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Abstract

Modified policy iteration (MPI) also known as optimistic policy iteration is at the core of
many reinforcement learning algorithms. It works by combining elements of policy iter-
ation and value iteration. The convergence of MPI has been well studied in the case of
discounted and average-cost MDPs. In this work, we consider the exponential cost risk-
sensitive MDP formulation, which is known to provide some robustness to model param-
eters. Although policy iteration and value iteration have been well studied in the context
of risk sensitive MDPs, modified policy iteration is relatively unexplored. We provide the
first proof that MPI also converges for the risk-sensitive problem in the case of finite state
and action spaces. Since the exponential cost formulation deals with the multiplicative
Bellman equation, our main contribution is a convergence proof which is quite different
than existing results for discounted and risk-neutral average-cost problems. In the ap-
pendix, the proof of approximate modified policy iteration for risk sensitive MDPs is also
provided.

Keywords: Robust stochastic control, dynamic programming, risk-sensitive stochastic con-
trol

1. Introduction

We consider stochastic control problems over finite state and action spaces, also known
as Markov Decision Processes (MDPs). Traditional solutions to such problems use pol-
icy iteration, value iteration or linear programming (Bertsekas (2012b), Bertsekas (2012a),
Puterman (2014)). Reinforcement learning attempts to solve the control problem when
the probability transition matrix is either unknown or the probability transition matrix is
known but the state space is very large to obtain exact solutions (Sutton and Barto (2018)).
Much of the prior work in this area focuses on discounted-cost problems or average-cost
problems. In this paper, we study a robust version of the average-cost problem.

Robust control problems with linear state-space and quadratic costs have been well
studied in the control theory literature (Zhou and Doyle (1998), Dullerud and Paganini
(2013), Başar and Bernhard (2008)). It is also well-known that these robust control prob-
lems are closely related to the control of systems with a risk-sensitive exponential cost
(Whittle (1990)). Here, we consider the finite-state, finite-action counterpart of such ro-
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bust or risk-sensitive control problems Borkar (2002, 2010, 2001). Unlike, the LQG setting
inWhittle (1990), the risk-sensitiveMDP does not admit a closed-form solution even when
the systemmodel is known.

The reinforcement learning (RL) problem in risk-sensitiveMDPs have been considered
in several papers: (i) Borkar (2002) presents a Q-learning algorithm for the tabular case;
(ii) Fei et al. (2020) provide regret bounds for risk sensitive Q-learning and risk sensitive
value iteration in the context of finite horizonMDPs (iii) Hai et al. (2022) address risk sen-
sitive RL in the discounted-cost setting through the use of time dependent risk factors, and
(iv) Moharrami et al. (2022) provide a trajectory based policy gradient algorithm to obtain
a stationary point of the risk sensitive objective function. These algorithms have one of
the following limitations: they do not solve the infinite-horizon, risk-sensitive average-cost
problem that we are interested in or are not computationally feasible or do not find a global
optimal policy. For these reasons, we focus on problems where the model is known but ob-
taining the solution may be computationally infeasible. Many major successes in RL fall in
this category, e.g., board game-playing AI programs such as AlphaGo, AlphaGo Zero and
AlphaZero. Recently, there have several papers studying such RL problems using versions
of dynamic programming techniques that are computationally more tractable compared
to traditional value iteration or policy iteration (Efroni et al. (2018), Winnicki et al. (2021),
Winnicki and Srikant (2022)). These algorithms use two key ideas: (i) modified policy it-
eration: some version of policy iteration is used, where instead of exact policy evaluation,
a few iterations of fixed-point iterations are performed (Puterman (2014)), and (ii) ap-
proximate policy iteration: both the policy evaluation and the few iterations of fixed-point
iterations mentioned in (i) are performed approximately (Bertsekas (2012a)). As shown
in Efroni et al. (2018); Winnicki et al. (2021); Winnicki and Srikant (2022), modified and
approximate policy iterations can be used to model the concepts used in practical RL algo-
rithms such as tree search, rollout, lookahead, and function approximation, However, all
the known results in this context are for the discounted-cost infinite-horizon problem.

To develop the analog of the rich theory that exists for discounted-cost problems, one
has to first develop a theory for modified policy iteration and approximate policy itera-
tion in the context of risk-sensitive exponential cost MDPs. For risk-neutral average cost
problems, there exists a theory of modified policy iteration (Van der Wal (1980)) but no
complete theory for approximate policy iteration exists. For risk-sensitive MDPs, we are
unaware of any results for either modified policy iteration or approximate policy iteration.
In this paper, as a first step towards developing a theory of RL for risk-sensitive problems
with known but large probability transition matrices, we define the equivalent of modi-
fied policy iteration in the case of risk-sensitive MDPs and prove that it converges. In the
case of discounted-cost problems and average-cost problems, the proof of convergence re-
lies on the properties of the Bellman operator which is additive in those cases. Our main
contribution in this paper is to show that the modified policy iteration algorithm converges
in the risk-sensitive setting despite the fact that the Bellman operator has multiplicative
terms instead of additive terms, which makes much of the existing theory of modified
policy iteration inapplicable to our problem. We will detail the differences in the proof
techniques when we present the mathematical results later in the paper and in the sup-
plementary material. The key ideas presented in this paper can also be used to provide
performance guarantees for approximate policy iteration but we do not include them here
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due to space limitations. It is worth noting that, with these results, one may not only be
able to analyze RL algorithms with knownmodels as in Efroni et al. (2018); Winnicki et al.
(2021); Winnicki and Srikant (2022) but onemay also be able analyze general RL problems
as shown in Chen and Maguluri (2022) for discounted-cost problems.

The rest of the paper is organized as follows. In Section 2, we present a brief intro-
duction to risk-sensitive MDPs and in Section 3, we present the modified policy iteration
algorithm, including a specific normalization technique to ensure that the value function
remains bounded. We note that a large class of normalizations are possible in the case of
risk-neutral average-cost problems, but a specific form appears to be required in the case of
the risk-sensitive cost problems. The main results are in Section 4, with some of the proofs
relegated to the supplementary material.

2. Preliminaries

In this section, we present our notation and briefly overview the risk-sensitive average cost
formulation and the associated multiplicative Bellman Operator.

We consider a Markov decision process with finite state space S , finite action space A,
and transition kernel P. The class of deterministic policies is denoted by Π = {f :S → A},
where each policy assigns an action to each state. Given a policy f ∈ Π, the underlying
Markov process is denoted by Pf : S → S , where Pf (s

′|s) := P(s′|s, f(s)) is the probability
of moving to state s′ ∈ S from state s ∈ S upon taking action f(s) ∈ A. Associated
with each state-action pair (s, f(s)), there is a one-step cost which is denoted by cf (s) :=
c(s, f(s)) ∈ [c, c]. We assume that the Markov process associated with each deterministic
policy f ∈ Π is irreducible and aperiodic. To ensure this, one can replace P with P̃ =
(1 − ǫ)P + ǫ11⊤ where 1 is the all-one column vector and ǫ > 0 is a fixed constant. We
summarize our assumptions below.

Assumption 1 We assume that the state space and the action space are finite, and the one-step cost
associated with each state-action pair (s, a) ∈ S ×A is deterministic and bounded. We also assume
that the Markov process associated with each deterministic policy f ∈ Π is irreducible and aperiodic.

2.1. Risk Sensitive Average Cost Formulation

The average cost Jf associated with a deterministic policy f ∈ Π is given by,

Jf = lim
t→∞

1

t
E

[
t−1∑

k=0

cf (sk)

]
.

Here the expectation is taken with respect to the transition probability Pf associated with
the policy f . Equivalently, the average cost can be written in terms of the stationary distri-
bution ηf associated with the policy f as:

Jf = Es∼ηf [cf (s)] .

