Use Only What You Need: Judicious Parallelism For File Transfers
in High Performance Networks

Md Arifuzzaman
University of Nevada, Reno
Reno, Nevada, USA
marifuzzaman@unr.edu

ABSTRACT

Parallelism is key to efficiently utilizing high-speed research net-
works when transferring large volumes of data. However, the mono-
lithic design of existing transfer applications requires the same level
of parallelism to be used for read, write, and network operations
for file transfers. This, in turn, overburdens system resources since
setting the parallelism level for the slowest component results in
unnecessarily high parallelism for other components. Using more
than necessary parallelism lead to increased overhead on system
resources and unfair resource allocation among competing trans-
fers. In this paper, we introduce modular file transfer architecture,
Marlin, to separate I/O and network operations for file transfers so
that parallelism can be independently adjusted for each component.
Marlin adopts online gradient descent algorithm to swiftly search
the solution space and find the optimal level of parallelism for read,
transfer, and write operations. Experimental results collected under
various network settings show that Marlin can identify and use
a minimum parallelism level for each component, improving fair-
ness among competing transfers and CPU utilization. Finally, sepa-
rating network transfers from write operations allows Marlin to
outperform the state-of-the-art solutions by more than 2x when
transferring small datasets.

ACM Reference Format:

Md Arifuzzaman and Engin Arslan. 2023. Use Only What You Need: Ju-
dicious Parallelism For File Transfers in High Performance Networks. In
Proceedings of ACM Conference (ICS’23). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Distributed science projects such as Large Hadron Collider [6]
and Vera Rubin Observatory [5] require high-performance data
transfers in the orders to tens of gigabits-per-second to move data
between geographically distant locations in timely manner. Re-
search networks (e.g., Internet-2 and ESnet) provide high-speed
connectivity between research and education institutions with up
to 100Gbps bandwidth to separate scientific data transfers from
internet traffic, thereby facilitating large-scale data movements.
However, legacy file transfer applications (e.g., SCP and FTP) fail to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS’23, June 21-23 2023, Orlando, Florida, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Engin Arslan
University of Nevada, Reno
Reno, Nevada, USA
earslan@unr.edu

o
o
\
L
/
\
\

S
o
==~

Throughput (Gbps)
N w
o o
N

)
~

- Read —Network - Write
0 10 20 30 40 50
Concurrency

Figure 1: While transfer parallelism (aka concurrency) is
necessary to achieve high transfer throughput, its optimal
level is not the same for all components of file transfers.

reach high utilization in these networks due to employing one file-
at-a-time approach, which limits their I/O and network throughput
significantly.

A typical solution to overcome the limitations of legacy transfer
applications is transferring multiple files simultaneously (hence-
forth concurrency) as it can improve aggregate I/O throughput
by reading and writing multiple files and network throughput by
creating multiple network connections [11, 12, 20, 22, 24]. However,
the monolithic architecture of existing file transfer applications re-
quires the same level of concurrency to be used for I/O and network
operations, incurring unnecessary overhead and causing unfair
resource allocation. Figure 1 presents the throughput of read, write,
and network operations for increasing concurrency in a network
with 40Gbps bandwidth and 1 ms delay. For read and write mea-
surements, we create multiple processes to read or write from/to a
local file system (consisting of a RAID array of NVMe SSDs). For
network operation, on the other hand, we transfer dummy data
from the memory of the source node (/dev/zero) to the memory
of the destination node (/dev/null). When the concurrency level
is set to 1, network transfer obtains around 13Gbps, the read pro-
cess attains 16Gbps, and the write operation achieves 8Gbps. The
throughput of the network transfer and read operations reach to
40 — 50 Gbps when concurrency is set to 4. On the other hand,
write operation yields can reach 36 Gbps when the concurrency is
set to 25. As a result, while 3 — 4 concurrency is needed for read
and network operations to reach maximum speed, as much as 25
concurrency is necessary to achieve the maximum performance for
the write operation.

Despite the speed mismatch between read, write, and network
operations, the implementation of concurrency in existing file trans-
fer applications causes the same level of parallelism for all three
operations. In the above example, setting the concurrency value
to around 25 to maximize write operation performance will cre-
ate 25 transfer threads/processes in the source node to read 25

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1CS’23, June 21-23 2023, Orlando, Florida, USA

100 2 0 I S 80?
- @ r ——. 3
n M £ 84 gz’ 0=
Q A V4 ~. c
§ 75 _/"\/w’ 9 % g & e . . g
= s~ 5 Y 5
5 5 L s 320 40 N
2 - ¢ 2% 4 =
S / L S 9 35
2 F =
2 25 ' 3 2 Q0m 20>
= g £ ¢ « Throughput o
. / S o proughpul e & F ol =CPU Utiization o
%" 12 18 24 30 0 10 20 30 40 50
Concurrency Concurrency

(a) Increased Packet Loss (b) High CPU Utilization

Figure 2: While concurrency is needed to increase transfer
throughput, choosing an arbitrarily high value increases
network congestion (a) and end host CPU utilization (b).

separate files from the file system and transfer them using 25 sepa-
rate network connections. Similarly, 25 threads/processes will be
created on the destination node to receive and write data to the
file system. Although using a high level of concurrency is mostly
harmless to the performance of read and network operations, it can
have adverse impacts on resource usage, increase I/O contention,
and cause unfairness among competing flows with different I/O
characteristics.

Resource Overhead: To demonstrate this, we evaluate the per-
formance of a file transfer when concurrency is set to values be-
tween 1 and 32 in a simple network where sender and receiver
nodes are connected via two switches. While sender and receiver
nodes are connected to switches with 1Gbps links, the two switches
are connected with a 100 Mbps link, limiting end-to-end network
bandwidth to 100 Mbps. We throttle disk read throughput to 10
Mbps per process to emulate the behavior of parallel file systems in
which concurrent I/O access (using multiple threads) is necessary to
achieve high I/O performance. Since the network bandwidth is lim-
ited to 100 Mbps, ten concurrent transfers are needed to obtain 100
Mbps aggregate I/O throughput, thereby reaching to maximum pos-
sible transfer speed. Although creating more than ten concurrent
transfers does not degrade the transfer throughput considerably, it
significantly (from 2% to 10%) increases packet loss due to network
congestion at the bottleneck link, as presented in Figure 2(a).

Moreover, high concurrency overburdens end hosts and storage
systems due to creating too many threads/processes. Figure 2(b)
shows the relationship between transfer throughput and sender
host CPU utilization in a 40 Gbps bandwidth network. When the
concurrency is set to the optimal value of 10, the transfer yields
31 Gbps throughput, and CPU utilization is around 60%. On the
other hand, setting the concurrency to larger values increases CPU
utilization by around 10%.

Unfair Resource Sharing: The monolithic design of existing
transfer applications also leads to unfair resource sharing when con-
currency is used. Figure 3(a) shows the throughput of two transfers
between two separate server pairs. The transfers share a network
link with a capacity of 100 Mbps. We throttled the read I/O through-
put of each thread to 10Mbps for Transfer-2 to simulate increased
I/O performance by means of concurrency. Transfer-1, on the other
hand, does not have any I/O limitations and can attain close to
1Gbps read/write I/O throughput using a single transfer thread.
Assume that users are aware of existing bottlenecks and set the con-
currency level to optimal values, which is 1 for Transfer-1 (because

Md Arifuzzaman and Engin Arslan

— 100 vy avs| =25 ~

g @ i ! 1 810 [

= 1 ! 1 Qo =,

= 60 1 i = 5™

=] | —Transferl 1 > b - Network Process

o I _Transfer2 1 e \ .= Write Process

5 40 I I 5 e

© 2 5

=1 ! 1 = LN

° 1 1 [S

= 20 1 " . 1 .‘E S .

