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Abstract

For unweighted graphs, finding isometric embeddings of a graph G is closely related to decompo-
sitions of G into Cartesian products of smaller graphs. When G is isomorphic to a Cartesian graph
product, we call the factors of this product a factorization of G. When G is isomorphic to an isometric
subgraph of a Cartesian graph product, we call those factors a pseudofactorization of G. Prior work has
shown that an unweighted graph’s pseudofactorization can be used to generate a canonical isometric em-
bedding into a product of the smallest possible pseudofactors. However, for arbitrary weighted graphs,
which represent a richer variety of metric spaces, methods for finding isometric embeddings or determin-
ing their existence remain elusive, and indeed pseudofactorization and factorization have not previously
been extended to this context. In this work, we address the problem of finding the factorization and
pseudofactorization of a weighted graph G, where G satisfies the property that every edge constitutes a
shortest path between its endpoints. We term such graphs minimal graphs, noting that every graph can be
made minimal by removing edges not affecting its path metric. We generalize pseudofactorization and
factorization to minimal graphs and develop new proof techniques that extend the previously proposed
algorithms due to Graham and Winkler [Graham and Winkler, ’85] and Feder [Feder, ’92] for pseudo-
factorization and factorization of unweighted graphs. We show that any n-vertex, m-edge graph with
positive integer edge weights can be factored in O(m2) time, plus the time to find all pairs shortest paths
(APSP) distances in a weighted graph, resulting in an overall running time of O(m2+n2 log log n) time.
We also show that a pseudofactorization for such a graph can be computed in O(mn) time, plus the time
to solve APSP, resulting in an O(mn+ n2 log log n) running time.
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Figure 1: A schematic showing how hypercube embeddings can be used to construct a set of DNA sequences
with a particular relationship. a) An unweighted graph representing the desired binding strength relation-
ships between DNA strands. b) A hypercube embedding (equivalent to an assignment of binary strings)
of this graph. c-d) Each binary string in the hypercube embedding corresponds to a DNA sequence, by
associating 0 and 1 with point mutations within a sequence. When mutations are not adjacent and the pre-
and post-mutation bases are chosen carefully, the binding strength between DNA strands is approximately
determined by the number of mutations between one strand and the complement of the other. This relation-
ship can be captured in a hypercube or Hamming graph.

1 Introduction

The task of finding isometric embeddings, or mappings of the vertex set of one graph to another while pre-
serving pairwise distances between vertices, is widely applicable but unsolved for general weighted graphs.
One of the most important applications is in molecular engineering. Attempting to design biomolecules with
the same control as seen in natural biological systems, molecular engineers may focus on designing sets of
DNA strands with pre-specified binding strengths, as these binding strengths can be essential to the emer-
gent behavior of a network of interacting molecules [23, 29, 1, 16]. Under certain conditions, the binding
strength between pairs of DNA strands can be approximated by the distance between pairs of vertices in a
hypercube graph, and so the DNA strand-design problem reduces to the task of finding a mapping between
a graph whose pairwise vertex distances correspond to desired binding strengths and the hypercube graph
whose distances correspond to the actual binding strengths between pairs of DNA strands (Figure 1). This
strand design problem could be applied for DNA data storage [2, 17], DNA logic circuits [20, 28], and DNA
neural networks [21, 4].

Isometric embeddings may also be applied in communications networks by embedding the connectivity
graph of a network into a Hamming graph, or product of complete graphs, which allows shortest paths
between nodes to be computed using only local connectivity information [11]; in linguistics as a method of
representing the similarities between various linguistic objects [10]; and in coding theory for the design of
certain error-checking codes [15].

In general, many graphs will not have isometric embeddings into a particular destination graph, and the
problem of efficiently finding isometric embeddings has been solved for only certain classes of graphs.
Prior work has addressed this task for unweighted graphs into hypercubes [7], Hamming graphs [27, 24],
and arbitrary Cartesian graph products [12, 8]. These works on unweighted graphs related the isometric em-
bedding problem to representations of a graph either as isomorphic to a Cartesian product of graphs, which
we call a factorization, or as isomorphic to an isometric subgraph of a Cartesian product of graphs, which
we call a pseudofactorization. In this work, we extend the concepts of factorization and pseudofactorization
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Figure 2: The graph on the right is the Cartesian product of the graphs on the left. The parent edge of a
given edge in the product graph is the edge in a factor that has the same color as it. For example, edges
(a, x)(a, y), (b, x)(b, y), and (c, x)(c, y) in the product graph all have edge xy in the second factor as their
parent edge. Here, edges of the same color have the same weight.

to weighted graphs, a task that to our knowledge has not been addressed before. Due to the work of Berleant
et al. [3], this has implications for finding hypercube and Hamming embeddings of certain weighted graphs.

Except for Section 4, which applies to all weighted graphs, this paper focuses on weighted graphs for which
every edge is a shortest path between its endpoints. We call such graphs minimal graphs. Minimal graphs
form a natural subset of the class of weighted graphs,consisting of those graphs for which every edge is part
of at least one shortest path.

Many aspects of our results also apply to arbitrary weighted graphs, because any weighted graph may be
made minimal simply by removing any edges that do not affect its path metric. Our results also apply in
some cases to arbitrary finite metric spaces, because any finite metric space has a corresponding minimal
graph generated by taking a weighted complete graph and removing all extra edges. Other weighted graphs
may also be constructed for a given finite metric space, and the isometric embeddings described by our
methods will in general depend on which weighted graph representation is used [5].

1.1 Other work

1.1.1 Factorization and pseudofactorization of unweighted graphs

The Cartesian graph product (defined formally in Section 2) combines k ≥ 1 graphs called factors, so that
every vertex in the product graph is a k-tuple of vertices, one from each of the factors, and each edge of the
product graph corresponds to a unique edge in one of the factors (see Figure 2).

The problem of representing a given graph as a Cartesian product of factor graphs is of central importance to
isometric embeddings because of the property that every distance in the product graph may be decomposed
as a sum of distances in the factor graphs. We consider two Cartesian product representations, factorization
and pseudofactorization, both described in the following paragraph and depicted in Figure 3. For unweighted
graphs, the problems of finding both representations for a given graph G are well studied.

Given an unweighted graph, a factorization is a set of factor graphs whose Cartesian product is isomorphic
to the given graph. A prime graph is one whose factorizations always include itself. Sabidussi [22] showed
that every connected, unweighted graph has a unique factorization into prime graphs, and Feigenbaum et al.
[9] and Winkler [25] first showed that the prime factorization of such graphs can can be found in polynomial
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Figure 3: Subfigure (a) shows a non-prime, non-irreducible graph. Subfigure (b) shows the prime factoriza-
tion of the graph in (a). Subfigure (c) shows the canonical pseudofactorization of the graph in (a).

time. Feder [8] showed that the prime factorization of any unweighted m-edge, n-vertex graph can be found
in O(mn) time. Imrich and Klavžar [13] showed that deciding if the prime factorization of an unweighted
m-edge graph consists entirely of complete graphs can be done in O(m) time. More recently, Imrich and
Peterin [14] showed that finding the prime factorization of an arbitrary unweighted m-edge graph can also
be done in O(m) time. However, for a disconnected graph, this problem is at least as hard as the graph
isomorphism problem, which is not known to be solvable in polynomial time. In particular, two graphs G
and H are isomorphic if and only if the graph of two isolated nodes is a factor of their disjoint union (see
[6]). In fact, the prime factorization of a disconnected graph is no longer unique [26].

A pseudofactorization of an unweighted graph relaxes the condition of a factorization, only requiring that
the input graph is isometrically embeddable into the Cartesian product of a set of graphs. Clearly, any
factorization is also a pseudofactorization; however, the converse is not true (e.g., see Figure 3). The analog
of a prime graph in the context of pseudofactorization is an irreducible graph. Each connected, unweighted
graph has a unique pseudofactorization into irreducible graphs, its canonical pseudofactorization [12]1.
Importantly, defining pseudofactorization for weighted graphs must be done with care, since with the above
definition no weighted graph would have an irreducible pseudofactorization (Figure 4).

1.1.2 Isometric embeddings of unweighted graphs

Despite the connection between pseudofactorization and isometric embedding, studies of isometric embed-
dings of unweighted graphs preceded Graham and Winkler’s original description of pseudofactorization. In
1973, Djoković [7] was the first to characterize the unweighted graphs with isometric embeddings into a
hypercube, and showed that constructing such an embedding for an unweighted graph can be done in poly-

1Notably, Graham and Winkler [12, 26] use the term “factor” both for graphs in a factorization and graphs in a pseudofactoriza-
tion. Here we specifically use the term “pseudofactors” to refer to the graphs forming some pseudofactorization.
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Figure 4: A generalization of pseudofactorization to weighted graphs must be done with care. For example,
if pseudofactorization requires only that the input graph is isometrically embeddable into a Cartesian graph
product, then even graphs such as K2 have no irreducible pseudofactorization. We require that a graph also
be isomorphic to a subgraph of the Cartesian graph product, which precludes this example.

nomial time. In 1984, Winkler [27] extended these results to finding isometric embeddings of unweighted
graphs into Hamming graphs, designing an O(n5) algorithm to do so (for n-vertex, m-edge graphs). Soon
after, Graham and Winkler [12] generalized the earlier results to arbitrary Cartesian graph products, showing
that each unweighted graph has a unique isometric embedding into the Cartesian product of its irreducible
pseudofactorization. Graham and Winkler [12] proposed an O(m2) algorithm for finding this unique iso-
metric embedding, and later results, such as the O(mn) pseudofactorization algorithm designed by Feder,
may be used to construct this isometric embedding more efficiently [8].

1.2 Our results

In this paper, we start by generalizing the notions of factorization and pseudofactorization to weighted
graphs. While defining factorization for weighted graphs is straightforward, pseudofactorization of weighted
graphs is more subtle. As an example, if, in analogy to unweighted graphs, a pseudofactorization of graph
G = (V (G), E(G), wG) is defined as a set of graphs for which G is isometrically embeddable into their
product, then the graph K2 will have no irreducible pseudofactorization into weighted graphs because it
can be isometrically embedded into the Cartesian product of k copies of K2 with edge weight 1

k for any
positive integer k (Figure 4). Instead, we require G to be isomorphic to an isometric subgraph of the product
of the pseudofactors. This constraint implies both preservation of distances and of edges between G and
the pseudofactor product, which are characteristics of unweighted graph embeddings previously noted by
Winkler . When all graphs are unweighted, this is equivalent to previous work.

With pseudofactorization defined as such, we first prove that the O(m2) algorithm proposed by Graham
and Winkler [12] can be adapted slightly to work on weighted m-edge graphs. While the algorithm itself
is largely unchanged, additional proof is required to show that the output is a correct pseudofactorization of
the input graph into irreducible graphs, and that the output does not depend on the order in which edges and
vertices are traversed.

Theorem 1.1. Given a minimal weighted graph G = (V (G), E(G), wG) and the distances between all
pairs of vertices, a pseudofactorization into irreducible weighted graphs can be achieved in O(m2) time,
where m = |E(G)|. If the distances are not pre-computed, the time required to compute all-pairs shortest
paths (APSP) must be included, and pseudofactorization may be achieved in O(n2 log log n + m2) time,
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where n = |V (G)|.

The APSP running time of O(n2 log log n + mn) is by Pettie [18] for n-vertex, m-edge graphs, and the
pseudofactorization runtime is dominated by the O(m2) term for dense enough graphs.

Our proof uses the Djoković-Winkler relation θ and its transitive closure θ*, which are relations on the
edges of a graph and are frequently used to pseudofactor unweighted graphs [26]. For unweighted graphs,
each equivalence class Ei of θ* is used to generate one pseudofactor by removing the edges in Ei from the
input graph and taking each connected component of the resulting graph to be a vertex of the pseudofactor.
Vertices are adjacent in that pseudofactor if there is an edge in Ei connecting the corresponding connected
components [12]. To apply this process to minimal weighted graphs, we must prove that all edges connecting
any two connected components have the same edge weight (Lemma 3.4), and that this edge weight may be
used as the edge weight in the corresponding pseudofactor. The proofs that the input graph is isometrically
embeddable into the resulting set of pseudofactors, and that each pseudofactor is irreducible, are given in
Theorems 3.9 and 3.10. The proof of the runtime of this algorithm is given in Section 5.1.

In addition, we adapt the reasoning of Graham and Winkler on unweighted graphs [12, 26] to prove that the
irreducible pseudofactorization of a minimal weighted graph is unique. As a result, we call the irreducible
pseudofactorization output by this algorithm the canonical pseudofactorization and each pseudofactor a
canonical pseudofactor.

Theorem 1.2. For a minimal weighted graph, any two pseudofactorizations into irreducible weighted
graphs are equivalent in the following sense: there exists a bijection between the two sets of pseudofac-
tors such that corresponding pairs of pseudofactors are isomorphic to each other.

Theorem 1.2 is proven in Section 3.3.