The traditional goal of reinforcement learning with average cost criteria is to minimize Jf
across all policies f ∈ Π. An approach to robust reinforcement learning is to take into
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account the model uncertainties and to minimize the worst-case average cost over a KL-ball
around the nominal model:

sup
Q:Es∼ηQ(DKL(Q(s,·)‖Pf (s,·)))≤β

Es∼ηQ [cf (s)] ,

where DKL denotes the Kullback-Leibler divergence, and β > 0 is the radius of the KL-
ball. This is known as the robust MDP objective. The dual formulation of the robust MDP
objective is:

sup
Q≪Pf

Es∼ηQ [cf (s)]−
1

α
Es∼ηQ [DKL (Q(s, ·)‖Pf (s, ·))] ,

where the constant α = α(β) > 0 depends on β. Using the Donsker-Varadhan variational
formula and Collatz–Wielandt formula, it can be shown that optimizing the robust MDP
objective is equivalent to minimizing

Λf (α) = lim
t→∞

1

t
ln

(
E

[
exp

(
t−1∑

k=0

αcf (sk)

)∣∣∣∣ s0 = i

])
, (1)

where the expectation is taken with respect Pf . The existence of the above limit is a conse-
quence of the Perron-Frobenius theorem, whose details can be found in Moharrami et al.
(2022), Basu et al. (2008). Λf (α) is known as the risk sensitive average cost. Similar to
Jf , the value of Λf (α) does not depend on the initial state s0. α is thus referred to as the
risk factor, since larger values of α implies greater risk averseness. Note that in the limit
as α → 0, the risk-sensitive average cost converges to the risk neutral average cost, i.e.,
limα→0 Λf (α) = Jf . For simplicity, from now on, we fix α > 0 and write Λf instead of
Λf (α).
The above risk sensitive average cost can be expressed as the solution to the following mul-
tiplicative Bellman equation,

eΛf eVf (i) = eαcf (i)
∑

j∈S

Pf (j|i)e
Vf (j), ∀ i ∈ S, (2)

where the relative value function eVf is the eigenvector corresponding to thePerron-Frobenius
eigenvalue Λf associated with the matrix M = [M ]i,j = [eαcf (i)P (j|i, f(i))]i,j .
Consequently, the multiplicative Bellman operator corresponding to a policy f , is an oper-

ator Tf : R
|S|
+ → R

|S|
+ defined as:

Tfe
V (i) = eαcf (i)

∑

j∈S

Pf (j|i)e
V (j).

The multiplicative Bellman optimality operator T : R
|S|
+ → R

|S|
+ is defined as:

TeV (i) = min
f∈Π

Tfe
V (i), ∀i ∈ S.

4
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The optimal risk sensitive average cost is defined as the minimum risk averse average cost
across all policies, i.e.,

Λ∗ = min
f∈Π

Λf = min
f∈Π

lim
t→∞

1

t
ln

(
E

[
exp

(
t−1∑

k=0

αcf (sk)

)∣∣∣∣ s0 = i

])
. (3)

Let f ∈ Π denote the deterministic policy for which Λf = Λ∗, and let eV
∗

= eVf denote its
relative value function. It can be shown that the pair (Λ∗, eV

∗

) is the unique solution (up
to multiplicative constant of eV

∗

) to the following equation:

eΛ
∗

eV
∗(i) = min

f∈Π
eαcf (i)

∑

j∈S

Pf (j|i)e
V (j), ∀ i ∈ S. (4)

3. Problem Formulation

The goal of robust reinforcement learning is to find a policy f ∈ Π for which Λf = Λ∗. In
thiswork, we focus on developing amodifiedpolicy iteration to find such an optimal policy.
To this end, we change the dynamics of the underlyingMDP by transforming its transition
probability as well as the one-step cost function. It can be shown that the optimality of a
policy will not be affected by this transformation. Similar ideas have been used in the case
of risk neutral average cost; however, the underlying transformation is different.

More specifically, fixing a constant κ ∈ (0, 1), we transform the dynamics of the MDP
as follows:

• The transformed cost is given by:

df (i) =
1

α
log((1− κ)eαcf (i) + κ), ∀i ∈ S.

• The transformed transition probabilities are given by:

Q(j|i, a) =
(1− κ)eαc(i,a)P(j|i, a) + κ1(i = j)

(1− κ)eαc(i,a) + κ
, ∀(i, a) ∈ S ×A,

where 1(i = j) is the indicator function. For any policy f ∈ Π, Qf (j|i) denotes the
probability of moving to state j ∈ S from state i ∈ S upon taking action f(i).

Notice that for all (i, a) ∈ S × A, we have Q(i|i, a) ≥ κ
(1−κ)eαc+κ

> 0. In particular, the

probability of staying in the same state under all policies is non-zero. In literature, such a
transformation is referred to as the aperiodicity transformation. Next, we state a theorem
that establishes a one-to-one correspondence between the optimal risk sensitive average
cost and the associated relative value function in the original MDP and the transformed
MDP. Hence, finding an optimal policy for the transformed dynamics is equivalent to find-
ing an optimal policy for the original MDP.
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Theorem 2 Given κ ∈ (0, 1), we have the following:

1. Given (Λ∗, eV
∗

) satisfies (4), define

Λ̃∗ = log((1− κ)eΛ
∗

+ κ)

Then (Λ̃∗, eV
∗

) solves the following multiplicative Bellman equation:

eΛ̃
∗

eV
∗(i) = min

f∈Π
eαdf (i)

∑

j∈S

Qf (j|i)e
V ∗(j), ∀ i ∈ S. (5)

2. Conversely, given (Λ̃∗, eV
∗

) satisfies (5), then

eΛ̃
∗

≥ κ.

Define

Λ∗ = log

(
eΛ̃

∗

− κ

1− κ

)
. (6)

Then the pair (Λ∗, eV
∗

) satisfies (4).

Proof Theproof of the above theoremcan be found inCavazos-Cadena and Montes-de Oca
(2003). It can also be verified that both the transformed and original problems possess the
same optimal policies.

A crucial component to the convergence of the algorithm is a source of contraction,
which is obtained from any finite product of ergodic matrices. The transformation de-
scribed is necessary to ensure that such a contraction exists and is a consequence of the
lemma stated below.

Lemma 3 There exists a finite natural number R such that for any sequence of policies f1, f2, · · ·,
fR ∈ Π,

min
i,j∈S

Qf1Qf2 · · ·QfR(j|i) > 0. (7)

Proof The proof of this lemma can be found in Appendix A.1.

The modified policy iteration algorithm in the context of risk sensitive exponential cost
MDPs for the transformed problem is stated below.

3.1. Algorithm

The algorithm takes as input a sequence of natural numbers (mi : i ∈ N) such that mi ≥ 1
and a vector V ′

0 ∈ Rn such that
∑

i∈S eV
′
0 (i) = 1.

Along with the partial policy evaluation and policy improvement steps, we also intro-
duce a normalization step where the value functions are scaled in every iteration. In the
case of risk-neutral average-cost modified policy iteration, the normalization step generally
involves subtracting the value function at some fixed state from the rest of the states. This

6
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Algorithm 1 Risk Sensitive Modified Policy Iteration

Require: (mi : i ∈ N), V ′
0 .

