
Learning While Scheduling in Multi-Server Systems With Unknown Statistics:
MaxWeight with Discounted UCB

Zixian Yang R. Srikant Lei Ying
University of Michigan University of Illinois at Urbana-Champaign University of Michigan

Abstract

Multi-server queueing systems are widely used
models for job scheduling in machine learning,
wireless networks, and crowdsourcing. This pa-
per considers a multi-server system with multiple
servers and multiple types of jobs, where different
job types require different amounts of processing
time at different servers. The goal is to sched-
ule jobs on servers without knowing the statistics
of the processing times. To fully utilize the pro-
cessing power of the servers, it is known that one
has to at least learn the service rates of differ-
ent job types on different servers. Prior works
on this topic decouple the learning and schedul-
ing phases which leads to either excessive explo-
ration or extremely large job delays. We propose
a new algorithm, which combines the MaxWeight
scheduling policy with discounted upper confi-
dence bound (UCB), to simultaneously learn the
statistics and schedule jobs to servers. We obtain
performance bounds for our algorithm that hold
for both stationary and nonstationary service rates.
Simulations confirm that the delay performance
of our algorithm is several orders of magnitude
better than previously proposed algorithms. Our
algorithm also has the added benefit that it can
handle non-stationarity in the service processes.

1 INTRODUCTION

A multi-server system is a system with multiple servers
for serving jobs of different types as shown in Figure 1.
An incoming job can be served by one of the servers and
the service time depends on both the server and the job
type. Multi-server systems have been used to model many
real-world applications in communication and computer

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

systems such as load balancing in a cloud-computing clus-
ter, packet scheduling in multi-channel wireless networks,
crowdsourcing, etc. In cloud-computing, a job may be a
machine learning task and a server may be a virtual machine
or a container, so the processing time of the machine learn-
ing task depends on the virtual machine’s configuration. In
crowdsourcing, jobs could be tagging of images and servers
are workers, so the amount of the time a worker takes to tag
the images depends on her familiarity of the images. In both
cases, the scheduler may not know the statistics of process
times of a server before a sufficient number of jobs of the
same type are processed at the server.

When the mean server times are known, the best known
algorithm for scheduling in multi-server systems is the cel-
ebrated MaxWeight algorithm proposed by Tassiulas and
Ephremides (1993). Let Qiptq denote the number of type-i
jobs waiting to be served and 1{µi,j denote the mean service
time of serving a type-i job at server j. When server j is
available, MaxWeight schedules a type i˚j job to server j
such that

i˚j P argmaxQiptqµi,j .

A set of arrival rates is said to be supportable if there exists
a scheduling algorithm such that, under this set of arrival
rates, the queue lengths are bounded in an appropriate sense.
The MaxWeight algorithm is provably throughput optimal
(Tassiulas and Ephremides, 1993), i.e., it has the largest
set of supportable arrival rates, also called the capacity re-
gion. Besides throughput optimality, MaxWeight has also
near-optimal delay performance in various settings (Stolyar,
2004; Andrews et al., 2007; Shah and Wischik, 2007; Kang
and Williams, 2013; Eryilmaz and Srikant, 2012; Maguluri
and Srikant, 2016).

per-job-type queues servers

Figure 1: A Multi-Server System With Three Servers and
Three Types of Jobs.

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

A key assumption behind the MaxWeight algorithm is that
the scheduler knows the mean service rates µi,j for all i
and j. This assumption is becoming increasingly problem-
atic in emerging applications such as cloud computing and
crowdsourcing due to either high variability of jobs (such as
complex machine learning tasks) or servers (such as human
experts in crowdsourcing). In these emerging applications,
the mean service rates need to be learned while making
scheduling decisions. Therefore, learning and scheduling
are coupled and jointly determine the performance of the
system.

A straightforward idea to learn the mean service rates is
using the sample average, i.e., replacing µi,j with 1{s̄i,j
where s̄i,j is the empirical mean of the service time of type-
i jobs at server j, based on the jobs completed at server j
so far. However, because of the coupling between learning
and scheduling, this approach can be unstable. We have
not seen an explicit counter-example in the published litera-
ture which shows such instability can occur, so we provide
one in Appendix A. From the example, we observe that
the problem of using empirical mean is that the initial bad
samples led to a poor estimation of µi,j , which led to poor
scheduling decisions. They stop the scheduler from getting
new samples from other queue-server pairs and therefore
the system is “locked in” in a state with poor estimation and
wrong scheduling decisions, which led to instability.

To overcome this problem, as in multi-armed bandit prob-
lems, we should encourage exploration: since the service
rate of a server for a particular job can be estimated only
by repeatedly scheduling jobs on all jobs, we should occa-
sionally schedule jobs even on servers whose service rates
are estimated to be small to overcome poor estimates due to
randomness. For example, as in online learning, we can add
an exploration bonus bi,j , e.g., the upper confidence bound
(UCB), to the empirical mean µ̂i,j . Indeed, there have been
a sequence of recent studies that study job scheduling in
multi-server systems as an online learning problem (multi-
armed bandits or linear bandits). We now review different
categories of prior work along these lines and place our
work in the context of the prior work:

Queue-blind Algorithms: Queue blind algorithms do not
take queue lengths into consideration at all when making
scheduling decisions. In one line of work, the performance
metric is the total reward received from serving jobs (Li
et al., 2019; Liu et al., 2021); however, for such algorithms,
the queue lengths can potentially blow up to infinity asymp-
totically, which means that finite-time bounds for queue
lengths can be excessively large and thus, such algorithms
cannot be used in practice. Another line of work in the
context of queue-blind scheduling algorithms addresses sta-
bility by assuming that the arrival rates of each type of job
is known. They then use well-known scheduling algorithms
such as cµ-rule (Krishnasamy et al., 2018b) or weighted
random routing (Choudhury et al., 2021) or utility-based

joint learning and scheduling (Hsu et al., 2022). The draw-
back of such algorithms is that queue lengths can still be
excessive large even if the queue lengths do not blow up
to infinity asymptotically. The reason is the knowledge of
queue lengths can encourage a phenomenon called resource
pooling which leads to greater efficiency. While we will not
spend too much space explaining the concept of resource
pooling, we hope that the following example clarifies the
situation. Suppose you visit a grocery store and are not
allowed to look at the queue lengths at each checkout lane
before joining the checkout line. Then, some checkout lines
can be excessively long, while others may even be totally
empty. On the other hand, in practice, we look at the length
of each checkout line and join the shortest one, which results
in much better delay performance.

Queue-Aware Algorithms: In early work on the prob-
lem (Neely et al., 2012; Krishnasamy et al., 2018a, 2021;
Yekkehkhany and Nagi, 2020), a fraction of time is allo-
cated to probing the servers and the rest of the time is used
to exploit this information. In the context of our problem,
we would end up exploring all (job type, server) pairs the
same number of times which is wasteful. On the other
hand, exploration and exploitation are decoupled in such a
forced exploration, which makes it easier to derive analytical
derivation of performance bounds . If one uses optimistic
exploration such as UCB or related algorithms, the queue
length information and the UCB-style estimation are cou-
pled, which makes it difficult to analyze the system. Two
approaches to decoupling UCB-style estimators have been
studied prior to our paper: (a) In the work by Stahlbuhk
et al. (2019), the algorithm proceeds in frames (a frame is a
collection of contiguous time slots), where the queue length
information is frozen at the beginning of each frame and
UCB is used to estimate the service rates of the servers;
additionally, UCB is reset at the end of each frame, and
(b) In the work by Freund et al. (2022), a schedule is fixed
throughout each phase and thus, UCB is only executed for
the jobs which are scheduled in that frame. The correlation
between queues and UCB is more complicated here than
in the algorithm of Stahlbuhk et al. (2019), which requires
more sophisticated analysis to conclude stability. Our paper
does not explicitly decouple exploration and exploitation.
In fact, we continuously update the UCB bonuses and per-
form scheduling at each time instant but we use a version of
UCB tailored to nonstationary environments. This allows
our algorithm to quickly adapt to changes even in stationary
settings, in addition to having the advantage of being able to
handle nonstationary environments. On the other hand, the
fact that the schedule and UCB are updated at every time
step means that we require a new analysis of stability. In par-
ticular, unlike prior work, our approach requires the use of
concentration results for self-normalized means from Gariv-
ier and Moulines (2008). In addition to differences in the
algorithms and analysis, we also note other key differences
between our paper and theirs (Stahlbuhk et al., 2019; Freund

Zixian Yang, R. Srikant, Lei Ying

et al., 2022): Stahlbuhk et al. (2019) considers scheduling
in a general conflict graph, which includes our multi-server
model as a special case. Freund et al. (2022) considers a
general multi-agent setting that includes the centralized case
as a special case. Both Stahlbuhk et al. (2019) and Freund
et al. (2022) assume the system is stationary but Freund et al.
(2022) allows dynamic arrivals and departures of queues
while our paper studies a nonstationary, centralized setting
that includes the stationary setting with a fixed set of queues
as a special case.

The main contributions of this paper are summarized below.

• Theoretical Results: We introduce MaxWeight with dis-
counted UCB in this paper. Discounted UCB was first
proposed for nonstationary bandit problems (Kocsis and
Szepesvári, 2006). For our problem, with a revised dis-
counted UCB, the values of UCB bonuses depend on
limited past history, instead of the entire history, which al-
lows us to handle the coupling between the queue lengths
and UCB bonuses. We establish the queue stability of
MaxWeight with discounted UCB for nonstationary en-
vironments where the arrival rates and service rates may
change over time. Given that the variation of service
rates during the service time of a single job is bounded
by d pd ď 1q, we show that MaxWeight with discounted
UCB can support any arrival rate vector λ such that λ`δ1
is in the capacity region for some δ “ Θ̃pdq, and the
asymptotic time average of the expected queue length is
bounded by Õp1{δ3maxq, where δmax is the largest δ such
that λ` δ1 is in the capacity region. This queue length
bound holds for both stationary and nonstationary settings
and matches the bound of the stationary setting in (Freund
et al., 2022) in terms of the traffic slackness δmax.

• Methodology: Our analysis is based on Lyapunov drift
analysis. However, there are several difficulties due to
joint scheduling and learning. For example, the estimated
mean service time is the discounted sum of previous ser-
vice times divided by the sum of the discount coefficients
and the summation is taken over the time slots in which
there is job completion, which themselves are random
variables depending on the scheduling and learning algo-
rithm. To deal with this difficulty, we first transform the
summation into a summation over the time slots in which
a job starts, and then use a Hoeffding-type inequality for
self-normalized means with a random number of sum-
mands (Garivier and Moulines, 2008, Theorem 18)(Gariv-
ier and Moulines, 2011) to obtain a concentration bound.
Another difficulty is in bounding the discounted num-
ber of times server j serves type-i jobs. Our method is
to divide the interval into sub-intervals of carefully cho-
sen lengths so that the discount coefficients can be lower
bounded by a constant in each sub-interval. We believe
these ideas may be useful for analyzing other joint learn-
ing and scheduling algorithms as well.

• Numerical Studies: We compare the proposed algorithm
with previously proposed algorithms in the literature. The
results show that our algorithms achieves delays that are
several orders of magnitude smaller than previously pro-
posed algorithms. A noteworthy observation is that, the
discounted UCB algorithm which was originally designed
for nonstationary environments, allows us to design a
joint learning/scheduling algorithm which outperforms
the state-of-the art even in stationary environments, as
shown in Fig. 2. We believe the main reason is that we do
not decouple learning and scheduling explicitly and the re-
sulting continuous updates to the learning and scheduling
decisions are essential to achieve good delay performance.

0 20k 40k 60k 80k 100k
Time

0

1k

2k

3k

4k

5k

6k

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB

Figure 2: Comparison Among MaxWeight With Discounted
UCB (Proposed), Frame-Based MaxWeight (Stahlbuhk
et al., 2019), and DAM.UCB (Freund et al., 2022).

2 MODEL

We consider a multi-server system with J servers, indexed
with j P t1, 2, . . . , Ju, and I types of jobs, indexed with
i P t1, 2, . . . , Iu. The system maintains a separate queue
for each job type, as shown in Figure 1.

We consider a discrete-time system. The number of jobs that
arrive at queue i is denoted by pAiptqqtě0 where t denotes
the time slot. Assume that pAiptqqtě0 are independent with
unknown mean ErAiptqs “ λiptq and are bounded, i.e.,
Aiptq ď UA for all i and t. Let Aptq :“ pAiptqq

I
i“1 and

λptq :“ pλiptqq
I
i“1.

We say a server is available in time slot t if the server is
not serving any job at the beginning of time slot t; other-
wise, we say the server is busy. At the beginning of each
time slot, each available server picks a job from one of
the queues. Note that each server can serve at most one
job at a time and can start to serve another job only after
finishing the current job, i.e., the job scheduling is non-
preemptive. When a job from queue i (job of type i) is
picked by server j in time slot t, it requires Si,jptq time
slots to finish serving the job. For any i, j, pSi,jptqqtě0

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

are independent random variables with unknown mean
ErSi,jptqs “ 1

µi,jptq
and are bounded, i.e., Si,jptq ď US

for all i, j and t. Aiptq and Si,jptq for different i, j are
also independent. Let Sptq :“ pSi,jptqqi“1,...,I,j“1,...,J and
µptq :“ pµi,jptqqi“1,...,I,j“1,...,J . Note that we allow λptq
and µptq to be time-varying to model nonstationary envi-
ronments, and the value of Si,jptq is generated at time slot t
and will not change after that.

If server j is available and picks queue i in time slot t or
if server j is busy serving queue i in time slot t, we say
server j is scheduled to queue i in time slot t. Let Ijptq
denote the queue to which server j is scheduled in time slot
t. Define a waiting queue Q̃iptq for each job type i. A job
of type i joins the waiting queue Q̃iptq when it arrives, and
leaves the waiting queue Q̃iptq when it is picked by a server
under the algorithm. If an available server j picks queue i
in time slot t and there is no job in the waiting queue i, i.e.,
Q̃iptq ` Aiptq “ 0, we say server j is idling in time slot t
and the server j will be available in the next time slot. Let
ηjptq be an indicator function such that ηjptq “ 1 if server
j is not idling in time slot t and ηjptq “ 0 otherwise. Let
1i,jptq be another indicator function such that 1i,jptq “ 1 if
Ijptq “ i and server j finishes serving the job of type i at
the end of time slot t, or if Ijptq “ i and server j is idling.

Let Qiptq denote the actual queue length of jobs at queue i
at the beginning of time slot t so Qiptq is the total number
of type-i jobs in the system. Thus, Q̃iptq is Qiptq minus the
number of type i jobs that are in service. A job leaves the
actual queue only when it is completed. Then we have the
following queue dynamics:

Qipt` 1q “ Qiptq `Aiptq ´
ÿ

j

1i,jptqηjptq. (1)

Our objective is to find an efficient learning and scheduling
algorithm to stabilize Qiptq for all i, i.e., preventing the
queue lengths from going to infinity. In each time slot, the
scheduling algorithm decides which queue to serve for each
available server.

3 ALGORITHM — MAXWEIGHT WITH
DISCOUNTED-UCB

We propose MaxWeight with Discounted-UCB algorithm,
which combines the MaxWeight scheduling algorithm (Tas-
siulas and Ephremides, 1992) with discounted UCB (Kocsis
and Szepesvári, 2006) for learning the service statistics, as
shown in Algorithm 1.

In Algorithm 1, we first fix the discount factor γ beforehand
and initialize the estimates N̂i,jp0q, ϕ̂i,jp0q, and the counter
Mi,jp0q, as shown in Line 1. In the algorithm, N̂i,jptq is the
discounted number of type-i jobs served by server j by time
slot t and ϕ̂i,jptq is the discounted number of time slots used
by server j for serving type-i jobs by time slot t. If server j

Algorithm 1: MaxWeight With Discounted-UCB

1: Initialize: Fix γ P p0, 1q; N̂i,jp0q “ 0, ϕ̂i,jp0q “ 0,
Mi,jp0q “ 0 for all i, j.

2: Define gpγq such that γ “ 1´ 8 log gpγq
gpγq .

3: If t “ 0, schedule each server to the queues uniformly
at random.