Finally, we modify a pseudofactorization algorithm on unweighted graphs due to Feder [8] to speed up the
pseudofactorization of minimal weighted graphs. Feder improved upon Graham and Winkler’s runtime by
finding a spanning tree T for the graph and defining a new relation θT on the edges of a graph such that
two edges in the graph are related by θT if they are related by θ and at least one of them is in T . Feder
showed that applying Graham and Winkler’s pseudofactorization algorithm using the transitive closure of
this relation, θ∗T , produces an irreducible pseudofactorization of a weighted graph, no matter the choice of
T . Because these equivalence classes are quicker to compute than those of θ* and the number of equivalence
classes is necessarily limited to n − 1, the runtime is improved to O(mn) for an n-vertex, m-edge graph.
Motivated by Feder’s work [8], we propose Algorithm 2, which finds in O(mn) time a spanning tree T of
an n-vertex, m-edge weighted graph for which θ∗T has the same equivalence classes as θ∗. This allows us to
improve the time complexity of pseudofactorization given precomputed APSP distances to O(mn).

Theorem 1.3. Given a minimal weighted graph G = (V (G), E(G), wG) and the distances between all
pairs of vertices, a pseudofactorization into irreducible weighted graphs is achievable in O(mn) time, where
m = |E(G)| and n = |V (G)|. If distances are not pre-computed, this is achievable in O(n2 log log n+mn)
time.

Our results on factorization parallel those for pseudofactorization, and many of our proofs for factorization
rely on those for pseudofactorization. Feder showed that an unweighted graph can be factored by replacing
the Djoković-Winkler relation θ with a different relation. We use the replacement relation θ ∪ τ , where
τ relates edges based on a so-called square property [8]. This is similar to the relation of the same name
proposed by Feder, but with additional restrictions needed for use with weighted graphs. This allows us to
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make the following statement, whose proof follows similar steps to that for pseudofactorization.

Theorem 1.4. Given a weighted graph G = (V (G), E(G), wG) and the distances between all pairs of
vertices, a factorization into prime weighted graphs is achievable in O(m2) time, where m = |E(G)|. If
distances are not pre-computed, this is achievable in O(n2 log log n+m2) time, where n = |V (G)|.

The prime factorization algorithm and proof of correctness are presented in Section 4.2. The runtime of the
algorithm is analyzed in Section 5.2.

As with pseudofactorization, we are also able to show that the prime factorization of a minimal graph G
is unique. The proof in this case is much simpler because of the restriction that G be isomorphic to the
Cartesian product of its prime factors.

Theorem 1.5. For a minimal weighted graph, any two factorizations into prime graphs are equivalent in
the following sense: there is a bijection between both sets of factors such that the corresponding pairs of
factor graphs are isomorphic.

The proof of this theorem is given in Section 4.3.

1.3 Overview

Section 2 describes notation and definitions necessary for the remaining sections. In Section 3, we show the
correctness of the algorithm for pseudofactorization of minimal weighted graphs. We also show that each
graph has a unique irreducible pseudofactorization up to graph isomorphism. In Section 4, we show that
weighted graphs may be factored using a modified version of Feder’s algorithm [8] and prove uniqueness
of prime factorization of weighted graphs. Section 5 introduces our method for analyzing runtimes of the
algorithms presented here, and shows that for an m-edge graph, the given algorithms run in O(m2) time
plus the time to find all pairs shortest paths (APSP) distances. In Section 6, we use a modified version of
Feder’s algorithm [8] for pseudofactorization to show that the irreducible pseudofactorization of a minimal
weighted n-vertex, m-edge graph is computable in O(nm) time plus the time to compute APSP. Section 7
concludes with our final thoughts on this work and proposes some remaining open questions.

2 Preliminaries

We consider finite, connected, undirected graphs, written G = (V (G), E(G), wG) with vertex set V , edge
set E, and edge weight function wG : E → R>0. For unweighted G, we let wG(e) = 1 for all e ∈ E. Edges
of G are written uv or vu for vertices u, v ∈ V ; since all edges are undirected, uv ∈ E ⇐⇒ vu ∈ E. The
shortest path metric for G, written dG : V × V → R≥0, maps pairs of vertices to the minimum edge weight
sum along a path between them.

Definition 2.1. A graph G is a minimal graph if and only if every edge in E(G) forms a shortest path
between its endpoints. That is, wG(uv) = dG(u, v) for all uv ∈ E(G).

Clearly, all unweighted graphs are minimal. We note that for any non-minimal weighted graph, a minimal
graph can be generated with the same path metric by simply removing edges not satisfying the minimality
condition.

A graph embedding π : V (G)→ V (G∗) maps vertices of a graph G onto those of a graph G∗. If π satisfies
dG(u, v) = dG∗(π(u), π(v)) all u, v ∈ V (G), then π is an isometric embedding. Note that π must be an
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injection, as both dG and dG∗ are distance metrics and thus the distance between a pair of vertices is 0 if and
only if the vertices are the same. When such a π exists, we write G ↪→ G∗.

The Cartesian graph product of one or more graphs G1, . . . , Gm is written G = G1 × · · · × Gm or G =∏m
i=1Gi. For Gi = (V (Gi), V (Ei), wGi), G is defined as V (G) = V (G1)× · · ·×V (Gm), E(G) is the set

of all (u1, . . . , um)(v1, . . . , vm) with exactly one ℓ such that uℓvℓ ∈ E(Gℓ) and ui = vi for all i ̸= ℓ, and
wG(uv) = wGℓ

(uℓvℓ) for ℓ chosen as above (Figure 2). Note that Cartesian products are typically defined
with respect to unweighted graphs, and for our generalization to weighted graphs, we let each edge inherit
its weight from one of the factors. This allows us to retain an important distance-preservation property
associated with Cartesian products of unweighted graphs. In particular, for any two vertices u, v ∈ V (G),
u = (u1, . . . , um) and v = (v1, . . . , vm), we have that

dG(u, v) =
m∑
i=1

dGi(ui, vi) (1)

We prove Equation (1) after defining a parent edge in Definition 2.2

We are particularly concerned with cases where G is isometrically embeddable into a Cartesian graph prod-
uct. The following definition relates edges in G to edges in a Cartesian product into which it has an isometric
embedding, and for which edges are preserved between G and the product.

Definition 2.2. For graphs G1, . . . , Gm, consider the Cartesian product G = Πm
i=1Gi. For every edge

uv ∈ E(G), u = (u1, . . . , um), v = (v1, . . . , vm), there exists exactly one ℓ such that uℓ ̸= vℓ, and we
must have uℓvℓ ∈ E(Gℓ). We call uℓvℓ the parent edge of uv. Further, if another graph G′ has an isometric
embedding π : V (G′)→ V (G) and there is an edge u′v′ ∈ E(G′) such that π(u′)π(v′) = uv, then we say
that uℓvℓ is the parent edge under π of u′v′.

Note that from our definition of Cartesian product, edge uv ∈ E(G) with parent edge uℓvℓ ∈ E(Gℓ) must
have wG(uv) = wGℓ

(uℓvℓ).

Proof of Equation 1. We show that Equation 1 holds by considering both directions of the inequality.

dG(u, v) ≤
∑m

i=1 dGi(ui, vi) : Consider a shortest path Pi = (ui = pi1, p
i
2, . . . , p

i
ki

= vi) from ui to vi in
Gi. Then there is a path from u = (u1, . . . , um) to (v1, u2, . . . , um) of weight equal to that of P1,
or dG1(u1, v1). In particular the path through the product graph that holds all elements but the first
one constant and follows P1 along the first index meets this criteria, which can be expressed as the
path ((u1 = p11, u2, . . . , um), (p12, u2, . . . , um), . . . , (v1 = p1k1 , u2, . . . , um)). We can apply this iter-
atively to construct a path from (v1, v2, . . . , vt−1, ut, . . . , um) to (v1, v2, . . . , vt−1, vt, ut+1 . . . , um)
of weight dGt(ut, vt), by following a shortest path in factor t and holding all other elements constant.
Pasting these paths together, we get a path from u to v of weight

∑n
i=1 dGi(ui, vi).

dG(u, v) ≥
∑m

i=1 dGi(ui, vi) : We prove by induction on the number of edges on a shortest path P between
u and v that dG(u, v) ≥

∑m
i=1 dGi(ui, vi). As a base case, observe that if P crosses a single edge then

uv ∈ E(G). By the definition of the Cartesian product there is exactly one factor Gℓ for which uℓ ̸= vℓ
and uℓvℓ ∈ E(Gℓ), wGℓ

(uℓ, vℓ) = wG(u, v). Since P is a shortest path, dG(u, v) = wG(u, v) =
wGℓ

(uℓ, vℓ) ≥ dGℓ
(uℓ, vℓ). For the inductive step let P cross k edges, k > 1, and assume dG(u, v) ≥∑m

i=1 dGi(ui, vi) for all u, v ∈ V (G) having a shortest path of less than k edges. Subdivide P into
two subpaths of length less than k, (u, . . . , x) and (x, . . . , v), where x = (x1, . . . , xm). Then we have
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dG(u, v) = dG(u, x) + dG(x, v) ≥
∑m

i=1[dGi(ui, xi) + dGi(xi, vi)] ≥
∑m

i=1 dGi(ui, vi), where the
final step is due to the triangle inequality.

The term factorization is used when a graph G is isomorphic to a Cartesian graph product (e.g., Figure
3b). Here we generalize the concept of unweighted graph isomorphisms to require preservation of weights
under isomorphism as well. In particular, we consider two weighted graphs G = (V (G), E(G), wG) and
G′ = (V (G′), E(G′), wG′) to be isomorphic when there is a bijective map f : V (G)→ V (G′) such that for
all u, v ∈ V (G), f(u)f(v) ∈ E(G′) ⇐⇒ uv ∈ E(G) and uv ∈ E(G) =⇒ wG(uv) = wG′(f(u)f(v)).

Definition 2.3. Whenever G is isomorphic to the Cartesian graph product
∏m

i=1Gi, we say that the set
{G1, . . . , Gm} forms a factorization of G and refer to each Gi as a factor.

If all factorizations of G include G as a factor, we say that G is prime. A prime factorization is one with
only prime factors. For convenience, we assume that a factorization does not include K1, except in the case
where G = K1, since a factor of K1 does not affect the final product up to isomorphism.

Pseudofactorization generalizes factorization to situations where G is not isomorphic to the graph product.
Instead, we require that G is only isomorphic to an isometric subgraph of the graph product.

Definition 2.4. Consider graphs G and G∗ =
∏m

i=1G
∗
i . For an embedding π : V (G) → V (G∗) , we

define for each i, 1 ≤ i ≤ m, a function πi : V (G) → V (Gi) such that π(u) = (π1(u), . . . , πm(u)) for
all u ∈ V (G) . If an isometric embedding π : V (G) → V (G∗) with the associated πi exists satisfying the
following criteria:

1. ∀u, v ∈ V (G) : dG(u, v) = dG∗(π(u), π(v)),

2. ∀u, v ∈ V (G) : uv ∈ E(G) implies π(u)π(v) ∈ E(G∗) and wG(uv) = wG∗(π(u)π(v)),

3. every vertex in G∗
i is in the image of πi, 1 ≤ i ≤ m, and

4. every edge in G∗
i is the parent of an edge in G, 1 ≤ i ≤ m

then we say the set {G∗
1, . . . , G

∗
m} is a pseudofactorization of G and refer to each G∗

i as a pseudofactor.

If all pseudofactorizations of G include G as a pseudofactor, we say that G is irreducible. An irreducible
pseudofactorization is one with only irreducible pseudofactors. As with factorization, we assume that a
pseudofactorization does not include K1, except in the case where G = K1.

Clearly, any pseudofactorization is also a factorization; however, the converse is not true (see Figure 3c).
Informally, the definition of pseudofactorization requires both that G can be isometrically embedded into
G∗ and that edges are preserved within this embedding. In other words, the embedding must be a homomor-
phism. This second condition is a natural one for manipulating graph structures, but may be less applicable
to other situations (e.g., finite metric spaces). The final two conditions ensure that there are no unnecessary
vertices and edges in the pseudofactors (or any graph would be a pseudofactor of the graph in question, as
G is an isometric subgraph of G×H for any graph H).

2.1 Binary relations on the edge set of a graph

In this manuscript, several binary relations on edge sets of a graph will become relevant. Given a binary
relation R on a set X we will denote its transitive closure as R∗, defined such that for each x, y ∈ X , x R∗ y
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Figure 5: An unweighted graph (left) and a minimal weighted graph with the same vertex adjacency (right).
Edges that are the same color are members of the same equivalence class under θ*. The graph on the left
has two equivalence classes and it is not irreducible, while the graph on the right has only one equivalence
class and is irreducible.

if and only if there exists a sequence (x = x1, . . . , xt = y) of elements in X such that xi R xi+1 for each i,
1 ≤ i < t. When R∗ is an equivalence relation on a set E, we denote by [e]R∗ , e ∈ E, the equivalence class
under R∗ with e.