1: Set k = 0
2: Set fk+1(i) = argminf∈Π eαdf (i)

∑
j∈S

Q(j | i, f(i))eV
′
k
(j) ∀i ∈ S ⊲ Policy Improvement

Define eαdfk+1
(i) ∑

j∈S
Q(j | i, fk+1(i))e

V ′
k
(j) =

(
Tfk+1

eV
′
k

)
(i)

3: eVk+1(i) ←
(
T
mk

fk+1
eV

′
k

)
(i) for all i ∈ S . ⊲ Partial Policy Evaluation

4: eV
′
k+1(i) ← e

Vk+1(i)

∑

i e
Vk+1(i)

for all i ∈ S ⊲Normalization

ensures that the value function iterates do not diverge with repeated execution of the algo-
rithm. However, a similar normalization trick would not work for risk sensitive modified
policy iteration as not only do we need to ensure that the value functions do not diverge, it
is also necessary to make sure that they are uniformly bounded away from zero. The value
function being bounded away from zero is crucial to the convergence of the proof as will
be seen in the subsequent section.

4. Convergence Analysis of Algorithm

Let the risk sensitive average cost associated with policy fn+1 for the transformed model
be represented as Λ̃fn+1 . In the context of value iteration, it is well known that the consec-
utive value function iterates possess a span-seminorm contraction property (Bielecki et al.
(1999), Borkar and Meyn (2002)). More precisely, let g, h ∈ Rn. Then there exist constants
τ, k, r such that 0 < τ < 1, and N ∋ k, r < ∞ such that

sp (gk − hk) ≤ τ rsp (g − h) ,

where the span of a vector v is defined as sp(v) = maxi v(i) −mini v(i) and

gk(i) = min
f∈Π



αdf (i) + ln



∑

j∈S

Q(j|i, f(i))egk−1(y)






 .

A similar contraction in the sup norm is satisfied in the discounted-cost setting, where the
discount factor serves as the source of contraction. A major roadblock in the convergence
analysis of modified policy iteration in the average-cost setting (both risk-neutral and risk-
sensitive) is that such a property is not satisfied by consecutive value function iterates. To
circumvent this issue, we exploit an alternate property associated with the ratio of iterates
obtained through a single step of policy improvement. In order to explain this property,
we define:

gn(i) =
TeV

′
n(i)

eV
′
n(i)

(8)

7



Exponential Cost Risk Sensitive MDPs - Modified Policy Iteration

and set un and ℓn as

un = max
i∈S

(gn(i)) (9)

ℓn = min
i∈S

(gn(i)) (10)

Lemma 4 Let Λ̃∗ be the optimal risk sensitive average cost associated with the MDP considered in
Algorithm 1. Then ∀n > 0:

ℓn ≤ eΛ̃
∗

≤ e
Λ̃fn+1 ≤ un (11)

Proof The proof of the above lemma can be found in Appendix A.2.

The above lemma is crucial to the proof of convergence of modified policy iteration. A

similar relationwould hold for the rewardmaximization problem: ℓn ≤ e
Λ̃fn+1 ≤ eΛ̃

∗

≤ un.
Such a relation can be obtained in the context of risk-neutral average cost (Van der Wal
(1980)) as well. But since the Bellman Operator is additive in that regime, the proof is
relatively straightforward. The multiplicative nature of Bellman operator combined with
the exponential cost formulation, necessitates a different proof idea which hinges on the
careful utilization of the Perron-Frobenius theorem.

Such an observation helps us establish a contraction necessary to prove the convergence

of un to the optimal cost. Sinceun is lower boundedby eΛ̃
∗

, it is possible to showexponential

convergence of un (and therefore consequently e
Λ̃fn+1 ) to eΛ̃

∗

. This is possible since un is
monotonically decreasing and evidently lower bounded.

Lemma 5 The sequence un is non-increasing, i.e. un ≤ un−1 for all n.

Proof The proof of this lemma can be found in Appendix A.3.

Analogously, in the case of risk sensitive reward maximization, the sequence ℓn is mono-
tonic in nature, that is, ℓn ≥ ℓn−1.

Value Iteration leads to monotonicity in un(non-increasing) and ℓn(non-decreasing).
This is a consequence of improving the policy at every iteration without any partial policy
evaluation. This symmetric monotonicity leads to an overall span contraction in the value
function. However, due to partial policy evaluation in modified policy iteration, such a
monotonicity is observed only for the maximum of the ratio of iterates, ie., un (or ℓn in case
risk sensitive reward maximization). Consequently, there need not be a span contraction
for the value functions. Hence it is necessary to rely on arguments independent of span in
order to prove algorithm convergence. This approach is delineated in the theorem below.

Theorem 6 Let gn, un and ℓn be determined from Algorithm 1 as per (8), (9) and (10) respec-
tively. Then, un converges exponentially fast, i.e. there exist γ, k such that 0 < γ < 1 and for each
n: (

un − eΛ̃
∗
)
≤ (1− γ)

(
un−k − eΛ̃

∗
)
.

Consequently, the risk sensitive average cost iterates converge to Λ̃∗, that is,

lim
n→∞

un = lim
n→∞

ℓn = eΛ̃
∗

. (12)

8
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Before proving Theorem 6, it is necessary to prove the boundedness of the value func-
tion iterates eV

′
n(i) for all n > 0. The parameter γ in Theorem 6 is obtained as a function

of the product of ergodic matrices and value function vectors eV
′
n . Hence in order for γ to

be strictly positive, it is necessary that the sequence eV
′
n is uniformly bounded away from

zero. The normalization step in Algorithm 1 serves this purpose along with ensuring that
the magnitude of the iterates do not diverge.

Lemma 7 Let maxk mk < C , where mk corresponds to the number of fixed point iterations per-
formed during partial policy evaluation during the kth execution of the algorithm 1. Then, there
exists β such that 0 < β < 1,

eV
′
m(i) > β > 0 ∀ m ≥ 0. (13)

Proof The proof of this lemma can be found in Appendix A.4. The proof once again relies
on the ergodicity of the probability transition matrices Q, specifically on Lemma 3.

We are now ready to present the proof of Theorem 6.
Proof By definition of gn, we have

gn(i) =
TeV

′
n(i)

eV
′
n(i)

=

(
Q̃fn+1e

V ′
n

)
(i)

eV
′
n(i)

(a)

≤

(
Q̃fne

V ′
n

)
(i)

eV
′
n(i)

(b)
=

(
Q̃fne

Vn

)
(i)

eVn(i)
,

where
(
Q̃fne

Vn

)
(i) = eαdfn (i)

∑
j∈S P(j|i, fn(i))e

Vn(j) (a) follows from the fact that fn+1 is

the minimizing policy, and (b) is due to eV
′
n(i) = eVn(i)

∑

j∈S
eVn(j) .

Using the definition of eVn(i), we have

gn(i) ≤

((
Q̃fn

)(
Q̃

mn−1

fn
· eV

′
n−1

))
(i)

(
Q̃

mn−1

fn
eV

′
n−1

)
(i)

=

(
Q̃

mn−1

fn
Q̃fne

V ′
n−1

)
(i)

(
Q̃

mn−1

fn
eV

′
n−1

)
(i)

≤

(
Q̃

mn−1

fn
· Q̃fn−1e

Vn−1

)
(i)

(
Q̃

mn−1

fn
eVn−1

)
(i)

=

(
Q̃

mn−1

fn
Q̃

mn−2

fn−1
Q̃fn−1e

V ′
n−2

)
(i)

(
Q̃

mn−1

fn
Q̃

mn−2

fn−1
eV

′
n−2

)
(i)

.

Continuing the above for k time steps, we get

gn ≤

(
Q̃

mn−1

fn
Q̃

mn−2

fn−1
Q̃

mn−3

fn−2
· · · Q̃

mn−k

fn−k+1
Q̃fn−k+1

eV
′
n−k

)
(i)

(
Q̃

mn−1

fn
Q̃

mn−2

fn−1
Q̃

mn−3

fn−2
· · · Q̃

mn−k

fn−k+1
eV

′
n−k

)
(i)

.