= . By utin st tipg ot Sm—,
0 100 200 300 0 10 20 30 40 50

Time (S) Network Concurrency

(a) Unfairness Among Transfers (b) Adverse Impact on I/O Workload

Figure 3: Setting concurrency value based on the slowest
transfer operation leads to unfair resource sharing between
transfers (a). It also adversely affects other processes running
on the same end hosts due to increasing I/O contention (b).

single I/O and network thread is sufficient to attain reach 100Mbps
throughput) and 10 for Transfer-2 (since it needs 10 threads to
increase read I/O throughput to 100Mbps). When the first trans-
fer starts, it obtains 100Mbps throughput by transferring one file
at-a-time (i.e., concurrency=1). When Transfer-2 joins, it sets its
concurrency level to 10 to overcome the I/O limitation and attain
maximum throughput. However, a concurrency value of 10 requires
10 connections to be created due to the monolithic architecture of
the transfer applications. This, in turn, causes unfair bandwidth
allocation since Transfer-2 creates more network connections and
thus yields nearly 90% of the available bandwidth.

We also tested the impact of using an unnecessarily high con-
currency value on the performance of other applications on the
same node. To do so, we run a process on the receiver host that
writes 100GiB to a file while the transfer application is running. We
then measure the transfer throughput and the execution time of
the write process. Figure 3(b) shows that the transfer throughput
reaches the maximum at a concurrency level of 10, at which point
the write process attains 2.4Gbps throughput. Increasing concur-
rency significantly degrades the performance of the write process
due to increasing I/O contention. Specifically, the throughput of
the write process drops to less than 1Gbps when the concurrency is
set to 30 and 0.5 Gbps when the concurrency of the transfer is set
to 50. Therefore, while concurrency is necessary for speeding up file
transfers in high-speed networks, its current implementation results
in increased resource usage and unfair resource sharing.

Although researchers proposed solutions to separate I/O and net-
work operations for file transfers (e.g., mdtmFTP [26] and FDT [3])
to overcome the limitations of monolithic designs, these solutions
require manual tuning for concurrency to perform well. In addition,
they solely focus on increasing the throughput of transfers without
considering system overhead (e.g., memory footprint and network
congestion); hence they fall short of offering fully automated, low-
overhead alternatives to existing solutions. Thus, in this work, we
introduce a modular file transfer architecture, Marlin, to tune con-
currency for read, transfer, and write operations independently.
Marlin utilizes a game-theory-inspired utility function with an
online optimization algorithm to discover the optimal concurrency
level for each component. The utility function is used to evaluate
the fitness of different concurrency values in terms of increasing
throughput and decreasing resource consumption (i.e., minimal
number of threads/processes and low network packet loss). Since

Use Only What You Need: Judicious Parallelism For File Transfers in High Performance Networks

it is crucial to swiftly scan the solutions space for concurrency
levels for I/O and network operations in real-time, we implemented
Gradient Descent and Bayesian Optimization algorithms that can
converge to the optimal in 10 — 15 search intervals.

Our extensive evaluations using both isolated and production
systems show that Marlin mostly obtains similar throughput com-
pared to the state-of-the-art solutions that use the same concurrency
level for both I/O and network operations despite significantly mini-
mizing system overhead. We also show that it addresses the fairness
issue between competing transfers with different I/O performance
behavior. Finally, we show that Marlin can speed up the transfer
of small transfers by more than 2x when write I/O is the bottleneck
as it can take advantage of high network performance to transfer
files to the cache space (e.g., main memory or NVMe buffer) on the
receiver end. In summary, the contributions of this paper are as
follows:

o We introduce a modular file transfer framework, Marlin, to
separate read, transfer, and write operations of file transfers
to overcome the limitations of the legacy monolithic design
of state-of-the-art solutions. We show that the modular ar-
chitecture allows transfers to use “just enough” concurrency
to keep the system overhead low and ensure fairness while
achieving high transfer throughput.

o We develop a game theory-inspired utility function to evalu-
ate the performance of different concurrency values for read,
transfer, and write operations. We implement an online gra-
dient descent algorithm to quickly and accurately discover
component-specific concurrency values in real-time.

o Through extensive experiments, we show that Marlin can
automatically discover the slowest operation of file trans-
fers and tunes its concurrency in real-time to maximize the
performance while keeping the concurrency for other oper-
ations at a minimum. We also show that Marlin provides
fair resource sharing between competing transfers, which
is critical for production systems to ensure shared network
resources are allocated to users/jobs fairly.

e Finally, we show that Marlin can speed up the throughput of
small transfers (i.e., less than stage-in area capacity) by more
than 2x when transfers are write-limited by quickly transfer-
ring data to cache space on receiver ends. Since more than
80% of transfer jobs in research networks transfer less than
100GiB, optimizing them is crucial in offering performance
enhancements to most transfers [21].

2 RELATED WORK

Most existing work on optimizing wide-area data transfer focused
on designing new congestion control algorithms such as BBR [16]
and Vivace [17]. BBR achieves higher performance than legacy TCP
variants such as TCP Cubic in the presence of random packet losses.
However, since file transfers in high-speed networks often face I/O
performance limitations, improving the performance of congestion
control algorithms is not sufficient to overcome the performance
issues in today’s high-performance networks.

Researchers proposed application-layer optimization solutions
such as pipelining transfer commands [15], creating parallel net-
work connections [18], transferring multiple files concurrently [9],

1CS’23, June 21-23 2023, Orlando, Florida, USA

and distributing transfer load to multiple DTNs [7] to address the
performance problems of file transfers. However, finding the opti-
mal transfer setting in a timely manner has risen as a challenging
problem due to having a large search space and the slow nature of
evaluating various settings in real-time. Previous work proposed
heuristic [8, 13], historical analysis [10, 11, 22], and real-time opti-
mization [9, 24, 25] approaches to discover the optimal configura-
tion for some of the transfer settings. As an example, Prasanna et
al. proposed direct search optimization to dynamically tune trans-
fer parameters on the fly based on measured throughput for each
transferred chunk [14].

Globus [4] is a widely-adopted data transfer service that sched-
ules, maintains, and optimizes large data transfers in high-speed
networks. It either relies on system administrators to configure
transfer settings or uses a heuristic method to estimate the values
of some application-layer transfer parameters such as command
pipelining, network connections, and concurrent file transfers. To
avoid overwhelming end system and network resources, it typi-
cally underestimates the value of some critical settings, such as
the number of concurrent file transfers, and thus falls short of
achieving high performance for most transfers. Yun et al. proposed
ProbData [25] to tune the number of parallel streams and buffer
size for memory-to-memory TCP transfers using stochastic approx-
imation. ProbData can identify near-optimal configurations, but it
takes several hours to find a solution, which makes it impractical
to use as most transfers in high-speed networks only last for a few
minutes [21].

Yildirim et al. proposed PCP [24] to tune the values of command
pipelining, network connections, and concurrent file transfers us-
ing a simple hill-climbing method. Since PCP explores the optimal
values of parameters sequentially (i.e., one parameter at-a-time), it
is neither fast nor precise. Arslan et al. proposed heuristic [12, 13]
and historical data-based (HARP [11]) models to determine the
transfer settings for file transfers that can maximize the through-
put. While heuristic models fail to guarantee high performance,
the performance of historical data-based solutions is bound to the
availability of large-scale, up-to-date historical data collected un-
der various background loads and transfer settings. Gathering rich
training datasets in a periodic manner is, however, a daunting task
for isolated networks and nearly impossible for production sys-
tems. Arifuzzaman et al. developed an online learning model, Fal-
con, to discover the optimal concurrency for file transfers that can
maximize the transfer throughput while ensuring fairness among
competing flows [9]. While Falcon addresses fairness issues when
competing transfers have similar file system configurations (i.e.,
the same level of I/O parallelism is needed for competing transfers),
it fails to do so when transfers have different I/O characteristics.
Furthermore, Falcon adopts a monolithic transfer architecture and
hence fails to address the wasteful use of concurrency. Fast Data
Transfer (FDT) [3] and Multicore-aware Data Transfer Middleware
(mdtmFTP) implemented the idea of separating I/O and network op-
erations; however, they both require users to tune transfer settings
such as the number of concurrent I/O and network threads and
memory size. This is a challenging task even for domain experts,
as the optimal settings change over time.

