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Abstract—Exploitable fault models for block ciphers are typically
cipher-specific, and their identification is essential for evaluating and
certifying fault attack-protected implementations. However, identifying
exploitable fault models has been a complex manual process. In this work,
we utilize reinforcement learning (RL) to identify exploitable fault models
generically and automatically. In contrast to the several weeks/months of
tedious analyses required from experts, our RL-based approach identifies
exploitable fault models for protected/unprotected AES and GIFT ciphers
within 12 hours. Notably, in addition to all existing fault models, we
identify/discover a novel fault model for GIFT, illustrating the power
and promise of our approach in exploring new attack avenues.

Index Terms—Reinforcement Learning, Fault Attack

1. INTRODUCTION

A fault attack (FA) is an implementation-based attack in which an
adversary perturbs the computation to extract secrets through faulty
system responses. Researchers have demonstrated FAs over different
computing platforms, from embedded systems to cloud servers [1],
[2], and attackers have launched FAs on several industrial designs,
including Sony Playstation [3] and Intel SGX processor [2]. While
applicable to symmetric and public-key cryptosystems, FAs have
seen significant progress for symmetric-key primitives (e.g., block
ciphers). Therefore, protecting and testing symmetric-key cryptosys-
tems for potential FAs remains one of the most active research areas.

A. Fault Models and Fault Space Exploration

Physical faults corrupt one or multiple bit/byte(s) in the cipher
state resulting in faulty responses, which adversaries exploit for
key recovery. Targeting a block cipher with FA requires a logical
abstraction of physical faults, referred to as fault models. Adversaries
mathematically analyze the underlying cipher (protected/unprotected)
concerning the fault models and devise a key recovery algorithm.
Typically fault models depend on the (i) nature of the injection,
(ii) target implementation, and (iii) target cipher algorithm. For
example, the diagonal fault model [4] discovered for AES [5] does
not apply to ciphers such as PRESENT [6], GIFT [7], or SIMON [8].
This is primarily due to the structural diversities among ciphers (i.e.,
different linear and nonlinear functions). A common trend in utilizing
FAs on block cipher are to consider some state-of-the-art fault models
(e.g., bit/byte/nibble fault) and target a given cipher accordingly.

While finding an attack with a pre-determined fault model works
from an adversary’s perspective, it is sub-optimal for a defender
(designing or verifying a protected block cipher). The defender needs
to understand the exploitable fault space of a block cipher, described
in terms of fault models. In addition, the defender (ideally) should
test the cipher concerning each exploitable fault model to reach a
meaningful fault coverage.! However, such a task is challenging
when only considering pre-determined fault models. It has been
observed from the research literature that implementations often fail
to provide security due to such sub-optimal fault model analysis [9].
For instance, consider the discovery of the diagonal FA on AES,

Fault coverage is the percentage of faults for which we can obtain the
exploitability status in a block cipher.

which appeared later than the single-byte fault models [10]. Contrary
to popular belief that only a localized single-byte fault can recover
the secret key, the diagonal FA showed that even less precise,
multi-byte faults can be leveraged for a successful key recovery. In
addition, simple duplication countermeasures for AES were rendered
ineffective upon discovering a fault model that injects two equal faults
in the redundant modules [11].

B. Limitations of Existing Fault Attack Approaches

As discussed in our previous section, identifying fault models is
imperative for a successful FA, necessitating an effective fault space
exploration approach. However, state-of-the-art FA techniques have
the following limitations, as discussed next.

Diverse Cipher Structures and Human Expertise Dependent.
Historically, identifying suitable fault models for a given cipher
(protected/unprotected) is a non-trivial task [4], [9], [11]. Manual
efforts fall short due to the diverse structures of different ciphers and
the associated expertise required. For example, with manual analysis
for AES, researchers discovered an optimal FA [12] 8 years after the
first FA showcased in [10].