9
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Let Hn,k := Q̃
mn−1

fn
Q̃

mn−2

fn−1
Q̃

mn−3

fn−2
· · · Q̃

mn−k

fn−k+1
. From Lemma 3, we know that Q induces an

irreducible Markov chain for any sequence of policies, i.e.:

∃ R < ∞ such that ∀ π1, · · · , πR ∈ Π: (Qπ1Qπ2 · · ·QπR
) (j|i) > 0 ∀i, j.

The number of time steps k is determined such that mn−1 +mn−2 + · · ·+mn−k ≥ R. This
implies thatHn,k(j | i) > 0 for all i, j.

Let eW
′
n−k := Q̃fn−k+1

eV
′
n−k . We have

gn(i) ≤

(
Hn,ke

W ′
n−k

)
(i)

Hn,ke
V ′
n−k(i)

=

∑
j∈S Hn,k(j | i)eW

′
n−k

(j)

∑
ℓ∈S Hn,k (ℓ | i) e

V ′
n−k

(ℓ)

=

∑
j∈S

(
Hn,k(j | i)e

W ′
n−k

(j)
)

∑
ℓ∈S Hn,k(ℓ | i)e

V ′
n−k

(ℓ)

=

∑
j∈S

(
Hn,k(j | i)e

V ′
n−k

(j)
)
·

(
e
W ′

n−k
(j)

e
V ′
n−k (j)

)

∑
ℓ∈S Hn,k (ℓ | i) e

V ′
n−k

(ℓ)
.

Define a probability measure q as follows:

q(j | i) :=
Hn,k(j | i)e

V ′
n−k(j)

∑
ℓ∈S Hn,k (ℓ | i) e

V ′
n−k(ℓ)

Notice that 0 < q(j | i) < 1 since Hn,k(j | i) > 0 for all i, j and 0 < β < eV
′
n−k

(i) ≤ 1 (from
Lemma 7) for all i ∈ S . Therefore,

gn(i) ≤
∑

j∈S

q(j | i)




(
Q̃fn−k+1

eV
′
n−k

)
(j)

eV
′
n−k(j)


 =

∑

j∈S

q(j | i)

(
TeV

′
n−k(j)

eV
′
n−k(j)

)
.

Let γ := mini,j q(j | i) > 0. We have

gn(i) ≤ γℓn−k + (1− γ)un−k ∀ i.

This implies

un ≤ γℓn−k + (1− γ)un−k. (14)

Since ℓn−k ≤ eΛ̃
∗

, we have

un ≤ γeΛ̃
∗

+ (1− γ) un−k.

Therefore,
(
un − eΛ̃

∗
)
≤ (1− γ)

(
un−k − eΛ̃

∗
)

(15)

10
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Since un ≤ un−1 from lemma 5 and un ≥ eΛ̃
∗

from lemma 4, it follows from (15) that

un −→ eΛ̃
∗

From (14), we obtain

eΛ̃
∗

≤ γℓn + (1− γ)un.

Therefore,

eΛ̃
∗

− un ≤ γ (ℓn − un) ,

which yields

0 ≤ γ (un − ℓn) ≤
(
un − eΛ̃

∗
)
.

Since un → eΛ̃
∗

, we conclude that ℓn → un =⇒ ℓn → eΛ̃
∗

as desired.

From Theorem 2 we can equivalently obtain the original optimal risk sensitive Λ∗ av-

erage cost and the corresponding value function associated with it. Note that if
(TeV )(i)
eV (i) =

δ > 0, then the transformation in Equation (6) provides a Λ which is in a δ-scaled neigh-
bourhood ofΛ∗. More details can be found in Cavazos-Cadena and Montes-de Oca (2003).

5. Conclusion

We presented a modified policy iteration algorithm which can reduce the computational
burden of standardpolicy iteration for risk-sensitiveMDPs. The proof of convergence relies
on techniques that are quite different from the existing literature for discounted and risk-
neutral average-cost problems. As in prior work for discounted-cost problems, our results
can further be used to provide performance guarantees for RL algorithms.
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Appendix A.

A.1. Proof of Lemma 3

Given finite state and action spaces, the total number of deterministic policies are given
by |Π|= |A||S|= mn. Since every policy induces an irreducible Markov chain, Pn

f (j|i) >

0 ∀ i, j ∈ S,∀ f ∈ Π. When R = mn + 1, there exists a policy that is repeated at least twice
in the sequence. Hence, ifR = (n−1)·mn+1, there exists a policywhich is repeated at least
n times. Since in the transformed model, under every policy the probability of staying in
the same state is non-zero, there exists a non-zero probability of traversing from any state
to any other state when R ≥ (n− 1) ·mn + 1 under any sequence of policies.

A.2. Proof of Lemma 4

• un ≥ e
Λ̃fn+1 . Recall by definition that

un = max
i

(
TeV

′
n(i)

eV
′
n(i)

)
≥

TeV
′
n(i)

eV
′
n(i)

=
Tfn+1e

V ′
n(i)

eV
′
n(i)

∀i ∈ S

Therefore, we have

une
V ′
n(i) ≥ e

dfn+1
(i)

∑

j∈S

Qfn+1 (j | i) e
V ′
n(j),

and thus

une
V ′
n ≥ Q̃fn+1

(
eV

′
n

)
.

where, Q̃fn+1(i, j) = e
dfn+1 (i)Qfn+1 (j | i)

Consequently, it follows that

unQ̃
k
fn+1

(
eV

′
n

)
≥

(
Q̃fn+1

)k+1
eV

′
n

and

un

e
Λ̃fn+1

(
Q̃fn+1

e
Λ̃fn+1

)k

eV
′
n ≥

(
Q̃fn+1

e
Λ̃fn+1

)k+1

eV
′
n

Consequently,

lim
k→∞

un

e
Λ̃fn+1

(
Q̃fn+1

eΛ̃fn+1

)k

eV
′
n ≥ lim

k→∞

(
Q̃fn+1

e
Λ̃fn+1

)k+1

eV
′
n

Since Q satisfies the conditions of the Perron-Frobenius theorem, by definition, so

does Q̃. The vector eV
′
n consists of all positive elements and hence, in the limit of

k −→ ∞, due to power iteration, the following holds true:

14
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un

e
Λ̃fn+1

z ≥ z,

As Q̃fn+1 and eV
′
n are both non negative, the resulting z is a non-zero vector containing

non negative elements. Hence we obtain,

un ≥ e
Λ̃fn+1 ,

as desired.

• eΛ̃
∗

≤ e
Λ̃fn+1 . Recall that

eΛ̃
∗

eV
∗(i) = min

f∈Π
eαdf (i)

∑

j∈S

Q (j | i, f(i)) eV
∗(j)

≤ e
αdfn+1

(i)
∑

j∈S

Q (j | i, fn+1(i)) e
V ∗(j).

Therefore, we have

eV
∗(i) ≤

e
αdfn+1

(i)∑
j∈S Q (j | i, fn+1(i)) e

V ∗(j)

eΛ̃
∗

=
e
αdfn+1

(i)
E
[
eV

∗(x1) | x0 = i, fn+1

]

eΛ̃
∗

≤
e
αdfn+1

(i)

eΛ̃
∗

· E

[
e
αdfn+1

(x1)

eΛ̃
∗

· E
[
eV

∗(x2) | x1, fn+1

] ∣∣∣ x0 = i, fn+1

]

Iterating, we get

eV
∗(x0) ≤ E



e
∑k−1

i=0 αdfn+1
(xi)V ∗(xk)(

eΛ̃
∗

)k

∣∣∣∣∣ x0




Since V ∗(xk) ≤ M < ∞ for all xk ∈ S , we have

k · Λ̃∗ + V ∗(x0) ≤ ln
(
Ex0

[
eα

∑k−1
i=0 d(xi,fn+1(xi))

])
+ ln(M),

or equivalently

Λ̃∗ +
V ∗(x0)

k
≤

1

k
ln

(
Ex0

[
eα

∑k−1
i=0 d(xi,fn+1(xi))

])
+

M

k
.