1CS’23, June 21-23 2023, Orlando, Florida, USA

Source Facility

File System Data Transfer Node

Md Arifuzzaman and Engin Arslan

Destination Facility

Data Transfer Node File System

5. BBl

NVMe RAM

L1 O]
=) @@‘ﬁ{ 111 2O

Figure 4: Marlin introduces modular file transfer architecture to enable fine-granular, adaptive parallelism for end-to-end

transfers.

3 MARLIN: MODULAR FILE TRANSFER
APPLICATION

To scale file transfers to high speeds while avoiding to overload sys-
tem resources, we build a modular file transfer application, Marlin,
as illustrated in Figure 4. Specifically, Marlin separates I/O and net-
work operations at source and destination servers to be able to tune
their parallelism independently. This allows it to take advantage of
I/O and network parallelism to increase transfer throughput while
avoiding unnecessary parallelism on well-performing components.

When selecting a concurrency level for read, transfer, and write
operations, Marlin uses two criteria: low overhead and high per-
formance. In other words, it searches for “just enough” concur-
rency values for each operation that leads to close-to-maximum
performance using as minimal concurrency as possible. Hence, we
adopted utility function proposed in [9] that rewards high through-
put and penalizes high concurrency. While [9] searches for one
concurrency value for read, transfer, and write operations due to
using a monolithic transfer architecture, Marlin tunes each compo-
nent separately. Thus, Marlin extends the utility function to meet
the unique design of the proposed modular transfer architecture.
Since identifying the optimal concurrency level for read, transfer,
and write operations quickly is key to reaching maximum and sta-
ble transfer speed, Marlin uses online gradient descent algorithm
as it can converge to the optimal solution with only a few sample
transfers. We next discuss the details of the utility function and
online optimization algorithms.

3.1 Utility Function

Utility functions are used to quantify the fitness of a configuration
in terms of maximizing the benefit and minimizing the cost. In
the context of file transfers, we aim to maximize the throughput
and minimize the number of concurrent read/write threads and
network connections. Including a punishment term into a utility
function does not only help to lower the resource overhead, but also
play an important role to converge to a fair and optimal solution
in the presence of competition [19, 23, 27]. Hence, we adopted the
following utility function as proposed in [9]

nit;
u(niti, Li) = 20 (1)
where n; is the number of concurrent files to transfer (i.e., con-
currency) and t; is the average throughput of each file transfer, and
K is a constant coefficient that is used to determine the severity of
punishment for the concurrency level. Although previous studies

show that the utility functions that incorporate monotonically in-
creasing penalty terms in linear form guarantee high performance
for single transfer and optimal and fair convergence for compet-
ing transfers (i.e., Nash Equilibrium) [19, 27], it is challenging to
achieve both high-performance and fair and optimal convergence
when the penalty for concurrency is incorporated in a linear form
as shown in [9]. Thus, we adopted a nonlinear form for concurrency
penalty that experimentally satisfies both higher performance and
fairness between competing agents. As the throughput improve-
ment ratio is not directly proportional to increased concurrency
(i.e., the ratio of gain starts to lower at higher concurrency values),
the value of K can be tuned to require small but non-negligible gain
(e.g., 1%) for increasing concurrency values. By doing so, we ensure
that the utility will increase as long as a non-negligible amount
of throughput gain is observed and decrease upon exceeding the
optimal concurrency value.

While the utility function given in Equation 1 is sufficient to
lower resource overhead for read and write I/O operations, it is
not sufficient for network transfers since it does not capture the
impact on the network adequately. More specifically, one can attain
higher network throughput with increased concurrency at the ex-
pense of causing or exacerbating congestion in the network. Hence,
we incorporated the packet loss ratio as an additional cost for the
transfer operations to keep the network congestion at a minimum.
Please note that while congestion control algorithms already take
packet loss into account while determining a sending rate (i.e., con-
gestion window) for transfers, they do it on individual connection
levels. This in turn does not capture the full impact of concurrent
file transfers (that are part of the same transfer job) on the network.
As an example, a file transfer that uses a concurrency level of 10 for
network connections can lead to a high (e.g., 1%) packet loss rate
despite individual network connections experiencing a relatively
small packet loss rate (e.g., 0.1%). Consequently, we calculate a
total packet loss rate for all network connections and add it to the
utility function as a penalty term to lower the severity of network
congestion as

u(ni, t;, L) = % —nit;L; X B ®)

where B is a constant coefficient that is used to determine the
severity of punishment for packet loss penalty. We observe that
B = 10 works well for the most commonly used TCP variants (i.e.,
TCP Cubic and Reno, and HSTCP) by keeping packet loss rate below
1—-2% while achieving over 95% network utilization [17]. As a result,
the utility function in the form of Equation 2 can be used to prevent
high packet losses caused by suboptimal concurrency settings.

Use Only What You Need: Judicious Parallelism For File Transfers in High Performance Networks

As Marlin is designed to tune the concurrency level for read,
transfer, and network operations to different values, we have two
main options in designing a search algorithm. In the first approach,
we can come up with a single utility function that combines the
performance of each operation to produce a single value and utilize
multi-parameter optimization algorithms (e.g., conjugate gradient
descent and Bayesian optimization) to search for the optimal con-
currency for all operations simultaneously. In the second approach,
we can use a separate utility function and search algorithm to inde-
pendently tune the concurrency level for read, network, and write
operations. For the first approach, the utility function needs to re-
ward increased throughput for read throughput, network through-
put, and write throughput while penalizing increased concurrency
level for each operation as well as increased packet loss rate. Hence,
we can calculate the utility of each operation using Equation 1 and
2 as

Kt;r + Kth + Kt;::v —t,L X B (3)

where t,, ty, t,, are the throughput of read, transfer, and write
operations; ny, np, n,, are the concurrency level of read, transfer,
and write operations, and L, is the packet loss rate. We show in the
evaluations that the convergence speed of optimization algorithms
is very slow when using a combined utility function. This is mainly
because of the dependence between the concurrency levels, which
prevents evaluating some settings. As an example, if the network
speed is faster than the read I/O throughput, it may not be possible
to evaluate a setting with a large network concurrency level and a
small read I/O concurrency level due to a lack of data in the stage-in
area. Hence, Marlin uses a separate optimization approach to tune
the concurrency level for each operation independently. It uses
Equation 1 for read and write I/O operations and Equation 2 for
network operation.

Utility functions in the form of Equation 1 and Equation 2 con-
verge to a fair and optimal state in the presence of multiple compet-
ing transfers due to being in the concave form. The term 1 — L; X B
in Equation 2 follows a monotonically decreasing pattern for the
increasing number of concurrent transfers since packet loss either
stays the same or increases as the number of concurrent connection
increase. Thus, both Equations 1 and 2 are guaranteed to be con-
cave as long as Ing,f; is concave. It is proved in [9] that for a value of

u(ng, ti, Li) =

K =0.02, Ir?_'f; is guaranteed to be strictly concave as long as n; less
than 100, which we find to be sufficient in all production networks.

3.2 Online Search Algorithm

Naive algorithms such as brute force search may be feasible for
scanning small search spaces or when the cost of evaluating a
setting is minimal. However, neither of these conditions is valid
for file transfers as the search space is very large, and it takes
several seconds to test a concurrency setting accurately. Hence, it
is essential to devise a search algorithm that can quickly converge
to the optimal solution.