Our first binary relation, θ is due to Graham and Winkler [12].

Definition 2.5 (θ relation). The binary relation θ on the edges of a graph G = (V (G), E(G), wG) is defined
such that uv θ xy if and only if

[dG(x, u)− dG(x, v)]− [dG(y, u)− dG(y, v)] ̸= 0.

This is a symmetric and reflexive relation, and its transitive closure θ* is an equivalence relation. We call the
left-hand-side of this equation the theta-difference between edges uv and ab, so that if the theta-difference
between two edges is nonzero, those edges are related by θ.

Although θ is the same as in [12], we note that the addition of edge weights may change the equivalence
classes of θ*, as shown in Figure 5.

In Section 6, we will use an additional relation we call θT , based on a relation presented by Feder [8], as
defined in Definition 2.6.

Definition 2.6 (θT relation). Given a weighted graph G = (V (G), E(G), wG) and a spanning tree T of G,
two edges ab, xy ∈ E(G) satisfy ab θT xy if and only if ab θ xy and at least one of ab, xy is in T .

The transitive closure θ∗T of θT is an equivalence relation on the edges of G for any spanning tree T of G.
(This is not different than for unweighted graphs, a proof of which can be found in [8], but for completeness
we reiterate it here for weighted graphs.) First, since θ∗T is by definition transitive, we only need to show
reflexivity and symmetry. The relation is clearly symmetric because θ is symmetric. Take ab ∈ E(G).
Because T is a spanning tree, we know there is a path P = (a = p0, p1, . . . , pn = b) from a to b that uses
only edges in T . We get that

∑
i[d(a, pi) − d(a, pi−1)] − [d(b, pi) − d(b, pi−1)] = [d(a, b) − d(a, a)] −

[d(b, b)− d(b, a)] = 2d(a, b) ̸= 0, so there must exist pjpj−1 such that ab θ pjpj−1, and since pjpj−1 ∈ T ,
this means that ab θT pjpj−1 θT ab, where the last step is by symmetry. This means that ab θ∗T ab and the
relation is reflexive. Thus, θ∗T is an equivalence relation for any T .

Secondly, we define a modified version of a relation presented by Feder [8] for use in graph factorization.
To do this, we first define the square property for two edges in a weighted graph.

10
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Figure 6: If uv′ θ vx and uv θ v′x, then existence of the subgraph depicted here implies that uv and uv′

satisfy the square property.

Definition 2.7. Edges uv, uv′ ∈ E(G) satisfy the square property if there exists a vertex x such that uvxv′

forms a chordless square (four-cycle) with wG(uv) = wG(xv
′), wG(uv

′) = wG(xv), uv θ xv′, and uv′ θ xv.
In other words, the two edges must make up two of the adjacent edges of at least one four-cycle in which the
opposite edges have the same weight and are related by θ. If no such square exists, the edges do not satisfy
the square property.

The square property is depicted visually in Figure 6.

We define binary relation τ such that edges uv, uv′ ∈ E(G) are related by τ if and only if they do not satisfy
the square property. This is a modified version of the τ relation proposed by Feder.

Definition 2.8 (τ relation). The binary relation τ on the edges of a graph G = (V (G), E(G), wG) is defined
as follows: Two edges uv, uv′ ∈ E(G) are related by τ if and only if they do not satisfy the square property.
If two edges do not share a common endpoint, they are not related by τ .

We make a small note regarding Definitions 2.7 and 2.8. For the square property, we require that the square
be chordless, based on the intuition that a square subgraph of this form would be created by the Cartesian
product of two edges in separate factor graphs. However, we note that the requirement that the square be
chordless does not affect the equivalence classes generated in Section 4 using the relation (τ ∪ θ)∗, because
all edges in a square that is not chordless will be in the same equivalence class of θ* (and thus of (τ ∪ θ)∗),
regardless of τ .

2.2 Edge-relation graphs

In our algorithmic time analysis, as well as the improved pseudofactorization algorithm discussed in Section
6, we will make use of what we call edge-relation graphs.

Definition 2.9 (edge-relation graph GR). Given a graph G = (V (G), E(G), wG) and a symmetric binary
relation R on E(G) whose transitive closure is also reflexive, the edge-relation graph of G with respect to
R is the unweighted graph GR = (V (GR), E(GR)) defined as follows.

For each xy ∈ E(G), there is a vertex uxy (or uyx, exactly one vertex for each edge) in VR. Two nodes uxy
and uab in GR are adjacent if and only if xy R ab in G.

The connected components of the graph GR are then the equivalence classes of the edges of the original
graph under the transitive closure of R.

11



3 Pseudofactorization of weighted graphs

In this section, we will discuss a method for pseudofactoring weighted graphs in polynomial time. To begin,
we discuss current techniques for pseudofactoring unweighted graphs, and we then show that one of these
techniques can also be applied to weighted graphs.

Algorithm 1 is a generalized version of the O(m2)-time algorithm presented by Graham and Winkler [12].
Its inputs are a graph and an equivalence relation θ*, (θ ∪ τ)*, or θ∗T on the edges of the graph (the latter
relations to be discussed in subsequent sections), and it outputs a set of graphs. Graham and Winkler [12]
showed that when the input is (G, θ*) for an unweighted graph G, the output is an irreducible pseudofactor-
ization of G. Figure 7 shows an example of an application of this algorithm to a weighted graph when the
input relation is θ*.

Informally, the algorithm finds the equivalence classes of the graph edges under the given relation. Then,
for each equivalence class Ek, it constructs the subgraph of G with all edges in Ek removed. The connected
components of this subgraph are subsequently used to form the corresponding output graph. In this section,
we show that this algorithm works for weighted graphs.

Algorithm 1 Algorithm for breaking up a graph over a relation θ*, (θ ∪ τ)*, or θ∗T
Input: A weighted graph G and an equivalence relation R ∈ {θ*, (θ ∪ τ)*, θ∗T } defined on G (where T is
the output of Algorithm 2 on G and some spanning tree if R = θ∗T ).
Output: A set GGG={G∗

1, G
∗
2, ..., G

∗
m}

1: Set GGG← ∅
2: Find the set of equivalence classes of R, {E1, E2, ..., Em}
3: Set EEE← {E1, E2, ..., Em}
4: for Ek ∈EEE do
5: Let wG′

k
be wG restricted to the edges in E(G) \ Ek

6: Set G′
k ← (V (G), E(G) \ Ek, wG′

k
)

7: Set CCC← {C1, C2, . . . , Cℓ} (the set of connected components of G′
k)

8: Create a new graph G∗
k

9: Set V (G∗
k)← {a |Ca ∈ CCC}

10: Set E(G∗
k)← {ab | there is an edge in Ek between Ca and Cb}

11: for ab ∈ E(G∗
k) do

12: Set wab to be the weight of an edge in G between Ca and Cb

13: Set wG∗
k
(ab)← wab

14: Set GGG←GGG∪{G∗
k}

15: Return GGG.

Algorithm 1 implies a set of natural embeddings between the input graph G and each of the output graphs,
which is formalized here.

Definition 3.1. Given a graph G and relation R ∈ {θ*, (θ ∪ τ)*, θ∗T }, let {G∗
1, G

∗
2, . . . , G

∗
m} be the output

of Algorithm 1 on (G,R), and let G∗ = Πm
i=1G

∗
i . Then the natural embedding of G under R is the function

that maps each u ∈ V (G) to (u∗1, . . . , u
∗
m) ∈ V (G∗) such that u∗i is the vertex in V (G∗

i ) corresponding to
the connected component of G′

i containing u (i.e. the vertex created in line 9 of the algorithm to represent
the connected component of G′

i that u is a member of). If σ is the natural embedding of G under R, then we

12
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Figure 7: Illustration of Algorithm 1 on a weighted graph of six nodes.
(a) The algorithm first finds the equivalence classes of θ*, shown here with distinct colors. The algorithm
then considers the remaining graph when each equivalence class is removed and uses that to construct the
final output graphs. In this case, there are three θ* equivalence classes and thus three pseudofactors.
(b) This subfigure shows in the first panel the same graph as in (a), in the second panel it shows its irreducible
pseudofactorization, and in the third panel it shows Cartesian product of those pseudofactors, of which the
original graph is an isometric subgraph.
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use σi to refer to the projection of σ onto its i-th element, so that σi(u) = u∗i .

In this section, the overall goal is to prove that when the input to Algorithm 1 is a minimal weighted graph
G and the relation θ*, the output is an irreducible pseudofactorization of G , and that this irreducible pseud-
ofactorization is unique for any G. Note that the relation θ∗T can be used with Algorithm 1 for more efficient
pseudofactorization, and we consider this in Section 6.

3.1 Testing irreducibility

We first show that if all edges in a graph are in the same equivalence class of θ*, then the graph is irreducible.

Lemma 3.2. For any graph G = (V (G), E(G), wG) and any uv, xy ∈ E(G), if uv θ* xy, then for any
pseudofactorization {G1, . . . , Gm} of G and isometric embedding π : V (G) → V (Πm

i=1Gi), uv and xy
must have parent edges under π in the same pseudofactor.

Proof. Throughout this proof, we let d := dG and di := dGi . Say there exists a pseudofactorization
{G1, G2, ..., Gm} of G with isometric embedding π , and let π(a) = (a1, a2, . . . , am) for a ∈ V (G).

We first prove the lemma for uv θ xy. Assume for contradiction that xy and uv have parent edges under π
in different pseudofactors. Since xy and uv are edges, by Definition 2.4, π(x)π(y) and π(u)π(v) are also
edges, and by the definition of the Cartesian product, there is exactly one l such that ul ̸= vl and one j such
that xj ̸= yj . Since the two edges have parent edges in different pseudofactor graphs, we also have l ̸= j
(see Definition 2.2).

Now we consider [d(x, u)−d(x, v)]− [d(y, u)−d(y, v)]. Since π is an isometric embedding, we can rewrite
this using the distance metric for ΠiGi, as follows:

m∑
i=1

[di(xi, ui)− di(xi, vi)]− [di(yi, ui)− di(yi, vi)].

Term i in this sum is 0 if ui = vi or if xi = yi, as ui = vi would cause di(xi, ui)− di(xi, vi) = di(yi, ui)−
di(yi, vi) = 0 and xi = yi would cause di(xi, ui) − di(xi, vi) = di(yi, ui) − di(yi, vi). However, since
l ̸= j, this means at least one of these equalities is true for every term in the sum, so xy and uv are not
related by θ. From this, we conclude that if xy θ uv, then xy and uv must have parent edges under π in the
same pseudofactor graph.

To prove the lemma when uv θ* xy, observe that uv θ* xy implies that there is a sequence of edges, e1 =
uv, e2, . . . , el = xy for which ek θ ek+1 for all 1 ≤ k < l. By the above reasoning, parent edges under π for
adjacent pairs of edges belong to the same pseudofactor, so the same is true for uv and xy.

We know that Algorithm 1 outputs a set whose size is the number of equivalence classes of θ*. Thus, from
the preceding lemma, if Algorithm 1 outputs a set containing a single graph, then the input graph must be
irreducible. We summarize this finding in Corollary 3.3.

Corollary 3.3. For any graph G = (V (G), E(G), wG), if all edges in G are in the same equivalence class
of θ*, the graph is irreducible. Thus, if Algorithm 1 outputs a single graph on input (G, θ*), G is irreducible.

Corollary 3.3 is extended in the following subsection with Corollary 3.11, which proves that in fact a graph
is irreducible if and only if it has a single equivalence class of θ*.
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3.2 An algorithm for pseudofactorization

In this section, we will show that Algorithm 1 with θ* as the input relation can be used to pseudofactor a
minimal weighted graph. Many of the lemmas used in this section have parallels to those that we will use
to prove factorization. First, we show in Lemma 3.4 that this algorithm is well-defined for the inputs we are
considering (a minimal graph and the relation θ*). Throughout this section, notation is used as in Algorithm
1.

We first prove that each step of Algorithm 1 is deterministic. Specifically, the following lemma proves that
the choice of edge between Ca and Cb in lines 12-13 of Algorithm 1 does not affect the output.

Lemma 3.4. Let G = (V (G), E(G), wG) be a minimal graph serving as input to Algorithm 1 with input
relation θ*. If Ca, Cb are connected components in G′

k and there exists x ∈ Ca, y ∈ Cb such that xy is an
edge with weight wab, then for each u ∈ Ca there exists at most one v ∈ Cb such that uv forms an edge, and
if it exists the edge has weight wab.

Proof. Throughout this proof, we take d to be the distance function on G. First, we show by contradiction
that if uv is an edge between Ca, Cb, then there cannot exist a distinct v′ ∈ Cb such that uv′ is an edge.
Assume that such a v′ exists. Since v and v′ are in the same connected component of G′

k, there is a path
Q = (v = q0, q1 . . . , qn = v′) (represented in Figure 8(a)) consisting entirely of edges not in Ek (and thus
not related to uv by θ). We consider the sum

n∑
i=1

[d(u, qi−1)− d(u, qi)]− [d(v, qi−1)− d(v, qi)] = 0.