As k → ∞, we obtain

Λ̃∗ ≤ Λ̃fn+1 .

By monotonicity of the exponential function, we conclude as desired that

eΛ̃
∗

≤ e
Λ̃fn+1 .
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• ℓn ≤ eΛ̃
∗

.

Recall that eΛ̃
∗

satisfies the following equation:

eΛ̃
∗

eV
∗

= min
f∈Π

eαdfQf

(
eV

∗
)
.

Let the minimising policy be f∗. We have

ℓn = min
i

TeV
′
n(i)

eV
′
n(i)

≤
TeV

′
n(i)

eV
′
n(i)

=
Tfn+1e

V ′
n(i)

eV
′
n(i)

≤
Tf∗eV

′
n(i)

eV
′
n(i)

.

Therefore,

ℓne
V ′
n(i) ≤ eαdf∗ (i)

∑

j∈S

Q (j | i, f∗(i)) eV
′
n(j) =

(
Q̃f∗

(
eV

′
n

))
(i)

It follows that

ℓnQ̃
k
f∗

(
eV

′
n

)
≤ Q̃k+1

f∗ eV
′
n .

Similarly, we have

ℓn

eΛ̃
∗

(
Q̃f∗

eΛ̃
∗

)k

eV
′
n ≤

(
Q̃f∗

eΛ̃
∗

)k+1

eV
′
n

As a consequence of Perron-Frobenius theorem, it follows that

ℓn ≤ eΛ̃
∗

,

as desired. This concludes the proof.

A.3. Proof of Lemma 5

Recall that

un = max
i

(
TeV

′
n

)
(i)

eV
′
n(i)

Let x∗ = argmaxi

(

Te(V
′
n)

)

(i)

eV
′
n(i)

, so that

un =

(
Te(V

′
n)
)
(x∗)

eV
′
n(x∗)

=

(
Q̃fn+1

(
e(V

′
n)
)
(x∗)

)

eV
′
n(x∗)

≤

(
Q̃fn

(
e(V

′
n)
)
(x∗)

)

eV
′
n(x∗)

.
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Since eV
′
n(j) = eVn(j)

∑

j∈S
eVn(j) , it follows that

un ≤
Q̃fn

(
eVn(x∗)

)

eVn(x∗)

=
Q̃fnQ̃

mn−1

fn
eV

′
n−1(x∗)

Q̃
mn−1

fn
eV

′
n−1(x∗)

=

(
Q̃

mn−1

fn

(
Q̃fne

V ′
n−1

))
(x∗)

(
Q̃

mn−1

fn
eV

′
n−1

)
(x∗)

.

Let eW
′
n−1 = Q̃fne

V ′
n−1 and Hn = Q̃

mn−1

fn
. It then follows that

un ≤

(
Hne

W ′
n−1

)
(x∗)

(
Hne

V ′
n−1

)
(x∗)

=

∑
j∈S H(j | x∗)eW

′
n−1(j)

∑
j∈S H(j | x∗)eV

′
n−1(j)

.

Let p = argmaxi
e
W ′

n−1(i)

e
V ′
n−1(i)

. Then, we have

eW
′
n−1(p)

eV
′
n−1(p)

≥
eW

′
n−1(i)

eV
′
n−1(i)

∀ i

This yields

un ≤

∑
j∈S

(
H(j | x∗)eV

′
n−1(j) · e

W ′
n−1(p)

e
V ′
n−1(p)

)

∑
j∈S H(j | x∗)eV

′
n−1(j)

.

Therefore,

un ≤
eW

′
n−1(p)

eV
′
n−1(p)

=
Q̃fn

(
eV

′
n−1

)
(p)

eV
′
n−1(p)

= max
i

(
TeV

′
n−1

)
(i)

eV
′
n−1(i)

= un−1,

which establishes the desired monotonicity.
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A.4. Proof of Lemma 7

Since eV
′
k
(i) = eVk(i)

∑

j∈S
eVk (j)

, it follows that
∑

j∈S eV
′
k
(j) = 1. We then have

eVk(i) = (T
mk−1

fk
eV

′
k−1)(i)

Let d = minf∈Π df and d = maxf∈Π df . Then,

Tfke
V ′
k−1(i) = eαdf (i)

∑

j∈S

Q(j|i, fk(i))e
V ′
k−1(j)

≥ eαd(Qfke
V ′
k−1)(i)

Iterating,

(T
mk−1

fk
eV

′
k−1)(i) ≥ emk−1αd(Q

mk−1

fk
eV

′
k−1)(i)

=
emk−1αd(Q

mk−1

fk
eVk−1)(i)

∑
j∈S eVk−1(j)

eVk(i) ≥
emk−1αd(Q

mk−1

fk
eVk−1)(i)

∑
j∈S eVk−1(j)

Further iterating,

eVk(i) ≥
e
∑k

l=1 mk−lαd(Q
mk−1

fk
Q

mk−2

fk−1
. . .Qm0

f1
eV

′
0 )(i)

∑
j∈S eVk−1(j)

∑
j∈S eVk−2(j) . . .

∑
j∈S eV1(j)

FromAlgorithm1, for a sufficiently large k, we have
∑k−1

l=0 ml > R. DefiningHk = Q
mk−1

fk
Q

mk−2

fk−1
. . .Qm0

f1
,

Lemma 3 yields ε = mini,j Hk(i | j) > 0, we continue the above sequence of inequalities:

eVk(i) ≥
e
∑k

l=1 mk−lαd
∑

j∈S εeV
′
0 (j)

∑
j∈S eVk−1(j)

∑
j∈S eVk−2(j) . . .

∑
j∈S eV1(j)

(16)

=
e
∑k

l=1 mk−lαdε∑
j∈S eVk−1(j)

∑
j∈S eVk−2(j) . . .

∑
j∈S eV1(j)

(17)

Similarly we obtain,

eVk(i) ≤
emk−1αd(Q

mk−1

fk
eVk−1)(i)

∑
j∈S eVk−1(j)

Further iterating,

eVk(i) ≤
e
∑k

l=1 mk−lαd(Q
mk−1

fk
Q

mk−2

fk−1
. . .Qm0

f1
eV

′
0 )(i)

∑
j∈S eVk−1(j)

∑
j∈S eVk−2(j) . . .

∑
j∈S eV1(j)
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This implies

∑

i∈S

eVk(i) ≤
ne

∑k
l=1 mk−lαd

∑
j∈S eVk−1(j)

∑
j∈S eVk−2(j) . . .

∑
j∈S eV1(j)

Therefore,

1∑
i∈S eVk(i)

≥

∑
j∈S eVk−1(j)

∑
j∈S eVk−2(j) . . .

∑
j∈S eV1(j)

ne
∑k

l=1 mk−lαd
(18)

Combining (16) and (18), since ∀l, ml ≥ 1 andml < C

eVk(i)

∑
j∈S eVk(j)

≥
e
∑k

l=1 mk−lαdε

ne
∑k

l=1 mk−lαd
>

ekαdε

nekCαd
> 0 (19)

We conclude that eV
′
m(i) > β > 0 for all m, where β = ekαdε

nekCαd
.
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Appendix B. Approximate Risk Sensitive Modified Policy Iteration

In this appendix, we prove the convergence of risk sensitive approximate modified policy
iteration for exponential cost MDPs subject to certain constraints on the approximation ac-
curacy.
Define the Bellman Operator Tf : R+ → R+ as follows:

(
Tfe

h
)
(i) = eαdf (i)

∑

j∈S

Q (j|i, f(i)) eh(j)

Algorithm 2 Approximate Risk Sensitive Modified Policy Iteration

Require: (mi : i ∈ N), h0 such that
∑

i∈S eh0(i) = 1.
1: Set k = 0
2: Compute fk+1 ∈ Π such that:

1 ≤

∥∥∥∥∥
Tfk+1

ehk

Tehk

∥∥∥∥∥
∞

≤ ǫ.