Lack of Automation for Identifying Fault Model. There have been
recent efforts in automatically analyzing protected and unprotected
block ciphers against FAs [13]-[15]. However, these works require
a fault model as an input and perform the analysis with respect to a
given fault model, and this takes anywhere between a few minutes
to hours [13], [14], [16]. However, the problem of automatically
identifying a fault model has been left unexplored in the literature.
Exponential Complexity in Identifying Fault Model. In practice,
the number of possible fault models is exponential to the state
length (usually 64/128/256 bits) of a block cipher, as every potential
single/multi-bit fault pattern® qualifies as a candidate fault model.
However, only a few fault patterns are exploitable, and testing for
each fault pattern is impractical. In a nutshell, using any of these
tools to discover potential fault models is difficult, as these tools can
only tell the exploitability of a given fault model/pattern but cannot
discover a fault model on its own.

To summarize, the limitations mentioned above result in a gap in
the automation efforts for FA, especially in fault model identification,
which we focus on and address in this work.

C. Our Research Contributions

In this work, we address the aforementioned limitations and
propose a generalized and simulation-based fault model identi-
fication framework, ExploreFault. ExploreFault identifies
exploitable fault models utilizing a combination of reinforcement
learning (RL) and f-test and applies to unprotected and protected
implementation of block ciphers. Broadly, our approach explores the
state of a cipher in a bit-wise manner and identifies exploitable multi-
bit fault patterns. Such patterns are later abstracted as fault models

2Fault pattern is a set of bits where to inject faults. The fault model is a
generalization of fault patterns.



considering some physical constraints of fault injection.> One crucial
step in this process is to identify the exploitability of fault patterns
explored by the RL agent. To that end, we utilize the t-test for its
ease of computation. The results of the 7-test provide feedback to the
RL agent during training. Researchers have used the z-test to identify
FA-related information leakage in protected implementations [13].
However, we utilize higher-order calculation and a collection of
intermediate block cipher states and ciphertext to aid the RL agent.
However, simply using #-test to train the RL agent is not enough. To
discover successful fault models, we face challenges such as: (i) long
evaluation time for calculating #-test during training and (ii) sub-
optimal convergence of the learning. To overcome these challenges,
we utilize strategies that (i) perform reward calculation when the final
fault pattern is created and (ii) employ an exponential reward function
for returning more reward to the RL agent on each bit increase in the
fault pattern selected. The runtime of ExploreFault is between
3-12 hours, replacing expert knowledge and tedious analysis, which
might take up to a few weeks or even months. We provide further
details regarding how we address the challenges in Section III. The
primary contributions of our work are enumerated as follows.

1) We close the gap in state-of-the-art FA automation by concep-
tualizing and implementing an automated fault model identifica-
tion/discovery methodology, ExploreFault using RL.

2) To the best of our knowledge, this is the first work to utilize RL
in the context of FAs. We argue that RL is an appropriate choice
given its exploration power across complex search spaces. One
major challenge in FA testing is the size and complexity of the
search space, which is efficiently explored with ExploreFault.

3) We demonstrate that ExploreFault identifies all known ex-
ploitable fault models for AES, thereby replicating 4 prior works.

4) ExploreFault identifies exploitable fault models even in the
presence of countermeasures. To this end, we performed a case
study on AES with a duplication-based countermeasure.

5) To showcase the generality of ExploreFault, we present
results on another block cipher, GIFT, which is a widely-used
lightweight block cipher for its smaller implementation size and
high runtime efficiency. It is a part of GIFT-COFB mode [18],
which is a NIST LWC finalist.

6) For GIFT, ExploreFault identifies a new fault model (in addi-
tion to previously discovered fault models), which leads to key re-
covery, which we verify using the ExpFault tool [19]. Since 2017
(when GIFT was proposed), researchers discovered only two fault
models using human analysis. However, using ExploreFault,
we discovered/identified a new fault model within 12 hours in an
automated manner. This significant reduction in time attests to the
power and promise of ExploreFault.

