Distributionally Robust
Two-Stage Linear Programs
with Wasserstein Distance:
Tractable Formulations

®

Nan Jiang and Weijun Xie
Georgia Institute of Technology, Atlanta, GA,
USA

Article Outline

Introduction

Tractable Formulations
Conclusion

See also

References

Keywords

Distributionally robust - Two-stage -
Stochastic program - Wasserstein - Tractable

MSC Codes
90C11, 90C15, 62J07

Introduction

Consider a distributionally robust two-stage lin-
ear programs (DRTSLP) of the form
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where set X € R"! represents the deterministic
feasible set of the here-and-now decisions x, ¢
denotes the cost coefficients of the here-and-now
objective, and Z(x) is the worst-case expected
wait-and-see cost. Function Z(x, é ) is known as
the recourse function with uncertain parameters
é € & and the probability distribution P, which
comes from a family of distributions represented
by the ambiguity set P.

Following the notation in [1,3,8,9, 11], the
recourse function Z(x, é ) in (1) with a realiza-
tion & of é comprises the following optimization
problem:

Z(x, &) = minycgn

{(Q¢,+)Ty: Tx)ér + Wy > h(x)},(2)

where y denotes the wait-and-see decisions in the
second-stage problem; T : R" — R‘™2 and
h : R" — R represent the technology affine
mapping and the right-hand mapping, separately;
and § = (§,,87) € R" x R"™, 0 € R"™""1,
q € R™2, Following the convention, DRTSLP (1)
is termed as

— DRTSLP with objective uncertainty when
& =R"™ x{&7}

— DRTSLP with left-hand side uncertainty when
E = (§,) xR™
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— DRTSLP with right-hand side uncertainty
when & = {‘g‘q} x R™and T(x) =T (.e.,
the constant terms 7' (x)&; can be moved to
right-hand sides of the constraints)

Throughout this paper, the following assump-
tions are imposed, which are quite standard in the
two-stage stochastic program literature [3, 8,9,
11]:

— (Fixed Recourse) The recourse matrix W €
RO s fixed.

— (Sufficiently Expensive Recourse) DRTSLP
(1) has sufficiently expensive recourse if for
any x € X, the dual of the second-stage
problem (2) is feasible for all & € =Z.

o
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W, (P, Py) = inf ! |:
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— (Separable Uncertainty) The support & =
Ey x B, where &, C R¢, Er C R™,

These assumptions are important to derive the
deterministic counterparts of DRTSLP (1).

Wasserstein Ambiguity Set

Following [6, 8, 11, 12], the nominal distribu-
tion and the true distribution are assumed to be
bounded with respect to the Wasserstein metric,
i.e., under the Wasserstein ambiguity set, which
is defined as

PV = {IP’: IP’{§ c :} = 1, W,(P.P;) 59},

where for any r € [1, oo], the r—Wasserstein
distance is defined as

Q is a joint distribution of & and &, ]

with marginals P; and P, respectively

and ]P)f is a discrete empirical reference dis-
tribution of random parameters ¢ generated by
N 1i.i.d. samples such that IP’E{Z = ¢} = 1/N,
ie., ]P’& = 1/N ZiE[N] 6;1 and 5;[ is the Dirac

Woo (P, P5) = inf €ss.supq ||§1 — EQHP :

function that places unit mass on the realization
¢ = ¢ foreachi € [N],and & > 0 is the
Wasserstein radius. Notice that if r = oo, then
the co—Wasserstein distance reduces to

Q is a joint distribution of él and & 2

with marginals P; and P, respectively

Tractable Formulations

In general, it has been shown in [8, 11] that
solving a DRTSLP with r—Wasserstein ambi-
guity set can be NP-hard. This section reviews
the tractable reformulations of DRTSLP (1) with
r—Wasserstein ambiguity set withr = 1,r = 00
and derives new results for DRTSLP (1) with
r € (1, 00). Formally, tractability of a convex
program is formally defined below.