Online Gradient Descent (OGD) is known to accelerate optimiza-
tion processing significantly with the help of adaptive step size.
OGD works by testing two close settings and calculating the gradi-
ent of the utility of these settings. As an example, assume that we
test the concurrency values of 1 and 2 in two consecutive intervals.

1CS’23, June 21-23 2023, Orlando, Florida, USA

Link Bandwidth = 1000Mbps 2
- Read=100Mbps .. Write=100Mbps

Link Bandwidth = 1000Mbps
- Read=100Mbps .. Write=100Mbps

N
=]

Py 15 — Network=100Mbps by 15 — Network=100Mbps
c o c
9] 7 9] AN Ao s
= 1= NS ~ogh
5 10 5 10 ' v
£ 5 £ 5 i
N7
(&) &) B 4,\,}/4_;.
0 L7373
0 10 20 30 0 10 20 30

Sample Transfer Number

Sample Transfer Number

(a) Univariate Gradient Descent (b) Conjugate Gradient Descent

Figure 5: Comparison of univariate and conjugate gradient
descent algorithms in terms of convergence speed. It takes
more than two times longer for the conjugate gradient to
find a solution.

We then calculate the utility value for these two concurrency levels,
say u1 and uy using the utility function, and calculate the gradient
using “2=7*. The gradient value is then used to decide which direc-
tion to continue the search as well as how big of a jump to make.
As an example, if the gradient value is large, OGD can jump to a
concurrency value of 10 instead of testing 4 or 5. By doing this, it
can take large steps when the current values are far from optimal.

Moreover, OGD can be easily extended to keep searching con-
tinuously in case the optimal solution changes over time. This is
especially relevant for long-running transfers since network and
I/O congestion may change over time so does the optimal solution.
Since OGD does not have memory, it can avoid being stuck in ear-
lier solutions and respond to changing conditions by converging
to the new optimal, a key requirement to ensure fairness and high
performance in shared environments. Yet, we observe that OGD can
still be stuck in suboptimal regions due to a lack of differentiable
differences when comparing concurrency values in suboptimal re-
gions. For example, if the optimal concurrency is 12 but OGD ended
up testing concurrency values around 20 (say it is testing 19 and
20 to calculate the gradient) and then it may not be able to learn
that a lower concurrency value is better because both evaluated
concurrency values return similar utility value. To overcome this
limitation, we extended the base OGD implementation to keep track
of the optimal concurrency value with the highest utility value. By
doing so, the OGD can avoid being stuck in the suboptimal region
and continue the search around the optimal. For example, if we
observed the maximum utility value at a concurrency value of 10
in the last 20 intervals (interval duration is equal to the duration of
testing a setting, which is three seconds, by default.), but OGD is
currently stuck at around concurrency 20, then it will come back
to 10 as its utility value is highest among all concurrency values
tested in last 20 intervals.

The conjugate gradient can be used to find a solution for multi-
variate problems. Hence, we implemented both conjugate gradient
descent and independent univariate gradient descent algorithms.
The conjugate gradient uses Equation 3 as a utility function to
evaluate the fitness of concurrency combination ny, n,, and n,, for
read, transfer, and network operations, respectively. The univariate
gradient descent, on the other hand, uses a separate OGD to iden-
tify the optimal concurrency value for read, network, and write
operations independently but concurrently. Figure 5 compares the
convergence time for univariate gradient and conjugate gradient
algorithms. We set up the experiment in a way that the optimal

1CS’23, June 21-23 2023, Orlando, Florida, USA

Source Destination Storage Bandwidth | RTT
Emulab Emulab RAID-0 SSD 1G 2ms
HPCLab HPCLab RAID-0 SSD 20G 0.1ms
HPCLab Expanse (SDSC) Lustre 10G 15ms
Bridges2 (PSC) | Expanse (SDSC) Lustre 10G 58ms

Table 1: Specifications of experimental networks. Emulab is
an emulated testbed, HPCLab is an isolated lab cluster, and
Expanse [2] and Bridges-2 [1] are production supercomputers
that are connected via high-speed research networks.

concurrency is 10 for all three operations. It takes nearly 35 sample
transfers for the conjugate gradient and 15 sample transfers for
the univariate gradient to find the optimal solution. Section 4.1
presents further evaluations for the performance of Marlin when
using different online search algorithms including univariate gradi-
ent descent, conjugate gradient descent, and Bayesian optimization.
In short, we find that both conjugate gradient and Bayesian opti-
mization require extensive tuning to perform well, thus we settled
on univariate gradient descent as a search algorithm.

4 EVALUATION

We assess the performance of Marlin in four networks as listed in
Table 1 out of which Expanse [2] and Bridges-2 [1] are production
HPC clusters, HPCLab is an isolated lab cluster, and Emulab is an
emulated network testbed. Except for Emulab, all clusters have
parallel file systems or RAID arrays as storage due to which the
use of concurrency is required to maximize I/O performance. Since
Emulab nodes have direct-attached single disk storage volumes, we
throttle per process disk read throughput to necessitate concurrent
I/O accesses to reach maximum performance, similar to parallel
file systems. We use Bridges-2 and Expanse clusters for real-world
wide-area experiments. Unless otherwise stated, we used datasets
containing multiple 1 GiB files. The number of files is adjusted
based on achievable throughput in each network. We compare
Marlin against the state-of-the-art monolithic transfer application
Falcon [9]. Similar to Marlin, Falcon uses the online gradient de-
scent algorithm to search for the optimal transfer concurrency.
Falcon is shown to outperform other file transfer applications (e.g.,
HARP [10] and Globus [8]) by up to 2X, thus we believe that com-
parison to Falcon would be sufficient to evaluate the efficiency of
Marlin.

4.1 Evaluation of Optimization Algorithms

We created a testbed with 300Mbps link bandwidth, 60Mbps read I/O
limitation per thread, and 30Mbps network limitations per network
connection to compare the performance of different optimization
algorithms. Hence, the optimal concurrency is 5 for the read opera-
tion, 10 for the network operation, and 1 for the write operation.
Figure 6 presents convergence behavior when using univariate
gradient descent, conjugate gradient descent, and Bayesian opti-
mization. Gradient Descent quickly discovers that the optimal con-
currency for the network is around 10. However, it keeps increasing
read concurrency until it hits the memory limit because increased
read concurrency increases read throughput until the staging area
becomes full. Then, it reduces the number of read threads to around

Md Arifuzzaman and Engin Arslan

5 to match the network transfer speed. Conjugate gradient descent,
on the other hand, chooses a particular search direction and keeps
exploring that direction until it converges. This behavior leads to
undesired behavior when increasing read concurrency temporarily
increases read throughput despite slower network speed. As can
be seen in Figure 6(b), the conjugate gradient descent increases
read concurrency to almost 50 because of misleading information
collected in the first 20 intervals. It eventually lowers the number
of read threads but falls short of finding the optimal concurrency
for the network.

Similar to conjugate gradient, Bayesian optimization can tune
all three concurrency values simultaneously using Equation 3 as a
utility function. It starts with a few random concurrency combina-
tions to begin building a Gaussian surrogate model. It updates the
model after each new observation (i.e., new sample transfer with
a different concurrency setting) and predicts new values to test in
the next interval. The performance of the Bayesian optimization
is highly dependent on the accuracy of observations. Throughput
fluctuations and a temporary increase in read throughput cause it
to build an incorrect model, which then affects its ability to make
accurate predictions. Similar to conjugate gradient, Bayesian opti-
mization is also unable to converge to the optimal quickly due to
misleading information collected at the beginning of transfers, dur-
ing which increasing read I/O concurrency leads to higher utility
value. As a result, we leave the optimization of conjugate gradi-
ent and Bayesian optimization algorithms as future work and use
univariate gradient descent in the rest of the experiments.