⊲ Approximate Policy Improvement

3: Define ehfk+1
(i)

←
(
T
mk

fk+1
ehk

)
(i) for all i ∈ S . ⊲ Partial Policy Evaluation

4: e
h′
fk+1

(i)
← e

hfk+1
(i)

∑

i e
hfk+1

(i) for all i ∈ S. ⊲Normalization

5: Compute ehk+1 such that,

δ1 ≤

∥∥∥∥∥
e
h′
fk+1

ehk+1

∥∥∥∥∥
∞

≤ δ2.

⊲ Approximate Policy Evaluation

B.1. Convergence Analysis

Consider the following definitions required for the proof of convergence of the algorithm
iterates:

gk(i) =
Tehk(i)

ehk(i)

lk = min
i∈S

gk(i)

uk = max
i∈S

gk(i)

In order to obtain the finite time and asymptotic performance of the iterates obtained as
a consequence of the above algorithm, it is necessary to prove the lemma characterising a
single step of approximate policy improvement below.

Lemma 8 Given the iterates lk, uk obtained from algorithm 2, ∀k it is true that,

lk ≤ eΛ̃
∗

≤ e
Λ̃fk+1 ≤ ukǫ (20)
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Proof Recall the definition of lk,

lk = min
i

Tehk(i)

ehk(i)

≤
Tehk(i)

ehk(i)

≤ min
f∈Π

eαdf (i)
∑

j∈S Q (j|i, f(i)) ehk(j)

ehk(i)

Let f∗ be the policy which yields the lowest risk sensitive average cost eΛ
∗

. Recall that eΛ̃
∗

satisfies the following equation:

eΛ̃
∗

eh
∗

= min
f∈Π

eαdfQf

(
eh

∗
)
.

Then,

lk ≤
eαdf∗(i)

∑
j∈S Q (j|i, f∗(i)) ehk(j)

ehk(i)

Therefore,

lke
hk(i) ≤ eαdf∗(i)

∑

j∈S

Q (j|i, f∗(i)) ehk(j)

. =
(
Q̃f∗

(
ehk

))
(i)

where Q̃(j|i, f∗(i)) = eαdf∗ (i)Q (j|i, f∗(i)). It follows that,

lk

(
Q̃n

f∗ehk

)
≤ Q̃n+1

f∗ ehk .

Similarly, we have

lk

eΛ̃
∗

(
Q̃f∗

eΛ̃
∗

)n

ehk ≤

(
Q̃f∗

eΛ̃
∗

)n+1

ehk

lim
n→∞

lk

eΛ̃
∗

(
Q̃f∗

eΛ̃
∗

)n

ehk ≤ lim
n→∞

(
Q̃f∗

eΛ̃
∗

)n+1

ehk

Since Qf satisfies the conditions of the Perron-Frobenius theorem, by definition, so does

Q̃f for all f ∈ Π. The vector ehk consists of all positive elements and hence, in the limit of
n −→ ∞, due to power iteration we obtain the following:

lim
n→∞

(
Q̃f∗

eΛ̃
∗

)n

ehk = z
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where z is a vector with all non negative entries.
Hence we obtain the following,

lk

eΛ̃
∗
z ≤ z

which yields the following:

lk ≤ eΛ̃
∗

as desired.
Recall that

eΛ̃
∗

eh
∗(i) = min

f∈Π
eαdf (i)

∑

j∈S

Q (j | i, f(i)) eh
∗(j)

≤ e
αdfk+1

(i)
∑

j∈S

Q (j | i, fk+1(i)) e
h∗(j).

Therefore, we have

eh
∗(i) ≤

e
αdfk+1

(i)∑
j∈S Q (j | i, fk+1(i)) e

h∗(j)

eΛ̃
∗

=
e
αdfk+1

(i)
E
[
eh

∗(x1) | x0 = i, fk+1

]

eΛ̃
∗

≤
e
αdfk+1

(i)

eΛ̃
∗

· E

[
e
αdfk+1

(x1)

eΛ̃
∗

· E
[
eh

∗(x2) | x1, fk+1

] ∣∣∣ x0 = i, fk+1

]

Iterating, we get

eh
∗(x0) ≤ E


e

∑m−1
i=0 αdfk+1

(xi)h∗(xm)(
eΛ̃

∗

)m

∣∣∣∣∣ x0




Since h∗(xm) ≤ M < ∞ for all xk ∈ S , we have

m · Λ̃∗ + h∗(x0) ≤ ln
(
Ex0

[
eα

∑m−1
i=0 d(xi,fk+1(xi))

])
+ ln(M),

or equivalently

Λ̃∗ +
h∗(x0)

m
≤

1

m
ln

(
Ex0

[
eα

∑m−1
i=0 d(xi,fk+1(xi))

])
+

M

m
.

Asm → ∞, we obtain

Λ̃∗ ≤ Λ̃fk+1
.

By monotonicity of the exponential function, we conclude as desired that

eΛ̃
∗

≤ e
Λ̃fn+1 .

22



Exponential Cost Risk Sensitive MDPs - Modified Policy Iteration

We now present the last part of the proof.
Recall the definition of uk,

uk = max
i

Tehk(i)

ehk(i)

≥
Tehk(i)

ehk(i)

From the policy improvement step of the algorithm, we obtain,

uk ≥
Tfk+1

ehk(i)

ǫehk(i)

ǫuke
hk(i) ≥ e

αdfk+1
(i)

∑

j∈S

Q (j|i, fk+1(i)) e
hk(j)

Since Q̃(j|i, fk+1(i)) = e
αdfk+1

(i)
Q (j|i, fk+1(i)), it follows that,

ukǫ
(
Q̃n

fk+1
ehk

)
≥ Q̃n+1

fk+1
ehk .

Similarly, we have

ǫuk

eΛ̃
fk+1

(
Q̃fk+1

eΛ̃
fk+1

)n

ehk ≥

(
Q̃fk+1

eΛ̃
fk+1

)n+1

ehk

lim
n→∞

ǫuk

eΛ̃
fk+1

(
Q̃fk+1

eΛ̃
fk+1

)n

ehk ≥ lim
n→∞

(
Q̃fk+1

eΛ̃
fk+1

)n+1

ehk

Since Qf satisfies the conditions of the Perron-Frobenius theorem, by definition, so does

Q̃f for all f ∈ Π. The vector ehk consists of all positive elements and hence, in the limit of
n −→ ∞, due to power iteration we obtain the following:

lim
n→∞

(
Q̃f∗

eΛ̃
fk+1

)n

ehk = b

where b is a vector with all non negative entries.
Hence we obtain the following,

ǫuk

eΛ̃
fk+1

b ≥ b

which yields the following:

ukǫ ≥ eΛ̃
fk+1

as desired. Hence, we obtain,

lk ≤ eΛ̃
∗

≤ e
Λ̃fk+1 ≤ ukǫ
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Given the above lemma, we now present the main theorem of this section that is the
performance bound of policy obtained through repeated execution of algorithm 2.

Theorem 9 Let γ ∈ (0, 1). Let n ∈ N such that mk + mk−1 + · · · + mk−n ≥ R. Suppose the
approximation errors δ1, δ2 and ǫ are such that

(
δ2ǫ

δ1

)n

(1− γ) < 1.