4: for t “ 1 to infinity do
5: for i “ 1, . . . , I and j “ 1, . . . , J do
6: if Ijpt´ 1q “ i then
7: Mi,jptq “ Mi,jpt´ 1q ` 1

// the number of time slots already served
8: end if
9: Update N̂i,jptq and ϕ̂i,jptq according to (2).

10: µ̂i,jptq “
N̂i,jptq

ϕ̂i,jptq
// estimate of the service rate

11: bi,jptq “ min
!

c1US

b

log gpγq

N̂i,jptq
, 1
)

// UCB bonus term, where c1 ą 0 is a constant
12: if 1i,jpt´ 1q “ 1 then
13: Mi,jptq “ 0 // reset the counter if the server

becomes available.
14: end if
15: end for
16: for j “ 1, . . . , J do
17: if server j is available then
18: î˚j ptq “ argmaxi Qiptq pµ̂i,jptq ` bi,jptqq

// server j picks î˚j ptq
19: end if
20: end for
21: end for

is currently serving a type-i job, Mi,jptq is the service time
the job has received by time slot t (not including time slot
t); otherwise, Mi,jptq “ 0. Next, we define gpγq in Line 2.
Note that gpγq can be easily computed using numerical
methods. For intuition, gpγq « 8

1´γ and larger γ implies a
larger gpγq. At time t “ 0, we schedule each server to the
queues uniformly at random. If t ě 1, we first update our
estimates of service rates and the UCB bonuses and then
do the scheduling using the MaxWeight algorithm with the
true service rates replaced by the UCB. Specifically, at the
beginning of each time slot t, we update N̂i,jptq and ϕ̂i,jptq
as follows:

N̂i,jptq “γN̂i,jpt´ 1q ` γMi,jpt´1q1i,jpt´ 1qηjpt´ 1q

ϕ̂i,jptq “γϕ̂i,jpt´ 1q

` γMi,jpt´1q1i,jpt´ 1qηjpt´ 1qMi,jptq. (2)

That is, if the job has not yet finished or the server is idling,
we simply multiply N̂i,jpt´1q and ϕ̂i,jpt´1q by a discount
factor γ; if the server is not idling and the job has finished,
we update N̂i,jpt´ 1q by multiplying γ and adding a num-
ber γMi,jpt´1q and update ϕ̂i,jpt´ 1q by multiplying γ and
adding a discounted service time. The discount γMi,jpt´1q

Zixian Yang, R. Srikant, Lei Ying

actually means that the service time is discounted starting
from the time when the job starts. This update is slightly dif-
ferent from the discounted UCB in (Kocsis and Szepesvári,
2006) and is needed for a technical reason. Then we ob-
tain µ̂i,jptq, an estimate of the service rate, as shown in
Line 10, where we use the convention that 0{0 “ 0. For
each available server, we pick the queue with the largest
product of queue length and UCB of the service rate, as
shown in Line 18, where î˚j ptq denotes the queue that server
j picks and ties are broken arbitrary.

In a stationary environment, the use of discounted average
instead of simple average reduces the influence of previous
service times on the current estimate, and weakens the de-
pendence between queue lengths and UCB bonuses. In a
nonstationary environment, it ensures that the estimation
process can adapt to the nonstationary service rate since the
discount factor reduces the influence of previous service
times on the current estimate. UCB helps with the explo-
ration of the service times for different servers and job types.
The MaxWeight algorithm is known to be throughput opti-
mal (Srikant and Ying, 2014). These ideas are combined in
the proposed algorithm.

4 MAIN RESULT

In this section, we will present our main result. We consider
Algorithm 1 with a sufficiently large γ such that gpγq ě

maxte5, 8USu. We make the following assumption on the
time-varying mean service times and rates:

Assumption 1. µi,jptq satisfies the following two condi-
tions:

(1) For any i, j and any ta, tb such that ta ‰ tb and |ta ´
tb| ď 2gpγq,∣∣∣∣ 1

µi,jptaq
´

1

µi,jptbq

∣∣∣∣ ď 1

gpγq

ˆ

1

γ

˙|ta´tb|´1

;

(2) There exists an absolute constant p ą 0 such that for
any i, j and any ta, tb such that |ta ´ tb| ď US,

|µi,jptaq ´ µi,jptbq| ď
1

rgpγqs
p .

Remark 1. Note that in the first condition in Assumption 1,
1
γ ą 1, so the allowable change of the mean service time
increases exponentially with respect to the time difference.
Therefore, the second condition in Assumption 1 will be
dominating for large |ta ´ tb|. Recall that gpγq « 8

1´γ ,
so the bound in condition (2) is roughly equivalent to that
the maximum change that can occur when serving a job is
p1´γqp

8p for some p ą 0 (note that US is an upper bound
on the service times). This bound increases as γ decreases
because the algorithm can quickly adapt by aggressively
discounting the past samples.

For the nonstationary system considered in this paper, we
introduce the following definition CpW q for the capacity
region:

CpW q “

"

pRptqqtě0 : there exists pαptqqtě0 such that
ÿ

i

αi,jptq ď 1 for all j, t and for any i, t,

there exists wptq such that 1 ď wptq ď W and
t`wptq´1

ÿ

τ“t

Ripτq ď

t`wptq´1
ÿ

τ“t

ÿ

j

αi,jpτqµi,jpτq

*

,

(3)

where αptq :“ pαi,jptqqi“1,...,I,j“1,...,J and W ě 1 is a
constant. Rptq can be interpreted as allocatable service
rates for time t. This capacity region means that for some
pRptqqtě0 in this region, for any time t and queue i, there
exists a time window such that the sum of Riptq over this
time window is less than the sum of appropriately allo-
cated service rates. If pαptqqtě0 is given, then a random-
ized scheduling algorithm using pαptqqtě0 guarantees that
the service rate received by queue i in a time window is
at least as large as the sum of Riptq in this time window.
Note that CpW1q Ď CpW2q if W1 ď W2. If W “ 1 and
Rptq and µptq are time-invariant, then this definition re-
duces to the capacity region definition for the stationary
setting (Srikant and Ying, 2014). Let λ :“ pλptqqtě0. We
assume that the arrival rates satisfy that λ ` δ1 P CpW q,
where 1 denotes an all-ones vector and we assume that
W ď

gpγq
2 . We present Theorem 1 which shows that the

MaxWeight with Discounted-UCB algorithm can stabilize
the queues with such arrival rates. Another interpretation is
that our algorithm can stabilize any arrival rate that satisfies
λiptq ` δ ď Riptq for all i, t for some pRptqqtě0 in the
capacity region.

Theorem 1. Consider Algorithm 1 with c1 “ 4 and
gpγq ě maxte5, 8USu. Suppose Qip0q “ 0 for all i. Under
Assumption 1, for arrival rates that satisfy λ` δ1 P CpW q,
where W ď

gpγq
2 and

δ ě
804IJU2

S log gpγq

rgpγqsmint 1
2 ,pu

, (4)

we have

1

t

t
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

ď
IUAg

2pγq

t

`

ˆ

1`
W

t

˙ˆ

1642I2J2U2
SU

2
Agpγq

δ
`

IU2
Ag

2pγq

δrt` 1´ gpγqs

˙

for any t ě gpγq, and thus

lim sup
tÑ8

1

t

t
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

ď
1642I2J2U2

SU
2
Agpγq

δ
.

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

We will discuss Theorem 1 in the stationary setting and the
nonstationary setting in the following paragraphs. Note that
the value of δ, the traffic slackness, measures the throughput
loss, under MaxWeight with discounted UCB for given
discount factor γ.

Stationary Setting For the stationary setting, Theorem 1
implies that if gpγq is sufficiently large, i.e., γ is sufficiently
close to 1, then δ can be arbitrarily close to zero and hence
the proposed algorithm can stabilize the queues with arrivals
inside the capacity region, which means the throughput loss
is close to zero. Given an arrival rate vector λ and letting
δmax denote the largest δ such that λ` δ1 P CpW q, Theo-
rem 1 implies that the asymptotic time average of expected
queue length is bounded by Õp1{δ3maxq, which is obtained
by setting gpγq “ Θ̃p1{δ2maxq that satisfies the condition
(4), where p can be set to an arbitrary large value because
Assumption 1 always holds in the stationary setting.

Nonstationary Setting For the nonstationary setting, As-
sumption 1 comes into play because we need to consider
the variation of service rates. Suppose that the variation
of service rates within the service time of a single job is
bounded by d. We want to obtain the smallest δ in Theo-
rem 1, i.e., minimizing the throughput loss, while satisfying
Assumption 1. We only consider the second condition in As-
sumption 1 since it is dominating as discussed in Remark 1.
We consider the following two cases:

(A) For any p ě 1{2, we choose gpγq “ 1{d1{p.
We can see that Assumption 1 (2) is satisfied
with this p. Then By (4), δ can be as small
as δ “ 804IJU2

S log gpγq{
a

gpγq. Note that
804IJU2

S log gpγq{
a

gpγq is decreasing in gpγq and
1{d1{p is decreasing in p. Hence, we will choose
p “ 1{2 in order to obtain the smallest δ. There-
fore, by setting gpγq “ 1{d2, δ can be as small as
δ “ 804IJU2

Sd logp1{d
2q in this case.

(B) For any p ă 1{2, we choose gpγq “ 1{d1{p. We can see
that Assumption 1 (2) is satisfied. Then By (4), δ can be
as small as δ “ 804IJU2

Sd logp1{d
1{pq, which is larger

than that in Case (A) since 1{d1{p ą 1{d2.

Note that in each case although choosing gpγq ă 1{d1{p

also satisfies Assumption 1 (2), it will induce a larger
throughput loss since the right-hand side of (4) is decreas-
ing in gpγq. Combining these two cases, we conclude that
if we choose gpγq “ 1{d2, Assumption 1 (2) is satisfied
with p “ 1{2, and the smallest possible δ in Theorem 1
is of order Θ̃pdq. In other words, the throughput loss is
almost linear in terms of the variation d. Consider an ar-
rival rate vector λ and let δmax denote the largest δ such
that λ ` δ1 P CpW q. Suppose δmax is greater than the
smallest possible δ. Then δmax ě Θ̃pdq. Hence, by set-
ting gpγq “ Θ̃p1{δ2maxq, Assumption 1 (2) is satisfied

with p “ 1{2, and Theorem 1 implies that the asymp-
totic time average of expected queue length is bounded
by 1642I2J2U2

SU
2
Agpγq{δmax “ Õp1{δ3maxq.

In many networks of interest, the arrival rates of flows are
controlled by an algorithm called the congestion control pro-
tocol (Srikant and Ying, 2014). For congestion controlled
flows, δmax is typically small; and for non-congestion con-
trolled flows, called best-effort arrivals, δmax varies a lot.

We also want to point out that the assumption W ď gpγq{2
in Theorem 1 is reasonable. In fact, W captures the time-
scale at which congestion controlled arrivals react to non-
stationarity. Recall from Assumption 1 that 1{gpγq can
loosely quantify the amount of nonstationarity the proposed
algorithm can handle. Therefore, when the level of nonsta-
tionarity is high, the congestion controller needs to react
faster, resulting in a small W.

5 PROOF ROADMAP

Our proof of Theorem 1 is based on Lyapunov drift analysis.
Consider the Lyapunov function Lptq :“

ř

i Q
2
i ptq. We

next present a proof roadmap. The complete proof of the
theorem and the proofs of all the lemmas can be found in
Appendix B and Appendix C.

5.1 Decomposing the Lyapunov Drift

First, we will divide the time horizon into intervals and later
we can analyze the Lyapunov drift in each interval. Let
Dkpγq denote the length of the kth interval. The details
of how we construct Dkpγq can be found in Appendix B.1.
The main idea is that we want to make sure that Dkpγq
is approximately gpγq so that the estimates of the mean
service times in the current interval will “forget” the old
samples in previous intervals due to the discount factor γ.
Let Dk :“ Dkpγq for ease of notation. Define t0 “ 0 and
tk “ tk´1 ` Dk´1 for k ě 1. Then rtk, tk`1s is the kth

interval.

Next, we analyze the Lyapunov drift in the pk`1qth interval
given the queue length Qptkq and Hptkq at the beginning of
the kth interval, where Qptq :“ pQiptqqi“1,...,I and Hptq
is defined as:

Hptq :“
´

Q̃ptq,Mptq, N̂ptq, ϕ̂ptq
¯

,

where Q̃ptq :“ pQ̃iptqqi, Mptq :“ pMi,jptqqi,j , N̂ptq :“

pN̂i,jptqqi,j , and ϕ̂ptq :“ pϕ̂i,jptqqi,j . Utilizing the queue
dynamics (1), we can bound the Lyapunov drift by

E rLptk`1 `Dk`1q ´ Lptk`1q |Qptkq “ q,Hptkq “ h s

ď

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

2Qiptk ` τqAiptk ` τq

ff

(5)

Zixian Yang, R. Srikant, Lei Ying

´

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

2Qiptk ` τq
ÿ

j

1i,jptk ` τq

ff

(6)

`Opgpγqq,

where Êtk is a shorthand for expectation conditioned on
tQptkq “ q,Hptkq “ hu. In order to obtain a negative
Lyapunov drift, we analyze the above two terms, the arrival
term (5) and the service term (6). By using the inequality
in (3), the arrival term (5) can be upper bounded by

(5) ď 2
ÿ

j

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq (7)

`Opgpγq2q ´ 2δ

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

,

(8)

where we hope that the term (7) can be later canceled out
by the lower bound of the service term (6). In the next
subsection, we analyze the service term (6).

5.2 Bounding the Service Term

Notice that the service term (6) is a sum over all servers j.
Let us first fix one j and analyze the per-server service term:

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq1i,jptk ` τq

ff

. (9)

Bounding the per-server service term (9) takes several steps.

Step 1: Concentration of Service Rates The first step is
to prove a concentration result regarding the deviation of the
estimates of the service rates µ̂i,jptq from the true service
rates µi,jptq. Consider a concentration event as follows:

Etk,j :“
"

for all i, τ P

„

Dk ´
gpγq

8
, Dk `Dk`1 ´ 1

ȷ

,

|µ̂i,jptk ` τq ´ µi,jptk ` τq| ď bi,jptk ` τq

*

.

(10)

Lemma 1. PrpEc
tk,j

|Qptkq “ q,Hptkq “ h q ď I
gpγq2 for

any k ě 0.

Lemma 1 shows that the deviation of the estimated service
rates from the true service rates is bounded by the UCB
bonus with high probability conditioned on the queue length
Qptkq and Hptkq. Proving Lemma 1 is the most challeng-
ing part of our proof. Lemma 1 cannot be proved by simply
using the Hoeffding inequality and the union bound like in
the traditional analysis of UCB algorithms. There are three
main difficulties. First, the probability is conditioned on

the queue length in the previous interval, which is related
to the service times before the previous interval. Thanks
to the relation between the discount factor γ and the length
gpγq of each interval, the contribution of the service times
before the previous interval to the current estimate ϕ̂i,jptq
is negligible and can be bounded. Another difficulty is that
ϕ̂i,jptq is the discounted sum of previous service times and
the summation is taken over the time slots in which there
is job completion. Those time slots are random variables,
which implies that the discount coefficients of those service
times are also random. Also, N̂i,jptk ` τq is the sum of
some discount coefficients, which is a random variable that
takes values in the real line while in the standard MAB prob-
lem this is just a random integer. Therefore, taking union
bound over N̂i,jptk ` τq like in the standard MAB analysis
does not work in our setting. To deal with this difficulty,
we first transform the summation into a summation over the
time slots in which there is a job starting, and then use a
Hoeffding-type inequality for self-normalized means with a
random number of summands (Garivier and Moulines, 2008,
Theorem 18)(Garivier and Moulines, 2011) to obtain a con-
centration bound. Another issue is that the mean service
times are time-varying and the estimate of the mean service
time in the current time slot is based on the actual service
times in previous time slots. We utilize the first condition in
Assumption 1 to solve this time-varying issue.

Using Lemma 1, we can show that (9) can be bounded by

(9) ě ´
2I

gpγq2

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

´ C

(11)

` Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

,

(12)

where C is some constant. When gpγq is sufficiently large,
(11) is negligible. (12) can be transformed into:

(12) “ Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqptk ` τq

µIjptk`τq,jpfjptk ` τqq
1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ff

,

(13)

where fjptq denotes the starting time of the job that is being
served at server j in time slot t.