II. BACKGROUND AND PRELIMINARIES

In this section, we provide a brief overview of fault attack (FA),
related automation approaches in FAs, and reinforcement learning.

A. Fault Attack

Block ciphers are iterative structures where one mathematical
transformation called round operates on a secret state (of block size
64/128/256 bits) several times to generate the ciphertext. Each round
consists of several linear and nonlinear Boolean functions (often some
special nonlinear functions called S-boxes) and XORs a round key
generated from a key schedule. For example, the AES block cipher
consists of 16 8-bit S-box operations in a round function, followed by

3Practical fault injection setups can corrupt single-bits [17] or one/multiple
bytes/nibbles in the cipher state [4], [12]. Even if ExploreFault identifies
a multi-bit fault pattern, it might not be possible to individually corrupt
each bit in the pattern. Therefore, abstracting multi-bit patterns identified
by ExploreFault as single/multi-byte faults is important.

a byte shifting, multiplication by a constant matrix, and XORing of
128-bit round keys. GIFT [18] comprises 4-bit S-Boxes, followed
by a bit-permutation layer, and XORing of round key bits. FAs
aim to recover a few of such round key bits from a block cipher
and thereby compute the master key. For most cases, especially for
unprotected implementations, the faulty system responses are the
faulty ciphertexts. The key recovery strategy in any FA is to utilize
some statistical bias in the intermediate state of a block cipher due to
fault injection. Such statistical bias (i.e., deviation of the intermediate
state from a uniformly random state) is either expressed as a system
of equations (in differential fault analysis, a.k.a. DFA attacks) or
measured through some statistical test (for statistical fault attacks,
a.k.a. SFA, SIFA, FTA). Another important property of such statistical
bias is that it only becomes visible with the correct key. Therefore,
the adversary obtains the faulty system responses, guesses a few key
bits, and partially decrypts till the biased state. If the bias is observed,
the corresponding key guess is considered correct.

B. Automation in Fault Attacks

Researchers have developed several automated tools for analyzing
protected/unprotected block ciphers concerning FAs. Tools such as
ExpFault [14] or XFC [15] analyze unprotected implementations and
generate the attack algorithm for a given fault according to some fault
model. On the other hand, tools such as ALAFA [13] or FIVER [16]
analyze the protected block ciphers. FIVER considers the bit fault
model and formally establishes that no fault reaches the output
(or some observation point) based on ideas from integrated circuit
testing. ALAFA analyzes the faulty system responses for potential
information leakage. It is a fault simulation-based approach that
applies z-test between two ciphertext distributions to detect potential
information leakage. However, ALAFA also takes predefined fault
models as input. This work aims to fill the gap in FA automation
flow by automatically identifying fault models that an adversary
can provide to the aforementioned tools. To that end, we utilize
reinforcement learning, which we describe briefly next.

C. Reinforcement Learning

RL entails an agent learning to solve problems requiring a sequen-
tial decision-making process. The agent learns using a trial-and-error
manner by interacting with the environment. Through interactions, the
agent understands the environment and learns actions that maximize
reward or minimize penalties from the environment. The maximum
number of interactions the agent can have with the environment
before reset is called an episode. To formulate RL problems using
a Markov decision process, an RL agent operates on state space S
through a set of actions .A. The state transition in this state space
happens through the actions in A, with each transition having some
probability P. The reward R measures the fitness to take action in
a given state. Through interactions with the environment, an optimal
control policy my is found to achieve the maximum cumulative
expected reward. The policy my parameterized by 6 is defined as
a mapping from the set of states S to the set of probability measures
on A in each state.

RL agents have demonstrated tremendous efficiency in navigating
high-dimensional search space and finding optimal policies. As a
result, researchers have used RL in security problems, such as
fuzzing [20], internet-of-things security [21], and cybersecurity [22].
However, utilizing RL for fault space exploration is unexplored, and,
hence is the focus of this work.