Definition 1 (Tractability, [2]) Given a com-
pact set X € R" with nonempty interior,
suppose it is contained in a Euclidean ball with

radius R and is containing a Euclidean ball
with radius r. Then there exists an efficient
algorithm to solve DRTSLP (1) to € > 0
accuracy, whose running time is polynomial in
ni,ny,my,my, £, N,In(R/r),In(1/¢€), and the
encoding length of DRTSLP (1).

Type 1—-Wasserstein Ambiguity Set

There are two known special cases, under which
DRTSLP (1) with 1—Wasserstein ambiguity set
can be tractable. The first case is DRTSLP with
objective uncertainty, which has been studied

by [6].
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Proposition 1 (DRTSLP with Objective Uncer-
tainty, [6]) Suppose & = R™ x {&;} and
for any given x € X, the feasible region of
second-stage problem in DRTSLP (1) (i.e., set

*

v = min

xeX,y,A>0

S.t.

{y : T(x)§r + Wy > h(x)}) is nonempty and
compact. Then DRTSLP (1) can be tractable
for any p € [1,00] and admits the following
equivalent formulation:

1 : .
T o J T.J
c x+w+N E (Q¢; +9q) ¥/,

JEIN]

T(x)ér + Wy’ > h(x),¥j € [N],

A= 10Ty I Vi € [N],

y/ e R"™ Vj e [N],

where px = 5T
If there is only constraint uncertainty involved,
then DRTSLP (1) can have a tractable represen-
tation with the reference distance || - ||1.

Proposition 2 (DRTSLP with Left-Hand Side
Uncertainty, [8]) Suppose & = {§,} x R™2 and
p = 1. Then DRTSLP (1) can be tractable and
admits the following equivalent formulation:

I ‘

T T

c x+k9+ﬁ ~§,](Q§q+q) ¥,
j

i, ¥ € R",Vi € [m2],

T(xX)¢) + Wyl > h(x),Vj € [N],

(Q¢,+q) i <)

Q&+ @) ¥ <1, Vi € [mal,

T(x)e; < Wo;, —T(x)e; < Wy, Vi € [m2],

1>0,y/ eR™ Vje[N].

Note that the result in Proposition 2 also holds for
DRTSLP with right-hand side uncertainty, which
is summarized below:

Corollary 1 (DRTSLP with Right-Hand Side
Uncertainty) Suppose & = {§,} x R™2, p =
1, and T(x) := T. Then DRTSLP (1) can be
tractable and admits the following equivalent
formulation:



U*
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1 .
T - T.J
clx+r0++ Y Q8 +a)Ty,

= min
Xy, ;
o JeIN]
st. @, ¥; € R™,Vi € [my],

T¢) + Wyl > h(x),¥j € [N],

(Q&,+ @) 0i <1 (Q&, + @) ¥i <A, Vi € [m3],

|Te;| < We,;,Vi €

[m3],

1 >0,y e R™ Vje[N]

Type co—Wasserstein Ambiguity Set

In [11], the author showed that by exploring the
neat representation of the worst-case expected
wait-and-seet cost, DRTSLP (1) enjoys more
tractable results.

U*

= min
xeXy

JEIN]

Proposition 3 (DRTSLP (1) with Both Objec-
tive and Constraint Uncertainty, [11]) Sup-
pose p oo and either T(x) € Rﬁxmz for
allx € Xor T(x) € RExm2 for all x € X
Then DRTSLP (1) can be tractable and admits
the following equivalent formulation:

CTH% 2 [(Q;é +q)Tyf +0ll QTyfnl]

st. Tx)h + Wyl —6|T(x)|e > h(x),Vj € [N],

y/ e R™,Vj € [N].

For DRTSLP (1) with objective uncertainty,
different from Proposition 1, nonemptiness and
compactness assumptions are not required to con-
firm the tractability.

min
xXeX,
y

clx +% > [(Qc{; +q)Tyf +0107y/ u,,*] :

JEIN]

Proposition 4 (DRTSLP with Objective Uncer-
tainty, [11]) Suppose & = R™ x{&}. DRTSLP
(1) can be tractable for any p € [1,00] and
admits the following equivalent formulation:

T(x)Ep + Wyl > h(x),¥j € [N], y/ e R"2,Vj e [N]}.