4.2 Fine-Tuning Concurrency

We next evaluate the performance of Marlin in terms of its ability
to detect the bottleneck operation in a transfer and find the opti-
mal concurrency to reach maximum utilization. Figure 7 presents
the Marlin’s performance when concurrency is needed only for
one of the read, transfer, and write operations. We used Emulab
to manually restrict the throughput for I/O and network opera-
tions per thread and connection. For example, in Figure 7(a), read
threads are limited to 30Mbps, network connections are limited
to 100Mbps, and write threads are throttled to 100Mbps. We also
limited bandwidth from the source node to the destination node to
300Mbps. Since the maximum total I/O speed is 1Gbps, the transfer
task can attain 300Mbps at most (limited by network capacity) if
the right concurrency values are configured. In the read bottleneck
scenario (Figure 7(a)), the optimal concurrency levels are 10, 3, and
3, for read, transfer, and write operations, respectively. We observe
that although Marlin initially increases the concurrency for all
three operations, it lowers them for transfer and write operations
after a few iterations while keeping it between 9 — 11 for the read
operation.

In the case of network bottleneck (Figure 7(b)), the optimal con-
currency for read and write operations is 3, and transfer is 10. We
can see that the concurrency level for both read and write opera-
tions settle at around 3 — 4 while network concurrency changes
around 8 — 11. The main reason for the fluctuations in concurrency
value is the continuous search functionality of the OGD. While it
is possible to run OGD once and keep using the selected values, it
is not desired in shared environments as the optimal concurrency

Use Only What You Need: Judicious Parallelism For File Transfers in High Performance Networks

Link Bandwidth = 300Mbps

Link Bandwidth = 300Mbps

1CS’23, June 21-23 2023, Orlando, Florida, USA

Link Bandwidth = 300Mbps

€0 — Sender=60Mbps 60 — Read=60Mbps 60 — Read=60Mbps
— Network=30Mbps - — Network=30Mbps — Network=30Mbps
48 .. 48 ! 48
>) >
2 2 0 2
o 36 o 36 o o 36
5 5 P! 5 " We s r o
g " g 2 . g u ‘.ﬁ i \A i\"'l Afta T
- [JEEN Y HRE ' S~/ Nl
© M © 1 ! Yommsmesmny © l“'k"." 'IN\N *‘}i"‘ HH A’“\"\—.)H"/‘J'
4)\&/‘./‘_/'\“’1;' N~ - o . | ‘“{ i ! | \l o |‘|Vf v
0 ~- NN g emmtTT T =1 ~esemTITE NV | i ¥
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Sample Transfer Number

(a) Univariate Gradient Descent

Sample Transfer Number

(b) Conjugate Gradient Descent

Sample Transfer Number

(c) Bayesian Optimization

Figure 6: Comparisons of different search algorithms. While conjugate gradient descent and Bayesian optimization algorithms
can tune multiple parameters at the same time, their long convergence time as well as poor prediction accuracy make them
hard to adapt. Univariate gradient descent, on the other hand, works well as it can converge to optimal quickly and does not

require extensive tuning.

Link Bandwidth = 300Mbps

Link Bandwidth = 300Mbps

20 — Read=30Mbps .. Write=100Mbps 20 — Read=100Mbps .. Write=100Mbps
— Network=100Mbps — Network=30Mbps
315 & 15
& g
‘g 10 I’\I/..\‘J/\\A/\.v\uv‘_'—\l‘ A ZART N % 10 \ » ,\/\ /..\ /.\ A/ A ~\ A _.\'.I
: T SANONVANANAY S v
% p g 2 .I__‘\. THRVASET R \.,/
o5 " Y. O 5 Isfamasa, AT Ay
ANVALAN A LAV T ~'4~\;}~\‘~'f:.'~"h'~‘.."'\.‘-.n_.~>.~.'.7x{\'l‘.-' nA
0 0
0 20 40 60 80 100 0 20 40 60 80 100

Sample Transfer Number

(a) Read I/O Bottleneck

Sample Transfer Number

(b) Network Bottleneck

Concurrency
3

0 20 40 60 80

Link Bandwidth = 300Mbps
— Read=100Mbps .. Write=30Mbps
— Network=100Mbps

I ‘\ -

1

AN
\! 8

; (5 AN

.. LA 1t ! W o S

R A A A\.'\.r\./‘..;,‘\nf"\!:
,

100
Sample Transfer Number

(c) Write I/O Bottleneck

Figure 7: Marlin can identify the bottleneck operation in file transfers and tune the concurrency accordingly to maximize
transfer performance while keeping the overhead on other components at a minimum.

depends on the congestion level. Hence, OGD keeps searching
around higher and lower values even after finding the optimal to
be able to react to changing conditions quickly. Finally, Marlin is
again performs well in the write bottleneck scenario(Figure 7(c))
by increasing write concurrency to around 10 while keeping the
network and transfer concurrency at around 2 — 4.

4.3 System Overhead

We next evaluate the CPU usage and I/O contention created by
FalconandMarlin. We use HPCLab and limit per thread read I/O to
1Gbps to simulate a slow sender scenario. As the HPCLab network
has 20Gbps bandwidth, Falcon uses around 20 concurrency for
all three operations. On the other hand Marlin achieves a similar
throughput using 20 read threads, 4 — 5 network threads, and 5 - 6
write threads. While transfers are running, we also executed several
dd processes on the receiver node, each writing 100GiB data to the
file system to evaluate the fairness of transfer applications to non-
transfer processes.

Table2 shows CPU usage, the execution time of write (i.e., dd)
processes, and the throughput of transfer operations. When there
is only one competing write process, Falcon consumes 45% — 50%
CPU utilization while Marlin consumes nearly 10% less. As the
number of write processes increases, their runtime increases as

of write CPU (F) CPU (M) Write time Write time Thr (F) Thr (M)

operations with F with M
1 46.1% 37.8% 1585 131s 192G 19.1G
2 547% 44.1% 209s 149s 191G 17.9G
3 62.6% 54.3% 266s 197s 191G 161G
4 66.9% 58.7% 373s 245s 19.1G 15.3G
5 704% 64.8% 533s 271s 191G 14.8G
Table 2: System overhead and fairness analysis for

Marlin (M) and Falcon (F). We execute up to five concurrent
write operations while running transfers to see the impact
of transfers on competing I/O processes. Marlin results in
around 10% less CPU usage in addition to being fairer to com-
peting write operations.

well; however, the rate of increase is nearly double when they are
competing against Falcon compared to Marlin. This is mainly be-
cause Falcon does not only create a high number of write threads
when there is no competition but also increases the concurrency
level even further in the presence of competing I/O processes to
increase its throughput. On the other hand, Marlin allows compet-
ing non-transfer processes to attain their fair share by creating a
minimum number of I/O threads. Therefore, using the same level

1CS’23, June 21-23 2023, Orlando, Florida, USA

Link=300Mbps, Transfer=Write=300Mbps 15
15 — Transfer 1 (Read=300Mbps) %‘
— Transfer 2 (Read=30Mbps) %
c 12
> 12]
2 Ak I\ i\ A =
9 9 poakrly 1 ,,v\/w Yy i T °
= vyl A I >
3 | ViR W o '\
o Vv S 4
g 6 IIF‘-"F\ Nt n ()
(&) ‘.sl‘\./ ._,I \ Py ,"l\l v 5
3 77N \I g 3 I‘(“
I Q S |
O
0 0
0 50 100 150 200 0 25 50

Sample Transfer Number

(a) Falcon (Different Read I/O Performance)

Link: 300Mbps, Transfer=Write=300Mbps

Md Arifuzzaman and Engin Arslan

Link: 300Mbps, Read=Write=100Mbps

- Transfer1 (Read=300Mbps) o — Transfer1 (Transfer=30Mbps)
- Transfer2 (Write=30Mbps) %’, 12 — Transfer2 (Transfer=30Mbps)
c
© 14
= \ 4
Eo oM O ,-_f.‘
> hw Iy v
2 e A WY TR
o 6 "u’ \
=
i i 5 l" l\“.u tHH\#‘ \h
A \/r\" :"y g 3
WY S} | i
© 0
75 100 125 150 175 0 25 50 75 100 125 150 175

Sample Transfer Number

(b) Marlin (Different Read I/O Performance)

Sample Transfer Number

(c) Marlin (Similar Read I/O Performance)

Figure 8: Fairness analysis for Falcon and Marlin. Falcon causes unfair network bandwidth allocation between competing
transfers due to using the same concurrency for network and I/O operations. On the other hand, Marlin is able to identify I/O
bottlenecks and tune the concurrency for transfer and I/O operations separately, which helps it to ensure fairness between

transfers regardless of I/O characteristics.

of concurrency for all operations has an adverse impact on other
processes running alongside the transfers.