III. ExPLOREFAULT : EXPLORING FAULT SPACE WITH
REINFORCEMENT LEARNING

Faults in block ciphers can corrupt one or multiple bits in a state.
For example, nibble/byte/multi-byte faults are multi-bit faults that
often occur in practical systems. Therefore, identifying exploitable



multi-bit fault patterns is a reasonable approach to discovering fault
models. This approach, however, comes with two major challenges:
(i) generating interesting fault patterns, (ii) efficiently deciding the
exploitability of each fault pattern.

We address the first challenge using RL. The RL agent utilizes the
exploitability information of each discovered fault pattern and figures
out new exploitable multi-bit fault patterns with a higher bit count.
Such fault patterns are later abstracted to nibble/byte or multi-byte
fault patterns during an abstraction phase. For the second challenge,
we utilize Welch’s z-test to calculate the exploitability of the fault
patterns in a generic manner. The overall flow culminates into a fault
model identification framework—-ExploreFault.

A. Why Reinforcement Learning?

There are two main features that make RL a good fit for fault
pattern exploration: (i) Sequential decision-making. Automatically
finding optimal multi-bit fault patterns is inherently a sequential
process, as one needs to augment bits one at a time in the pattern
and then check the exploitability. The choice of the bit to be added
is also critical. RL is a good fit for such sequential processes. and
(ii) Huge search space. The search space associated in this case is
huge. For an 128-bit cipher state, there are 2'® possible patterns, and
it is impractical to explore all of them. Even considering the inherent
regularities (e.g., same S-Boxes operating on each byte/nibble) in the
block cipher structures, the search space remains huge and complex
to model. Smartly navigating this search space, therefore, requires
a generalization technique that can learn from prior experiences and
navigate the search space better. RL is a perfect fit for such problems,
which has been demonstrated by other security domains [20]-[22].

B. Preliminary Formulation

Now we design the preliminary RL agent by formulating a fault
model identification problem as a Markov decision process.

« State at time ¢, s;, is a binary vector, whose i*" entry indicates if
a fault is injected into the i** bit of the block cipher state or not.

« Action at time ¢, aq, is the bit location that the RL agent selects
to inject a fault. For each action, the RL agent can choose any bit
location from all the bit locations of the block cipher state.

« State transition P(s:y1|at, s¢) denotes how the state evolves. In
our case, the next state s;4; is obtained in a deterministic manner
by updating the i*" entry in the current state s; as 1, where i = a.

« Discount rate v (0 < < 1) scales down rewards over time.

o Reward at time ¢, R(s¢, a:), depends on the information leakage
denoted by [. As shown in Equation (1), if [ is less than a threshold
0, i.e., information leakage can not be observed, reward is 8 (< 0).
Otherwise, the reward is equal to n, the number of bits chosen by
the RL agent so far. This linear reward targets maximizing the
number of bits while maintaining a high information leakage. All
the subsets of that fault model are classified as fault models as
well, leading to more fault models being discovered.

R(st,at):{ﬁ’ ifl <6 W

n, otherwise

C. Determining Fault Exploitability

The core of the reward calculation is to determine the exploitability
of a given fault pattern. However, determining the exploitability of a
fault pattern in a generic manner is challenging, stemming from the
diversity (i.e., different mathematical structure) of the block cipher
and associated countermeasures (if any). In addition, the fault pattern
determines the nature of the attack path. Although an adversary
can utilize tools such as ExpFault or XFC to determine the fault
exploitability, they require complex modeling and analysis steps.
Furthermore, such tools only apply to unprotected ciphers, and we

Eighth Round

Ninth Round

[ Sub shift [ Mix
Byte Row | Col SubByte
\ 4

fs | fo |fa3|f1z| Shift| fs | fo |fi3|fi7| Sub [2fi] fa|f3 3] Mix Shift
f1o|f1a|F1s| fs | ROW| 5 |f10|f1a|f1s| Byte | f; | 4 |3f3)2f, _ Col Row
fis|fio| f7 |f1a f7 [f1a)f1s|f1o 1 [3f42f5( f> A
0| fs |f12|f16 fs [f12)f16/f20 3fy2f, f5| f,

Tenth Round

Fig. 1. Fault propagation for fault injected in 8*" round of AES. Linear
pattern can be observed in the input of 10t" round (shaded orange) [14].

require an entirely different strategy for protected ciphers [13], [16].
Therefore, we resort to a simple albeit generic strategy suitable for
calculating rewards during RL training and applicable for protected
and unprotected implementations with minor modifications.