Step 2: Bound the Product of Queue Length and Service
Rate We next bound the product of queue length and
service rate, i.e., QIjptk`τqptk ` τqµIjptk`τq,jpfjptk ` τqq
in (13). Since the algorithm picks the largest product of
queue length and UCB, this term can be lower bounded by
maxi Qiptkqµi,jpfjptk ` τqq minus some term containing

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

the UCB bonuses. Substituting this lower bound back to
(13), we obtain

(12) ě Êtk

„Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jpfjptk ` τqq

1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ȷ

(14)

´ C

˜

ÿ

i

qi

¸

SumUCB ´Opgpγq2q, (15)

where SumUCB is the sum of UCB bonuses defined by

SumUCB :“

Dk`Dk`1´1
ÿ

τ“Dk

„

bIjptk`τq,jpfjptk ` τqq

ηjpfjptk ` τqq1Ijptk`τq,jptk ` τq

ȷ

.

Lemma 2. SumUCB ď 99IUS

a

gpγq log gpγq, for any j
and k ě 0.

The main difficulty in proving Lemma 2 is in obtaining a
lower bound for N̂i,jptq. Our method is to divide the interval
into log gpγq sub-intervals with length gpγq

log gpγq so that the
discount coefficients can be lower bounded by a constant
in each sub-interval. The bound in Lemma 2 is sublinear
with respect to gpγq, which is approximately equal to the
length of the interval. Thanks to Lemma 2, the term (15) is
negligible compared to the negative term in (8) if gpγq is
sufficiently large.

Step 3: Bound the Weighted Sum of Job Completion In-
dicators The next step is to bound the weighted sum of job
completion indicators (14), where 1{µIjptk`τq,jpfjptk`τqq
are mean service times. Intuitively, if we replace the
mean service times with actual service times, the sum
should not change too much. This concentration result
can be proved using the same Hoeffding-type inequality
for self-normalized means. The sum with actual service
times is close to the sum of the weights over the time
slots, i.e.,

řDk`Dk`1´1
τ“Dk

maxi qiµi,jptk ` τq, if µi,j does
not change too much within the duration of each service
(the second condition in Assumption 1). That is, (14) Ç
řDk`Dk`1´1

τ“Dk
maxi qiµi,jptk ` τq, where “Ç” means that

we drop some negligible terms.

Substituting the above bound into (14) and then back into
(12), we have (9) Ç

řDk`Dk`1´1
τ“Dk

maxi qiµi,jptk ` τq ´

Opgpγq2q. Summing over all servers j, we have the lower
bound for the service term (6), i.e.,

(6) Ç 2
ÿ

j

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq ´Opgpγq2q.

(16)

Substituting (16) into (6) and then substituting (7) and (8)
into (5), we have

Etk rLptk`1 `Dk`1q ´ Lptk`1qs

ď ´ δ

Dk`Dk`1´1
ÿ

τ“Dk

Etk

«

ÿ

i

Qiptk ` τq

ff

`Opgpγq2q.

Finally, by doing a telescoping sum over all the intervals,
we obtain the result in Theorem 1.

6 SIMULATION RESULTS

In this section, we evaluate the proposed algorithm nu-
merically through simulation. We compare the proposed
MaxWeight with discounted UCB algorithm with several
baselines, including the frame-based MaxWeight algo-
rithm (Stahlbuhk et al., 2019) and DAM.UCB algorithm (Fre-
und et al., 2022). We also compare our algorithm with two
MaxWeight algorithms using empirical mean (MaxWeight
with EM) and discounted empirical mean (MaxWeight with
discounted EM) as the estimated service rates.

We consider a system with 10 job types and 10 servers. We
compare the algorithms in the following four settings, sta-
tionary, nonstationary aperiodic, nonstationary periodic, and
nonstationary periodic with a larger period. The simulation
results are averaged over 100 runs. More details about the
settings and parameters can be found in Appendix D. The
results are shown in Fig. 3. We also present the same set
of figures with a larger range of Y-axis in Appendix D.3,
which show the missing parts of the curves.

Fig. 3a shows the results for the stationary setting, where
the arrival rates and the service rates are time-invariant. As
seen in the figure, the queue lengths of MaxWeight with EM
and MaxWeight with discounted EM increase very fast and
unstable and exceed 6000 after time slot 1520 and 1502,
respectively, while MaxWeight with discounted UCB, frame-
based MaxWeight and DAM.UCB are stable. The reason
is that the empirical mean method lacks exploration so the
system may “locks in” in a state with poor estimation and
wrong scheduling decision. The queue length of frame-
based MaxWeight is significantly larger than that of our
algorithm because frame-based MaxWeight restarts the esti-
mation and UCB of service rates at the beginning of every
frame, which causes poor estimation. Another reason is that
frame-based MaxWeight uses the queue length at the begin-
ning of each frame to make decisions, which leads to wrong
decisions in the frame because the queue length information
becomes outdated. The queue length of DAM.UCB is sev-
eral orders of magnitude larger than that of MaxWeight with
discounted UCB because DAM.UCB uses the same schedule
in each frame (called epoch in (Freund et al., 2022)), which
also causes wrong decisions due to outdated information.
We believe that the key reason why our algorithm performs

Zixian Yang, R. Srikant, Lei Ying

the best is that we continuously update both learning and
scheduling decisions.

Fig. 3b shows the results for the nonstationary aperiodic
setting and Fig. 3c and Fig. 3d show the results for the non-
stationary periodic setting. Similar to the stationary setting,
in all three cases, the queue lengths of MaxWeight with EM,
MaxWeight with discounted EM, and DAM.UCB quickly
exceed the Y-axis limits. DAM.UCB does not perform well
because the service rates are changing over time but the
algorithm is learning the service rates using outdated sam-
ples. While frame-based MaxWeight is stable, its queue
length is larger and the oscillation is wilder. Note that the
period of the setting of Fig. 3d is 10 times as large as that of
Fig. 3c. As seen in the figures, for frame-based MaxWeight,
both the amplitude of the oscillation and the peak value
become larger when the period becomes larger, while the
amplitude of the oscillation and the peak value for our al-
gorithm remain approximately the same and even smaller.
The reason is that our algorithm can quickly adapt to the
changing statistics thanks to the discount factor.

We also did some simulations of MaxWeight with discounted
UCB algorithm with different gpγq, which can be found in
Fig. 5 in Appendix D. The results show that the proposed
algorithm is robust to the value of γ.

7 CONCLUSIONS

This paper considered scheduling in multi-server queueing
systems with unknown arrival and service statistics, and
proposed a new scheduling algorithm, MaxWeight with
discounted UCB. Based on the Lyapunov drift analysis and
concentration inequalities of self-normalized means, we
proved that MaxWeight with discounted UCB guarantees
queue stability (in the mean) when the arrival rates are
strictly within the service capacity region. This result holds
both for stationary systems and nonstationary systems.

Acknowledgements

The work of Zixian Yang and Lei Ying is supported in
part by NSF under grants 2001687, 2112471, 2207548,
and 2228974. The work of R. Srikant is supported in part
by NSF CCF 22-07547, NSF CNS 21-06801, NSF CCF
1934986, ONR N00014-19-1-2566, and ARO W911NF-19-
1-0379.

References

Andrews, M., Jung, K., and Stolyar, A. (2007). Stability
of the max-weight routing and scheduling protocol in
dynamic networks and at critical loads. In Proc. Ann.
ACM Symp. Theory of Computing (STOC), pages 145–
154.

Choudhury, T., Joshi, G., Wang, W., and Shakkottai, S.
(2021). Job dispatching policies for queueing systems

0 20k 40k 60k 80k 100k
Time

0

1k

2k

3k

4k

5k

6k

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(a) Stationary. The queue
lengths of MaxWeight with EM
and MaxWeight with discounted
EM exceed 6k after time slot
1520 and 1502, respectively.

0 5k 10k 15k 20k 25k 30k
Time

0

40

80

120

160

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(b) Nonstationary aperiodic. The
queue lengths of MaxWeight
with EM, MaxWeight with dis-
counted EM, and DAM.UCB ex-
ceed 160 after time slot 42, 44,
and 26, respectively.

0 800 1600 2400 3200 4000
Time

0

40

80

120

160

200

240

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(c) Nonstationary periodic: pe-
riod=400 for arrival rates, pe-
riod=800 for service rates. The
queue lengths of MaxWeight
with EM, MaxWeight with dis-
counted EM, and DAM.UCB ex-
ceed 240 after time slot 65, 69,
and 38, respectively.

0 8k 16k 24k 32k 40k
Time

0

40

80

120

160

200

240

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(d) Nonstationary periodic: pe-
riod=4k for arrival rates, pe-
riod=8k for service rates. The
queue lengths of MaxWeight
with EM, MaxWeight with dis-
counted EM, and DAM.UCB
exceed 240 after time slot 61,
61, and 37, respectively.

Figure 3: Simulation Results.

with unknown service rates. In Proc. ACM Int. Symp.
Mobile Ad Hoc Networking and Computing (MobiHoc),
pages 181–190.

Devroye, L., Györfi, L., and Lugosi, G. (1996). A proba-
bilistic theory of pattern recognition. Springer-Verlag.

Eryilmaz, A. and Srikant, R. (2012). Asymptotically tight
steady-state queue length bounds implied by drift condi-
tions. Queueing Syst., 72(3-4):311–359.

Freund, D., Lykouris, T., and Weng, W. (2022). Efficient
decentralized multi-agent learning in asymmetric queuing
systems. In Proc. Conf. Learning Theory (COLT), volume
178, pages 4080–4084.

Garivier, A. and Moulines, E. (2008). On upper-confidence
bound policies for non-stationary bandit problems. arXiv
preprint arXiv:0805.3415.

Garivier, A. and Moulines, E. (2011). On upper-confidence
bound policies for switching bandit problems. In Int.
Conf. Algorithmic Learning Theory (ALT), pages 174–
188. Springer.

Hsu, W.-K., Xu, J., Lin, X., and Bell, M. R. (2022). Inte-
grated online learning and adaptive control in queueing

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

systems with uncertain payoffs. Operations Research,
70(2):1166–1181.

Kang, W. and Williams, R. (2013). Diffusion approximation
for an input-queued switch operating under a maximum
weight matching policy. Stoch. Syst., 2(2):277–321.

Kocsis, L. and Szepesvári, C. (2006). Discounted UCB. In
2nd PASCAL Challenges Workshop, volume 2.

Krishnasamy, S., Akhil, P. T., Arapostathis, A., Sundaresan,
R., and Shakkottai, S. (2018a). Augmenting max-weight
with explicit learning for wireless scheduling with switch-
ing costs. IEEE/ACM Trans. Netw., 26(6):2501–2514.

Krishnasamy, S., Arapostathis, A., Johari, R., and Shakkot-
tai, S. (2018b). On learning the cµ rule in single and
parallel server networks. In Proc. Annu. Allerton Conf.
Communication, Control and Computing.

Krishnasamy, S., Sen, R., Johari, R., and Shakkottai, S.
(2021). Learning unknown service rates in queues:
A multiarmed bandit approach. Operations Research,
69(1):315–330. The conference version appeared in
NeurIPS 2016.

Li, F., Liu, J., and Ji, B. (2019). Combinatorial sleeping
bandits with fairness constraints. In Proc. IEEE Int. Conf.
Computer Communications (INFOCOM), pages 1702–
1710.

Liu, X., Li, B., Shi, P., and Ying, L. (2021). An efficient
pessimistic-optimistic algorithm for stochastic linear ban-
dits with general constraints. In Advances Neural Infor-
mation Processing Systems (NeurIPS).

Maguluri, S. T. and Srikant, R. (2016). Heavy traffic queue
length behavior in a switch under the maxweight algo-
rithm. Stoch. Syst., 6(1):211–250.

Neely, M. J., Rager, S. T., and La Porta, T. F. (2012). Max
weight learning algorithms for scheduling in unknown
environments. IEEE Trans. Autom. Control, 57(5):1179–
1191.

Shah, D. and Wischik, D. (2007). Heavy traffic analysis
of optimal scheduling algorithms for switched networks.
Submitted to Annals of Applied Probability.

Srikant, R. and Ying, L. (2014). Communication Networks:
An Optimization, Control and Stochastic Networks Per-
spective. Cambridge University Press.

Stahlbuhk, T., Shrader, B., and Modiano, E. (2019). Learn-
ing algorithms for scheduling in wireless networks with
unknown channel statistics. Ad Hoc Networks, 85:131–
144.

Stolyar, A. L. (2004). MaxWeight scheduling in a general-
ized switch: State space collapse and workload minimiza-
tion in heavy traffic. Adv. in Appl. Probab., 14(1).

Tassiulas, L. and Ephremides, A. (1992). Stability properties
of constrained queueing systems and scheduling policies
for maximum throughput in multihop radio networks.
IEEE Trans. Autom. Control, 37:1936–1948.

Tassiulas, L. and Ephremides, A. (1993). Dynamic server
allocation to parallel queues with randomly varying con-
nectivity. IEEE Trans. Inf. Theory, 39:466–478.

Yekkehkhany, A. and Nagi, R. (2020). Blind gb-pandas: A
blind throughput-optimal load balancing algorithm for
affinity scheduling. IEEE/ACM Transactions on Network-
ing, 28(3):1199–1212.

Zixian Yang, R. Srikant, Lei Ying

TABLE OF CONTENTS IN THE SUPPLEMENTARY MATERIALS

In the supplementary materials, we provide a counter-example of MaxWeight with empirical mean algorithm, the complete
proof of Theorem 1, the proofs of all the lemmas, and additional details of the simulations. The contents are listed as follows:

• Section A is a counter-example of MaxWeight with empirical mean algorithm, which was mentioned in Section 1.

• Section B contains the proof of Theorem 1.

• Section C contains the proofs of all the lemmas.

– Section C.1: Proof of Lemma 1.
– Section C.2: Proof of Lemma 2.
– Section C.3: Proof of Lemma 3.
– Section C.4: Proof of Lemma 4.
– Section C.5: Proof of Lemma 5.
– Section C.6: Proof of Lemma 6.
– Section C.7: Proof of Lemma 7.

• Section D contains additional details of the simulations, including the settings and the parameters we use, and the
zoom-out views of the figures in Section 6.

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

A A COUNTER-EXAMPLE OF MAXWEIGHT WITH EMPIRICAL MEAN ALGORITHM

In this section, we will present an example showing that the MaxWeight with empirical mean algorithm is unstable.

Consider a multi-server system with two servers and two job types with the following statistics:

Pr pSi,j “ 1q “ 0.99, Pr pSi,j “ 100q “ 0.01 for i “ j

and
Pr pSi,j “ 10q “ 1 for i ­“ j,

where Si,j is the service time of type i jobs at server j. We further assume the following job arrival process: Aiptq “ 1 for
any i and any t “ 1, 3, . . . and Aiptq “ 0 for any i and t “ 2, 4, We next consider the queue lengths over time under
MaxWeight with empirical mean, and assume the algorithm uses µ̂i,j “ 1 as a default value if there is no data sample for
Si,j .

• Time slot 1: A type-i job is scheduled at server i and Si,i “ 100 for i “ 1, 2 which occurs with probability 0.01.

• Time slot 101: Both queues have 49 jobs. We have estimated µ̂i,i “ 0.01 and µ̂i,j “ 1 (i ­“ j) as the default value.
The algorithm now schedules a type-i job to server j for j ­“ i.

• Time slot 111 : Both queues have 53 jobs. The estimated service rates are µ̂i,i “ 0.01 and µ̂i,j “ 0.1 for i ­“ j. Based
on MaxWeight with mean-service-rate, the scheduler schedules type-i jobs to server j for i ­“ j.

• Time slot ą 111 : Since Si,j is a constant for i ­“ j, the estimated service rates do not change after the jobs are
completed. Since the estimated service rates do not change as long as type-i jobs are scheduled on server j such that
i ­“ j, the schedule decisions also remain the same such that type-i jobs are continuously scheduled to server j for
i ­“ j. Since it takes 10 time slots to finish a job and there is a job arrival every two slots, both queues go to infinity.