Then, the iterates hk generated by algorithm 2 satisfy:

(
e
Λ̃fk+1 − eΛ̃

∗
)
≤

(
γ′
) k

n

(
u0ǫ− eΛ̃

∗
)
+

σeΛ̃
∗

1− γ′
,

where σ =
((

δ2ǫ
δ1

)n

(1 + (ǫ− 1)γ)− 1
)
and γ′ =

(
δ2ǫ
δ1

)n

(1− γ).

Proof Recall the definition of gk(i):

gk(i) ≤
Tehk(i)

ehk(i)

≤
Tfke

hk(i)

ehk(i)

Since T is a minimizing operator. From algorithm 2, we know that

δ1 ≤

∥∥∥∥∥
e
h′
fk

ehk

∥∥∥∥∥
∞

≤ δ2

Since ehk(i) ≤ e
h′
fk

(i)

δ1
, ∀i ∈ S , we obtain the following:

gk(i) ≤
Tfke

h′
fk (i)

δ1ehk(i)

Since 1
ehk(i) ≤ δ2

e
h′
fk

(i)
, we obtain the following:

gk(i) ≤
δ2

δ1

Tfke
h′
fk (i)

e
h′
fk

(i)

An important property of Tf∀f ∈ Π is its scaling with scaled inputs as shown below. Let
β ∈ R be a constant, then for all i ∈ S,

(
Tf

(
βeh

))
(i) = eαdf (i)

∑

j∈S

Q (j|i, f(i)) βeh(j)

= βeαdf (i)
∑

j∈S

Q (j|i, f(i)) eh(j)

= β
(
Tf

(
eh
))

(i)
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Recall that e
h′
fk

(i)
= e

hfk
(i)

∑

i e
hfk

(i) . Due to themultiplicative scaling property of Tf , substituting

for e
h′
fk

(i)
yields the following,

gk(i) ≤
δ2

δ1

Tfke
hfk (i)

ehfk
(i)

From algorithm 2, we know that ehfk
(i) = T

mk−1

fk
ehk−1(i),

gk(i) ≤
δ2

δ1

T
mk−1+1
fk

ehk−1(i)

T
mk−1

fk
ehk−1(i)

=
δ2

δ1

T
mk−1

fk

(
Tfke

hk−1
)
(i)

T
mk−1

fk
ehk−1(i)

Since Tfke
hk−1 ≤ ǫTehk−1 ,

gk(i) ≤
δ2ǫ

δ1

T
mk−1

fk

(
Tehk−1

)
(i)

T
mk−1

fk
ehk−1(i)

≤
δ2ǫ

δ1

T
mk−1

fk

(
Tfk−1

ehk−1
)
(i)

T
mk−1

fk
ehk−1(i)

≤
δ2ǫ

δ21

T
mk−1

fk

(
Tfk−1

e
hfk−1

)
(i)

T
mk−1

fk
ehk−1(i)

=
δ22ǫ

δ21

T
mk−1

fk

(
Tfk−1

e
h′
fk−1

)
(i)

T
mk−1

fk
e
h′
fk−1 (i)

≤
δ22ǫ

δ21

T
mk−1

fk

(
Tfk−1

e
hfk−1

)
(i)

T
mk−1

fk
e
hfk−1 (i)

=
δ22ǫ

δ21

T
mk−1

fk

(
T
mk−2+1
fk−1

ehk−2

)
(i)

T
mk−1

fk
T
mk−2

fk−1
ehk−2(i)

=
δ22ǫ

δ21

T
mk−1

fk
T
mk−2

fk−1

(
Tfk−1

ehk−2
)
(i)

T
mk−1

fk
T
mk−2

fk−1
ehk−2(i)

=

(
δ2ǫ

δ1

)2 T
mk−1

fk
T
mk−2

fk−1

(
Tehk−2

)
(i)

T
mk−1

fk
T
mk−2

fk−1
ehk−2(i)

Iterating similarly, we obtain,

gk(i) ≤

(
δ2ǫ

δ1

)n T
mk−1

fk
T
mk−2

fk−1
. . .T

mk−n

fk−n+1

(
Tehk−n

)
(i)

T
mk−1

fk
T
mk−2

fk−1
. . .T

mk−n

fk−n+1
ehk−n(i)
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Define the following:

Hn,k = T
mk−1

fk
T
mk−2

fk−1
. . .T

mk−n

fk−n+1

ewn,k(i) = Tehk−n(i)

evn,k(i) = ehk−n(i)

gk(i) can hence be expressed as:

gk(i) ≤

(
δ2ǫ

δ1

)n Hn,ke
wn,k(i)

Hn,ke
vn,k (i)

=

(
δ2ǫ

δ1

)n
∑

j∈S Hn,k(j|i)e
wn,k (j)

∑
j∈S Hn,k(j|i)e

vn,k (j)

whereHn,k(j|i) is the element corresponding to the ith row and jth column.

gk(i) ≤

(
δ2ǫ

δ1

)n∑

j∈S

(
Hn,k(j|i)e

vn,k(j)

∑
y∈S Hn,k(y|i)e

vn,k(y)

ewn,k(j)

evn,k(j)

)

Define a probability measure qn,k as follows:

qn,k(j|i) =
Hn,k(j|i)e

vn,k(j)

∑
y∈S Hn,k(y|i)e

vn,k(y)

Let Hn,k := Q̃
mk−1

fk
Q̃

mk−2

fk−1
Q̃

mk−3

fk−2
· · · Q̃

mk−n

fk−n+1
. From Lemma 3, we know that Q induces an

irreducible Markov chain for any sequence of policies, i.e.:

∃ R < ∞ such that ∀ π1, · · · , πR ∈ Π: (Qπ1Qπ2 · · ·QπR
) (j|i) > 0 ∀i, j.

The number of time steps n is determined such that mk−1 +mk−2 + · · · +mk−n ≥ R. This
implies thatHn,k(j | i) > 0 for all i, j.
Note from Lemma 10, we obtain that evn,k(i) ≥ c1 ≥ 0,∀n, k, where c1 is a positive constant.
Hence the minimum value of the transition measure qn,k is nonzero and defined as below:

γ := min
i,j

q(j|i)

Thus gk(i) can be bounded as below:

gk(i) ≤

(
δ2ǫ

δ1

)n
(
γmin

j

ewn,k(j)

evn,k(j)
+ (1− γ)max

j

ewn,k(j)

evn,k(j)

)

=

(
δ2ǫ

δ1

)n(
γmin

j

Tehk−n(j)

ehk−n(j)
+ (1− γ)max

j

Tehk−n(j)

ehk−n(j)

)

≤

(
δ2ǫ

δ1

)n

(γlk−n + (1− γ)uk−n)
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From Lemma 8,

gk(i) ≤

(
δ2ǫ

δ1

)n (
γeΛ̃

∗

+ (1− γ)uk−n

)

Since the above relation is true for all i ∈ S ,

uk ≤

(
δ2ǫ

δ1

)n (
γeΛ̃

∗

+ (1− γ)uk−n

)

ukǫ ≤

(
δ2ǫ

δ1

)n (
γǫeΛ̃

∗

+ (1− γ)uk−nǫ
)

(
ukǫ− eΛ̃

∗
)
≤

(
δ2ǫ

δ1

)n (
γǫeΛ̃

∗

+ (1− γ)
(
uk−nǫ− eΛ̃

∗
))

+

(
δ2ǫ

δ1

)n

(1− γ)eΛ̃
∗

− eΛ̃
∗

(
ukǫ− eΛ̃

∗
)
≤

(
δ2ǫ

δ1

)n

(1− γ)
(
uk−nǫ− eΛ̃

∗
)
+ eΛ̃

∗

((
δ2ǫ

δ1

)n

(1 + (ǫ− 1)γ) − 1

)

Define the following:

σ =

((
δ2ǫ

δ1

)n

(1 + (ǫ− 1)γ)− 1

)

γ′ =

(
δ2ǫ

δ1

)n

(1− γ)

Important Condition: For γ′ to be a valid source of contraction, γ′ should be less than 1.