4.4 Fairness Between Competing Transfers

We next compare the performance of independent transfers com-
peting for the same bottleneck link in Emulab as shown in Figure 8.
We run two transfers between two different source-destination
pairs with different read concurrency requirements. Specifically,
read I/O throughput per thread is limited to 300Mbps for the first
(Transfer-1), whereas it is limited to 30Mbps for the second transfer
(Transfer-2). The transfers share a network link whose capacity
is limited to 300Mbps. Thus, single write and transfer threads are
sufficient for both transfers to attain the maximum possible through-
put (i.e., 300Mbps) in this network as no limitations are injected
for write and transfer operations. On the other hand, Transfer-2
requires 10 concurrent read threads to attain 300Mbps read I/O
throughput.

Figure 8(a) presents the results for two competing Falcon trans-
fers. When Transfer-1 starts, it settles on a concurrency value be-
tween 1—3 as small concurrency is sufficient for it to reach 300Mbps
throughput. When Transfer 2 joins, it tests higher concurrency
values than 3 and observes a considerable increase in the utility
function due to an increase in read I/O throughput. As the same
concurrency level is used for read, transfer, and write operations
in Falcon, this in turn causes Transfer-2 to attain a higher share in
the network. That is, the capacity of the bottleneck link is shared
between Transfer 1 and Transfer 2 in proportion to the number
of concurrent network connections they create. Since Transfer-2
chooses a higher concurrency value than Transfer-1, it initially ob-
tains almost three times higher network throughput than Transfer-1.
Although Transfer-1 responds to this by increasing its concurrency
value to around 5, it does not observe a sufficient increase in utility
to increase it even further. As a result, bottleneck link capacity is
shared in a 2-1 ratio between Transfer-2 and Transfer-1.

Figure 8(b) shows results for Marlin for the same configura-
tion as Falcon transfers are executed. Unlike Falcon, both transfers
choose to create 1 — 3 network connections (on average 2.25 for

Transfer 1 and 2.53 for Transfer-2) and share the network band-
width almost equally (47% to 53%) despite having different read
1/O concurrency requirement. Figure 8(c) shows two competing
Marlin transfers with network limitations of 30Mbps, thus 10 con-
current transfer threads are needed to fully utilize the network
capacity of 300Mbps. Transfer-1 converges to concurrency level 10
for the transfer operation when it is the only transfer in the network.
When Transfer-2 joins, Transfer-1 lowers its network concurrency
as it realizes that concurrency value 5 — 6 is sufficient to attain its
fair share in the network (i.e., around 150Mbps) while minimizing
the packet loss rate. Transfer-2 also converges to a concurrency
level of 5 — 6 and obtains its fair share. When Transfer-1 completes,
Transfer-2 is able to claim the free network bandwidth by increas-
ing its network concurrency with the help of the continuous search
functionality of the OGD.

4.5 Evaluations in Production Systems

Figure 9 compares the performance of Falcon and Marlin in produc-
tion high-performance networks. While both Expanse and Bridges-
2 supercomputers are equipped with high-performance Lustre file
systems, have high-speed connectivity to research networks, and
utilize dedicated data transfer nodes, transfers need parallelism
to unleash the available capacity. In particular, Bandwidth Delay
Product (BDP) for Bridges-2 to Expanse communication is 69 MiB
(10Gbpsx58ms); thus, TCP requires nearly 70MiB buffer space to
reach 10Gbps throughput using a single connection. However, the
maximum TCP buffer size is limited to 5.8 MiB in Bridges-2 nodes,
which is twelve times smaller than the requirement. Since end users
cannot change the TCP buffer size, the use of multiple concurrency
network connections is the only way to mitigate TCP buffer size
limitation as each connection can attain a separate TCP buffer space
equal to a maximum value (i.e., 5.8MiB). Figure 9(a) and 9(b) show
the concurrency and throughput values using Falcon and Marlin.
As TCP buffer size is the main limitation for the performance, both
Falcon and Marlin chooses a high concurrency value (around 20)
for the network. On the other hand, Marlin realizes 3 — 5 read and
write threads are sufficient to read and write files at maximum per-
formance. As a result, while achieving similar throughput to Falcon,

Use Only What You Need: Judicious Parallelism For File Transfers in High Performance Networks

IN
S

— Falcon 10000 § N

Marlin_Read g N , ’:\‘ i\
> — Marlin_Network .9 N~V A TN
I 30 --Marlin_Write = 7500 I ‘\\',' \;/ i \). =4 \”yk v \\;(‘\ »
15 = i ¥ u Vi
5 20 3 so00 ! ‘ H
5] < Fl !
5 - i i
810 _g mwo y
0 = 0 s ~ Marlin — Falcon
0 20 40 60 80 100 0 20 40 60 80 100

Duration (Seconds)

Duration (Seconds)

(a) Bridges2-Expanse (Concurrency) (b) Bridges2-Expanse (Throughput)

w

(c) HPCLab-Expanse (Concurrency)

1CS’23, June 21-23 2023, Orlando, Florida, USA

— Falcon — Marlin_Network

— VA
Marlin_Read .. Marlin_Write 2 A Y %
- B A P T = AT
= i I \',\\;, \"{,-v’ 1~ _1\,’ \
S 6000 [i \
EARIE S y \
/ AN i
N/ N/ N Z 4000 !
SN \/ N E I
/ = 2000 ! —Marlin — Falcon
0 20 40 60 80 100 0 20 40 60 80 100

Duration (Seconds) Duration (Seconds)

(d) HPCLab-Expanse (Throughput)

Figure 9: Performance comparison for Falcon and Marlin in real-world networks. Marlin attains competitive results in transfer
throughput while lowering the concurrency value significantly.

20 —Falcon — Marlin_Network ™ 24000
Marlin_Read .. Marlin_Write 13 SV 2 1 R ATy %
3 15 - - S 18000 AR ‘w"‘-.x:'"'s‘_;‘\“-,' wo W
€ = i '#\‘!\ VAR
= W !
E 10 3 12000 LY vov
o | < 1 J
5 5 i / S 6000
© ,/ PO e
0 |‘E 0 —Marlin - Falcon
0 50 100 150 200 250 0 50 100 150 200

Duration (Seconds) Duration (Seconds)

(a) HPCLab (Concurrency) (b) HPCLab (Throughput)

Figure 10: Performance comparison for Falcon and Marlin in
HPCLab network with 20Gbps bandwidth.

Marlin is able to lower the number of I/O processes significantly,
thereby lowering CPU utilization and I/O contention as discussed
in Section 4.3.

TCP buffer size limitation affects HPCLab-Expanse transfers (Fig-
ure 9(c) and 9(d)) since Expanse nodes are configured with 8MiB

maximum TCP buffer size while BDP is around 17MiB ((10Gbpsx15ms).