Note that if we schedule type-i jobs to server i, the mean queue lengths are bounded because in this case, the mean service
time is 1.99 time slots and the arrival rate is one job every two time slots. ˝

From the example above, we can see that the problem of using empirical mean is that the initial bad samples led to a poor
estimation of µi,j , which led to poor scheduling decisions. Since the scheduler only gets new samples from the served jobs,
it was not able to correct the wrong estimate of µ̂i,i “ 0.01 when type-i jobs are no long routed to server i after time slot
101. Therefore, the system was “locked in” in a state with poor estimation and wrong scheduling decisions, which led to
instability.

B PROOF OF THEOREM 1

In this section, we present the complete proof of Theorem 1. Fig. 4 shows the proof raodmap of Theorem 1. Before
presenting the proof, we define a few additional notations. In the proof, if server j is not available at the beginning of time
slot t, i.e.,

ř

i Mi,jptq ą 0, we let î˚j ptq “ 0. Let T :“ gpγq for ease of notation.

We now present the proof of Theorem 1 in the following subsections.

B.1 Dividing the Time Horizon

Firstly, we want to divide the time horizon into intervals. We assume T
8 is an integer without loss of generality. Since

λ` δ1 P CpW q, for any time slot τ , there exists a wpτq that satisfies the inequality in the capacity region definition (3). Let
τ0ptq :“ t, τlptq :“ τl´1ptq ` wpτl´1ptqq for l ě 1. Define Dptq such that

Dptq “min
n

n
ÿ

l“0

wpτlptqq s.t.
n
ÿ

l“0

wpτlptqq ě
T

2
.

Denote by n˚ptq the optimal solution to the above optimization problem. Note that n˚ptq and Dptq are fixed numbers rather
than random variables for a given t. We have the following upper and lower bounds for Dptq:

Lemma 3. Suppose W ď T
2 . Then T

2 ď Dptq ď T
2 `W ď T for any t.

Zixian Yang, R. Srikant, Lei Ying

Lyapunov drift Arrival term≤

Upper bound

Service term

Lower bound

−

Canceling out the term ∑𝑗𝑗 ∑𝜏𝜏=𝐷𝐷𝑘𝑘
𝐷𝐷𝑘𝑘+𝐷𝐷𝑘𝑘+1−1max

𝑖𝑖
𝑄𝑄𝑖𝑖 𝑡𝑡𝑘𝑘 𝜇𝜇𝑖𝑖,𝑗𝑗(𝑡𝑡𝑘𝑘 + 𝜏𝜏)

Telescoping sum

Theorem 1

Lemma 1
Concentration of service rates

Product of queue length
and service rate

𝑄𝑄𝐼𝐼𝑗𝑗 𝑡𝑡𝑘𝑘+𝜏𝜏 𝑡𝑡𝑘𝑘 + 𝜏𝜏 𝜇𝜇𝐼𝐼𝑗𝑗 𝑡𝑡𝑘𝑘+𝜏𝜏 ,𝑗𝑗 𝑓𝑓𝑗𝑗 𝑡𝑡𝑘𝑘 + 𝜏𝜏

Sum of weighted job
completion indicators

×

Weighted job
completion indicator

𝕝𝕝𝐼𝐼𝑗𝑗 𝑡𝑡𝑘𝑘+𝜏𝜏 ,𝑗𝑗 𝑡𝑡𝑘𝑘 + 𝜏𝜏

𝜇𝜇𝐼𝐼𝑗𝑗 𝑡𝑡𝑘𝑘+𝜏𝜏 ,𝑗𝑗 𝑓𝑓𝑗𝑗 𝑡𝑡𝑘𝑘 + 𝜏𝜏

Lemma 2
Sum of UCB bonuses

Concentration of service times

over all intervals

Capacity region
definition

Figure 4: The proof roadmap of Theorem 1.

Proof of this lemma can be found in Section C.3. Let t0 “ 0 and tk “ tk´1 `Dptk´1q for k ě 1. Let Dk :“ Dptkq for
simplicity. Then the time horizon can be divided into intervals with length D0, D1, . . . , Dk, . . ., where the kth interval
is rtk, tk`1s. We remark that this partition of the time horizon into time intervals is for the analysis only. The proposed
algorithm does not need to know this partition and does not use the time interval information for scheduling and learning.

In the next subsection, we will analyze and decompose the Lyapunov Drift in each interval.

B.2 Decomposing the Lyapunov Drift

Consider the Lyapunov function Lptq :“
ř

i Q
2
i ptq. We first consider the Lyapunov drift for the interval rtk`1, tk`1`Dk`1s

given the queue length Qptkq and Hptkq. We analyze the drift conditioned on Qptkq and Hptkq instead of Qptk`1q and
Hptk`1q to weaken the dependence of the UCB bonuses and the estimated service rates on the conditional values. We have

E rLptk`1 `Dk`1q ´ Lptk`1q |Qptkq “ q,Hptkq “ h s

“E rLptk `Dk `Dk`1q ´ Lptk `Dkq |Qptkq “ q,Hptkq “ h s

“

Dk`Dk`1´1
ÿ

τ“Dk

E rLptk ` τ ` 1q ´ Lptk ` τq |Qptkq “ q,Hptkq “ h s . (17)

We first look at each term in the summation above. Note that by the queue dynamic (1) we can obtain the following upper
bound for Qipt` 1q:

Lemma 4. For any i, t, Qipt` 1q ď max
!

J,Qiptq `Aiptq ´
ř

j 1i,jptq
)

.

Proof of this lemma can be found in Section C.4. Denote by Êtk r¨s the conditional expectation Er¨ |Qptkq “ q,Hptkq “ h s.
By Lemma 4, we have

Êtk rLptk ` τ ` 1q ´ Lptk ` τqs “ Êtk

«

ÿ

i

`

Q2
i ptk ` τ ` 1q ´Q2

i ptk ` τq
˘

ff

ďÊtk

«

ÿ

i

„

max

"

J2,
`

Qiptk ` τq `Aiptk ` τq ´
ÿ

j

1i,jptk ` τq
˘2
*

´Q2
i ptk ` τq

ȷ

ff

ďÊtk

«

ÿ

i

„

J2 `
`

Qiptk ` τq `Aiptk ` τq ´
ÿ

j

1i,jptk ` τq
˘2

´Q2
i ptk ` τq

ȷ

ff

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

“Êtk

«

ÿ

i

2Qiptk ` τq
`

Aiptk ` τq ´
ÿ

j

1i,jptk ` τq
˘

ff

` Êtk

«

ÿ

i

`

Aiptk ` τq ´
ÿ

j

1i,jptk ` τq
˘2

ff

` IJ2 (18)

where the second inequality is due to the fact that maxtx2, y2u ď x2 ` y2, and the second term in the last line can be
bounded as follows:

ÿ

i

`

Aiptk ` τq ´
ÿ

j

1i,jptk ` τq
˘2

ď
ÿ

i

`

max
␣

Aiptk ` τq,
ÿ

j

1i,jptk ` τq
(˘2

ď
ÿ

i

pAiptk ` τqq2 `
ÿ

i

`

ÿ

j

1i,jptk ` τq
˘2

ď IU2
A `

“

ÿ

i

ÿ

j

1i,jptk ` τq
‰2

ď IU2
A ` J2,

where the last two steps are due to the fact that Aiptk ` τq ď UA and
ř

i

ř

j 1i,jptk ` τq ď J . Hence, from (18), we have

Êtk rLptk ` τ ` 1q ´ Lptk ` τqs

ďÊtk

«

ÿ

i

2Qiptk ` τqAiptk ` τq

ff

´ Êtk

«

ÿ

i

2Qiptk ` τq
ÿ

j

1i,jptk ` τq

ff

` IU2
A ` J2 ` IJ2.

Substituting the above inequality into (17), we have

E rLptk `Dk `Dk`1q ´ Lptk `Dkq |Qptkq “ q,Hptkq “ h s

ď

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

2Qiptk ` τqAiptk ` τq

ff

(19)

´

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

2Qiptk ` τq
ÿ

j

1i,jptk ` τq

ff

` pIU2
A ` J2 ` IJ2qT (20)

where the inequality uses the the upper bound on Dk`1 in Lemma 3. We will next find the bounds for the arrival term (19)
and the service term (20).

In the next subsection, we will bound the arrival term (19).

B.3 Bounding the Arrival Term

We first analyze the arrival term (19). We have

(19) “
Dk`Dk`1´1

ÿ

τ“Dk

Êtk

«

E

«

ÿ

i

2Qiptk ` τqAiptk ` τq |Qptk ` τq,Qptkq “ q,Hptkq “ h

ffff

“

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

2Qiptk ` τqE rAiptk ` τq |Qptk ` τq,Qptkq “ q,Hptkq “ h s

ff

“

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

2Qiptk ` τqλiptk ` τq

ff

,

where the first equality is by law of iterated expectation and the last equality is due to the fact that Aiptk ` τq is independent
of Qptk ` τq, Qptkq, and Hptkq. By adding and subtracting δ, we have

(19) “
Dk`Dk`1´1

ÿ

τ“Dk

Êtk

«

ÿ

i

2Qiptk ` τqpλiptk ` τq ` δq

ff

´ 2δ

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

. (21)

By the queue dynamics (1) and the bounds on the arrival rate and service rate, we have the following bounds on the difference
between queue lengths in two different time slots:

Lemma 5. For any t, i, τ ě 0, we have

1. Qiptq ´ Jτ ď Qipt` τq ď Qiptq ` τUA;

Zixian Yang, R. Srikant, Lei Ying

2.
ř

i Qipt` τq ě
ř

i Qiptq ´ Jτ .

Proof of this lemma can be found in Section C.5. By Lemma 5, we have

Qiptk ` τq ď Qiptkq ` τUA ď Qiptkq ` 2TUA (22)

where the last inequality holds since τ ď Dk `Dk`1 ´ 1 ď 2T by Lemma 3. Then, substituting (22) into (21), we have

(19) ď
Dk`Dk`1´1

ÿ

τ“Dk

ÿ

i

2qipλiptk ` τq ` δq `

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

4TUApλiptk ` τq ` δq

´ 2δ

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

. (23)

Since λ` δ1 P CpW q, by the definitions of tk`1 and Dk`1, we have
Dk`Dk`1´1

ÿ

τ“Dk

pλiptk ` τq ` δq “

tk`Dk`Dk`1´1
ÿ

τ“tk`Dk

pλipτq ` δq “

tk`1`Dk`1´1
ÿ

τ“tk`1

pλipτq ` δq

“

tk`1`
řn˚ptk`1q

l“0 wpτlptk`1qq´1
ÿ

τ“tk`1

pλipτq ` δq “

n˚
ptk`1q
ÿ

l“0

tk`1`
řl

l1“0
wpτl1 ptk`1qq´1
ÿ

τ“tk`1`
řl´1

l1“0
wpτl1 ptk`1qq

pλipτq ` δq.

Then by the definitions of τlptk`1q and CpW q, we can bound the above term as follows:

Dk`Dk`1´1
ÿ

τ“Dk

pλiptk ` τq ` δq “

n˚
ptk`1q
ÿ

l“0

τ0ptk`1q`
řl

l1“0
wpτl1 ptk`1qq´1

ÿ

τ“τ0ptk`1q`
řl´1

l1“0
wpτl1 ptk`1qq

pλipτq ` δq

“

n˚
ptk`1q
ÿ

l“0

τlptk`1q`wpτlptk`1qq´1
ÿ

τ“τlptk`1q

pλipτq ` δq ď

n˚
ptk`1q
ÿ

l“0

τlptk`1q`wpτlptk`1qq´1
ÿ

τ“τlptk`1q

ÿ

j

αi,jpτqµi,jpτq.

In the same way, we can transform the double summations back to a single summation to obtain:
Dk`Dk`1´1

ÿ

τ“Dk

pλiptk ` τq ` δq ď

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

j

αi,jptk ` τqµi,jptk ` τq.

Substituting the above bound back into (23), we have

(19) ď
Dk`Dk`1´1

ÿ

τ“Dk

ÿ

i

2qi
ÿ

j

αi,jptk ` τqµi,jptk ` τq ` 4TUA

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

ÿ

j

αi,jptk ` τqµi,jptk ` τq

´ 2δ

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

. (24)

Note that
Dk`Dk`1´1

ÿ

τ“Dk

ÿ

i

ÿ

j

αi,jptk ` τqµi,jptk ` τq ď

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

j

max
i

µi,jptk ` τq ď JDk`1 ď JT, (25)

where the first inequality is by
ř

i αi,jptk ` τq ď 1, the second inequality is by µi,jptk ` τq ď 1, and the last inequality is
by Lemma 3. Note that

ÿ

i

qiαi,jptk ` τqµi,jptk ` τq ď max
i

qiµi,jptk ` τq
ÿ

i

αi,jptk ` τq ď max
i

qiµi,jptk ` τq, (26)

where the last inequality is by
ř

i αi,jptk ` τq ď 1. Substituting (25) and (26) into (24), we have

(19) ď2
ÿ

j

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq ` 4T 2JUA ´ 2δ

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

. (27)

In the next subsection, we will bound the the service term (20).

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

B.4 Bounding the Service Term

Now we analyze the service term (20). Let us first fix a server j. We want to lower bound the following per-server service
term:

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq1i,jptk ` τq

ff

.

The process takes several steps, which are shown in the following.

B.4.1 Step 1: Adding the Concentration to the Condition

Denote by P̂tkp¨q the conditional probability Pr p¨|Qptkq “ q,Hptkq “ hq. Denote by Êtk r¨|Etk,js the conditional expecta-
tion Er¨|Qptkq “ q,Hptkq “ h, Etk,js. Then by Lemma 1, we have

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq1i,jptk ` τq

ff

ěP̂tkpEtk,jqÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

ě

ˆ

1´
I

T 2

˙

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

. (28)

Using the bound (22) and the bound on Dk`1 in Lemma 3, we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

ď T
ÿ

i

qi ` 2UAT
2I. (29)

By Lemma 5 and Lemma 3, we can obtain the following bound on
ř

i qi:

Lemma 6.
ř

i qi ď
1

Dk`1

řDk`Dk`1´1
τ“Dk

Êtk r
ř

i Qiptk ` τq ` 2JT s.

Proof of this lemma can be found in Section C.6. By (29), Lemma 6, and Lemma 3, we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

ď2

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

` 2JT 2 ` 2UAT
2I, (30)

Substituting (30) into (28), we have

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq1i,jptk ` τq

ff

ěÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

´
2I

T 2

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

´ 2IJ ´ 2UAI
2. (31)

Next, we want to lower bound the term Êtk r
řDk`Dk`1´1

τ“Dk

ř

i Qiptk ` τq1i,jptk ` τq|Etk,js in (31) using q and
řDk`Dk`1´1

τ“Dk
Êtk r

ř

i Qiptk ` τqs. Note that 1i,jptk ` τq “ 1 can only happen for the queue to which server j is
scheduled in time slot tk ` τ , i.e., the queue Ijptk ` τq. Hence, we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

Zixian Yang, R. Srikant, Lei Ying

“Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqptk ` τq1Ijptk`τq,jptk ` τq |Etk,j

ff

.

Define a mapping fj that maps a time slot to another time slot such that if y “ fjpxq then y is the time slot when server j
picked the job that was being served at server j in time slot x. If server j was idling in time slot x, then let fjpxq “ x. That
is, fjpxq :“ maxtt : t ď x, î˚j ptq “ Ijpxqu. Then

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

“Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqptk ` τqµIjptk`τq,jpfjptk ` τqq
1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ff

. (32)

B.4.2 Step 2: Bounding the Product of Queue Length and Service Rate

We next want to lower bound the term QIjptk`τqptk`τqµIjptk`τq,jpfjptk`τqq in (32). The following analysis is conditioned
on the concentration event Etk,j . Since US ď T

8 , we have fjptk ` τq ě tk ` τ ´ US ě tk `Dk ´ US ě tk `Dk ´ T
8 .

