0

Since

Sl =& —T+E53 ) " Sen =€) (I — €57 1) S,
=0

we further rewrite 0} ; as follows:

* - 4
Ori1 = Via(I = €57 1) SkaUy by
=0
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We now compute
165558 = Ot lloo

< Okg1,m — O i1lloo

n [e’e)
£ £
= 16> Via(I = €52 1) SeaUf b =€) Vir(I = £571) Ska Uy biclloo

£=0 £=0
= 1
= 16> Via(I = €53 1) Sea Uy bl
t=n
> 0
< Viallooll€ D (T = €57 1) S a Uy billoo
t=n

= Vi llolle — €53 )73 (1 = €52) S U billoe
£=0
L
= Vi llsoll(1 = fEil)"IIooIIEZ(I —E5%1) T Uy billoo

> YA
< ViallsollI = €52, IL11€D (I = €37 1) Ska Uy biloo

= Vi llooll — €25 1 12 125 1 U belloo

< (1= &0, @ max) Vit loo |25 ) oo U Brllso

< (1= €0, @ ,max) Vit oo 125 1 o 1 UF Poged 1| oc,
where 0p, , & max 1S the largest singular value squared of Py, ®.

Note that the above implies that in order to obtain convergence of 61, to ;| as a function of 7, we must have that
0< §U7D1Yk<l>,max <1

Thus, we have:

1 (Vi) = @05 1llo0 < (1= 0Py @ max) " | @loo Vi lloo 1551 oo UK Paied "+ [l

Defining ¢ := (1 — §0'7317k<1>7max)nH@HOOHV]CJ||OO||Z];11 oo | U Pa i J#5+1 || oo and using M, and 8,,, as defined in Ap-
pendix E, we obtain:

[ H (Vi) — J* oo

= [|EIMR(T}, T Vi 4 wi) — T4 Fill|oo + €

= [|EIMK(T}, T Vi 4 wp) — My (J#550 4 wp) + My (J45 4 wg) — T4 Fl|oo + €

< BIM(T, T Vi 4 wr) = My (TP 4 w)[Filfloo + [[BIME (T4 + wy) — T Fylfloo + &
[

< EMe(T TP Wi + wi) — My (J#54 + wi,) | Fi][| o

Hr+1
+ sup|| E[M g (J*++1 4+ wy) — T Frllloo +€
k’l"k
=:8app
= H [Mk(TlZz+1TH 1Vk) Mk(‘]ukﬂ)lfk”loo + Oapp + €
= E[|My(T, T Vi) = My (#5400 | Fr] + Sapp +

E[SupHMkHooH T T VI P oo | il + Gapp + €

— sup||/\/lk||oo|| T TP Ve d et oo + Gapp + €

{

=:0pv

< am(SF\/HTH71Vk — JHk+1 Hoo + 6app +e.
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Using the above, we furthermore have that

IH(Vi) = T" "Willoo < (14 ™0y )|ITH Vi — T ||og + Gapp
~

+ (1= €opy o ,max) "1 @lloo [ Vit oo I Z50 oo 1 UR P 41| oo

The new & and d,,,, are apparent from the above.

H SECTION 4.5 - PROOFS

(Tpsegrmin)* B[ @17 — @O 2] < (mpyyy min ) B[] @971 — @91 [[3] < E[[|@0M+1" — D[] < 07y, -

Using Jensen’s inequality, we have:
(Wuk+1,min)2(E[“(I>euk+l* — e ”00])2 < (Wuk+1’min)2E[H(I>‘9uk+l* — o ||go] < 0T g

= 7Tlik-u,minE[H(I)eukﬂ>‘< — i ”oo] < \/ 6T,Hk-+1
[||(I)0Mk+1* — PpYHE+1 Hoo] < V 5Tvﬂk+1

Hk+1,min

== F

—— E[||q)9“k+1* — JHE+1 4 JHE+L _ POHPE+L ||oo] < @

Hl+1,min

\/0
— B[||JH+1 — O] ] < sup |[@OFEFTT — T + T pr41

Hr+1 W/LkJrl,min

)

where the last inequality follows from applying the reverse triangle inequality and then taking the supremum over all
policies fij41.

Finally, we use Jensen’s inequality again to obtain the following:

\/ 0
||E[(I)9“k+l} — JHk+1 ||oo — |‘E[J“k+1 _ ¢9#k+1]|‘oo < sup HCDQ""‘“* — JHk+1 Hoo + Tttt .

Hk+1 T g 41,min

Thus, we can combine the d7,,, o in (Bhandari et al., 2018) with the above terms to obtain a d,p, and our calculations in
Section 4.5 give k = 1.

I CONNECTION OF MONTE CARLO ES TO PRACTICE

We make several remarks regarding the connection of Monte Carlo ES to practice. While AlphaZero [Silver et al., 2017b]
uses techniques such as function approximation and lookahead through planning algorithms in the form of Monte Carlo
Tree Search (MCTS), Monte Carlo ES is nonetheless a Monte Carlo algorithm since it uses full trajectories and their returns
to estimate loss functions. Additionally, the AlphaZero algorithm uses returns from all states visited by the trajectories to
make updates instead of only the first state.