Following the same assumption as Proposi-
tion 2, the tractability result for DRTSLP (1)
with left-hand side uncertainty under type oo-
Wasserstein ambiguity set is derived below:

Proposition 5 (DRTSLP with Left-Hand Side
Uncertainty, [11]) Suppose & = {§,} x R™
and p = 1. Then DRTSLP (1) can be tractable
and admits the following equivalent formulation:



Distributionally Robust Two-Stage Linear Programs

1
T E .
JEIN]

: T ..
st. ;= (0] +a) y7'Vj € NLVi € mal, Yk € (1,1,

T(x);fT' + Wy'ik — kT (x)e; > h(x),Vj € [N],Vi € [m2], Vk € {—1, 1},

y'ik e R"™,Vj € [N],Vi € [m

51, Vk € {—1, 1}

Similarly, this tractability can be directly
extended to DRTSLP (1) with right-hand side
uncertainty.

min
xeX,y,n

1
T
vt = c X+ — i
N2
J€IN]

Corollary 2 (DRTSLP with Right-Hand Side
Uncertainty) Suppose & = {§,} x R™2, p =
1, and T(x) := T. Then DRTSLP (1) can be
tractable and admits the following equivalent
Sformulation:

: T ..
st ;= (Q&]+a) ¥/ V)€ NLVi €Il Vk € (1,1},

Tt} + WyU* —0kTe; > h(x),Vj € [N],Vi € [m], Vk € (—1,1},

y'ik e R"™,V¥j € [N],Vi € [ma], ¥k € {—1, 1}.

Interested readers can check the work [11] for
more tractability results under co—Wasserstein
ambiguity set PY.

Type r-Wasserstein Ambiguity Set withr €

(1, 00)

There is limited prior work on DRTSLP (1) under
r—Wasserstein ambiguity set with r € (1, 00).
It is worthy of mentioning that [8] discussed
DRTSLP (1) under type 2—Wasserstein ambi-
guity set, where the authors used a hierarchy
of semidefinite programming approximations to
approximate the worst-case expected wait-and-
see cost. In this subsection, the tractable formu-

lations with general r —Wasserstein ambiguity set
with only objective uncertainty or only constraint
uncertainty are provided using the duality result
from theorem 1 in [4] or theorem 1 in [7].

Proposition 6 (DRTSLP with Objective Uncer-
tainty) Suppose & = R™ x {&r} and for
any given x € X, the feasible region of
second-stage problem in DRTSLP (1) (i.e., set
{y : T(x)§r + Wy > h(x)}) is nonempty and
compact. Then DRTSLP (1) can be tractable for
any p € [l,00],r € (1,00) and admits the
following formulation:



min
xeX,y,A>0 .
) jeIN]
S.t.

y/ e R"™,Vj € [N].
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1 . T . R 1 r
T T P RS B
CEREMIEY 2. [(QiéJrq) Y1yl ATy ’—'(r—l):|7

T(x)ér + Wy’ > h(x),¥j € [N],

Proof Let us first consider the reformulation of
Z(x) under r —Wasserstein ambiguity set. Apply-

ing the duality result from theorem 1 in [4] or
theorem 1 in [7], Z(x) can be written as

1 . o\ )
Z(x) = r/\nig)»@r + 7 Sup Z min {(Qi;q +q) 'y —a HEq — C'[;Hp :T(x)ér +Wy/ > h(x)} .
> y]

q9 je[N]

Since set {y Tx)ér + Wy > h(x)} is
nonempty and compact, according to Sion’s min-

Z(x) =

min ik@r —l—l Z
A N

>0,y eIV

imax theorem [10], one can interchange the
supremum and infimum operators, that is,

u [(Qﬁq +) Ty - Héq ~¢) H;} T(0)Er + Wyl > hix),Vj e [N]] :
q

Letting /I;\g =&, — ;é for each j € [N] and
using the Holder’s inequality and the fact that the

D AR B [ R i BT

q q

supremum is attainable, for each j € [N], the
inner supremum becomes

1

Since the term || QTy||;7?)»_rfl can be writ-
ten as

I+
QT yl p+ ‘
)\’ b

o O I
1Q Tyl A7 7T =4 (

and together with the fact that (|| QTy I = /A) I+
is convex in Yy, according to the convexity
of perspective function (see, for example, the
convexity result in [5]), the objective function
of its corresponding DRTSLP is joint convex in
x, y, A. Hence, in this case, DRTSLP (1) can be
tractable. ]

The following proposition shows a sufficient
condition under which DRTSLP (1) with right-
hand side uncertainty can be tractable.