By telescoping, this implies that:

[d(u, v)− d(u, v′)]− [d(v, v)− d(v, v′)] = d(u, v) + d(v, v′)− d(u, v′) = 0.

Since for v ̸= v′, d(v, v′) > 0, this gives us d(u, v) < d(u, v′). However, a symmetric analysis says
d(u, v′) < d(u, v), so u cannot have edges to two distinct v, v′ ∈ V (Cb) This shows the first part of the
lemma.

Now, we show that if uv is an edge from Ca to Cb, then it has weight wab, which will rely on the assumption
that the graph in question is minimal, and thus that for any uv ∈ E(G), wG(uv) = dG(u, v). First, we
define two paths. The first is Qa = (u = qa0 , q

a
1 , . . . , q

a
n = x), which is a path of edges entirely in Ca. The

second is Qb = (v = qb0, q
b
1, . . . , q

b
t = y), which will consist entirely of edges in Cb (represented in Figure

8(b)). We note that no pair of edges on either of these paths can be related to uv or to xy by θ, since the edges
are not in Ek. Construct the cycle of L edges , Q = (u, v,Qb, Q

−1
a ) = (u = q0, v = q1, q2, . . . , qL = u)

(i.e. the cycle going through uv, following Qb, through yx, and then following Qa backwards back to u).

Now consider the sum

L∑
l=1

[d(u, ql−1)− d(u, ql)]− [d(v, ql−1)− d(v, ql)] = 0,

15



(a) (b)

u

v

v′

Ca Cb

Q

u

x

v

y

Ca Cb

QbQa

Figure 8: Paths described in the proof of Lemma 3.4. (a) A graph in which u ∈ Ca has an edge to distinct
v, v′ ∈ Cb, which the proof of Lemma 3.4 shows is impossible. (b) Definitions of Qa and Qb from the proof
when considering u ∈ Ca, v ∈ Cb.

where the equality comes from telescoping. Because uv is not related by θ to any edge on this cycle except
itself and possibly xy, all terms cancel except the ones for the ones for edges uv and xy. Thus we have

[d(u, y)− d(u, x)]− [d(v, u)− d(v, x)] + [d(u, u)− d(u, v)]− [d(v, u)− d(v, v)] = 0,

which using the facts that wG(uv) = d(u, v) and d(u, u) = d(v, v) = 0, simplifies to

d(u, y)− d(u, x) + d(v, x)− d(v, y) = 2wG(uv).

Then taking the absolute values of both sides, we get

2wG(uv) = |d(u, y)− d(u, x) + d(v, x)− d(v, y)|
≤ |d(u, y)− d(u, x)|+ |d(v, x)− d(v, y)|
≤ d(x, y) + d(x, y)

= 2wG(xy).

Thus wG(uv) ≤ wG(xy). Through symmetric analysis, wG(xy) ≤ wG(uv), so we must have wG(xy) =
wG(uv). This implies the lemma.

With the next lemma, we introduce two general facts about the relationship between paths and equivalence
classes of θ* that will be used in later claims. These are similar to claims presented by Graham and Winkler
[12] but we generalize them to weighted graphs.

Lemma 3.5. Given a weighted graph G = (V (G), E(G), wG) and a set {E1, E2, . . . , Em} that is the set
of equivalence classes on E(G) under equivalence relation θ*, the following hold:

1. If uv forms an edge and is in equivalence class Ek, then for any path Q = (u = q0, q1, . . . , qt = v)
between the two nodes, there is at least one edge from Ek.
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2. Let P = (u = p0, p1, . . . , pn = v) be a shortest path from u to v. If P contains an edge in the
equivalence class Ek, then for any path Q = (u = q0, q1, . . . , qt = v) there is at least one edge from
Ek.

Proof. First, we note that the second statement implies the first one in the case of minimal graphs, since
in those cases any edge uv is a shortest path between u and v. However, this is not the case for general
weighted graphs and we will use this lemma when we discuss factorization of general weighted graphs as
well. Thus, we prove this lemma in two parts.

1. First, we consider the following sum:

t∑
i=1

[d(u, qi−1)− d(u, qi)]− [d(v, qi−1)− d(v, qi)] = [d(u, u)− d(u, v)]− [d(v, u)− d(v, v)]

= −2d(u, v)
̸= 0.

The last inequality comes from the fact that u ̸= v and the assumption that the graph has only positive
weight edges. However, we note that this sum is only non-zero if at least one term in the sum is
non-zero. If term i is non-zero, then uv and qi−1qi are related by θ and qi−1qi is thus in Ek. Thus, we
prove the first part of the lemma.

2. Fix an edge pℓ−1pℓ in P and consider the following sum.

t∑
i=1

[d(pℓ−1, qi−1)− d(pℓ−1, qi)]− [d(pℓ, qi−1)− d(pℓ, qi)]

= [d(pℓ−1, u)− d(pℓ−1, v)]− [d(pℓ, u)− d(pℓ, v)]

We know that because P is a shortest path, d(u, v) = d(u, pℓ−1)+d(v, pℓ−1) and d(u, v) = d(u, pℓ)+
d(v, pℓ). Substitution yields:

d(u, v)− 2d(pℓ−1, v)− d(u, v) + 2d(pℓ, v) = 2[d(pℓ, v)− d(pℓ−1, v)].

This value is −2wG(pℓ−1pℓ) ̸= 0 because pℓ−1pℓ is an edge on a shortest path from u to v, and thus
some edge on Q is related to pℓ−1pℓ by θ.

Now, we show that G is isomorphic to an isometric subgraph of ΠiG
∗
i (the Cartesian product of the algo-

rithm’s output graphs). To do so, we define a mapping π from G to ΠiG
∗
i with the goal of showing that π is

an injection and that shortest paths in G correspond to shortest paths under π.

We notice that for each vertex in G∗
i created by Algorithm 1 in line 9, there is at least one vertex in G′

i

and thus in G corresponding to that vertex. Additionally, for each edge of G∗
i created in line 10, there is a

corresponding edge in G between connected components of G′
i. Because of this, we see that criteria 3 and

4 of Definition 2.4 are met by this mapping. We now show that π is an injection.

Claim 3.6. For minimal graph G = (V (G), E(G), wG), let π : V (G) → V (Πm
i=1G

∗
i ) be the natural

embedding of G under θ* (see Definition 3.1), where {G∗
1, G

∗
2, . . . , G

∗
m} is the output of Algorithm 1 on

input (G, θ*). Then π is an injection.
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Proof. We show that π(u) ̸= π(v) for all u, v ∈ V (G), u ̸= v. To do so, let P be a shortest path between u
and v. We know that if one of the edges is in Ek, then u and v are in different connected components of G′

k

because Lemma 3.5 says that all paths between the two vertices have an edge in Ek. Since u ̸= v there is at
least one edge in P , and thus there is at least one index k for which πk(u) ̸= πk(v).

In many of our proofs, manipulation of the sum of theta-differences over a path is essential. We will now
show an important property of that sum that we will use in our final proof. Informally, it says that for the
sum of theta-differences between uv and the sequences of edges along a path, the contribution from the
edges in each equivalence class does not depend on the path taken.

We define the following notation for paths in a graph.

Definition 3.7. For path P = (u = p0, p1, . . . , pn = v) in G = (V (G), E(G), wG), define P k to be the
sequence of edges in P that are also in Ek, where Ek is one of the equivalence classes of E under θ*. Define
TP
k as TP

k :=
∑

pipi+1∈P k [dG(u, pi)− dG(u, pi+1)]− [dG(v, pi)− dG(v, pi+1)].

Lemma 3.8. Let G = (V (G), E(G), wG) be a weighted graph and P = (u = p0, p1, . . . , pn = v) and
Q = (u = q0, q1, . . . , qt = v) be two paths in G from u to v. Then TP

k = TQ
k .

Proof. We consider the following equations. For brevity, in this proof we define d := dG.

TP
k =

∑
pipi+1∈Pk

[d(u, pi)− d(v, pi)]− [d(u, pi+1)− d(v, pi+1)]

=
∑

pipi+1∈Pk

∑
qjqj+1∈Q

[d(qj , pi)− d(qj+1, pi)]− [d(qj , pi+1)− d(qj+1, pi+1)]

=
∑

pipi+1∈Pk

∑
qjqj+1∈Qk

[d(qj , pi)− d(qj+1, pi)]− [d(qj , pi+1)− d(qj+1, pi+1)]

=
∑

qjqj+1∈Qk

∑
pipi+1∈Pk

[d(qj , pi)− d(qj+1, pi)]− [d(qj , pi+1)− d(qj+1, pi+1)]

=
∑

qjqj+1∈Qk

∑
pipi+1∈Pk

[d(qj , pi)− d(qj , pi+1)]− [d(qj+1, pi)− d(qj+1, pi+1)]

=
∑

qjqj+1∈Qk

∑
pipi+1∈P

[d(qj , pi)− d(qj , pi+1)]− [d(qj+1, pi)− d(qj+1, pi+1)]

=
∑

qjqj+1∈Qk

[d(qj , u)− d(qj , v)]− [d(qj+1, u)− d(qj+1, v)]

= TQ
k

The second equality comes from telescoping the inner sum, the third comes from the fact that only edges
related by θ can contribute to the sum, so the only edges that might contribute are those in Ek. The fourth
equality comes from switching the order of the sums, the fifth comes from switching the order of the terms
in the summand, and the sixth again from the fact that only edges in Ek contribute. The seventh equality is
by telescoping, and the last equality is by definition of TQ

k .

Theorem 3.9. Let G = (V (G), E(G), wG) be a minimal graph and π : V (G)→ V (Πm
i=1G

∗
i ) be the natural

embedding of G under θ*, where {G∗
1, G

∗
2, . . . , G

∗
m} is the output of Algorithm 1 on input (G, θ*). Then for
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any edge ab ∈ E(G) it must be that π(a)π(b) ∈ E(ΠiG
∗
i ), and for any pair of vertices u, v ∈ V (G) it

must be that dG(u, v) = dΠiG∗
i
(π(u), π(v)) and wG(uv) = wΠiG∗

i
(π(u)π(v)). It follows that for an input

(G, θ*) with minimal graph G, Algorithm 1 produces a pseudofactorization of G.

Proof. First, we show that if ab ∈ E(G), then π(a)π(b) ∈ E(ΠiG
∗
i ) and wG(ab) = wΠiG∗

i
(π(a)π(b)).

Assume ab ∈ Ej and let G′
j be as defined in line 6 of the algorithm. Now, let Cπj(a) and Cπj(b) be the

connected components of G′
j corresponding to nodes πj(a) and πj(b) in G∗

j , respectively, as defined in line
7. We know that E(G) has an edge between a vertex in Cπj(a) and a vertex in Cπj(b) of weight wG(ab).
By Lemma 3.4, all edges between nodes in Cπj(a) and nodes in Cπj(b) have the same weight and, by the
definition of edges in G∗

j in lines 10-13, there is an edge between πj(a) and πj(b) of that weight.

Let d := dG and d∗ := dΠiG∗
i
.

Assume d(u, v) > d∗(π(u), π(v)) for at least one pair of vertices u, v ∈ V (G). Choose u, v ∈ V (G) to be
one such pair of vertices having the smallest value of d∗(π(u), π(v)).

First, we show that any vertex on a shortest path from π(u) to π(v) in the product graph cannot be in the
image of π. Consider a vertex π(u′) that is in the image of π and on such a shortest path , which implies
d∗(π(u), π(u′)) + d∗(π(u′), π(v)) = d∗(π(u), π(v)). Additionally, we have d∗(π(u), π(u′)) = d(u, u′)
because d∗(π(u), π(u′)) < d∗(π(u), π(v)) and we similarly get d∗(π(u′), π(v)) = d(u′, v). This yields a
contradiction:

d(u, v) ≤ d(u, u′) + d(u′, v)

= d∗(π(u), π(u′)) + d∗(π(u′), π(v))

= d∗(π(u), π(v))

< d(u, v).

The first inequality is the triangle inequality and the last line is by the assumption. This contradiction implies
that such a u′ cannot exist and thus no vertex in the image of π can be on a shortest path between π(u) and
π(v) in ΠiG

∗
i .

We have shown that no vertex in the image of π can be on the shortest path between π(u) and π(v), but to
get a contradiction, we will now show that such a vertex must exist.

Let uu′ be the first edge on a shortest path P from u to v and assume without loss of generality that
uu′ ∈ Ek. We show that the image under πk of Pk is a shortest path in G∗

k. This will imply that π(u)π(u′)
is an edge on a shortest path from π(u) to π(v) in ΠiG

∗
i , as shortest paths in ΠiG

∗
i can be formed by

concatenating paths in ΠiG
∗
i whose edges’ parent edges form shortest paths in the G∗

i . Consider a path
Q∗ = (πk(u) = q0, q1, . . . , qn = πk(v)) in G∗

k between πk(u) and πk(v). Since the nodes in G∗
k are defined

to be the labels of connected components in G′
k, each of which consists of one or more nodes in G, for each

j there exists vj such that πk(vj) = qj (i.e. there is a vertex in Cqj in G′
k). We also have that because qjqj+1

forms an edge, there is a pair of nodes in G that has an edge between Cqj and Cqj+1 . Let (xj+1
j , xj+1

j+1) be
this pair. We have as a superscript the index of the edge we’re considering and as a subscript the index of
the connected component in G′

k.