Also note that fjptk ` τq ď tk ` τ ď tk `Dk `Dk`1 ´ 1. Hence, we have

fjptk ` τq P

„

tk `Dk ´
T

8
, tk `Dk `Dk`1 ´ 1

ȷ

Ď rtk, tk ` 2T ´ 1s, (33)

where the inclusion is by Lemma 3. Then, by (33) and the definition of the concentration event Etk,j in (10), we have

QIjptk`τqptk ` τqµIjptk`τq,jpfjptk ` τqq

ěQIjptk`τqptk ` τq
`

µ̂Ijptk`τq,jpfjptk ` τqq ´ bIjptk`τq,jpfjptk ` τqq
˘

“QIjptk`τqptk ` τq
`

µ̂Ijptk`τq,jpfjptk ` τqq ` bIjptk`τq,jpfjptk ` τqq
˘

´ 2QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq.

Note that by Lemma 5 and the fact that tk ` τ ´ fjptk ` τq ď US ď T
8 , we have QIjptk`τqptk ` τq ě QIjptk`τqpfjptk `

τqq ´ JT
8 . Hence, we have

QIjptk`τqptk ` τqµIjptk`τq,jpfjptk ` τqq

ěQIjptk`τqpfjptk ` τqq
`

µ̂Ijptk`τq,jpfjptk ` τqq ` bIjptk`τq,jpfjptk ` τqq
˘

´
JT

4
´ 2QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq (34)

since µ̂Ijptk`τq,jpfjptk ` τqq ` bIjptk`τq,jpfjptk ` τqq ď 2. By Line 18 in Algorithm 1, we have

QIjptk`τqpfjptk ` τqq
`

µ̂Ijptk`τq,jpfjptk ` τqq ` bIjptk`τq,jpfjptk ` τqq
˘

“max
i

Qipfjptk ` τqq pµ̂i,jpfjptk ` τqq ` bi,jpfjptk ` τqqq . (35)

Combining (34) and (35), we have

QIjptk`τqptk ` τqµIjptk`τq,jpfjptk ` τqq

ěmax
i

Qipfjptk ` τqq pµ̂i,jpfjptk ` τqq ` bi,jpfjptk ` τqqq

´
JT

4
´ 2QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq

ěmax
i

Qipfjptk ` τqqµi,jpfjptk ` τqq ´
JT

4
´ 2QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq, (36)

where the last inequality is due to (33) and the definition of the concentration event Etk,j in (10). By (33) and Lemma 5, the
term Qipfjptk ` τqqµi,jpfjptk ` τqq in (36) can be bounded by

Qipfjptk ` τqqµi,jpfjptk ` τqq ě rQiptkq ´ 2JT sµi,jpfjptk ` τqq ě Qiptkqµi,jpfjptk ` τqq ´ 2JT, (37)

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

where the last inequality holds since µi,jpfjptk ` τqq ď 1. Substituting (37) into (36) and then into (32), we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

ěÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ˆ

max
i

qiµi,jpfjptk ` τqq ´
9JT

4

´2QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq

˙

1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ff

ěÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jpfjptk ` τqq
1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ff

´
9JT 2US

4
(38)

´ 2USÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq1Ijptk`τq,jptk ` τq |Etk,j

ff

, (39)

where the last inequality is by Lemma 3 and the fact that 1
µIjptk`τq,jpfjptk`τqq ď US.

B.4.3 Step 3: Bounding the Sum of Queue-Length-Weighted UCB Bonuses

We first look at the term in (39):

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq1Ijptk`τq,jptk ` τq |Etk,j

ff

ďÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ˆ

QIjptk`τqpfjptk ` τqq `
UAT

8

˙

bIjptk`τq,jpfjptk ` τqq1Ijptk`τq,jptk ` τq |Etk,j

ff

ďÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqpfjptk ` τqqbIjptk`τq,jpfjptk ` τqq1Ijptk`τq,jptk ` τq |Etk,j

ff

`
UAT

2

8
, (40)

where the first inequality is by Lemma 5 and the fact that tk ` τ ´ fjptk ` τq ď US ď T
8 , and the second inequality is

due to Lemma 3 and the fact that bIjptk`τq,jpfjptk ` τqq ď 1. Note that if server j is idling in time slot fjptk ` τq, then
Q̃Ijptk`τqpfjptk ` τqq “ 0. Hence, we have Q̃Ijptk`τqpfjptk ` τqq “ Q̃Ijptk`τqpfjptk ` τqqηjpfjptk ` τqq. Also note
that 0 ď QIjptk`τqpfjptk ` τqq ´ Q̃Ijptk`τqpfjptk ` τqq ď J by definition. Hence, we have

QIjptk`τqpfjptk ` τqq ďQ̃Ijptk`τqpfjptk ` τqqηjpfjptk ` τqq ` J

ďQIjptk`τqpfjptk ` τqqηjpfjptk ` τqq ` J. (41)

Substituting the bound (41) into (40) and using Lemma 3, we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq1Ijptk`τq,jptk ` τq |Etk,j

ff

ďÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqpfjptk ` τqqbIjptk`τq,jpfjptk ` τqqηjpfjptk ` τqq1Ijptk`τq,jptk ` τq |Etk,j

ff

` JT `
UAT

2

8
. (42)

By (33) and Lemma 5, we have QIjptk`τqpfjptk ` τqq ď QIjptk`τqptkq ` 2TUA ď
ř

i Qiptkq ` 2TUA. Substituting this
bound into (42) and using Lemma 3, we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

QIjptk`τqptk ` τqbIjptk`τq,jpfjptk ` τqq1Ijptk`τq,jptk ` τq |Etk,j

ff

Zixian Yang, R. Srikant, Lei Ying

ď

ˆ

ÿ

i

qi

˙

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

bIjptk`τq,jpfjptk ` τqqηjpfjptk ` τqq1Ijptk`τq,jptk ` τq |Etk,j

ff

` 2T 2UA ` JT `
UAT

2

8
. (43)

Hence, by Lemma 2, (43), and (39), we have

(39) ě´ p198IU2
S

?
T log T q

ÿ

i

qi ´ 4T 2USUA ´ 2USJT ´
USUAT

2

4
. (44)

B.4.4 Step 4: Bounding the Weighted Sum of Job Completion Indicators

We next look at the term in (38):

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jpfjptk ` τqq
1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ff

Let vjptq :“ maxi qiµi,jptq for any time slot t. By law of total expectation, we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq
1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ff

ěÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq

ff

´ P̂tkpEc
tk,j

qÊtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq

ˇ

ˇEc
tk,j

ff

ě

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq1i,jptk ` τq1Ijptk`τq“i

µi,jpfjptk ` τqq

ff

´
Dk`1IUS

ř

i qi
T 2

, (45)

where the last inequality is by Lemma 1 and the facts that vjptq ď maxi qi ď
ř

i qi and 1
µi,jptq

ď US for any i, j, t. We can
write the first term of (45) in a different form by summing over the time slots in which the jobs start, i.e.,

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq1i,jptk ` τq1Ijptk`τq“i

µi,jpfjptk ` τqq

ff

ě

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“i

µi,jptk ` τq

ff

´ US

ÿ

i

qi, (46)

where the inequality holds since the last job starting before tk `Dk `Dk`1 may not finish before tk `Dk `Dk`1 and
the first job finishing at or after tk `Dk may not start at or after tk `Dk, and we also use the fact that vjptq ď

ř

i qi and
1{µi,jptq ď US for all t. Define Xi,jptq such that

Xi,jptq :“

#

Si,jptq, if ηjptq “ 1 (not idling);
1, if ηjptq “ 0 (idling).

Note that 1{µi,jptk ` τq “ ErSi,jptk ` τqs ě ErXi,jptk ` τqs. Then we have

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“i

µi,jptk ` τq

ff

ě

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iErXi,jptk ` τqs

ff

. (47)

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

From (46) and (47), we have

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq1i,jptk ` τq1Ijptk`τq“i

µi,jpfjptk ` τqq

ff

ě

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iErXi,jptk ` τqs

ff

´ US

ÿ

i

qi

“

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“i pErXi,jptk ` τqs ´Xi,jptk ` τqq

ff

`

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iXi,jptk ` τq

ff

´ US

ÿ

i

qi. (48)

Note that the term
řI

i“1 Êtk r
řDk`Dk`1´1

τ“Dk
vjptk ` τq1î˚j ptk`τq“iXi,jptk ` τqs in (48) can be rewritten using fj in the

following way:

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iXi,jptk ` τq

ff

“ Êtk

«

τend
ÿ

τ“τstart

vjpfjptk ` τqq

ff

, (49)

where tk`τstart is the starting (or idling) time of the first schedule that starts at or after tk`Dk and tk`τend is the finishing
(or idling) time of the last schedule that starts at or before tk`Dk`Dk`1´1. By the facts that tk` τstart ă tk`Dk`US,
tk ` τend ě tk `Dk `Dk`1 ´ 1, and vjptq ď

ř

i qi, we have

Êtk

«

tend
ÿ

τ“tstart

vjpfjptk ` τqq

ff

ě Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq

ff

´ US

ÿ

i

qi

ě

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qi

ˆ

µi,jptk ` τq ´
1

T p

˙

´ US

ÿ

i

qi

ě

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq ´

ˆ

Dk`1

T p
` US

˙

ÿ

i

qi, (50)

where the first inequality uses the fact that tk ` τ ´ fjptk ` τq ď US and the second condition in Assumption 1. Then,
combining (45), (48), (49), and (50), we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ff

ě

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“i pErXi,jptk ` τqs ´Xi,jptk ` τqq

ff

`

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq ´

ˆ

Dk`1

T p
` 2US `

Dk`1IUS

T 2

˙

ÿ

i

qi. (51)

Next let us look at the first term of (51). Note that the differences ErXi,jptk ` τqs ´Xi,jptk ` τq at the idling time slots
are zero by definition. Hence,

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“i pErXi,jptk ` τqs ´Xi,jptk ` τqq

ff

“

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iηjptk ` τq pErXi,jptk ` τqs ´Xi,jptk ` τqq

ff

. (52)

Zixian Yang, R. Srikant, Lei Ying

Consider the following concentration event

EX,tk,i,j :“
#

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iηjptk ` τq pErXi,jptk ` τqs ´Xi,jptk ` τqq ě ´US

a

2T log T
ÿ

i

qi

+

. (53)

We have the following lemma:
Lemma 7. For any k ě 0, i P t1, . . . , Iu, j P t1, . . . , Ju, we have P̂tk

`

Ec
X,tk,i,j

˘

ď 1
T 2 .

Proof of this lemma can be found in Section C.7. Then by law of total expectation, definition (53), and the bounds on service
times and vjptq, we have

I
ÿ

i“1

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iηjptk ` τq pErXi,jptk ` τqs ´Xi,jptk ` τqq

ff

ě

I
ÿ

i“1

«

P̂tk pEX,tk,i,jq

ˆ

´US

a

2T log T
ÿ

i

qi

˙

` P̂tk

`

Ec
X,tk,i,j

˘

ˆ

´Dk`1US

ÿ

i

qi

˙

ff

ě´

ˆ

IUS

a

2T log T `
Dk`1IUS

T 2

˙

ÿ

i

qi, (54)

where the last inequality is by Lemma 7. Combining (38), (51), (52), and (54), we have

(38) “ Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

vjpfjptk ` τqq
1Ijptk`τq,jptk ` τq

µIjptk`τq,jpfjptk ` τqq
|Etk,j

ff

´
9JT 2US

4

ě

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq ´

ˆ

Dk`1

T p
` 2US ` IUS

a

2T log T `
2Dk`1IUS

T 2

˙

ÿ

i

qi ´
9JT 2US

4
. (55)

Combining (38), (39), (55), and (44) and using Lemma 6 on
ř

i qi and Lemma 3 on Dk`1, we have

Êtk

«

Dk`Dk`1´1
ÿ

τ“Dk

ÿ

i

Qiptk ` τq1i,jptk ` τq |Etk,j

ff

ě

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq

´

ˆ

Dk`1

T p
` 2US ` IUS

a

2T log T `
2Dk`1IUS

T 2
` 198IU2

S

?
T log T

˙

ÿ

i

qi

´
9JT 2US

4
´ 4T 2USUA ´ 2USJT ´

USUAT
2

4

ě

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq ´
401IU2

S log T

Tmint 1
2 ,pu

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

´ 407IJU2
SUAT

2. (56)

Substituting (56) into (31), we have

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq1i,jptk ` τq

ff

ě

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq ´
402IU2

S log T

Tmint 1
2 ,pu

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

´ 408I2JU2
SUAT

2. (57)

Substituting (57) into (20), we finally obtain the bound for the service term (20):

(20) ď´ 2
ÿ

j

Dk`Dk`1´1
ÿ

τ“Dk

max
i

qiµi,jptk ` τq

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

`
804IJU2

S log T

Tmint 1
2 ,pu

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

` 817I2J2U2
SU

2
AT

2. (58)

In the next subsection, we will combine the bounds of the arrival term and the service term and then sum over all intervals.

B.5 Telescoping Sum

Combining (19), (20), (27), and (58), we have

E rLptk `Dk `Dk`1q ´ Lptk `Dkq |Qptkq “ q,Hptkq “ h s

ď

ˆ

804IJU2
S log T

Tmint 1
2 ,pu

´ 2δ

˙Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq

ff

` 821I2J2U2
SU

2
AT

2

ď´ δ

Dk`Dk`1´1
ÿ

τ“Dk

E

«

ÿ

i

Qiptk ` τq |Qptkq “ q,Hptkq “ h

ff

` 821I2J2U2
SU

2
AT

2

since 804IJU2
S log T

Tmint 1
2
,pu

ď δ. Taking expectation on both sides, we have

E rLptk `Dk `Dk`1q ´ Lptk `Dkqs ď ´δ

Dk`Dk`1´1
ÿ

τ“Dk

E

«

ÿ

i

Qiptk ` τq

ff

` 821I2J2U2
SU

2
AT

2. (59)

Let t ě T . Since D0 ď T ď t (by Lemma 3), we have

1

t

t
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

“
1

t

D0´1
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

`
1

t

t
ÿ

τ“D0

E

«

ÿ

i

Qipτq

ff

.

Note that there exists an integer K such that t ď
řK

k“0 Dk ´ 1 ă t` T
2 `W by Lemma 3. Then we have

K
ÿ

k“0

Dk ´ 1 ě t ě
K
ÿ

k“0

Dk ´
T

2
´W ě

K
ÿ

k“1

Dk ´W, (60)

where the last inequality is by Lemma 3. Hence, we have

1

t

t
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

“
1

t

D0´1
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

`

řK
k“1 Dk

t

1
řK

k“1 Dk

t
ÿ

τ“D0

E

«

ÿ

i

Qipτq

ff

ď
1

t

D0´1
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

`
t`W

t

1
řK

k“1 Dk

řK
k“0 Dk´1
ÿ

τ“D0

E

«

ÿ

i

Qipτq

ff

. (61)

Summing both sides of (59) over k “ 0, 1, . . . ,K ´ 1, we have

E

«

L

˜

K
ÿ

k“0

Dk

¸

´ L pD0q

ff

ď ´δ

řK
k“0 Dk´1
ÿ

τ“D0

E

«

ÿ

i

Qipτq

ff

` 821KI2J2U2
SU

2
AT

2.

Hence, we have
řK

k“0 Dk´1
ÿ

τ“D0

E

«

ÿ

i

Qipτq

ff

ď
1

δ
E

«

´L

˜

K
ÿ

k“0

Dk

¸

` L pD0q

ff

`
821KI2J2U2

SU
2
AT

2

δ

Dividing both sides by
řK

k“1 Dk, we have

1
řK

k“1 Dk

řK
k“0 Dk´1
ÿ

τ“D0

E

«

ÿ

i

Qipτq

ff

ď
1

δ
řK

k“1 Dk

E

«

´L

˜

K
ÿ

k“0

Dk

¸

` L pD0q

ff

`
821KI2J2U2

SU
2
AT

2

δ
řK

k“1 Dk

Zixian Yang, R. Srikant, Lei Ying

ď
1

δ
řK

k“1 Dk

E rL pD0qs `
1642I2J2U2

SU
2
AT

δ
, (62)

where the last inequality uses Lemma 3. Substituting (62) into (61), we have

1

t

t
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

ď
1

t

D0´1
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

`
t`W

t

˜

1

δ
řK

k“1 Dk

E rL pD0qs `
1642I2J2U2

SU
2
AT

δ

¸

ď
IT 2UA

t
`

ˆ

1`
W

t

˙

˜

IT 2U2
A

δ
řK

k“1 Dk

`
1642I2J2U2

SU
2
AT

δ

¸

ď
IT 2UA

t
`

ˆ

1`
W

t

˙ˆ

IT 2U2
A

δpt` 1´ T q
`

1642I2J2U2
SU

2
AT

δ

˙

,

where the second inequality is obtained by using Lemma 3 and Lemma 5 to bound Qipτq and LpD0q with the initial
condition Qip0q “ 0, and the last inequality holds since

řK
k“1 Dk “

řK
k“0 Dk ´D0 ě t` 1´D0 ě t` 1´ T by (60)

and Lemma 3. The finite-round bound in Theorem 1 is proved.