Proposition 7 (DRTSLP with Right-Hand Side
Uncertainty) Suppose & = {§,} x R"2, p =1,
and T (x) := T. Assume that the separations over
the epigraphs of the inner supremum functions
can be done efficiently and DRTSLP (1) can be
tractable for any r € (1,00) and admits the
following formulation:
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i T [ R
sup [(h(x) — T{?) TAtr=1x r=1pr r=1(r — 1)i| s
nzO.WTn:Q§q+q,
1 T,
v* = min ¢'x + 10" + v Z _max_max 120 m);i T . . ,
xf;& _/G[N]’E[mz] sup (h(x) — T;jT) =T =Ty =T (r — 1)i|

>0 W n=0¢,+q.
120,1<—(T T 7);

Proof Consider the reformulation of Z(x) under ity result from theorem 1 in [4] or theorem 1 in
r—Wasserstein ambiguity set. Applying the dual- [7], Z(x) can be written as

1 -
Ee)=mind 5 ) swp o sup [(h(x)—Nx)ET)T,, — e — ¢4 }
2>0 N sup p
J€IN] E&r n>0W ”—Q§q+q

Switching the supremum operators and letting
¢y = &7 — &b for each j € [N], the inner
supremum becomes

sup (h(x) = T(0)5 7 — T(x)f’%)T w2 |¢) H; = (h(x) = T(¥)¢7) 7 — iAr}f[(T(x)’;\”T 7+ T
o7 ¢r

il

According to the Holder’s inequality and the fact
that the infimum can be attainable, the infimum
abozve becomes

rp]: |70 PR (1 ),

gillrest) = et )l el

Therefore, together with the presumptions that
p=1land T(x) :=T, Z(x) is equivalent to

1 i T fo S
Zx)=minr0" + — > sup |:<h(x) - T;JT) T+ H T x| a1y 7T — 1)]
A>0 N . T _ o0
JeIN]TZ0.W in=0§,+q
Since |T |0 = max; efm,] max{(T "x);, introduced to represent the term | T 7|, and

—(TTn)i}, one nonnegative slack variable ¢ is then Z(x) reduces to



sup

1
Z() =minkd’ + — Y
>0 N T>0.W n=0%,+q.

J€EIN]

120, <maxiem, |(T T 7)l;
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[(h(x) - Tc{r)Tn AT AT (r — 1)} ,

Then, DRTSLP (1) can be written as

sup

T>0W  n= Q§q +q,
1>0,1<(T " m);

max max

1
v* = min ¢'x + 10" + —
XeX, i€[my]

>0 JEIN] sup

nZO,WTn=Q€q+q,

T o1 __r
[(h(x)—T;T) w1y rfl(r—l):|,

i’ U
(h(x)fT;‘T) A=\ =1y =1 (rfl):|

1>0,t<—(T T m);

where the objective function is jointly convex
inx,A\.

According to the assumption that the separa-
tions over the epigraphs of the inner supremum
functions can be done efficiently, one can apply
the ellipsoid method to solve the reformulation
efficiently. O

It is worthy of mentioning that DRTSLP (1) with
left-hand side uncertainty can be intractable and
the authors are unable to obtain any tractable
result for the general type r-Wasserstein ambigu-
ity set when r € (1, 00).

Conclusion

This paper surveyed the tractable reformulations
of distributionally robust two-stage linear
programs under Wasserstein ambiguity set. New
tractable reformulations were also provided for
objective and right-hand side uncertainties.

See also
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