We utilize the popular Welch’s 7-test to determine fault exploitabil-
ity by measuring information leakage for FA from protected imple-
mentations based on ciphertexts [13]. For unprotected implementa-
tions, we use t-test on faulty intermediate states of a cipher. The
main intuition is that if an intermediate state is distinguishable from
a uniformly random state, it may have some exploitable statistical
patterns. We utilize the ¢-test here to distinguish between a uniformly
random state from a (faulty) intermediate state differential (i.e.,
XOR differential between a correct and corresponding faulty state
originated from a fault pattern). This state differential is chosen from
the input/output or intermediate computations of the last few rounds.*
To generate the faulty state data, we perform fault simulation with a
given fault pattern with several random plaintexts. The null hypothesis
for the r-test is that the two datasets are from the same population.
We set the parameter 6 as 4.5. If the r-test statistic [ is larger than
4.5, we can reject the null-hypothesis with confidence > 99.999%.
Therefore, if t-test shows that the state differentials are different from
a random distribution, it indicates that some distinguishable patterns
can be observed, which can be exploitable for an attack.

The r-test for evaluating the state differential is performed sep-
arately for each bit/nibble/byte of a (64/128) bit state differential.
Considering the state-differential as a single variable will involve a
probability distribution with support of 25 or 2!28  which is im-
practical to handle. However, treating each bit/nibble/byte separately
can be sub-optimal in many cases. For illustration, we consider AES
with a single-byte fault injected at the 8" round. The -test checks
the input of the 10*" round, where an adversary can observe some
linear patterns in the state differentials (Fig. 1). Now such linear
state-differential patterns can only be sensed by #-test if at least two
bytes are considered together. To handle such multi-bit/nibble/byte
state patterns in a generic manner, we use higher-order #-test, as
described in [13]. It computes the higher-order statistical moments
from the data and applies the r-test on that data. As indicated in
Table I, injecting byte faults or diagonal faults in AES do not show
any leakage with the first-order t-test. Conversely, the second-order t-
test can easily capture this information leakage. Our strategy is to first
apply a byte-wise #-test (order d = 1) and then gradually increase
the order (d = 2,3,...,G). The highest order G is an evaluator
choice. We use G = 2 for our test cases, as no new fault patterns
were discovered beyond this.

D. Improving Preliminary RL Formulation

The preliminary formulation of the RL agent results in slow
convergence. The agent finishes only 72 episodes in 24 hours and only

4Checking the last few rounds for statistical patterns remains sufficient as
most FAs either target the last few rounds or are round oblivious.
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Fig. 2. Overall architecture of ExploreFault.

TABLE I
COMPARISON OF FIRST-ORDER AND SECOND-ORDER #-TESTS FOR AES

Fault Model Faulty Bits First-order Second-order
Byte 0,1,2,3,4,5,6,7 2.36 (< 4.5) 207.56
Diagonal 29, 34, 35, 38, 77, 118 1.41 (< 4.5) 207.14
TABLE II
TRAINING RATE COMPARISON FOR AES
Method Training Rate
Episodes/Min. Steps/Min.

Reward at each step 0.054 6.802

Reward at end of episode 6.221 787.667

Improvement 115.2% 115.8x

explores up to 3-bit fault patterns for AES. We adopt the following
strategies to improve efficiency, as discussed below.