In addition to TCP buffer size limitation, both read and write I/O op-
erations require parallelism to overcome the I/O limitations. Specif-
ically, a concurrency value of 6 is needed to reach close to 8Gbps
write I/O throughput on the receiver end, Expanse. While the read
operation also needs parallelism, it can reach 8Gbps throughput
with a slightly smaller concurrency value. Similar to Bridges2-
Expanse transfers, Marlin attains comparable throughput to Falcon
despite using a lower read and transfer threads. Finally, Figure 10
presents Marlin’s performance in a local-area network (i.e., HP-
CLab) with 20Gbps bandwidth. The optimal concurrency level for
read, transfer, and write operations is almost the same, around 5.
Hence, Falcon and Marlin perform similarly in terms of concur-
rency values and throughput.

4.6 Performance Enhancements for Short
Transfers

A previous analysis of the data transfers in the research networks
showed that the median dataset size is 10GiB and more than 80%
all transfers move less than 128GiB data [21]. Thus, it is essential to
improve the performance of small transfers that last a few seconds
to minutes. In most cases, I/O performance is the bottleneck for
small transfers, hence, optimizing I/O performance is critical to
enhancing the throughput of short transfers. One possible solu-
tion is placing high-performance storage caches (e.g., NVMe SSD,
nonvolatile memory) on data transfer nodes such that files can be
staged at a faster speed than directly reading/writing from paral-
lel file systems (as illustrated in Figure 4) similar to burst buffers

Data Size Falcon (Sec) Marlin (Sec) Improvements (%)
HPCLab1 to HPCLab2 (Memory Buffer)

10 GB 9.8 7.4 24.5
25 GB 21.7 14.1 35.1
50 GB 43.8 243 44.5
75 GB 65.6 34.2 47.8
100 GB 86.9 42.1 51.6
HPCLab to Campus Cluster (NVMe SSD Buffer)

500 GB 465.4 202.7 56.5
2000 GB 1839.7 833.6 54.7
5000 GB 4494 4 2116.3 52.9

Table 3: Performance comparisons of Falcon and Marlin for
the transfer of small datasets when write I/0 is the bottleneck
of the transfers. Since Marlin is able to cache files in the
staging area (RAM or NVMe SSD), it can attain higher read
and network throughput and move the entire dataset to the
destination node quicker.

in HPC clusters. Please note that small transfers are more likely
to observe a significant gain through this approach because large
transfers are likely to hit the capacity limit of the staging area and
lower their speed to the speed of the file system.

Marlin lends itself to this idea as its modular architecture allows
it to stage-in files to temporary space before transferring to the
network and writing to file systems. Hence, we demonstrate the
benefit of using a staging area for the transfer of small datasets in
Table 3. The staging area can utilize main memory or NVMe SSDs
(or both) to cache the data transferred by the network operations
based on the availability of the hardware.

We first evaluate the impact of using main memory as a staging
area for small datasets when the transfers are write-limited. To
simulate a scenario in which the write speed of staging space for
Marlin is significantly (more than 2x) higher than the write speed
of a file system, we used HPCLab servers (HPCLab1-HPCLab2 in
Table 3) and limited the write speed to 10 Gbps while the read I/O
speed is 30 Gbps, network bandwidth is 20Gbps. Thus, it is possible
to transfer files to the staging area at around 20 Gbps speed. On the
other hand, only 10Gbps throughput can be attained if a monolithic
transfer application is used which will write data directly to the file
system. Clearly, Marlin can move the files to the staging area of
the destination node faster by more than 2x, reducing the transfer
time by up to 51.6% compared to Falcon.

1CS’23, June 21-23 2023, Orlando, Florida, USA

Md Arifuzzaman and Engin Arslan

& —Read — Network 15 —Read — Network 5 —Read — Network
> > >
% 10 ,‘| il -‘| ' |4 % 10 % 10 P A | . [\ 4\ '!
= l’\‘)) :: ,!.‘ ||. ,‘” 'I| I: = A A / EoAA = '“| -’ﬁllllll‘l ./l\ F n ll“J: ’\’l:
3 THN TR " V Lo 3 AOGAMY A \ 4 Hyh 3 Wl VA R s T A
2 5 :’.'Ily"\n"‘. it i ,i V?l‘. e 2 o WYY ,»!,'.-\/‘\-l/‘rl:\ WAy A2 5 A }'\..’?\‘\i“’f\-ﬁi LA 1 I'V}v'?{, Ay
Q (W1 b‘,l.lk\n.n (l‘ "ﬁ" Q ; poad T M Q v v AT WY ™
) *ﬂ' M ”\'h! “\,\ﬁ‘l\ '\’“ (&) h A A :\\,\ P U Y Y ! @] H Al W/ 1 V\‘,‘ ! I
AR R R IV VN by : A
0 ! -
0 30 60 90 120 0 16 32 48 64 80 0 16 32 48 64 80

Sample Transfer Number

(a) 3GB Buffer

Sample Transfer Number

(b) 10GB Buffer

Sample Transfer Number

(c) 100GB Buffer

Figure 11: Impact of memory space on the performance of Marlin. 10GiB is sufficient for Marlin to perform normally and attain

high performance in a 20 Gbps network.

20000 pn g
VXL SN mnat

15000 |
4

B AN rog M ’
10000 4/ ‘u""‘m“"“‘\’ A "{_ 7
.

5000
— Buffer=3GB
ol= Buffer=10GB

0 80

— Buffer=100GB

Throughput (Mbps)

160 240 320
Duration (Seconds)

400

Figure 12: Throughput of Marlin with different memory lim-
its. It requires at least 10GiB memory space to achieve 20
Gbps throughput in HPCLab network.

We next present a performance comparison when using NVMe
SSDs as a staging area. To do so, we conduct transfers between
HPCLab nodes where the receiver node saves the files to a parallel
file system located at a nearby campus cluster. The write limit to the
campus cluster is limited to 10Gbps whereas the transfers between
HPCLab nodes can reach 20 Gbps. Since NVMe SSD-based staging
area has higher capacity than the main memory-based staging area,
larger datasets can be cached in the staging before hitting the limits.
Hence, we used 500 GiB to 5 TiB transfer sizes and attained up
to 56% reduction in transfer times by means of mitigating write
limitations. Consequently, Marlin is able to reduce the duration for
small dataset transfers significantly by means of mitigating write
I/O limitations.

4.7 Impact of Memory Limit

Marlin uses main memory (tmpfs) on sender and receiver nodes
as a staging area between network and I/O operations. Hence, it
is important to limit memory usage to avoid saturating the whole
memory space for a single transfer application. We, therefore, define
a hard limit for memory usage on both the sender and receiver sides.
By default, we set the limit to be 30% of free memory space. Fig-
ure 11 evaluates the impact of memory limit for HPCLab transfers.
We varied the buffer limit on the source node between 3GiB and
100GiB. Since the speed of transfers is around 20Gbps, 3GiB allows
Marlin to store around 0.6 seconds worth of data on memory be-
fore hitting the limit. This value becomes 4 seconds when using the
buffer size limit of 10GiB and 40 seconds when setting the memory
limit to 100GiB. The figures show that using a very small memory
limit causes Marlin to experience significant fluctuations in the

concurrency value of read and transfer operations. The number of
read threads often hit 1 since it cannot create and test multiple read
threads accurately due to lack of memory space. As a result, the
transfers take 60% longer compared to using 10GiB or 100GiB mem-
ory space as shown in Figure 12. Therefore, Marlin necessitates a
memory space that is at least as big as to hold a couple of seconds
worth of data. We believe this is a reasonable expectation as the
memory capacity of data transfer nodes in production systems is
high enough to accommodate this. As an example, the Expanse
transfer node has a 64GiB memory and the Bridges-2 transfer node
has a 128GiB memory.