Therefore the mi have to be chosen such that,
(
δ2ǫ
δ1

)n

is small enough to ensure that γ′ is a

contraction. Note that γ ≤ 1
|S| . Provided that γ′ is less than 1, we have the following:

(
ukǫ− eΛ̃

∗
)
≤ γ′

(
uk−nǫ− eΛ̃

∗
)
+ σeΛ̃

∗

≤ γ′
(
γ′

(
uk−nǫ− eΛ̃

∗
)
+ σeΛ̃

∗
)
+ σeΛ̃

∗

Note that from Lemma 8, we know that ukǫ ≥ eΛ̃
∗

,∀k. Hence it is possible to iterate the
above equation to obtain,

(
ukǫ− eΛ̃

∗
)
≤

(
γ′
) k

n

(
u0ǫ− eΛ̃

∗
)
+

σeΛ̃
∗

1− γ′

Since from Lemma 8, we know that eΛ̃fk+1 ≤ ukǫ, we obtain the following,

(
e
Λ̃fk+1 − eΛ̃

∗
)
≤

(
γ′
) k

n

(
u0ǫ− eΛ̃

∗
)
+

σeΛ̃
∗

1− γ′
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B.2. Some Remarks on theorem 9

• Note that as the approximation becomes perfect, that is δ1 = 1, δ2 = 1 and ǫ = 1,

the risk sensitive average cost eΛ̃fk+1 obtained from the algorithm converges exactly
to the optimal risk sensitive average cost. In other words σ will be 0.

• Note the condition on γ′ for it to constitute a valid source of contraction is a conse-
quence of the multiplicative Bellman equation associated with the risk sensitive av-
erage cost. In the case of risk neutral average cost, such a condition disappears and
the approximation results hold more generally for all magnitudes of δ1, δ2 and ǫ. For
more details refer Murthy et al. (2023).

• Since the condition on γ′ requires more accurate policy evaluations and policy im-
provements as n increases, a possible way to circumvent this issue is by ensuring that
mi ≥ R for all iterations of the algorithm. This would ensure n to be equal to one. In
other words, better the policy evaluation, lesser the approximation loss.

Lemma 10 Let maxk mk < C1, where mk corresponds to the number of fixed point iterations
performed during partial policy evaluation during the kth execution of the algorithm 2. Then, there
exists τ ′ such that

ehk(i) ≥ τ ′ > 0.

Proof Recall from the algorithm,

e
h′
fk+1

(i)
=

e
hfk+1

(i)

∑
i∈S e

hfk+1
(i)

=⇒
∑

i∈S

e
h′
fk+1

(i)
= 1

Then,

e
hfk+1

(i)
= T

mk

fk+1
ehk(i)

≥
T
mk

fk+1
e
h′
fk (i)

δ2

Let d = minf∈Π df , then
(
Tfk+1

e
h′
fk (i)

)
= e

αdfk+1
(i)

∑

j∈S

Q(j|i, fk+1(i))e
h′
fk

(j)

≥ eαd
(
Qfk+1

e
h′
fk

)
(i)

Repeating the above we obtain,

(
T
mk

fk+1
e
h′
fk

)
(i) ≥

emkαd
(
Qfk+1

e
h′
fk

)
(i)

δ2
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Substituting for h′fk ,

(
T
mk

fk+1
e
h′
fk

)
(i) ≥

emkαd
(
Qfk+1

ehfk

)
(i)

δ2
∑

j∈S ehfk
(j)

e
hfk+1

(i) ≥
emkαd

(
Qfk+1

ehfk

)
(i)

δ2
∑

j∈S ehfk
(j)

Iterating the above equation we obtain,

e
hfk+1

(i)
≥

eαd
∑k

p=0 mk−p

(
Q

mk

fk+1
Q

mk−1

fk
. . .Qm0

f1
eh0

)
(i)

(δ2)
k+1∑

j∈S ehfk
(j)∑

j∈S e
hfk−1

(j)
. . .

∑
j∈S ehf1

(j)

From Algorithm 2, for a sufficiently large k, we have
∑k−1

l=0 ml > R.
Defining Hk = Q

mk

fk+1
Q

mk−1

fk
. . .Qm0

f1
, Lemma 3 yields λ = mini,j Hk(i | j) > 0, we continue

the above sequence of inequalities:

e
hfk+1

(i)
≥

eαd
∑k

p=0 mk−pλ
∑

j∈S eh0(j)

(δ2)
k+1∑

j∈S ehfk
(j)∑

j∈S e
hfk−1

(j)
. . .

∑
j∈S ehf1

(j)

Since we know that
∑

j∈S eh0(j) = 1, we obtain the following relation,

e
hfk+1

(i)
≥

eαd
∑k

p=0 mk−pλ

(δ2)
k+1∑

j∈S ehfk
(j)∑

j∈S e
hfk−1

(j)
. . .

∑
j∈S ehf1

(j)
(21)

Similarly,

e
hfk+1

(i)
≤

T
mk

fk+1
e
h′
fk (i)

δ1

Let d = maxf∈Π df , then

(
Tfk+1

e
h′
fk (i)

)
= e

αdfk+1
(i)

∑

j∈S

Q(j|i, fk+1(i))e
h′
fk

(j)

≤ eαd
(
Qfk+1

e
h′
fk

)
(i)

Repeating the above we obtain,

(
T
mk

fk+1
e
h′
fk

)
(i) ≤

emkαd
(
Qfk+1

e
h′
fk

)
(i)

δ1
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Substituting for h′fk ,

(
T
mk

fk+1
e
h′
fk

)
(i) ≤

emkαd
(
Qfk+1

ehfk

)
(i)

δ1
∑

j∈S ehfk
(j)

e
hfk+1

(i) ≤
emkαd

(
Qfk+1

ehfk

)
(i)

δ1
∑

j∈S ehfk
(j)

Iterating the above equation we obtain,

e
hfk+1

(i)
≤

eαd
∑k

p=0 mk−p

(
Q

mk

fk+1
Q

mk−1

fk
. . .Qm0

f1
eh0

)
(i)

(δ1)
k+1∑

j∈S ehfk
(j)∑

j∈S e
hfk−1

(j)
. . .

∑
j∈S ehf1

(j)

∑

i∈S

e
hfk+1

(i) ≤
|S|eαd

∑k
p=0 mk−p

(δ1)
k+1∑

j∈S ehfk
(j)∑

j∈S e
hfk−1

(j)
. . .

∑
j∈S ehf1

(j)

We thus obtain,

1
∑

i∈S e
hfk+1

(i)
≥

(δ1)
k+1∑

j∈S ehfk
(j)∑

j∈S e
hfk−1

(j)
. . .

∑
j∈S ehf1

(j)

|S|eαd
∑k

p=0 mk−p

(22)

Thus from appendix B.2 and appendix B.2, we obtain the following,

e
hfk+1

(i)

∑
i∈S e

hfk+1
(i)

≥

(
δ1

δ2

)k+1
eα(d−d)

∑k
p=0 mk−iλ

|S|

Let τ = e
α(d−d)

∑k
p=0 mk−iλ
|S| , then we have,

e
h′
fk+1

(i)
≥ τ

From the algorithm 2, we then obtain the following,

ehk+1(i) ≥
e
h′
fk+1 (i)

δ2
≥

τ

δ2

Defining τ
δ2

= τ ′, we obtain the statement of the lemma,

ehk+1(i) ≥ τ ′ > 0
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