Long Training Time. The reward is computed at each step during
training in the preliminary formulation. Each reward computation in-
volves performing fault injection with the current selection bits, fault
simulation, and #-test evaluation. All the aforementioned steps take
about 1 second, and since an RL agent requires thousands of episodes
to learn, the reward computation becomes a bottleneck preventing the
agent from learning quickly. To reduce the training time, we calculate
the reward only at the end of an episode. Note that this reduction in
reward computation time may lead to a degradation in accuracy since
the agent receives feedback less frequently. However, empirically, we
observe that the hit to accuracy is insignificant since the agent can
still identify exploitable fault models (Section IV). On the other hand,
the solution provides > 115x speedup in training, as evidenced by
results in Table II.

Sub-optimal Convergence. Although the preliminary formulation
detailed above results in a bit fault model, the agent can only converge
to a sub-optimal policy till the multi-bit fault model, where the
number of bits is less than or equal to 3. Therefore, the fault space
for the block cipher needs to be well explored. We replace the linear
reward function with an exponential reward function (Equation (2))
so that for each additional bit (successfully) selected by the agent,
it gets more reward. In other words, the marginal number of bits
increases, returning more reward to the agent, and facilitating the RL
agent to find more bits to inject faults.

ifl <6
otherwise

B,

n
€,

R(st,ar) = { @)

Figure 3 illustrates the impact of the two reward functions on
the convergence of the agent. In the case of the linear reward
function, the agent converges to a reward of 3. In contrast, with the
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Fig. 3. Agent’s inability/ability to learn with linear/exponential reward (AES).

exponential reward, the agent converges well; in fact, the logarithm
of the converged reward is 17.

E. Final Agent Architecture

Figure 2 illustrates the flow of ExploreFault that includes all
the solutions we described above. In the beginning, the state vector so
is initialized to zero, and an empty array arry;: is created to record
all actions chosen by the agent. The agent takes its first action ao,
and the selected bit location ag is appended to arry;:. Subsequently,
the environment determines the next state s, where the aéh entry in
the state vector is updated as 1. At each step ¢, the RL agent takes an
action a; according to the current state s;, and the next state s¢41 is
defined as a vector where the ‘" entry in s; is updated as 1, where
1 = a;. In the meantime, the action a; is added to arry;¢ if a¢ is not
in arrp;¢, and the reward is given as O for all intermediate steps. The
cycle goes on for 1" steps, where 1 is the total number of bits in the
block cipher state. In the last step, final arry,; is created, which is
the fault model chosen by the RL agent. We perform fault injection
on the state of block cipher according to this fault pattern. Then,
we collect faulty ciphertexts and intermediate block cipher states and
measure the z-test statistic based on the differential state distribution.
Finally, the reward is calculated following Equation (2).

FE. Constructing the Fault Models

ExploreFault returns a multi-bit fault pattern in the end.
However, in most practical cases, faults are single-bit or multi-
nibble/byte. In addition, the nibble/byte boundaries are defined con-
cerning the structure of the round function (e.g., as inputs of S-boxes).
Therefore, we abstract these multi-bit fault patterns to nibble/byte-
wise patterns while generating the final fault models. To construct the
corresponding fault models, we examine each of the bits in the fault
model and identify the bytes to which those bits belong. Finally, to
ensure this more abstract byte-wise fault model is also exploitable, we
evaluate the new byte-wise fault model offline using z-test. If such
byte-wise models also result in high z-test values, we report them
as fault models. Otherwise, we report the specific multi-bit pattern
observed by RL. Furthermore, we also extract fault patterns showing
high leakage from the RL training log. These patterns are also
considered exploitable and abstracted to bytes/nibbles. In general,



TABLE III
COMPARISON OF EXPLOREFAULT WITH EXISTING FAULT MODEL IDENTIFICATION RESEARCH ON UNPROTECTED AES AND GIFT BLOCK CIPHERS