Letting t Ñ 8, we obtain

lim sup
tÑ8

1

t

t
ÿ

τ“1

E

«

ÿ

i

Qipτq

ff

ď
1642I2J2U2

SU
2
AT

δ
.

The asymptotic bound in Theorem 1 is proved.

C PROOFS OF ALL LEMMAS

In this section, we present the proofs of all the lemmas that appeared in the paper.

C.1 Proof of Lemma 1

Lemma 1. For any k ě 0, we have

P̂tkpEc
tk,j

q :“ PrpEc
tk,j

|Qptkq “ q,Hptkq “ h q ď
I

T 2
,

where

Etk,j :“
"

for all i, τ P

„

Dk ´
T

8
, Dk `Dk`1 ´ 1

ȷ

, |µ̂i,jptk ` τq ´ µi,jptk ` τq| ď bi,jptk ` τq

*

.

Proof. We define another event as follows:

E 1
tk,j

:“
#

for all i, τ P

„

Dk ´
T

8
, Dk `Dk`1 ´ 1

ȷ

,

ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ď

d

4U2
S log T

N̂i,jptk ` τq

+

.

We first show that E 1
tk,j

Ď Etk,j . Suppose we have

ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ď

d

4U2
S log T

N̂i,jptk ` τq
.

Then

1

µ̂i,jptk ` τq
´

d

4U2
S log T

N̂i,jptk ` τq
ď

1

µi,jptk ` τq
ď

1

µ̂i,jptk ` τq
`

d

4U2
S log T

N̂i,jptk ` τq
,

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

which implies that

1

1
µ̂i,jptk`τq `

c

4U2
S log T

N̂i,jptk`τq

ď µi,jptk ` τq ď
1

max

"

1
µ̂i,jptk`τq ´

c

4U2
S log T

N̂i,jptk`τq
, 1

*

due to the fact that µi,jptk ` τq ď 1. Note that we also have

1

1
µ̂i,jptk`τq `

c

4U2
S log T

N̂i,jptk`τq

ď
1
1

µ̂i,jptk`τq

“ µ̂i,jptk ` τq ď
1

max

"

1
µ̂i,jptk`τq ´

c

4U2
S log T

N̂i,jptk`τq
, 1

*

due to the fact that µ̂i,jptk ` τq ď 1. Hence,

|µ̂i,jptk ` τq ´ µi,jptk ` τq| ď
1

max

"

1
µ̂i,jptk`τq ´

c

4U2
S log T

N̂i,jptk`τq
, 1

* ´
1

1
µ̂i,jptk`τq `

c

4U2
S log T

N̂i,jptk`τq

“

1
µ̂i,jptk`τq `

c

4U2
S log T

N̂i,jptk`τq
´max

"

1
µ̂i,jptk`τq ´

c

4U2
S log T

N̂i,jptk`τq
, 1

*

max

"

1
µ̂i,jptk`τq ´

c

4U2
S log T

N̂i,jptk`τq
, 1

*ˆ

1
µ̂i,jptk`τq `

c

4U2
S log T

N̂i,jptk`τq

˙

ď

2

c

4U2
S log T

N̂i,jptk`τq

max

"

1
µ̂i,jptk`τq ´

c

4U2
S log T

N̂i,jptk`τq
, 1

*ˆ

1
µ̂i,jptk`τq `

c

4U2
S log T

N̂i,jptk`τq

˙

ď2

d

4U2
S log T

N̂i,jptk ` τq
,

where the last inequality is due to the fact that 1
µ̂i,jptk`τq ě 1. Hence, we have

|µ̂i,jptk ` τq ´ µi,jptk ` τq| ď min

#

2

d

4U2
S log T

N̂i,jptk ` τq
, 1

+

“ bi,jptk ` τq

since µ̂i,jptk ` τq, µi,jptk ` τq P r0, 1s. E 1
tk,j

Ď Etk,j is proved.

Next, it remains to show that

P̂tkpE 1c
tk,j

q ď
I

T 2
.

Consider the event

E 1
tk,i,j,τ

:“

#

ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ď

d

4U2
S log T

N̂i,jptk ` τq

+

.

We have

P̂tk

`

E 1c
tk,i,j,τ

˘

“P̂tk

˜

ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ą

d

4U2
S log T

N̂i,jptk ` τq

¸

“P̂tk

˜

ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ą

d

4U2
S log T

N̂i,jptk ` τq
, N̂i,jptk ` τq ą 4 log T

¸

` P̂tk

˜

ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ą

d

4U2
S log T

N̂i,jptk ` τq
, N̂i,jptk ` τq ď 4 log T

¸

.

Zixian Yang, R. Srikant, Lei Ying

Since

P̂tk

˜

ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ą

d

4U2
S log T

N̂i,jptk ` τq
, N̂i,jptk ` τq ď 4 log T

¸

ďP̂tk

ˆ
ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ą US

˙

“ 0,

we then have

P̂tk

`

E 1c
tk,i,j,τ

˘

“P̂tk

˜

ˇ

ˇ

ˇ

ˇ

1

µ̂i,jptk ` τq
´

1

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ą

d

4U2
S log T

N̂i,jptk ` τq
, N̂i,jptk ` τq ą 4 log T

¸

“P̂tk

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ϕ̂i,jptk ` τq ´
N̂i,jptk ` τq

µi,jptk ` τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą

b

4N̂i,jptk ` τqU2
S log T , N̂i,jptk ` τq ą 4 log T

¸

. (63)

Define a random mapping fj that maps a time slot to another time slot such that if y “ fjpxq then y is the time slot
when server j picked the job that was being served at server j in time slot x. If server j was idling in time slot x, then let
fjpxq “ x. That is,

fjpxq :“ max
!

t : t ď x, î˚j ptq “ Ijpxq
)

.

Let M1 be such that tk `M1 is the first time slot when server j picked queue i at or after tk, i,e.,

M1 :“ min
!

m : m ě 0, î˚j ptk `mq “ i
)

.

Let M2 :“ M1 ` pSi,jptk `M1q ´ 1qηjptk `M1q. Then tk `M2 is the time slot when the job picked by server j at time
tk `M1 was completed or if server j was idling because the selected waiting queue is empty at tk `M1, M2 “ M1. Hence,
tk `M1 “ fjptk `M2q. Note that M1,M2 are random variables. Then according to the algorithm, we have

ϕ̂i,jptk ` τq

“γτ´M2 ϕ̂i,jptk `M2q

`

τ
ÿ

m“M2`1

γτ´m`Mi,jptk`m´1q1i,jptk `m´ 1qηjptk `m´ 1qrMi,jptk `m´ 1q ` 1s

“γτ´M2 ϕ̂i,jptk `M2q

`

τ
ÿ

m“M2`1

γτ´m`Si,jpfjptk`m´1qq´11i,jptk `m´ 1qηjpfjptk `m´ 1qqSi,jpfjptk `m´ 1qq,

where the summation only includes the time slots when there is job completion of queue i at server j. This can be transformed
into summing over the time slots when server j is available and picks queue i, i.e.,

ϕ̂i,jptk ` τq

“γτ´M2 ϕ̂i,jptk `M2q `

M3
ÿ

m“M1`1

γτ´m1î˚j ptk`m´1q“i ηjptk `m´ 1qSi,jptk `m´ 1q

where M3 is a random variable such that tk `M3 “ fjptk ` τq. Since there is no job of type i starting at server j in the
time interval rtk, tk `M1 ´ 1s, we have

ϕ̂i,jptk ` τq

“γτ´M2 ϕ̂i,jptk `M2q `

M3
ÿ

m“1

γτ´m1î˚j ptk`m´1q“i ηjptk `m´ 1qSi,jptk `m´ 1q.

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

We claim that there is no job completion of type i at server j in the time interval rtk ` T
8 , tk `M2 ´ 1s if M2 ´ 1 ě T

8 .
We can prove it by contradiction. Suppose there is a job of type i that was completed at server j in rtk ` T

8 , tk `M2 ´ 1s.
Then the job must start at or after tk since US ď T

8 . Also, the job must start before tk `M1 since there is another job at
server j starting at tk `M1 and finishes at tk `M2 by the definition of M1 and M2. Therefore, the job that was completed
at server j in rtk ` T

8 , tk `M2 ´ 1s should start in the time interval rtk, tk `M1 ´ 1s. However, by the definition of M1,
there should not be any job of type i starting at server j in rtk, tk `M1 ´ 1s, which is a contradiction. Based on the claim,
if M2 ´ 1 ě T

8 , since there is no job completion, from the algorithm we know

ϕ̂i,jptk `M2q “ γM2´
T
8 ϕ̂i,j

ˆ

tk `
T

8

˙

“ γM2´mintT
8 ,M2uϕ̂i,j

ˆ

tk `min

"

T

8
,M2

*˙

where the last equality holds since min
␣

T
8 ,M2

(

“ T
8 . If M2 ´ 1 ă T

8 , then we have

ϕ̂i,jptk `M2q “ γM2´mintT
8 ,M2uϕ̂i,j

ˆ

tk `min

"

T

8
,M2

*˙

since min
␣

T
8 ,M2

(

“ M2. Combining the above two cases, we have

γτ´M2 ϕ̂i,jptk `M2q “ γτ´mintT
8 ,M2uϕ̂i,j

ˆ

tk `min

"

T

8
,M2

*˙

.

We want to upper bound this term. Since

ϕ̂i,j

ˆ

tk `min

"

T

8
,M2

*˙

ď US

8
ÿ

t“0

γt “
TUS

8 log T
,

we have

γτ´mintT
8 ,M2uϕ̂i,j

ˆ

tk `min

"

T

8
,M2

*˙

ď

ˆ

1´
8 log T

T

˙τ´mintT
8 ,M2u TUS

8 log T

ď

ˆ

1´
8 log T

T

˙Dk´
T
4 TUS

8 log T
ď

ˆ

1´
2 log T

T {4

˙
T
4 TUS

8 log T
ď expp´2 log T q

TUS

8 log T
“

US

8T log T
,

where the second inequality holds since τ ě Dk ´ T
8 , the third inequality uses the bound on Dk in Lemma 3, and the last

inequality is due to the fact that
`

1´ x
n

˘n
ď expp´xq for any x ď n and n P N. Therefore,

ϕ̂i,jptk ` τq ď
US

8T log T
`

M3
ÿ

m“1

γτ´m1î˚j ptk`m´1q“i ηjptk `m´ 1qSi,jptk `m´ 1q. (64)

Similarly, we have

N̂i,jptk ` τq ď
1

8T log T
`

M3
ÿ

m“1

γτ´m1î˚j ptk`m´1q“i ηjptk `m´ 1q. (65)

Note that ErSi,jptk ` τqs “ 1
µi,jptk`τq . Let ϵm :“ 1î˚j ptk`m´1q“iηjptk `m´ 1q. Substituting (64) and (65) into (63), we

have

P̂tk

`

E 1c
tk,i,j,τ

˘

“P̂tk

ˆ

ˇ

ˇ

ˇ
ϕ̂i,jptk ` τq ´ ErSi,jptk ` τqsN̂i,jptk ` τq

ˇ

ˇ

ˇ
ą

b

4N̂i,jptk ` τqU2
S log T , N̂i,jptk ` τq ą 4 log T

˙

ďP̂tk

˜
ˇ

ˇ

ˇ

ˇ

ˇ

M3
ÿ

m“1

γτ´mϵmSi,jptk `m´ 1q ´
M3
ÿ

m“1

γτ´mϵmErSi,jptk ` τqs

ˇ

ˇ

ˇ

ˇ

ˇ

ą

b

4N̂i,jptk ` τqU2
S log T ´

US

8T log T
, N̂i,jptk ` τq ą 4 log T

¸

Zixian Yang, R. Srikant, Lei Ying

ďP̂tk

˜
ˇ

ˇ

ˇ

ˇ

ˇ

M3
ÿ

m“1

γτ´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq

ˇ

ˇ

ˇ

ˇ

ˇ

`

M3
ÿ

m“1

γτ´mϵm |ErSi,jptk `m´ 1qs ´ ErSi,jptk ` τqs| ą

b

4N̂i,jptk ` τqU2
S log T ´

US

8T log T
,

N̂i,jptk ` τq ą 4 log T

¸

,

where in the last inequality we add and subtract the term ErSi,jptk `m´ 1qs and use the triangle inequality. We note that
that in a stationary system, ErSi,jptqs is a constant and the last step is not needed. Recall Assumption 1 on the time-varying
service time. We have

|ErSi,jptk `m´ 1qs ´ ErSi,jptk ` τqs| ď 1

T

ˆ

1

γ

˙τ´m

.

Hence, we have

P̂tk

`

E 1c
tk,i,j,τ

˘

ďP̂tk

˜
ˇ

ˇ

ˇ

ˇ

ˇ

M3
ÿ

m“1

γτ´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ą

b

4N̂i,jptk ` τqU2
S log T ´

US

8T log T
´

M3

T
, N̂i,jptk ` τq ą 4 log T

¸

. (66)

Recall that tk`M3 “ fjptk`τq. Hence, tk`M3 P rtk`τ´US`1, tk`τ s. Since US ď T
8 and τ P rDk´

T
8 , Dk`Dk`1´1s,

we have Dk ´ T
4 ` 1 ď M3 ď Dk `Dk`1 ´ 1. By the bound on Dk and Dk`1 in Lemma 3, we further have

T

4
` 1 ď M3 ď 2T ´ 1. (67)

Hence, we have

US

8T log T
`

M3

T
ď

US

8T log T
` 2 ď p2´

?
3q
b

4U2
Splog T q

2 ď p2´
?
3q

b

U2
SN̂i,jptk ` τq log T , (68)

where the second inequality holds for T ě e5, and the last inequality holds when N̂i,jptk ` τq ą 4 log T . Based on (68),
we can continue to bound (66) and obtain

P̂tk

`

E 1c
tk,i,j,τ

˘

ďP̂tk

˜
ˇ

ˇ

ˇ

ˇ

ˇ

M3
ÿ

m“1

γτ´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq

ˇ

ˇ

ˇ

ˇ

ˇ

ą

b

3N̂i,jptk ` τqU2
S log T

¸

. (69)

Note that N̂i,jptk`τq ě
řM3

m“1 γ
τ´m1î˚j ptk`m´1q“i ηjptk`m´1q “

řM3

m“1 γ
τ´mϵm. Hence, we can further bound (69)

as

P̂tk

`

E 1c
tk,i,j,τ

˘

ďP̂tk

˜

ˇ

ˇ

ˇ

řM3

m“1 γ
τ´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq

ˇ

ˇ

ˇ

b

řM3

m“1 γ
τ´mϵm

ą

b

3U2
S log T

¸

.

Since M3 ď τ and γ ă 1, we have
a

γM3´τ ě 1. Hence, we have

P̂tk

`

E 1c
tk,i,j,τ

˘

ďP̂tk

˜

γM3´τ
ˇ

ˇ

ˇ

řM3

m“1 γ
τ´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq

ˇ

ˇ

ˇ

a

γM3´τ

b

řM3

m“1 γ
τ´mϵm

ą

b

3U2
S log T

¸

“P̂tk

˜

ˇ

ˇ

ˇ

řM3

m“1 γ
M3´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq

ˇ

ˇ

ˇ

b

řM3

m“1 γ
M3´mϵm

ą

b

3U2
S log T

¸

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

ďP̂tk

˜

ˇ

ˇ

ˇ

řM3

m“1 γ
M3´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq

ˇ

ˇ

ˇ

b

řM3

m“1 γ
2pM3´mqϵm

ą

b

3U2
S log T

¸

, (70)

where we added “2” in the last inequality because we want to use the Hoeffding-type inequality for self-normalized
means (Garivier and Moulines, 2008, Theorem 18) later in the proof.