We will construct the path Q from u to v in G shown in Figure 9(a). Let Qj be a path from xjj to xj+1
j that

does not include any edges in Ek and let Q0 be a path from u to x10 and Qn be a path from xnn to v without
any edges from Ek. Since each of the pairs is in the same connected component of G′

k, these paths must

19



exist. Construct the path Q from u to v in G such that Q := Q0Q1Q2 · · ·Qn = (u = f0, f1, . . . , fm = v).
A visualization of this construction is given in Figure 9. We consider the sums TQ

k and TP
k as in Definition

3.7.

We know from Lemma 3.8 that TP
k = TQ

k . We use this to get

TP
k = TQ

k

=
∑

fifi+1∈Qk

[d(u, fi)− d(u, fi+1)]− [d(v, fi)− d(v, fi+1)]

≤
∑

fifi+1∈Qk

2w(fifi+1).

Since P is a shortest path, the theta-difference for every edge on this path must contribute 2 times its weight
to the overall sum (or else we would not be able to get to the total) so we get TP

k =
∑

pipi+1∈Pk 2w(pipi+1) ≤∑
fifi+1∈Qk 2w(fifi+1). Thus, the image under πk of P k from uk to vk is a shortest path in G∗

k. This means
uku

′
k is a first edge on a shortest path from πk(u) to πk(v) in G∗

k, which means π(u)π(u′) is a first edge on
a shortest path from π(u) to π(v) in ΠiG

∗
i - a contradiction.

Thus, we can conclude d(u, v) = d∗(π(u), π(v)) and we already showed all edges are preserved, so G is
isomorphic to an isometric subgraph of ΠiG

∗
i , where the G∗

i are the graphs in the set output by Algorithm
1 on input (G, θ*). This shows that criteria 1 and 2 of the pseudofactorization definition are satisfied.
Additionally, we note that criteria 3 and 4 are satisfied by the fact that Algorithm 1 only creates vertices and
edges in each G∗

i that are in the image of π or a parent edge of an edge in G under π, respectively.

The following lemma proves that the pseudofactorization given by Algorithm 1 under the conditions of
Theorem 3.9 is, in fact, irreducible.

Lemma 3.10. If (G, θ*) is the input to Algorithm 1 for minimal graph G, the output graphs {G∗
1, . . . , G

∗
m}

are all irreducible.

Proof. Using Corollary 3.3, we need only show that the edges of each pseudofactor G∗
i are all related by

θ*. Consider two edges ab, a′b′ ∈ E(G) with ab θ* a′b′. We know that there must exist a sequence of edges
ab = a1b1, a2b2, . . . , atbt = a′b′ such that aibi θ ai+1bi+1 for all i, 1 ≤ i < t. From Lemma 3.2 we know
that all edges in this sequence must have parents in the same pseudofactor, which we will call pseudofactor
j. Let uj := πj(u) for all u ∈ V (G). We only need to show that for each i, aijb

i
j θ a

i+1
j bi+1

j in order to show
that ajbj θ* a′jb

′
j .

For simplicity, we will consider any two edges xy, uv ∈ E(G) such that xy θ uv and show that if their
parent edges under π are in pseudofactor j, then xjyj θ ujvj . For brevity, define d := dG, di := dG∗

i
, and

d∗ := dΠiG∗
i
. We get the following:

20



(a)

(b)

(c)

u
Q0

Q1

Q2Q3
...Qn-2

q2q3
...qn-2

...
x0

1 x1
1

q0 q1 qn-1 qn

x1
2

C0

C0

C1

C1

Qn-1
Qn

xn-1
n-1

xn-1
n xn

n

Cn-1 Cn

v

u

x1
1

y0
1

v

q0

q1

Figure 9: A visualization of the path constructed in the proof of Theorem 3.9.
(a) Each Ci is a connected component in G′

k, where Ek is the equivalence class we consider in the theorem.
Starting at u, we construct a path Q0 through edges in C0 to x10, which is some vertex in C0 with an edge to
C1. We similarly construct Q1 from x11 to x21 and so on. The path Q2 · · ·Qn−2 is the concatenation of the
paths through connected components C2 through Cn−2.
(b) Part of G∗

k for the graph in (a). We have πk(u) = q0 and πk(v) = qn, and the path Q∗ = (q0, q1, . . . , qn)
is an arbitrary path from πk(u) to πk(v) through G∗

k. The theorem shows that because of how G∗
k is con-

structed, there must exist a path in G like the one shown in (a), where the only edges in Ek are the xjj−1x
j
j

and the weight of each xjj−1x
j
j in G is the same weight as qj−1qj in G∗

k.
(c) An example of this process applied to the graph from Figure 7, when considering the green pseudofactor
shown on the right. Edge weights are omitted for simplicity. When the graph on the left is isometrically
embedded into the product of its pseudofactors (see Figure 7b) with isometric embedding π, πk(u) = q0
and πk(v) = q1. We let Q∗ = (q0, q1). When constructing Q, we can select Q0 to be (u) (so x10 = u)
and Q1 to be (x11, v). Alternatively, we could select Q0 to be (u, y10) and Q1 to be (v) (so v = y11). Thus,
although existence of the path Q is guaranteed, Q is not necessarily unique.
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[d∗(π(x), π(u))− d∗(π(x), π(v))]− [d∗(π(y), π(u))− d∗(π(y), π(v))]

=

m∑
i=1

[di(πi(x), πi(u))− di(πi(x), πi(v))]− [di(πi(y), πi(u))− di(πi(y), πi(v))]

= [dj(πj(x), πj(u))− dj(πj(x), πj(v))]− [dj(πj(y), πj(u))− dj(πj(y), πj(v))]

= [dj(xj , uj)− dj(xj , vj)]− [dj(yj , uj)− dj(yj , vj)],

where the second to last equality is due to the fact that xy is an edge with a parent under π in pseudofactor
j. Since every pair edges in G∗

j is the parent of an edge in Ej , we get that any pair of edges in G∗
j is related

by θ*.

Thus, from Theorem 3.9 and Lemma 3.10, we conclude that Algorithm 1 with the input (G, θ*) for a
minimal weighted G produces an irreducible pseudofactorization of G. We additionally note that because
the number of graphs produced by Algorithm 1 is exactly the number of equivalence classes of θ* on the
input graph, from Theorem 3.9 and Corollary 3.3, we get that a graph is irreducible if and only if there is
exactly one θ* equivalence class on its edges.

Corollary 3.11. A weighted graph G is irreducible if and only if there is exactly one θ* equivalence class
on its edges.

3.3 Uniqueness of pseudofactorization

Here, we prove that the irreducible pseudofactorization of any minimal graph is unique in the following
sense: for any two irreducible pseudofactorizations of a minimal graph G, the two sets of pseudofactors are
equal up to graph isomorphism. We call the irreducible pseudofactorization generated by Algorithm 1 with
input (G, θ*) the canonical pseudofactorization or canonical pseudofactors of G.

We note that uniqueness is guaranteed in part because conditions 3 and 4 of Definition 2.4 require that no
unnecessary vertices or edges are included in the pseudofactors. Of course, if these conditions are removed,
an arbitrary number of vertices and edges may be added without affecting isometric embeddability into the
product and the uniqueness property no longer holds. In fact, removing conditions 3 and 4 make it so that
no graph is irreducible, as for any graph G, we can construct a graph G′ that is identical to G but contains
an extra vertex x with an edge to a single vertex u ∈ V (G), with weight 1. Without conditions 3 and 4, then
G′ is a pseudofactor of G.

Theorem 3.12. Let G = (V (G), E(G), wG) be a minimal weighted graph and let {G1, . . . , Gp} and
{H1, . . . ,Hr} be two irreducible pseudofactorizations of G. Then p = r and the pseudofactors may be
reordered so that Gi is isomorphic to Hi for all i, 1 ≤ i ≤ p.

Proof. This proof follows the reasoning of Graham and Winkler [12], with modifications for weighted
graphs.

Number the θ* equivalence classes of E(G) as E1, . . . , Em. Let π : V (G)→ V (
∏p

i=1Gi) and ρ : V (G)→
V (

∏r
i=1Hi) be isometric embeddings of G into

∏p
i=1Gi and

∏r
i=1Hi, respectively, with π = (π1, . . . , πp)

and ρ = (ρ1, . . . , ρr). Note that by the definition of pseudofactorization, if u, v ∈ V (G) are adjacent then
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π(u), π(v) are adjacent, and there is exactly one i such that πi(u) ̸= πi(v); edge πi(u)πi(v) is the parent
edge under π of uv ∈ E(G). The same reasoning applies to ρ(u) and ρ(v).

First, we show that uv θ* u′v′ if and only if they have parent edges belonging to the same pseudofactor. That
is, uv θ* u′v′ if and only if πi(u) ̸= πi(v) ⇐⇒ πi(u

′) ̸= πi(v
′) for all i, 1 ≤ i ≤ p. For the forward case,

when uv θ* u′v′ then Lemma 3.2 applies and we are done. For the reverse case, let uv and u′v′ have parent
edges in Gj and note that because Gj is irreducible, it has exactly one equivalence class of θ* on its edges,
since Algorithm 1 outputs a pseudofactorization with one pseudofactor per equivalence class of θ*. Further,
we have that[

dG(u, u
′)− dG(u, v

′)
]
−
[
dG(v, u

′)− dG(v, v
′)
]

(2)

=
[
dG(π(u), π(u

′))− dG(π(u), π(v
′))

]
−
[
dG(π(v), π(u

′))− dG(π(v), π(v
′))

]
(3)

=

p∑
i=1

[
dGi(πi(u), πi(u

′))− dGi(πi(u), πi(v
′))

]
−
[
dGi(πi(v), πi(u

′))− dGi(πi(v), πi(v
′))

]
(4)

=
[
dGj (πj(u), πj(u

′))− dGj (πj(u), πj(v
′))

]
−
[
dGj (πj(v), πj(u

′))− dGj (πj(v), πj(v
′))

]
(5)

where the first equality holds because π is an isometric embedding, the second equality holds because of
the path decomposition property of the Cartesian graph product, and the third equality holds because each
summand is nonzero only if πi(u′) ̸= πi(v

′). Thus, by the definitions of θ and θ*, uv θ* u′v′. Since all edges
in Gj are related by θ*, then any edges in G to which they are a parent are also related by θ*.

This shows there is a bijection from the θ* equivalence classes to the set of Gi, as well as to the set of Hi.
So p = r = m.

Renumber both pseudofactorizations so that Gi and Hi contain only parent edges under π and ρ, respec-
tively, of the edges in Ei, 1 ≤ i ≤ m. Fix j, 1 ≤ j ≤ m, and u ∈ V (G). Take any u′ for which there is
a path P to u not using any edge in Ej . Clearly, πj(u) = πj(u

′) because no edges in this path have parent
edges in Gj and so πj is constant along this path. Alternatively, take any u′ for which every path to u has at
least one edge in Ej and consider a shortest path P from u to u′. Let ci be the sum of the edge weights of
the edges along P in Ei. Observe:

dG(u, u
′) =

n∑
i=1

dGi(πi(u), πi(u
′)) =

n∑
i=1

ci (6)

Each dGi(πi(u), πi(u
′)) ≤ ci because the edges along p in Ei trace out a path in Gi. Thus, for the sums

to be equal dGi(πi(u), πi(u
′)) = ci. So in this case dGi(πi(u), πi(u

′)) = cj > 0 and πj(u) ̸= πj(u
′).

Thus, u and u′ are connected by a path without edges in Ej if and only if πj(u) = πj(u
′). Now let Vu

be the set of all u′ ∈ V (G) for which there is a path from u to u′ without an edge in Ej . Then by this
reasoning Vu = {u′ ∈ V (G) : πj(u) = πj(u

′)} = {u′ ∈ V (G) : ρj(u) = ρj(u
′)}. Thus, there is a

single ρj(u) ∈ V (Hj) for each πj(u) ∈ V (Gj). Let f : V (Gj) → V (Hj) map each vertex of Gj to the
corresponding vertex in Hj given by Vu.

Each edge πj(u)πj(v) in Gj is the parent of an edge in G (see condition 4 of Definition 2.4), which
we assume without loss of generality to be uv ∈ Ej . As observed above, uv ∈ Ej must have a par-
ent edge under ρ, ρj(u)ρj(v) ∈ E(Hj). From the definition of pseudofactorization, the edge weights of
πj(u)πj(v), uv, and ρj(u)ρj(v) must be equal. Thus, for every edge πj(u)πj(v) ∈ E(Gj) there is an edge
f(πj(u))f(πj(v)) = ρj(u)ρj(u

′) ∈ E(Hj), and, by symmetry, the converse is true. So Gj is isomorphic to
Hj .
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4 Factorization of weighted graphs

The purpose of this section is to prove that we can factor graphs using Algorithm 1. We note that this section
focuses on weighted graphs, which need not be minimal.