Block Cipher Technique Year Fault Model Automated/Manual Time
Bit Nibble Byte Diagonal Analysis
AES [10] 2003 v v Manual N/A
AES [23] 2003 v Manual N/A
AES [4] 2009 v Manual N/A
AES, GIFT [14] 2018 v v Manual N/A
GIFT [24] 2021 v v Manual N/A
GIFT [25] 2022 v v Manual N/A
AES, GIFT ~ Bxplorefault 4, v v v Automated < 12 hours
(This work)
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Fig. 4. Fault models discovered by ExploreFault for unprotected AES.

we see most proper subsets of the final multi-bit fault pattern as
exploitable. Finally, RL only returns a set of representatives from
different fault models but not all. However, exploiting the structural
similarities among different parts of a block cipher, we extend them
to other undiscovered instances. For instance, if RL returns a few
representatives of a byte fault model, we also generate and check the
other representatives using -test.

G. Evaluating Protected Implementations

We extend the capability of ExploreFault to analyze a pro-
tected block cipher by evaluating the t-test on the ciphertext instead
of the intermediate differential block cipher states. In these cases,
we attempt to observe if some information leakage exists at the
ciphertext output due to faults, and the RL agent learns based on
that information. For countermeasures which mute the ciphertexts
upon detecting a fault, we return a random string having the same
length as the ciphertext upon each muting. The exploration of RL
happens on the state-space of the protected cipher in a similar manner
as the unprotected one. Having detailed our fault space exploration
technique, we present our results on widely-used block ciphers.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

We implement ExploreFault using Python 3.8.10 with
PyTorchl.6 package. We employ Proximal Policy Optimiza-
tion [26] as our RL algorithm and use the vectorized environment
in Stable-Baselines3 to significantly reduce the training time.
The experiments are performed on an Ubuntu 20.04 machine with
a 32-core 280w AMD processor and an NVIDIA A5000 GDDR6
GPU. We set the parameter 5 as —50 so that the reward is negative
iff the fault injection locations selected by the RL agent do not lead
to a successful fault attack.

B. Evaluation of AES Block Cipher Without Countermeasure

Discovered Fault Model According to Learned Policy. We first
evaluate ExploreFault on AES without any countermeasure. We

Fig. 5. Random fault simulation for discovered fault model for AES.

select the last three rounds of AES and run ExploreFault on
each round independently and note that ExploreFault converges
to an optimal policy. The fault model derived from the converged
optimal policy is to inject faults in bytes {2, 7, 8, 13} in the 8"
round of AES. This is the diagonal fault model, reported by [4]. The
9'" round injections also report exploitable fault models. However,
we found the most interesting fault models for the 8" round, so we
mainly discuss them here.

To demonstrate the efficacy of ExploreFault, we perform the
same experiments with different hyperparameter settings and observe
that it finds different fault models, including the byte fault model, bit
fault model, and other diagonal fault models. However, to speed up
the process and exploit the inherent regularities present in such cipher
structures, we also directly check the other diagonal faults using -
test. As listed in Table III, ExploreFault automatically finds all
the fault models reported by prior works (which only find one or two
fault models with manual analysis or through previous studies).

Discovered Fault Model During Training. Figure 4 depicts the
different fault models discovered by ExploreFault during training
and the average number of bits selected by ExploreFault per
1K episodes. During the first 1K episodes, ~ 600 episodes re-
port a single-bit fault model whose #-test value is larger than 4.5.
Then, ExploreFault navigates the AES state’s fault space and
discovers multiple bits and diagonal fault models in the second 1K
episodes. Finally, for the last 3K episodes, ExploreFault sticks
to the diagonal fault model while maximizing the number of bits
to inject faults in. We also observe that the subsets of the fault
model ExploreFault converges to are valid fault models too.

Simulations on the Discovered Fault Model. Next, we verify that
the fault models discovered by ExploreFault indeed lead to
successful information leakage. To that end, we inject 100 random
faults for each fault model discovered by ExploreFault and
measure the information leakage through r-test. Figure 5 illustrates
the distributions of the z-test statistics. Note that for all fault models,
the 7-test statistics are well above the leakage classification threshold
of 4.5, validating that our fault models cause information leakage.