Consider the event E 1
tk,i,j

:“
ŞDk`Dk`1´1

τ“Dk´
T
8

E 1
tk,i,j,τ

. Then from the result (70), we have

P̂tk

`

E 1c
tk,i,j

˘

ďP̂tk

˜

there exists τ P

„

Dk ´
T

8
, Dk `Dk`1 ´ 1

ȷ

,

ˇ

ˇ

ˇ

řM3

m“1 γ
M3´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq

ˇ

ˇ

ˇ

b

řM3

m“1 γ
2pM3´mqϵm

ą

b

3U2
S log T

¸

ďP̂tk

˜

there exists M P

„

T

4
` 1, 2T ´ 1

ȷ

,

ˇ

ˇ

ˇ

řM
m“1 γ

M´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq
ˇ

ˇ

ˇ

b

řM
m“1 γ

2pM´mqϵm

ą

b

3U2
S log T

¸

ď

2T´1
ÿ

M“T
4 `1

P̂tk

˜

ˇ

ˇ

ˇ

řM
m“1 γ

M´mϵm pSi,jptk `m´ 1q ´ ErSi,jptk `m´ 1qsq
ˇ

ˇ

ˇ

b

řM
m“1 γ

2pM´mqϵm

ą

b

3U2
S log T

¸

. (71)

where the second inequality uses the bound (67) on M3, and the last inequality uses the union bound.

Let us view the conditional probability P̂tk as a new probability measure. Then Êtk is the expectation under this measure.
Note that pSi,jptk `m´ 1qq

8

m“1 is a sequence of independent bounded random variables under this new measure since
they are independent of Qptkq and Hptkq, which also implies that

ErSi,jptk `m´ 1qs “ Êtk rSi,jptk `m´ 1qs. (72)

Let Fm defined as

Fm :“ σ
`

pSptk ` n´ 1qqmn“1, pAptk ` n´ 1qqm`1
n“1 , pQptk ` n´ 1qqm`1

n“1 , pHptk ` n´ 1qqm`1
n“1

˘

where σp¨q denotes the σ-algebra generated by the random variables. Note that

σpSi,jptkq, ..., Si,jptk `m´ 1qq Ă Fm

and for any n ą m, Si,jptk ` n´ 1q is independent of Fm. Recall that ϵm :“ 1î˚j ptk`m´1q“iηjptk `m´ 1q. Since the
scheduling decision at time tk `m´ 1 is determined by Qptk `m´ 1q and Hptk `m´ 1q, 1î˚j ptk`m´1q“i is Fm´1-
measurable. Since ηjptk `m´ 1q is determined by Aptk `m´ 1q, Qptk `m´ 1q, and Hptk `m´ 1q, ηjptk `m´ 1q
is also Fm´1-measurable. Therefore, ϵm is Fm´1-measurable, i.e., pϵmq

8

m“1 is a previsible (or predictable) sequence of
Bernoulli random variables. We restate the Hoeffding-type inequality for self-normalized means in (Garivier and Moulines,
2008, Theorem 18), (Garivier and Moulines, 2011) in our setting as follows:

Theorem 2 (Hoeffding-type inequality for self-normalized means, Theorem 18 in (Garivier and Moulines, 2008)).
Let pXmqmě1 be a sequence of nonnegative independent bounded random variables with Xm P r0, Bs. σ pX1, . . . , Xmq Ă

Fm and for n ą m, Xn is independent of Fm. For all integers M and all β ą 0,

P̂tk

˜

řM
m“1 γ

M´mXmϵm ´
řM

m“1 γ
M´mÊtk rXmsϵm

b

řM
m“1 γ

2pM´mqϵm

ą β

¸

Zixian Yang, R. Srikant, Lei Ying

ď

S

log
řM

m“1 γ
M´m

logp1` ζq

W

exp

ˆ

´
2β2

B2

ˆ

1´
ζ2

16

˙˙

for all ζ ą 0.

Applying Theorem 2 with Xm “ Si,jptk `m´ 1q, β “
a

3U2
S log T , and B “ US, we have

P̂tk

˜
řM

m“1 γ
M´mϵm

´

Si,jptk `m´ 1q ´ Êtk rSi,jptk `m´ 1qs
¯

b

řM
m“1 γ

2pM´mqϵm

ą

b

3U2
S log T

¸

ď

˜

log
řM

m“1 γ
M´m

logp1` ζq
` 1

¸

exp

ˆ

´6

ˆ

1´
ζ2

16

˙

log T

˙

ď

˜

logp T
8 log T q

logp1` ζq
` 1

¸

exp

ˆ

´6

ˆ

1´
ζ2

16

˙

log T

˙

for all ζ ą 0 and all positive integers M , where the last inequality holds since
řM

m“1 γ
M´m “

1´γM

1´γ ď 1
1´γ “ T

8 log T .
Although in (Garivier and Moulines, 2008) the bound is only proved for overestimation, the proof can be extended to show
that the bound also holds for underestimation. Specifically, note that

Êtk

”

Êtk rSi,jptk `m´ 1qs ´ Si,jptk `m´ 1q
ı

“ 0

and

Êtk rSi,jptk `m´ 1qs ´ US ď Êtk rSi,jptk `m´ 1qs ´ Si,jptk `m´ 1q ď Êtk rSi,jptk `m´ 1qs.

Hence, considering the random variable Êtk rSi,jptk `m´ 1qs ´ Si,jptk `m´ 1q, from (Devroye et al., 1996, Lemma
8.1), for any λ ą 0, we have

log Êtk rexpp´λSi,jptk `m´ 1qqs ď
λ2U2

S

8
´ λÊtk rSi,jptk `m´ 1qs.

Hence, we can apply the same proof in (Garivier and Moulines, 2008, Theorem 18) by replacing λ in the proof with ´λ.
Then for underestimation, we also have the same bound, i.e.,

P̂tk

˜
řM

m“1 γ
M´mϵm

´

Êtk rSi,jptk `m´ 1qs ´ Si,jptk `m´ 1q
¯

b

řM
m“1 γ

2pM´mqϵm

ą

b

3U2
S log T

¸

ď

˜

logp T
8 log T q

logp1` ζq
` 1

¸

exp

ˆ

´6

ˆ

1´
ζ2

16

˙

log T

˙

for all ζ ą 0 and all positive integers M . Taking the union bound over underestimation and overestimation, we have

P̂tk

˜

ˇ

ˇ

ˇ

řM
m“1 γ

M´mϵm

´

Si,jptk `m´ 1q ´ Êtk rSi,jptk `m´ 1qs
¯
ˇ

ˇ

ˇ

b

řM
m“1 γ

2pM´mqϵm

ą

b

3U2
S log T

¸

ď2

˜

logp T
8 log T q

logp1` ζq
` 1

¸

exp

ˆ

´6

ˆ

1´
ζ2

16

˙

log T

˙

for all ζ ą 0 and all positive integers M . Setting ζ “ 0.3, we have

P̂tk

˜

ˇ

ˇ

ˇ

řM
m“1 γ

M´mϵm

´

Si,jptk `m´ 1q ´ Êtk rSi,jptk `m´ 1qs
¯
ˇ

ˇ

ˇ

b

řM
m“1 γ

2pM´mqϵm

ą

b

3U2
S log T

¸

ď
2 log T

T 5 log 1.3
(73)

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

for all T ě e5 and all positive integers M .

Combining (71), (72), and (73), we have

P̂tk

`

E 1c
tk,i,j

˘

ď

2T´1
ÿ

M“T
4 `1

2 log T

T 5 log 1.3
ď

1

T 2

for all T ě e5. Taking the union bound over i, we have

P̂tkpE 1c
tk,j

q ď

I
ÿ

i“1

P̂tk

`

E 1c
tk,i,j

˘

ď
I

T 2
.

C.2 Proof of Lemma 2

Lemma 2. For any j and any k ě 0,

Dk`Dk`1´1
ÿ

τ“Dk

bIjptk`τq,jpfjptk ` τqqηjpfjptk ` τqq1Ijptk`τq,jptk ` τq ď 99IUS

?
T log T.

Proof. Notice that the summation can be rewritten as

Dk`Dk`1´1
ÿ

τ“Dk

bIjptk`τq,jpfjptk ` τqqηjpfjptk ` τqq1Ijptk`τq,jptk ` τq

“
ÿ

i

Dk`Dk`1´1
ÿ

τ“Dk

bi,jpfjptk ` τqqηjpfjptk ` τqq1i,jptk ` τq1Ijptk`τq“i. (74)

The summation term for queue i can be rewritten as

Dk`Dk`1´1
ÿ

τ“Dk

bi,jpfjptk ` τqqηjpfjptk ` τqq1i,jptk ` τq1Ijptk`τq“i “

N
ÿ

n“1

bi,jpτnq, (75)

where N is the total number of times when server j picks queue i such that server j is not idling and the completion time is
in the time interval rtk `Dk, tk `Dk `Dk`1 ´ 1s, and τn is the time slot for the nth time.

From (33), we have fjptk ` τq P rtk, tk ` 2T ´ 1s, and thus τn P rtk, tk ` 2T ´ 1s. Divide the interval rtk, tk ` 2T ´ 1s

into parts where each part contains
Q

T
16 log T

U

samples. Then there are at most r32 log T s parts. Consider the mth part such
that

τn P

„

tk ` pm´ 1q

R

T

16 log T

V

, tk `m

R

T

16 log T

V

´ 1

ȷ

.

Consider the summation in the mth part:

Nm
ÿ

n“1

bi,jpτm,nq,

where Nm is the total number of times in the mth part such that
ř

m Nm “ N , and τm,n is the time slot for the nth time in
the mth part. If Nm “ 0, then

řNm

n“1 bi,jpτm,nq “ 0. We now consider the case where Nm ą 0 and derive an upper bound
for the summation. First, we know that

N̂i,jpτm,1q ě 0, and bi,jpτm,1q ď 1.

Zixian Yang, R. Srikant, Lei Ying

Consider the contribution of the completion of the job starting at τm,1 to N̂i,jpτm,2q. Since τm,2 ´ τm,1 ď

Q

T
16 log T

U

and
T

16 log T ě 1, we have

N̂i,jpτm,2q ě

ˆ

1´
8 log T

T

˙τm,2´τm,1´1

ě
1

2
,

where the last inequality follows from the fact that p1´xqy ě 1´xy for any x P r0, 1s and y ě 1. For a general n, we have

N̂i,jpτm,n`1q ě

n
ÿ

l“1

ˆ

1´
8 log T

T

˙τm,n`1´τm,l´1

.

Since τm,n`1 ´ τm,l ď

Q

T
16 log T

U

for any l, we have

ˆ

1´
8 log T

T

˙τm,n`1´τm,l´1

ě
1

2
,

and thus

N̂i,jpτm,n`1q ě

n
ÿ

l“1

ˆ

1´
8 log T

T

˙τm,n`1´τm,l´1

ě
n

2
.

Hence, we have

bi,jpτm,n`1q ď

d

16U2
S log T

N̂i,jpτm,n`1q
ď US

c

32 log T

n
.

From the analysis above, we obtain

Nm
ÿ

n“1

bi,jpτm,nq ď 1`
Nm
ÿ

n“2

US

c

32 log T

n´ 1
ď 1` US

a

128pNm ´ 1q log T ď 1`
?
8TUS

where the last inequality follows from the fact that Nm ď

Q

T
16 log T

U

.

Therefore, since there are at most r32 log T s parts, we conclude that

N
ÿ

n“1

bi,jpτnq ď r32 log T s p1`
?
8TUSq ď 99US

?
T log T.

Combining the above bound with (74) and (75), we have

Dk`Dk`1´1
ÿ

τ“Dk

bIjptk`τq,jpfjptk ` τqqηjpfjptk ` τqq1Ijptk`τq,jptk ` τq ď 99IUS

?
T log T.

C.3 Proof of Lemma 3

Lemma 3. Suppose W ď T
2 . Then T

2 ď Dptq ď T
2 `W ď T for any t.

Proof. Recall the definition of Dptq:

Dptq “min
n

n
ÿ

l“0

wpτlptqq

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

s.t.
n
ÿ

l“0

wpτlptqq ě
T

2
.

Recall that n˚ptq is the optimal solution to the above optimization problem. Note that Dptq “
řn˚

ptq
l“0 wpτlptqq ě

T
2 and

řn˚
ptq´1

l“0 wpτlptqq ă
T
2 . Hence, we have

Dptq “

n˚
ptq

ÿ

l“0

wpτlptqq “

n˚
ptq´1
ÿ

l“0

wpτlptqq ` wpτn˚ptqptqq ď
T

2
`W,

where the last inequality is due to the bound wpτq ď W for any τ . Therefore, for any t, we have

T

2
ď Dptq ď

T

2
`W ď T,

where the last inequality is by W ď T
2 .

C.4 Proof of Lemma 4

Lemma 4. For any i, t, Qipt` 1q ď max
!

J,Qiptq `Aiptq ´
ř

j 1i,jptq
)

.

Proof. Fix i and t. Consider two cases. The first case is that there exists j such that ηjptq “ 0 (server j is idling) and
Ijptq “ i. The second case is that for all servers j, ηjptq “ 1 or Ijptq ‰ i.

Notice that for the first case we must have

Q̃iptq `Aiptq “ 0

since server j is scheduled to i and is idling. Hence, we have

Qiptq `Aiptq ď Q̃iptq ` J `Aiptq “ J.

Hence, by the queue dynamics (1) and the above inequality, we have

Qipt` 1q ď Qiptq `Aiptq ď J

for the first case. For the second case, we have

Qipt` 1q “Qiptq `Aiptq ´
ÿ

j

1i,jptqηjptq

“Qiptq `Aiptq ´
ÿ

j

1i,jptq,

where the second inequality holds since for any server j, either ηjptq “ 1 or 1i,jptq “ 0.

Combining the two cases, we obtain that for any i, t,

Qipt` 1q ď max

#

J,Qiptq `Aiptq ´
ÿ

j

1i,jptq

+

.

C.5 Proof of Lemma 5

Lemma 5. For any t, i, τ ě 0, we have

1. Qiptq ´ Jτ ď Qipt` τq ď Qiptq ` τUA;

2.
ř

i Qipt` τq ě
ř

i Qiptq ´ Jτ .

Zixian Yang, R. Srikant, Lei Ying

Proof. (1) holds since Qiptq can increase at most UA and can decrease at most J for each time slot by the queue dynamics (1).

(2) holds since the total queue length can decrease by at most J for each time slot. This is because there are J servers in
total and each server can serve at most one job at a time.

C.6 Proof of Lemma 6

Lemma 6.
ř

i qi ď
1

Dk`1

řDk`Dk`1´1
τ“Dk

Êtk r
ř

i Qiptk ` τq ` 2JT s.

Proof. By Lemma 5, we have
ÿ

i

Qiptk ` τq ě
ÿ

i

Qiptkq ´ Jτ ě
ÿ

i

Qiptkq ´ 2JT, (76)

where the last inequality holds since τ ď Dk `Dk`1 ´ 1 ď 2T by Lemma 3. Based on (76), we have

ÿ

i

qi ď
1

Dk`1

Dk`Dk`1´1
ÿ

τ“Dk

Êtk

«

ÿ

i

Qiptk ` τq ` 2JT

ff

.

C.7 Proof of Lemma 7

Lemma 7. For any k ě 0, i P t1, . . . , Iu, j P t1, . . . , Ju, we have

P̂tk

`

Ec
X,tk,i,j

˘

:“ Pr
`

Ec
X,tk,i,j

|Qptkq “ q,Hptkq “ h
˘

ď
1

T 2
,

where

EX,tk,i,j :“
#

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iηjptk ` τq pErXi,jptk ` τqs ´Xi,jptk ` τqq ě ´US

a

2T log T
ÿ

i

qi

+

.