Recall from Section 2 that two edges uv, u′v′ of a weighted graph G satisfy the square property if the two
edges are two adjacent edges of a 4-cycle in which the opposite edges have the same weight and are related
by θ. Recall also that two edges are related by τ if and only if they share an endpoint and do not satisfy the
square property. We will see below that the relation θ∪ τ has a similar connection to factorization as the θ
relation has to pseudofactorization.

4.1 Testing primality

Analogously to showing irreducibility with respect to pseudofactorization, in this section, we show in
Lemma 4.1 that a graph is prime if it has one equivalence class under (θ ∪ τ)∗ on its edges. Thus, Lemma
4.1 is analogous to Lemma 3.2.

Lemma 4.1. Let G = (V (G), E(G), wG) be a weighted graph. For uv, xy ∈ E(G), if uv θ xy or uv τ xy,
then for any factorization of G, uv and xy must have parent edges in the same factor under α, where α is
an isomorphism from G to the product of the factors. From this, we conclude that if uv (θ ∪ τ)* xy then uv
and xy have parent edges under α in the same factor.

Proof. We will prove the lemma first for the θ relation and then for the τ relation. Throughout the proof
of this lemma, we let d := dG and di := dGi . Say there exists a factorization {G1, G2, ..., Gm} of G
with isomorphism α such that α(a) = (α1(a), α2(a), ..., αm(a)) for a ∈ V (G). For simplicity, we let
αi(a) = ai.

1. Consider uv θ xy. Since α is an isomorphism, it must be an isometric embedding into an isometric
subgraph of the product graph. So by Lemma 3.2, uv θ xy implies that their parent edges under α
must be in the same pseudofactor.

2. Consider uv τ uv′ and assume for contradiction that uv and uv′ have parent edges under α in different
factors. We know that there is exactly one l such that ul ̸= v′l and exactly one j such that uj ̸= vj .
Since they belong to different factor graphs, we have l ̸= j. Without loss of generality, assume j < l.

Now, consider the vertex (u1, . . . , uj−1, vj , uj+1, . . . , ul−1, v
′
l, ul+1, . . . , um) in ΠiGi (ie the vertex

that matches α(u) on all indices except j and l, where it matches vj and v′l respectively). Since the
vertex set of ΠiGi is the Cartesian product of the V (Gi), this vertex must be in ΠiGi and since α is
a bijection, there must exist x ∈ V (G) such that α(x) equals this vertex. We also know that x must
have an edge to v since xi = vi for all i ̸= l and vlv

′
l = ulv

′
l ∈ E(Gl). It also has an edge to v′ since

xi = v′i for all i ̸= j and vjv
′
j = vjuj ∈ E(Gj).

Thus, uvxv′ is a square. Additionally, we know that weights on opposite sides of the square are equal
because they have the same parent edge under α. We can also show that opposite edges are related by
θ. We will only show this for uv θ xv′ and appeal to symmetry to show uv′ θ xv. As before, we can
rewrite [d(u, x)− d(u, v′)]− [d(v, x)− d(v, v′)] as the sum:

m∑
i=1

[di(ui, xi)− di(ui, v
′
i)]− [di(vi, xi)− di(vi, v

′
i)]
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Since u and v only differ on coordinate j, this becomes:

[dj(uj , xj = vj)− dj(uj , v
′
j = uj)]− [dj(vj , xj = vj)− dj(vj , v

′
j = uj)] = 2dj(uj , vj)

̸= 0.

The last inequality comes from the fact that vj ̸= uj and that all edge weights are positive. Thus,
uv θ xv′ and by a symmetric argument uv′ θ xv. This means x is such that uv and uv′ satisfy the
square property, which means they cannot be related by τ .

Thus, if two edges are related by θ or by τ , then they have parent edges in the same factor for any factor-
ization of G. This property is preserved under the transitive closure, so if two edges are related by (θ ∪ τ)*

then they must have parent edges in the same factor.

From this, we get the following corollary, which states that if all edges are in the same equivalence class of
(θ ∪ τ)*, the corresponding graph is prime.

Corollary 4.2. For any weighted graph G = (V (G), E(G), wG), if all edges in G are in the same equiva-
lence class of (θ ∪ τ)*, the graph is prime. Thus, if Algorithm 1 outputs a single graph on input (G, (θ ∪ τ)*),
G is prime.

Corollary 4.2 is extended in the following subsection with Corollary 4.8, which proves that in fact a graph
is irreducible if and only if it has a single equivalence class of (θ ∪ τ)*.

4.2 An algorithm for factorization

In this section, we show that Algorithm 1 with inputs weighted graph G = (V (G), E(G), wG) (not neces-
sarily minimal) and (θ∪τ)∗ produces a prime factorization of G. We first show that the algorithm in question
is well-defined for general weighted graphs and with the input relation (θ∪ τ)∗. We use Lemma 4.3 to show
this, and we note that it actually proves a stronger statement that we will continue to use later. Additionally,
we note that throughout this section, we will refer to G′

k and G∗
k as they are defined in Algorithm 1.

Lemma 4.3. Let G = (V (G), E(G), wG) be a weighted graph serving as input to Algorithm 1 with input
relation (θ ∪ τ)*. If Ca, Cb are distinct connected components in G′

k and there exists x ∈ Ca, y ∈ Cb such
that xy is an edge with weight wab, then for each u ∈ Ca there exists exactly one v ∈ Cb such that uv forms
an edge and that edge has weight wab.

Proof. First, we have that if uv is an edge between Ca, Cb, then there cannot exist a distinct v′ ∈ Cb such
that uv′ is an edge. This proof is identical to the first part of the proof of Lemma 3.4 so we do not repeat it
here.

Now we expand on that to show that each u ∈ Ca has an edge to exactly one vertex in Cb and that that edge
has weight wab. Let P (u) be a path from u to x that does not include any edges in Ek and has the smallest
number of edges of all such paths. Such a path must exist because u and x are in the same connected
component of G′

k.

We proceed by induction on the number of edges in the path P (u). In the base case, there are zero edges in
P (u). In this case, we must have u = x. By assumption, x has an edge of weight wab to y ∈ Cb, proving
the inductive hypothesis.
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Now, we assume that for all nodes in Ca with a path of n edges to x, the lemma holds. We let u be a vertex
such that P (u) has n+1 edges and let u′ be the second vertex on this path. By definition, we know that P (u′)
has n edges. By the inductive hypothesis, there exists v′ ∈ Cb such that u′v′ ∈ E(G) and w(u′v′) = wab.
We know that uu′ and u′v′ are not related by τ (or else uu′ would be in Ek), so they must fulfill the square
property. Let v be the vertex such that uu′v′v is a square with opposite edges of equal weight and related
by θ. Because uu′ ̸∈ Ek, we have vv′ /∈ Ek and since v′ ∈ Cb, we must have v ∈ Cb. This means uv is an
edge between Ca and Cb with weight wab, proving the lemma.

We now write Lemma 4.4, which is identical to Lemma 3.5, but now refers to the equivalence classes of our
new relation. The proof of this lemma is identical to that of Lemma 3.5, so we do not repeat it here.

Lemma 4.4. Given a weighted graph G = (V (G), E(G), wG) and the set {E1, E2, . . . , Em} of equivalence
classes on E(G) under equivalence relation (θ∪ τ)∗, the following hold:

1. If uv forms an edge and is in equivalence class Ek, then for any path Q = (u = q0, q1, . . . , qt = v)
between the two nodes, there is at least one edge from Ek.

2. Let P = (u = p0, p1, . . . , pn = v) be a shortest path from u to v. If P contains an edge in the
equivalence class Ek, then for any path Q = (u = q0, q1, . . . , qt = v) there is at least one edge from
Ek.

We now want to show that G is isomorphic to ΠiG
∗
i , so we define an isomorphism α : V (G)→ V (ΠiG

∗
i ).

In analogy to Section 3, we will show that α is an isomorphism. To do this, we show that α is a bijection,
that uv is an edge if and only if α(u)α(v) is an edge, and that they have the same weight if so. We use
Lemma 4.5 to show first that α is a bijection.

Lemma 4.5. For weighted graph G = (V (G), E(G), wG), let α : G→ Πm
i=1G

∗
i be the natural embedding

of G under (θ ∪ τ)*, where {G∗
1, G

∗
2, . . . , G

∗
m} is the output of Algorithm 1 on input (G, (θ ∪ τ)*). Then α

is a bijection.

Proof. First, we show that α is an injection (i.e. α(u) ̸= α(v) for all u, v ∈ V (G), u ̸= v). This is identical
to the proof that π is an injection in Claim 3.6, but we reiterate it here using the terminology in this section.
To show α is an injection, let P be a shortest path between u and v. If u ̸= v, then there is at least one edge
e in P . Assume e ∈ Ek. By Lemma 4.4, all paths from u to v have an edge in Ek, so u and v are in different
connected components of G′

k and αk(u) ̸= αk(v).

Now, we show that α is a surjection by showing that all nodes in ΠiG
∗
i are in the image of α. Assume for

contradiction that there is at least one vertex in the product not in the image of α. Let (u1, u2, . . . , um)
be one such vertex with an edge to a vertex (u1, . . . , xk, . . . , um) in the image of α whose pre-image is
x ∈ V (G). Since the two nodes have an edge of some weight wxu between them, we know that there
is an edge between Cuk

and Cxk
(connected components of G′

k that were responsible for the creation of
nodes uk and vk, respectively, in G∗

k in line 9 of Algorithm 1) of weight wxu and Lemma 4.3 tells us that
every vertex in Cxk

has an edge of that weight to exactly one vertex in Cuk
. Let u′ be the vertex in Cuk

that x has an edge to in G. Because there is an edge between u′ and x, we know that they appear in the
same connected component for all G′

i with i ̸= k. This tells us αi(x) = αi(u
′) for all i ̸= k and thus

α(u′) = (u1, u2, . . . , um), which means (u1, u2, . . . , um) is in the image of α.

The next theorem shows that α is an isomorphism.
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Theorem 4.6. Let G = (V (G), E(G), wG) be a weighted graph and α : V (G) → V (Πm
i=1G

∗
i ) be the

natural embedding of G under (θ ∪ τ)*, where {G∗
1, G

∗
2, . . . , G

∗
m} is the output of Algorithm 1 on input

(G, (θ ∪ τ)*). For all u, v ∈ V (G), u ̸= v, uv ∈ E(G) ⇐⇒ α(u)α(v) ∈ E(ΠiG
∗
i ). If uv ∈ E(G) and

α(u)α(v) ∈ E(ΠiG
∗
i ), then wG(uv) = wΠiG∗

i
(α(u)α(v)). Thus, Algorithm 1 on an input (G, (θ ∪ τ)∗)

outputs a factorization of G.

Proof. We divide this proof into two cases based on the number of indices i on which αi(u) ̸= αi(v). We
note that there must be at least one such index, as α is a bijection.

1. Case 1: There is more than one index on which αi(u) ̸= αi(v). We know that there is no edge
between α(u) and α(v) in this case, by definition of the Cartesian product. We also know that there
are two G′

i in which u and v are in different connected components in line 7 of the algorithm, which
is impossible if there is an edge between them, as that edge would be a path between them in all but
one G′

i. Thus, there is no edge between u and v either.

2. Case 2: There is exactly one k on which αk(u) ̸= αk(v). Let Cαk(u) and Cαk(v) be the connected
components of G′

k responsible for the creation of nodes αk(u) and αk(v), respectively, in G∗
k (i.e. the

connected components containing u and v in G′
k). If there is no edge between αk(u) and αk(v) in

G∗
k, then we know that there is no edge in G′

k between Cαk(u) and Cαk(v) so we can’t have an edge
between u and v. If there is an edge between αk(u) and αk(v) in G∗

k of weight wuv then by Lemma
4.3, we have that all nodes in Cαk(u) have an edge of weight wuv to exactly one vertex in Cαk(v). Let
v′ ∈ Cαk(v) be the vertex that u has an edge to. Because they share an edge, αi(v) = αi(u) = αi(v

′)
for all i ̸= k so α(v) = α(v′). Since α is a bijection, this means v = v′ and thus uv is an edge of the
same weight as α(u)α(v).

Lemma 4.7. If G = (V (G), E(G), wG) is the weighted input graph for Algorithm 1 with (θ ∪ τ)∗, the
output graphs {G∗

1, . . . , G
∗
m} are all prime.

Proof. Using Corollary 4.2, we only have to show that the edges of each factor G∗
i are all related by (θ∪τ)∗.

We know that a factor G∗
i appears as an isometric subgraph of ΠiG

∗
i by definition of the Cartesian product.