TABLE IV
RESULTS ON PROTECTED AES

Bit Selected by ExploreFault
Branch #1 Branch #2
76 76 256

Episode Length  # Episodes Runtime

~ 3000 < 3 hours

TABLE V
D1SCOVERED FAULT MODEL DURING THE FIRST 1K TRAINING EPISODES

Fault Model Nibble Location # Times
2 nibbles {10, 11} 1
3 nibbles {1,10,11}, {5,10,11, }, {9,10,11}, {10,11,14} 4
4 nibbles {8,10,11,12}, {8,9,10,11}, {8,9,11,14}, ... 76
5 nibbles {8,9,10,11,12}, {9,10,11,12,14}, .. 193
6 nibbles {8, 9, 10, 11, 12, 14}, ... 255

C. Evaluation of AES Block Cipher With Countermeasure

We now investigate the capability of ExploreFault towards
fault model identification for AES with a countermeasure, which
employs redundant modules of the cipher. After collecting cipher-
texts from both modules, the distributions of those ciphertexts are
examined. If they are different, the fault gets captured. To evade
this countermeasure, ExploreFault learns to automatically select
the same set of bits to inject faults at bit 76 in the computational
branches. Table IV demonstrates that ExploreFault successfully
chooses the fault model for protected AES.

D. Evaluation of GIFT Block Cipher Without Countermeasure

To further demonstrate the generality of our proposed approach,
we evaluate ExploreFault on another block cipher, GIFT.
ExploreFault is designed to select bits to inject faults in the
25" round of GIFT-64, and r-test calculation is performed on
differential state after the S-box function in the 27" round and later.
Table V exhibits the discovered fault models and their corresponding
occurrence frequencies during the first 1K training episodes. The most
significant result is that ExploreFault finds a new fault model (in
addition to those found by previous works), which is to inject a fault
at nibbles {8,9,10,11,12,14}. It is worth mentioning that no
previous work has reported this fault model.

Previous works on GIFT report attacks with single nibble/byte or
single-bit faults [14], [24], [25]. To evaluate the new multi-nibble
fault model discovered by ExploreFault, we utilize the ExpFault
tool [19]. Given a fault model, ExpFault reports a potential key
recovery strategy. ExpFault can recover 80 of 128 key bits for the
new multi-nibble fault. The offline complexity for recovering these
80 key bits is 23315, which is small enough to search exhaustively.
Due to the key-schedule structure of GIFT, the remaining 48 key bits
cannot be recovered with this fault injection and requires a similar
fault to be injected at round 23. Overall, ExploreFault provides
us with meaningful insights into the fault models. Note that z-test-
based exploitability identification may lead to fault models that are
exploitable only with very high key-recovery complexity (which can
be calculated using tools such as ExpFault). However, as our exper-
iments indicate, ExploreFault successfully identifies/discovers
fault models that lead to practical key-recovery complexity.

V. CONCLUSION

To the best of our knowledge, we report the first-ever work in
utilizing RL for fault space exploration in the context of FA. By
conceptualizing and developing an automated methodology, without
relying on human expertise, ExploreFault closes the gap in state-
of-the-art FA techniques by automatically identifying all fault models
discovered by human experts across 19 years (2003-2022) for AES

and GIFT. We demonstrate the success of ExploreFault in 3
scenarios: (i) unprotected AES, (ii) AES with a countermeasure, and
(iii) unprotected GIFT. Notably, for GIFT, ExploreFault discov-
ers a new exploitable fault model (within 12 hours) leading to key
recovery, which is interesting given that in the last 5 years since GIFT
was proposed, researchers have reported only two fault models. This
significant reduction in time to identify a new fault model attests to
the power and promise behind utilizing RL to explore large search
spaces. Finally, ExploreFault provides defenders with a quick
and automated way to evaluate the susceptibility of ciphers to FAs,
as well as to test resilience of fault attack-protected implementations.
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