5 CONCLUSION

Similar to compute jobs, data transfers in wide-area high-performance
networks require parallelism to overcome I/O and network limi-
tations. However, the implementation of transfer parallelism (aka
concurrency) in existing transfer applications has two main issues.
First, it creates the same level of parallelism for read, transfer, and
write operations when transferring files. This, in turn, overburdens
system resources (e.g., CPU) since not all operations require the
same level of parallelism to achieve a similar throughput. Second, it
causes unfair resource allocation when multiple transfers with dif-
ferent I/O characteristics share the bottleneck network link. Instead
of trying to overcome these problems by manipulating existing
monolithic transfer applications, we propose a modular file transfer
application, Marlin, to separate read, transfer, and write operations.
Marlin combines game theory-inspired utility functions with a uni-
variate online gradient descent algorithm to swiftly discover the
fair and optimal parallelism levels for each operation.

We evaluated the performance of Marlin both in emulated and
real-world networks to show that it is able to identify the minimum
concurrency level for read, transfer, and write operations to maxi-
mize transfer throughput while minimizing system overhead and
ensuring fairness among competing transfers. We also show that
the modular architecture of Marlin lends itself to the implementa-
tion of burst buffer design in data transfer nodes to expedite the
transfer of small datasets by caching data on high-performance stor-
age spaces (e.g., NVMe SSD and PMEM). Specifically, we find that
Marlin can speed up the transfer performance of short transfers
by more than 2x.

Use Only What You Need: Judicious Parallelism For File Transfers in High Performance Networks 1CS’23, June 21-23 2023, Orlando, Florida, USA

ACKNOWLEDGEMENT [27] Martin Zinkevich. 2003. Online convex programming and generalized infini-

. . . tesimal gradient ascent. In Proceedings of the 20th International Conference on
The work in this study was supported in part by the NSF grants MachinegLeaming (ICML-03). 928_935 f f

2145742, 2007789, and 2209955.

REFERENCES

[1] 2023. Bridges-2. https://www.psc.edu/resources/bridges-2/.

[2] 2023. Expanse. https://www.sdsc.edu/services/hpc/expanse/.

[3] 2023. Fast Data Transfer. http://monalisa.cern.ch/FDT/.

[4] 2023. Globus. https://www.globus.org.

[5] 2023. Lighting up the LSST Fiber Optic Network: From Summit to Base to Archive.

Isst.org/news/lighting-lsst-fiber-optic-network-summit-base-archive.

] 2023. The network challenge. https://home.cern/science/computing/network.
[7] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael Link, Catalin
Dumitrescu, Ioan Raicu, and Ian Foster. 2005. The Globus striped GridFTP
framework and server. In Proceedings of the 2005 ACM/IEEE conference on Super-
computing. IEEE Computer Society, 54.

[8] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Kettimuthu, J.

Kordas, M. Link, S. Martin, K. Pickett, and S. Tuecke. 2012. Software as a Service
for Data Scientists. Commun. ACM 55:2 (2012), 81-88.

[9] Md Arifuzzaman and Engin Arslan. 2021. Online Optimization of File Transfers
in High-Speed Networks. In High Performance Computing, Networking, Storage
and Analysis, SC21: International Conference for. IEEE.

[10] Engin Arslan, Kemal Guner, and Tevfik Kosar. 2016. HARP: predictive transfer op-
timization based on historical analysis and real-time probing. In High Performance
Computing, Networking, Storage and Analysis, SC16: International Conference for.
IEEE, 288-299.

[11] Engin Arslan and Tevfik Kosar. 2018. High-Speed Transfer Optimization Based

on Historical Analysis and Real-Time Tuning. IEEE Transactions on Parallel and

Distributed Systems 29, 6 (2018), 1303-1316.

Engin Arslan, Bahadir A Pehlivan, and Tevfik Kosar. 2018. Big data transfer

optimization through adaptive parameter tuning. j. Parallel and Distrib. Comput.

120 (2018), 89-100.

[13] Engin Arslan, Brandon Ross, and Tevfik Kosar. 2013. Dynamic protocol tuning

algorithms for high performance data transfers. In European Conference on Parallel

Processing. Springer, 725-736.

P. Balaprakash, V. Morozov, R. Kettimuthu, K. Kumaran, and 1. Foster. 2016.

Improving Data Transfer Throughput with Direct Search Optimization. In 2016

45th International Conference on Parallel Processing (ICPP). 248-257. https://doi.

org/10.1109/ICPP.2016.36

[15] John Bresnahan, Michael Link, Rajkumar Kettimuthu, Dan Fraser, Ian Foster,
et al. 2007. Gridftp pipelining. In Proceedings of the 2007 TeraGrid Conference.

[16] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-based congestion control. Queue 14, 5
(2016), 50.

[17] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. 2018. {PCC} Vivace: Online-Learning Congestion Control.
In 15th { USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18). 343-356.

[18] T.J. Hacker, B. D. Noble, and B. D. Atley. 2005. Adaptive Data Block Scheduling
for Parallel Streams. In Proceedings of HPDC "05. ACM/IEEE, 265-275.

[19] Elad Hazan. 2016. Introduction to online convex optimization. Foundations and

Trends® in Optimization 2, 3-4 (2016), 157-325.

Yuanlai Liu, Zhengchun Liu, Rajkumar Kettimuthu, Nageswara Rao, Zizhong

Chen, and Ian Foster. 2019. Data transfer between scientific facilities—bottleneck

analysis, insights and optimizations. In 2019 19th IEEE/ACM International Sympo-

sium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 122-131.

[21] Zhengchun Liu, Rajkumar Kettimuthu, Ian Foster, and Nageswara SV Rao. 2018.
Cross-geography scientific data transferring trends and behavior. In Proceedings
of the 27th International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 267-278.

[22] MD SQ Zulkar Nine and Tevfik Kosar. 2020. A Two-Phase Dynamic Throughput

Optimization Model for Big Data Transfers. IEEE Transactions on Parallel and

Distributed Systems 32, 2 (2020), 269-280.

Pratiksha Thaker, Matei Zaharia, and Tatsunori Hashimoto. [n.d.]. Learning and

utility in multi-agent congestion control. optimization 24, 10 ([n.d.]), 11-18.

[24] Esma Yildirim, Engin Arslan, Jangyoung Kim, and Tevfik Kosar. 2016. Application-

level optimization of big data transfers through pipelining, parallelism and con-

currency. IEEE Transactions on Cloud Computing 4, 1 (2016), 63-75.

Daging Yun, Chase Q Wu, Nageswara SV Rao, Qiang Liu, Rajkumar Kettimuthu,

and Eun-Sung Jung. 2017. Data Transfer Advisor with Transport Profiling Opti-

mization. In Local Computer Networks (LCN), 2017 IEEE 42nd Conference on. IEEE,

269-2717.

Liang Zhang, Phil Demar, Bockjoo Kim, and Wenji Wu. 2017. MDTM: Optimizing

data transfer using multicore-aware I/O scheduling. In 2017 IEEE 42nd Conference

on Local Computer Networks (LCN). IEEE, 104-111.

[12

[14

[20

[23

[25

[26

https://doi.org/10.1109/ICPP.2016.36
https://doi.org/10.1109/ICPP.2016.36

	Abstract
	1 Introduction
	2 Related Work
	3 Marlin: Modular File Transfer Application
	3.1 Utility Function
	3.2 Online Search Algorithm

	4 Evaluation
	4.1 Evaluation of Optimization Algorithms
	4.2 Fine-Tuning Concurrency
	4.3 System Overhead
	4.4 Fairness Between Competing Transfers
	4.5 Evaluations in Production Systems
	4.6 Performance Enhancements for Short Transfers
	4.7 Impact of Memory Limit

	5 Conclusion
	References