We know that all edges in this isometric subgraph are in the same equivalence class of (θ∪τ)∗ because their
pre-images under α are and α is an isomorphism. This implies their parent edges are all related by (θ ∪ τ)∗

so G∗
i is prime.

Theorem 4.6 and Lemma 4.7 prove that Algorithm 1 with input (G, (θ∪ τ)∗) produces a prime factorization
of weighted graph G. Additionally, because Algorithm 1 on input (G, (θ ∪ τ)*) outputs thea number of
graphs equal to the number of equivalence classes of (θ ∪ τ)* on E(G), Theorem 4.6 and Corollary 4.2 give
us the following corollary.

Corollary 4.8. A weighted graph G is prime if and only if there is exactly one (θ ∪ τ)* equivalence class
on its edges.

4.3 Uniqueness of prime factorization

We additionally claim that for any weighted graph G, the prime factorization of G is unique up to graph
isomorphism.
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Theorem 4.9. Let G = (V (G), E(G), wG) be a minimal weighted graph and let G = {G1, . . . , Gp} and
H = {H1, . . . ,Hr} be two prime factorizations of G. Then p = r and the pseudofactors may be reordered
so that Gi is isomorphic to Hi for all i, 1 ≤ i ≤ p.

Proof. Let α and β be isomorphisms from G to the product of the graphs in G and H, respectively. We
will define a mapping f : G → H as follows. If there exists an edge uv ∈ E(G) with αi(u) ̸= αi(v)
and βj(u) ̸= βj(v), then f(Gi) = Hj . We show that f is a well-defined bijection. First, we note that by
Lemma 4.3, two edges are related by (θ ∪ τ)∗ if and only if they have parent edges in the same factor of
any factorization. Thus, if there exists uv, xy ∈ E(G) such that uv and xy have parent edges under α in
factor Gi of G, then those edges must also have parent edges under β in the same factor ofH, meaning Gi is
mapped to exactly one Hj . The reverse reasoning also shows that each graph in H is mapped to by exactly
one graph in G.

Now, we must show that for each Gi ∈ G, f(Gi) is isomorphic to Gi. We know that Gi appears as a
subgraph of G, with all edges related by (θ∪ τ)∗. We have that G is isomorphic to ΠiGi and ΠiHi, so Gi is
isomorphic to an isometric subgraph of ΠiHi. However, because Gi is prime, all edges in this subgraph are
related by (θ ∪ τ)* and by Lemma 4.1 must have parent edges in the same factor of ΠiHi. By the definition
of f , this factor is f(Gi). Thus, Gi must be a subgraph of f(Gi).

5 Computing the runtime of factorization and pseudofactorization

In order to address runtime and prepare for the following section, we will discuss another view on how
to compute the equivalence classes of the transitive closure of a relation R on the edges of a graph G =
(V (G), E(G), wG) whose transitive closure is also symmetric and reflexive. To do this, we use the edge-
relation graph for G, as defined in Definition 2.9. For convenience, we discuss the structure of such a
graph again here. For a graph G = (V (G), E(G), wG) with edge relation R, we define an unweighted
graph GR = (V (GR), E(GR)). The vertices of this graph correspond to the edges of G where the vertex
corresponding to edge xy is denoted uxy or uyx and there is an edge between two vertices if and only if
the corresponding edges in the original graph are related by R. The connected components of the graph are
then the equivalence classes of the original graph under the transitive closure of R. The time to compute the
connected components can be found using BFS in O(|V (GR)| + |E(GR)|) time. As an upper bound, we
know that once this graph is computed, |V (GR)| = |E(G)| and |E(GR)| = O(|V (GR)|2) = O(|E(G)|2).
Thus, computing the connected components with BFS takes O(|E(G)|2) time. If further bounds can be
placed on the number of edges in GR, this time can be decreased further. Figure 10 shows an example of
how Gθ is constructed for a given input graph.

5.1 Runtime for pseudofactorization

To perform Graham and Winkler’s algorithm, we compute the equivalence classes of θ*, then for each
equivalence class we perform linear time work by removing all edges in the equivalence class, computing
the condensed graph, and checking which nodes in the new graph should have edges between them. In
the worst case, each edge is in its own equivalence class, which requires O(mn + m2) = O(m2) time
for an n-vertex, m-edge graph since the graph is connected. To compute the equivalence classes of θ*, we
compute Gθ and find the connected components. If we first find all pairs shortest path (APSP) distances, we
can check if any pair of edges ab, xy is related by θ in O(1) time. Thus, once we have found all of these
distances, we can compute all edges from a given vertex of Gθ in O(|V (Gθ)|) = O(m) time, for a total of
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Figure 10: a) A weighted graph G. b) Gθ. c) G with edges colored according to their equivalence class
under θ*. Each equivalence class corresponds to a connected component of Gθ. d-f) Analogous illustration
for the graph shown in (d).

O(m2) time and then we take O(m2) time to compute the connected components. Thus, total runtime is
O(m2) plus APSP computation time, which is currently known to be O(n2 log log n +mn) [19] and thus
gives us a runtime of O(n2 log log n+m2) overall.

5.2 Runtime for factorization

For factorization using Algorithm 1, we can again bound the runtime of the main loop by O(m2) for an n-
vertex, m-edge graph, and thus we need only consider the time needed to compute the equivalence classes
of (θ∪τ)∗. We can first compute all distances using a known APSP algorithm. From here, we can determine
all edges in Gθ∪τ that occur as a result of θ relations, and thus we only have to add in edges that occur as
a result of τ relations. To do this, we can compare each pair of edges related by θ. If we have two edges
of the form ab and cd that are related by θ and have the same edge weight, we can check if ac and bd are
edges and have equal weights and an edge between them in Gθ. If so, we have that adjacent edges in this
4-cycle are not related by τ . Compute the set E of all adjacent edges of G not related by τ , and then we can
compute the set E ′ of all pairs of edges that are adjacent but not in E . Add these edge pairs as edges in Gθ

to compute Gθ∪τ . For a given pair of edges in G their contribution to E is found in constant time for O(m2)
time to compute E , and E ′ may also be found in O(m2) time given E . Thus, it takes O(m2) total time to
construct Gθ∪τ and get its connected components. This brings our total runtime for graph factorization up
to O(m2) plus APSP time, for O(n2 log log n+m2) time overall.
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6 An algorithm for improved pseudofactorization runtime

In Section 5, we proved that Algorithm 1 could be used with relation θ* to pseudofactor an n-vertex, m-edge
minimal graph in O(n2 log log n + m2) time. Feder [8] showed that, for unweighted graphs, θ* could be
replaced by an alternative equivalence relation θ∗T , which has the same equivalence classes but whose classes
are faster to compute and for which there are at most n − 1 equivalence classes Recall from Definition
2.6 that, given a spanning tree T of a graph G, two edges ab, xy are related by θT if and only if ab θ xy
and at least one of ab, xy is in the spanning tree T , and that the transitive closure θ∗T is an equivalence
relation. Feder showed that for unweighted graphs θ∗T with any spanning tree T could be used to produce a
pseudofactorization for any G; we will show the slightly weaker property that at least one T exists for every
minimal weighted graph and that such a tree can be found efficiently.

Recall from Section 2 that [uv]θ∗T is the equivalence class under θ∗T containing uv. We make the following
claim about the equivalence classes of θ∗T :

Claim 6.1. Let G = (V (G), E(G), wG) be a graph with a spanning tree T and uv ∈ E(G) Then [uv]θ∗T ⊆
[uv]θ* .

Proof. Take xy ∈ [uv]θ∗T . Since uv θ∗T xy, there must exist a sequence of edges such that
uv = u0v0 θT u1v1 θT · · · θT unvn = xy. We have that uivi θT ui+1vi+1 if and only if uivi θ ui+1vi+1 and
at least one edge is in the tree. Thus, we know that uv = u0v0 θ u1v1 θ · · · θ unvn = xy, which means
uv θ* xy. Thus xy ∈ [uv]θ* .

For an n-vertex, m-edge minimal graph G, we have not proven that [uv]θ∗T = [uv]θ* for arbitrary T . How-
ever, we can prove that there is some tree T ∗ such that [uv]θ∗

T∗ = [uv]θ* for all uv ∈ E(G). Algorithm 2
finds such a T ∗. Computing the equivalence classes of θ∗T ∗ for a given T ∗ takes only O(mn) time, as they
can be computed by comparing each edge to only the edges in T ∗, of which there are exactly n− 1.

Informally, Algorithm 2 starts with any spanning tree and repeatedly modifies it until the equivalence classes
under θ∗T equal those under θ*. It does so by looking at a particular equivalence class for θ∗T and for each
edge in that equivalence class, checking that every edge on the simple path between its endpoints through
the tree is in the current equivalence class or an already processed one, and swapping the edge in question
into the tree if this does not hold. The idea behind this process is to try to grow the equivalence class we are
working on as much as possible until it is the same as the equivalence class under θ*.

We will first justify that this algorithm works correctly and then that it runs in O(mn) time . In particular,
during the runtime subsection, we will go into more detail about how to update GθT efficiently as we modify
T , but for now we take for granted that we update the edge-relation graph correctly whenever T is updated.

6.1 Correctness of Algorithm 2

Let CR(uxy) be the vertices of the connected component of uxy in GR. Note that [xy]θ∗T = [xy]θ* if and
only if uxy’s connected component in GθT includes the same vertices as its connected component in Gθ,
or in other words if and only if Cθ(uxy) = CθT (uxy). Consider a particular iteration of the while loop
beginning at line 5 in which the edge we select from undiscovered in line 6 is xy. Throughout the loop, we
add and remove some edges from GθT as we alter the tree. In particular, when we remove an edge uv from
T , we may remove some edges that are incident to the vertex uuv in GθT . Removing edges from the tree
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Algorithm 2 Algorithm for breaking up a graph over a relation
Input: A weighted graph G and all pairs of distances between nodes.
Output: A tree T ∗ such that the equivalence classes of θ̂ are the same as those of θ̂T ∗ on G.

1: Using BFS or DFS, find any spanning tree of G, which we will call T .
2: Compute GθT

3: Set undiscovered← V (GθT )
4: Set current-class← 0
5: while undiscovered is not empty do
6: Pick xy ∈ undiscovered
7: Run BFS to find all nodes reachable from xy in GθT

8: Mark all newly discovered edges of G with the number current-class
9: Set reachable← all edges whose corresponding nodes are reachable from xy in GθT

10: while reachable is not empty do
11: Pick ab ∈ reachable
12: Find the path P from a to b in the tree T
13: if there is an edge uv ∈ P that is not marked with a class number then
14: Create a new spanning tree T ′ from T by adding ab and removing uv
15: Set T ← T ′

16: Update GθT based on the new T
17: Mark any newly reachable edges with current-class
18: Update reachable to add any newly reachable nodes from xy in GθT current-class

19: Remove ab from reachable and from undiscovered
20: current-class← current-class +1

21: return T
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Figure 11: (a) An input graph G. (b) Gθ. (c) G with a spanning tree T (edges not in T are in gray). (d) GθT .
The black and gray outlines indicate if each edge is in spanning tree T or not, respectively. The graph is the
subgraph of Gθ with only those edges incident to an element of T . (e) For this choice of T , Gθ and GθT

produce the same equivalence classes on the edges of G.

T to create a new tree T ′ can potentially cause two edges, u1v1 and u2v2 that were related by θT not to be
related by θT ′ , but in the following lemma we restrict the kind of edges for which this may be true.

Lemma 6.2. Let G = (V (G), E(G), wG) be a minimal weighted graph with spanning tree T . Consider a
step in the execution of Algorithm 2 on G, where the current tree T is transformed into a new spanning tree
T ′ by removing an edge uv and adding a new edge ab. If edges u1v1 and u2v2 are such that u1v1 θT u2v2
but u1v1 ✁θT ′ u2v2, then one of u1v1 and u2v2 is equal to uv.

Proof. We know that GθT and GθT ′ are identical to Gθ, but with edge set restricted to those edges incident
to vertices that correspond to edges in T and T ′, respectively. Thus, by swapping uv for ab in the tree, the
only edges that may have been deleted from GθT to form GθT ′ are those incident to uuv. Since two vertices
are adjacent in GθT if and only if they correspond to two edges of G that are related by θT , this means that
the only way two edges can be related by θT but not by θT ′ is if one of them is uv.

To follow up on the proof of Lemma 6.2, we can introduce a new picture of what GθT looks like relative to
Gθ, represented in Figure 11. In particular, if we take Gθ and color black all the vertices corresponding to
edges in T , deleting the edges not incident to at least one black vertex produces GθT . This helps provide a
visual representation for the relationship between θ* and θ∗T .