Proof. If server j is not idling, then Xi,jptq “ Si,jptq by definition. Also note that Xi,jptq ď Si,jptq by definition. Hence,
we have

EX,tk,i,j

Ď

#

Dk`Dk`1´1
ÿ

τ“Dk

vjptk ` τq1î˚j ptk`τq“iηjptk ` τq pErSi,jptk ` τqs ´ Si,jptk ` τqq ě ´US

a

2T log T
ÿ

i

qi

+

“

#

Dk`1
ÿ

m“1

vjptk `Dk `m´ 1q1î˚j ptk`Dk`m´1q“iηjptk `Dk `m´ 1q

pErSi,jptk `Dk `m´ 1qs ´ Si,jptk `Dk `m´ 1qq ě ´US

a

2T log T
ÿ

i

qi

+

.

Let ϵm :“ 1î˚j ptk`Dk`m´1q“iηjptk`Dk`m´1q. Let Spmq

i,j :“ Si,jptk`Dk`m´1q. Let vpmq

j :“ vjptk`Dk`m´1q.
Then

P̂tk

`

Ec
X,tk,i,j

˘

ďP̂tk

˜

Dk`1
ÿ

m“1

ϵmv
pmq

j

´

ErS
pmq

i,j s ´ S
pmq

i,j

¯

ă ´US

a

2T log T
ÿ

i

qi

¸

“P̂tk

¨

˝

řDk`1

m“1 ϵmv
pmq

j

´

ErS
pmq

i,j s ´ S
pmq

i,j

¯

?
T

ă ´US

a

2 log T
ÿ

i

qi

˛

‚

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

ďP̂tk

¨

˝

řDk`1

m“1 ϵmv
pmq

j

´

ErS
pmq

i,j s ´ S
pmq

i,j

¯

b

řDk`1

m“1 ϵm

ă ´US

a

2 log T
ÿ

i

qi

˛

‚

“P̂tk

¨

˝

řDk`1

m“1 ϵmv
pmq

j

´

S
pmq

i,j ´ ErS
pmq

i,j s

¯

b

řDk`1

m“1 ϵm

ą US

a

2 log T
ÿ

i

qi

˛

‚, (77)

where the last inequality holds since
řDk`1

m“1 ϵm ď Dk`1 ď T by Lemma 3.

Let us view the conditional probability P̂tk as a new probability measure. Then Êtk is the expectation under this measure.

Note that
´

S
pmq

i,j

¯8

m“1
is a sequence of independent bounded random variables under this new measure since they are

independent of Qptkq and Hptkq, which also implies that

E
”

S
pmq

i,j

ı

“ Êtk

”

S
pmq

i,j

ı

.

Note that given Qptkq and Hptkq, v
pmq

j is a constant, which implies

v
pmq

j Êtk

”

S
pmq

i,j

ı

“ Êtk

”

v
pmq

j S
pmq

i,j

ı

.

Therefore, from (77), we have

P̂tk

`

Ec
X,tk,i,j

˘

ďP̂tk

¨

˝

řDk`1

m“1 ϵm

´

v
pmq

j S
pmq

i,j ´ Êtk rv
pmq

j S
pmq

i,j s

¯

b

řDk`1

m“1 ϵm

ą US

a

2 log T
ÿ

i

qi

˛

‚. (78)

Let Fm defined as

Fm :“σ

ˆ

pSptk `Dk ` n´ 1qqmn“1, pAptk `Dk ` n´ 1qqm`1
n“1 ,

pQptk `Dk ` n´ 1qqm`1
n“1 , pHptk `Dk ` n´ 1qqm`1

n“1

˙

where σp¨q denotes the σ-algebra generated by the random variables. Note that

σ
´

v
p1q
j S

p1q
i,j , v

p2q
j S

p2q
i,j , . . . , v

pmq

j S
pmq

i,j

¯

Ă Fm

and for any n ą m, vpnqj S
pnq
i,j is independent of Fm. Also note that pϵmq

8

m“1 is a previsible (predictable) sequence of

Bernoulli random variables, i.e., ϵm is Fm´1-measurable. Note that 0 ď v
pnq
j S

pnq
i,j ď US

ř

i qi. Based on the above
conditions, we can then apply Theorem 2 (Hoeffding-type inequality for self-normalized means, Theorem 18 in (Garivier
and Moulines, 2008)) with Xm “ v

pmq

j S
pmq

i,j , β “ US

?
2 log T

ř

i qi, and B “ US

ř

i qi to obtain

P̂tk

¨

˝

řDk`1

m“1 ϵm

´

v
pmq

j S
pmq

i,j ´ Êtk rv
pmq

j S
pmq

i,j s

¯

b

řDk`1

m“1 ϵm

ą US

a

2 log T
ÿ

i

qi

˛

‚

ď

ˆ

logDk`1

logp1` ζq
` 1

˙

exp

ˆ

´4

ˆ

1´
ζ2

16

˙

log T

˙

.

Setting ζ “ 0.3 and by the bound on Dk`1 in Lemma 3, we have

P̂tk

¨

˝

řDk`1

m“1 ϵm

´

v
pmq

j S
pmq

i,j ´ Êtk rv
pmq

j S
pmq

i,j s

¯

b

řDk`1

m“1 ϵm

ą US

a

2 log T
ÿ

i

qi

˛

‚ď
1

T 2
(79)

for T ě e5. Substituting (79) into (78), the lemma is proved.

Zixian Yang, R. Srikant, Lei Ying

D ADDITIONAL DETAILS OF THE SIMULATIONS

In this section, we present more details of the simulations.

D.1 Settings

For the stationary setting, we set the arrival rates λi “ 0.75 for all i P t1, 2, . . . , 10u. We set the service rates as follows:

µ2k`1,2l`1 “ 0.9, µ2k`1,2l`2 “ 0.6, µ2k`2,2l`1 “ 0.5, µ2k`2,2l`2 “ 1.0,

for all k, l P t0, 1, 2, 3, 4u.

For the nonstationary aperiodic setting, we set the arrival rates λiptq “ 0.70 for all i P t1, 2, . . . , 10u and all t. We set the
service rates as follows:

µ2k`1,2l`1ptq “p0.90000, 0.89999, . . . , 0.60001q,

µ2k`1,2l`2ptq “p0, 60000, 0.60001, . . . , 0.89999q,

µ2k`2,2l`1ptq “p0.50000, 0.50001, . . . , 0.79999q,

µ2k`2,2l`2ptq “p1.00000, 0.99999, . . . , 0.70001q,

for all k, l P t0, 1, 2, 3, 4u.

For the nonstationary periodic setting, we set the arrival rates

λiptq “ p0.750, 0.749, . . . , 0.551, 0.550, 0.551, . . . , 0.749, 0.700, . . .q,

where the period is 400, for all i P t1, 2, . . . , 10u. We set the service rates as follows:

µ2k`1,2l`1ptq “p0.900, 0.899, . . . , 0.501, 0.500, 0.501, . . . , 0.899, 0.900, . . .q, period “ 800,

µ2k`1,2l`2ptq “p0.600, 0.601, . . . , 0.999, 1.000, 0.999, . . . , 0.601, 0.600, . . .q period “ 800,

µ2k`2,2l`1ptq “p0, 500, 0.501, . . . , 0.899, 0.900, 0.899, . . . , 0.501, 0.500, . . .q period “ 800,

µ2k`2,2l`2ptq “p1.000, 0.999, . . . , 0.601, 0.600, 0.601, . . . , 0.999, 1.000, . . .q period “ 800,

for all k, l P t0, 1, 2, 3, 4u.

For the second nonstationary periodic setting with a larger period, we set the arrival rates

λiptq “ p0.7500, 0.7499, . . . , 0.5501, 0.5500, 0.5501, . . . , 0.7499, 0.7500, . . .q,

where the period is 4000, for all i P t1, 2, . . . , 10u. We set the service rates as follows:

µ2k`1,2l`1ptq “ p0.9000, 0.8999, . . . , 0.5001, 0.5000, 0.5001, . . . , 0.8999, 0.9000, . . .q, period “ 8000,

µ2k`1,2l`2ptq “ p0.6000, 0.6001, . . . , 0.9999, 1.0000, 0.9999, . . . , 0.6001, 0.6000, . . .q, period “ 8000,

µ2k`2,2l`1ptq “ p0, 5000, 0.5001, . . . , 0.8999, 0.9000, 0.8999, . . . , 0.5001, 0.5000, . . .q, period “ 8000,

µ2k`2,2l`2ptq “ p1.0000, 0.9999, . . . , 0.6001, 0.6000, 0.6001, . . . , 0.9999, 1.0000, . . .q, period “ 8000,

for all k, l P t0, 1, 2, 3, 4u.

D.2 Parameters

For the stationary setting, we use the parameters that have stability guarantee in theory for both MaxWeight with discounted
UCB and DAM.UCB. Specifically, for MaxWeight with discounted UCB, by Theorem 1, we choose c1 “ 4 and gpγq “

6071209191677812 such that gpγq satisfies δmax ě
804IJU2

S log gpγq

rgpγqs1{2
, where δmax “ 0.15 is the largest δ for the arrivals and

capacity region in our stationary setting. For DAM.UCB, the traffic slackness ϵ defined in (Freund et al., 2022) is 0.2 in our
stationary setting, so according to Freund et al. (2022), the epoch size we choose is Lepoch “ rp32{ϵ` 1qLconvs “ 161 ,
where we set Lconv “ 1 since there is no need to use DAM.converge algorithm in their paper because we consider centralized
setting. For frame-based MaxWeight (Stahlbuhk et al., 2019), since in their paper there is no theoretical value for the

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

parameter frame size, we try different frame sizes and then choose the one that has the best performance, which is 120. For
MaxWeight with discounted EM, we use the same γ as MaxWeight with discounted UCB.

For the nonstationary settings, we choose c1 “ 4 and gpγq “ 8192 for MaxWeight with discounted UCB. For DAM.UCB,
we use Lepoch “ 161 for the periodic setting and Lepoch “ 113 in the aperiodic setting, which are both calculated from
Lepoch “ rp32{ϵ ` 1qLconvs according to (Freund et al., 2022) using the corresponding traffic slackness at t “ 0. For
frame-based MaxWeight (Stahlbuhk et al., 2019), same as in the stationary setting, we try different frame sizes and then
choose the one that has the best performance, which are 30, 25, 20 for the settings of aperiodic, periodic, and periodic with
larger period, respectively. For MaxWeight with discounted EM, we use the same γ as MaxWeight with discounted UCB.

Simulation results of MaxWeight with discounted UCB with different gpγq are shown in Fig. 5. As shown in the figures, the
proposed algorithm works well under different values of gpγq (hence, γ). Therefore, the algorithm is robust to the value of
γ. Note that these values are chosen somewhat arbitrarily, not optimized. They are 2 to the power of some arbitrary integer.

0 20k 40k 60k 80k 100k
Time

0

50

100

150

200

250

300

350

400

To
ta

l Q
ue

ue
 L

en
gt

h

g(γ)
4096
8192
33554432
137438953472

(a) Stationary.

0 5k 10k 15k 20k 25k 30k
Time

0

20

40

60

80

To
ta

l Q
ue

ue
 L

en
gt

h

g(γ)
2048
4096
8192
16384

(b) Nonstationary Aperiodic.

0 800 1600 2400 3200 4000
Time

0

10

20

30

40

50

60

To
ta

l Q
ue

ue
 L

en
gt

h

g(γ)
2048
4096
8192
16384

(c) Nonstationary Periodic.

0 8k 16k 24k 32k 40k
Time

0

10

20

30

40

50

60

To
ta

l Q
ue

ue
 L

en
gt

h

g(γ)
2048
4096
8192
16384

(d) Nonstationary Periodic.

Figure 5: Simulation Results of MaxWeigh With Discounted UCB With Different gpγq.

In order to choose the best frame size parameter for the frame-based MaxWeight algorithm, we conducted simulations of
frame-based MaxWeight algorithm with different frame sizes. The results are shown in Fig. 6.

The total queue length
ř

i Qiptq of all the curves in the figures is averaged over 100 runs. The shaded area in all the figures
is the 95% confidence interval. For all the curves, we plot one point every 10 time slots.

D.3 Additional Figures

We present all the comparison results in Fig. 7, Fig 8, Fig. 9, and Fig, 10, each with a zoom in view and a zoom out view.
The zoom out view has a Y-axis with a larger range so that it can include the parts of curves that are missing in the zoom in
view. Note that the zoom in view figures are also presented in Section 6 in the main text.

Zixian Yang, R. Srikant, Lei Ying

0 20k 40k 60k 80k 100k
Time

0

200

400

600

800

1000

1200

1400

To
ta

l Q
ue

ue
 L

en
gt

h

Frame size
100
110
120
130
140
150

(a) Stationary.

0 5k 10k 15k 20k 25k 30k
Time

0

50

100

150

200

250

300

350

400

To
ta

l Q
ue

ue
 L

en
gt

h

Frame size
15
20
25
30
35
40
45
50

(b) Nonstationary Aperiodic.

0 800 1600 2400 3200 4000
Time

0

50

100

150

200

250

300

350

400

To
ta

l Q
ue

ue
 L

en
gt

h

Frame size
15
20
25
30
35
40
45
50

(c) Nonstationary Periodic.

0 8k 16k 24k 32k 40k
Time

0

50

100

150

200

250

300

350

400

To
ta

l Q
ue

ue
 L

en
gt

h

Frame size
15
20
25
30
35
40
45
50

(d) Nonstationary Periodic.

Figure 6: Simulation Results of Frame-Based MaxWeight With Different Frame Sizes.

0 20k 40k 60k 80k 100k
Time

0

50k

100k

150k

200k

250k

300k

350k

400k

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(a) Zoom Out View

0 20k 40k 60k 80k 100k
Time

0

1k

2k

3k

4k

5k

6k

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(b) Zoom In View

Figure 7: Stationary Arrival Rate and Service Rate.

Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB

0 5k 10k 15k 20k 25k 30k
Time

0

20k

40k

60k

80k

100k
To

ta
l Q

ue
ue

 L
en

gt
h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(a) Zoom Out View

0 5k 10k 15k 20k 25k 30k
Time

0

40

80

120

160

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(b) Zoom In View

Figure 8: Nonstationary Service Rate With Aperiodic Means.

0 800 1600 2400 3200 4000
Time

0

2k

4k

6k

8k

10k

12k

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(a) Zoom Out View

0 800 1600 2400 3200 4000
Time

0

40

80

120

160

200

240

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(b) Zoom In View

Figure 9: Nonstationary Arrival Rate and Service Rate With Periodic Means.

0 8k 16k 24k 32k 40k
Time

0

20k

40k

60k

80k

100k

120k

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(a) Zoom Out View

0 8k 16k 24k 32k 40k
Time

0

40

80

120

160

200

240

To
ta

l Q
ue

ue
 L

en
gt

h

MaxWeight with discounted UCB
Frame-based MaxWeight
DAM.UCB
MaxWeight with EM
MaxWeight with discounted EM

(b) Zoom In View

Figure 10: Nonstationary Arrival Rate and Service Rate With Periodic Means With a Larger Period.

	INTRODUCTION
	MODEL
	ALGORITHM — MAXWEIGHT WITH DISCOUNTED-UCB
	MAIN RESULT
	PROOF ROADMAP
	Decomposing the Lyapunov Drift
	Bounding the Service Term

	SIMULATION RESULTS
	CONCLUSIONS
	A COUNTER-EXAMPLE OF MAXWEIGHT WITH EMPIRICAL MEAN ALGORITHM
	PROOF OF THEOREM 1
	Dividing the Time Horizon
	Decomposing the Lyapunov Drift
	Bounding the Arrival Term
	Bounding the Service Term
	Step 1: Adding the Concentration to the Condition
	Step 2: Bounding the Product of Queue Length and Service Rate
	Step 3: Bounding the Sum of Queue-Length-Weighted UCB Bonuses
	Step 4: Bounding the Weighted Sum of Job Completion Indicators

	Telescoping Sum

	PROOFS OF ALL LEMMAS
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

	ADDITIONAL DETAILS OF THE SIMULATIONS
	Settings
	Parameters
	Additional Figures