Lemma 6.3. Let G = (V (G), E(G), wG) be a minimal weighted graph and consider a step in the execution
of Algorithm 2 on G where spanning tree T is updated to spanning tree T ′ by removing edge uv and adding
edge ab. If ust is a vertex in GθT that has been discovered prior to this step, then [st]θT ⊆ [st]θT ′ .
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Proof. We will show that CθT (ust) ⊆ CθT ′ (ust), and since the connected components of an edge-relation
graph are exactly in correspondence to the equivalence classes of said relation, this will prove the lemma.
Take uxy ∈ CθT (ust) and consider a path from uxy to ust. If uxy /∈ CθT ′ , then on all paths from uxy to ust,
some edge must have been present in GθT but not GθT ′ . By Lemma 6.2, all edges present in GθT but not
GθT ′ must be adjacent to uuv. Thus, edge uuv is in the same connected component as ust in GθT .

Updates to T are always done in lines 14-15, and line 13 ensures that uv has not yet been marked with any
class number. Note that when a vertex is first added to reachable in line 9 or line 18, the corresponding
edge has already been marked with a class number in line 8 or line 17, respectively. Thus, if uuv has no
associated class number, then it has never been added to the set reachable. We consider two cases: uuv and
ust were in the same connected component since the beginning of the algorithm, and at some point the tree
was changed such that uuv and ust became part of the same connected component.

• Case 1: uuv and ust were in the same connected component continuously from the beginning to the
point that GθT was created.

Vertices are only removed from undiscovered in line 19, and to be removed they must have been in
reachable at that time. Thus, since ust is discovered, st must have been placed in reachable at some
point in line 9 or 17. At this time, uuv was reachable from ust due to the fact it was continuously
reachable up until T ′ was formed, so at this time uv was added to reachable and given a class number.

• Case 2: At some point, uuv and ust were not in the same connected component of the edge-relation
graph.

Consider the most recent step in which uuv and ust were made adjacent in the edge-relation graph,
prior to creating T ′. Edges are only added in lines 14-15, and immediately after such an update, lines
16-18 update the edge-relation graph and mark all vertices reachable from the vertex that may have
gained new edges as reachable. Thus, since uuv and ust were made adjacent at this time, they were
both added to reachable and uv received a class number.

Thus, in any case, if ust is a discovered vertex at this step, then no edge in ust’s connected component could
be removed from its connected component in the edge-relation graph and we get that uuv and uxy are still
connected in GθT ′ if they were in GθT .

It remains to show that if xy is the edge discovered in line 6 of Algorithm 2 and T is the tree at the end of
that iteration of the while loop, then [xy]θ∗T = [xy]θ* . Note that Lemma 6.3 implies that if at any point in
the algorithm we obtain a tree T such that [xy]θ∗T = [xy]θ* , then for any tree T ∗ that we obtain later in the
execution of the algorithm, we get [xy]θ∗

T∗ = [xy]θ* . We begin by considering an edge as “processed” after
we have first discovered it and examined the path between its endpoints in the tree. We are able to make the
following observation about the path between the endpoints of each processed edge.

Lemma 6.4. Consider a minimal graph G = (V (G), E(G), wG) and the execution of Algorithm 2 on G. If
at some step in the execution, the current spanning tree T is updated to a new spanning tree T ′ by removing
an edge uv from the graph and adding a new edge ab to the graph, then for any processed edge a′b′, the
path from a′ to b′ through T ′ consists only of edges corresponding to vertices (of Gθ) that have already been
assigned a class number.

Proof. We know that immediately after processing an edge a′b′, we updated the tree such that this lemma
held. Since we never remove marked/discovered edges from the tree, this means that this path from a′ to b′
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consisting of only marked edges still exists in the tree and since there is only one path from a′ to b′ through
the tree, the lemma holds.

Finally, using this lemma we are able to reach our final conclusion about xy’s equivalence class, which by
our earlier analysis tells us that at the end of the algorithm, the equivalence classes of θ∗T ∗ are those of θ*, as
desired.

Lemma 6.5. Let G = (V (G), E(G), wG) be a weighted minimal graph and consider the execution of
Algorithm 2 on G. If xy is an edge discovered at the beginning of a particular iteration of the while loop at
line 6 and T is the tree at the end of that iteration of the while loop, then [xy]θ∗T = [xy]θ* .

Proof. Consider the first iteration of the loop beginning at line 5 for which this lemma does not hold. From
Lemma 6.4 and the fact that we process every edge in uxy’s connected component of GθT , we know that
at the end of an iteration of the outer while loop, all edges corresponding to vertices (of GθT ) in CθT (uxy)
have paths through T that include only marked edges, which are edges corresponding to vertices that are
in this connected component or some previously processed connected component in GθT . Now, assume
[xy]θ∗T ̸= [xy]θ* . Since we know that [xy]θ∗T ⊆ [xy]θ* from Claim 6.1, this means that [xy]θ∗T ⊊ [xy]θ* .
Pick uv ∈ [xy]θ* , uv /∈ [xy]θ∗T . We know that because these edges are in the same θ* equivalence class, there
is a sequence of edges such that xy = u1v1 θ u2v2 θ · · · θ ukvk = uv. If uv��θ

∗
T xy, there exists j such that

ujvj and uj+1vj+1 are not related by θ∗T but ujvj ∈ [xy]θ∗T . Pick the first such j and to simplify notation,
we will call ujvj and uj+1vj+1 by the names ab and st respectively. We have ab θ st, but ab ∈ [xy]θ∗T and
st /∈ [xy]θ∗T .

Consider the path Q = (a = q0, q1, . . . , qn = b) from a to b through T . We get:∑
i

[d(s, qi)− d(s, qi+1)]− [d(t, qi)− d(t, qi+1)] = [d(s, a)− d(s, b)]− [d(t, a)− d(t, b)]

̸= 0,

where the equality is by telescoping and the inequality is by the fact that ab θ st. We know that this means
st θ s∗t∗ for some s∗t∗ ∈ Q. Since s∗t∗ ∈ T and st θ s∗t∗, we get s∗t∗ ∈ [st]θ∗T . Thus, on this path there
exists s∗t∗ ∈ [st]θ∗T ̸= [xy]θ∗T .

By Lemma 6.3 and the fact that ab has been processed (as it is in [xy]θ∗T ), we know that s∗t∗ is marked and
that every marked edge is either in xy’s equivalence class or an equivalence class processed on a previous
iteration of the while loop. Since we know s∗t∗ is not in xy’s equivalence class, it must be in an equivalence
class we processed on a previous iteration of the while loop at line 5 (i.e. an iteration where the algorithm
chose an edge other than xy at line 6). However, since we are considering the first iteration of the while loop
in line 5 for which the lemma does not hold, we get [s∗t∗]θ∗T = [s∗t∗]θ* = [xy]θ* = [st]θ (since xy θ s∗t∗θ st
and s∗t∗’s equivalence class did not change over the course of this execution of the loop at line 5).

Thus, we know that at the end of the round, every edge not in undiscovered has [xy]θ∗T = [xy]θ* . Since
we remove at least one edge from undiscovered in each iteration of the while loop, the loop terminates with
everything popped and we get that all equivalence classes of θ∗T are the same as those of θ*.

Thus Algorithm 1 on the input (G, θ∗T ∗), where T ∗ is the output of Algorithm 2 on G, produces an irreducible
pseudofactorization of G. Next, we analyze the runtime of Algorithm 2 to determine if it improves the time
complexity of pseudofactorization.
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6.2 Runtime of Algorithm 2

First, we note that because the number of equivalence classes of θ∗T ∗ for any T ∗ is at most n − 1 for an
n-vertex, m-edge minimal graph, Algorithm 1 on input (G, θ∗T ∗) (where T ∗ is the output of Algorithm 2 on
G) takes only O(mn)time, as finding the set of equivalence classes for θ∗T in line 2 of Algorithm 1 takes
only O(mn) time, and the loop beginning at line 4 of Algorithm 1 executes only O(n) times (Since the
equivalence classes of θ* and θ∗T ∗ are the same, this implies that line 4 executes at most O(n) times when
the input is (G, θ*) as well, but line 2 could still take O(m2) time to execute, so the real benefit is the
speed-up in finding equivalence classes.)

This leaves us with analyzing the runtime to find an appropriate T ∗ using Algorithm 2. To do so, we break
the algorithm’s work into parts.

• First, consider the work done by lines 14-18 across the entire run of the algorithm. If the inside of this
statement is executed, then some new edge ab is added to the tree.

Claim 6.6. Consider an execution of Algorithm 2 on input G. If at some point during the algorithm
edge ab ∈ E(G) is added to the current spanning tree, it is never removed after that point.

Proof. Note that the edge ab that is added to the tree is taken from reachable, but in order to be placed
in reachable in line 9, it had to have been marked with a class number in line 8. The algorithm only
ever removes edges from the tree in line 14, and in order to remove an edge there, the edge cannot be
marked with a class number. Thus, once ab is added to the tree in line 14, it can never be removed.

This implies that lines 14-18 only execute at most n − 1 times, as there can be at most n − 1 nodes
in a tree. The bulk of the work in these lines comes from lines 16-18. In updating GθT , we may need
to remove some edges adjacent to uuv and add some edges adjacent to uab. Finding which of these
edges should stay or remain takes O(m) time total.

This leaves us with considering lines 17-18. In particular, in these lines we run BFS on the newly
updated graph starting from uab. However, it is not a full BFS run, as some nodes have already been
marked with a class number and thus discovered. In running this BFS, we explore all O(m) edges
out of uab, as well as all edges adjacent to undiscovered nodes. However, for the edges adjacent to
undiscovered nodes, this is the first time exploring such edges. Thus, we will count this work toward a
single run of BFS on the entire graph rather than count it here. Thus, in total lines 14-18 take O(mn)
time plus the work it contributes to initial edge discovery in the full BFS run.

• Consider the work done in lines 11-13. It takes O(n) time to find the unique simple path from a to
b in the given tree and traverse it, and once w have done this for an edge ab ∈ E(G), we remove ab
from reachable and undiscovered, which means it can never be in reachable again, and thus we never
repeat this process of looking for the path from a to b again. Thus, it takes at most O(n) time per edge
in E(G) to run lines 11-13.

• Consider the work done in lines 6-9. In these lines, we pick an edge in E(G) whose corresponding
vertex has not yet been discovered in the edge-relation graph and we run BFS from it. Because the
connected components of GθT are updated in lines 16-18 whenever T itself is updated, we know that
xy being undiscovered implies that all edges reachable from xy at this point are also undiscovered.
Thus, the work required to run BFS and update the reachable nodes in lines 6-9 involves discovering

35



nodes and edges in GθT for the first time. Like the partial BFS run in lines 14-18, we will count this
towards the cost of a single run of BFS.

• A single run of BFS on this graph takes at most O(mn) time, as there are at most n−1 edges initially
in the tree and at most n − 1 edges ever added to the tree. Even if every vertex in every iteration of
the spanning tree was related to all other edges in the graph by θ, this would imply that there were at
most O(mn) unique edges across all iterations of GθT . Thus, since BFS runs in linear time, this is an
upper bound on how long the BFS run on unique edges takes. (We have already addressed the edges
that are re-traversed in lines 14-18 and counted that time in our analysis of lines 14-18.)

Thus, we get an overall runtime of O(mn) for Algorithm 2 on an n-vertex, m-edge graph G.

7 Conclusion

In areas like molecular engineering, distance metrics are complex and frequently not representable in un-
weighted graphs. Isometric embeddings of weighted graphs, while more difficult than for unweighted
graphs, open up new avenues for solving problems in these areas. Here, we extended factorization and
pseudofactorization to minimal weighted graphs and provided polynomial-time algorithms for computing
both, in O(n2 log log n + m2) time and O(n2 log log n + mn) time, respectively for n-vertex, m-edge
weighted graphs. Several open questions remain, including the following:

• Can the efficiency of weighted graph factorization be improved, as weighted graph pseudofactoriza-
tion was in Section 6, to O(mn) when distances are precomputed?

• Can we place lower bounds on the time needed to find a graph’s prime factorization or irreducible
pseudofactorization? In particular, can we lower bound these processes by O(mn) time?

• Can pseudofactorization aid in isometrically embedding weighted graphs into particular destination
graphs of interest, such as hypercube graphs or arbitrary unweighted graph products?

In partial response to the first question, we can see by the proofs given in Section 7 that a modification of
Algorithm 2 can be used to find a tree T such that (θT ∪ τ)∗ has the same equivalence classes as (θ ∪ τ)∗,
but at the moment it is unclear if the time determining all pairs of edges related by τ can be bounded or if τ
can be modified in a way that makes these relations faster to compute.

In partial response to the third question, Berleant et al. [3] has studied isometric embeddings of weighted
graphs into Cartesian products of unweighted complete graphs, or Hamming graphs. In analogy to results on
unweighted graphs [12], Berleant et al. [3] found that every isometric embedding of G into an unweighted
Hamming graph can be formed by concatenating individual embeddings of the pseudofactors of G. Their
findings apply also to hypercube graphs, which are a subset of Hamming graphs. This connection hints at
a deeper link between pseudofactorization and isometric embeddings of weighted graphs that we hope will
continue to be explored in future research.
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