
Published as a conference paper at ICLR 2023

HOW DOES SEMI-SUPERVISED LEARNING WITH
PSEUDO-LABELERS WORK? A CASE STUDY

Yiwen Kou1, Zixiang Chen1, Yuan Cao2,3, Quanquan Gu1

1Department of Computer Science, University of California, Los Angeles
2Department of Statistics and Actuarial Science, The University of Hong Kong
3Department of Mathematics, The University of Hong Kong
evankou@ucla.edu, chenzx19@cs.ucla.edu, yuancao@hku.hk,
qgu@cs.ucla.edu

ABSTRACT

Semi-supervised learning is a popular machine learning paradigm that utilizes a
large amount of unlabeled data as well as a small amount of labeled data to fa-
cilitate learning tasks. While semi-supervised learning has achieved great success
in training neural networks, its theoretical understanding remains largely open.
In this paper, we aim to theoretically understand a semi-supervised learning ap-
proach based on pre-training and linear probing. In particular, the semi-supervised
learning approach we consider first trains a two-layer neural network based on the
unlabeled data with the help of pseudo-labelers. Then it linearly probes the pre-
trained network on a small amount of labeled data. We prove that, under a certain
toy data generation model and two-layer convolutional neural network, the semi-
supervised learning approach can achieve nearly zero test loss, while a neural
network directly trained by supervised learning on the same amount of labeled
data can only achieve constant test loss. Through this case study, we demonstrate
a separation between semi-supervised learning and supervised learning in terms
of test loss provided the same amount of labeled data.

1 INTRODUCTION

With the help of human-annotated labels, supervised learning has achieved remarkable success in
several computer vision tasks (Girshick et al., 2014; Long et al., 2015; Krizhevsky et al., 2012;
Tran et al., 2015). However, annotating large-scale datasets (e.g., video datasets with temporal
dimensions) is time-consuming and costly. In order to reduce the number of labels used for training
while maintaining a good prediction performance, a variety of methods have been proposed. Among
these methods, semi-supervised learning (Scudder, 1965; Fralick, 1967; Agrawala, 1970), which
leverages both a small amount of labeled data and a large amount of unlabeled data to improve
learning performance, is one of the most widely used approaches. It has been shown to achieve
promising performance for a wide variety of tasks, including image classification (Rasmus et al.,
2015; Springenberg, 2015; Laine & Aila, 2016), image generation (Kingma et al., 2014; Odena,
2016; Salimans et al., 2016), domain adaptation (Saito et al., 2017; Shu et al., 2018; Lee et al.,
2019), and word embedding (Turian et al., 2010; Peters et al., 2017).

One of the popular semi-supervised learning approaches is pseudo-labeling (Lee et al., 2013), which
generates pseudo-labels of unlabeled data for pre-training. This approach has been remarkably suc-
cessful in improving performance on many tasks. For example, in image classification, one can
first train a teacher network on a small labeled dataset and use it as a pseudo-labeler to generate
pseudo-labels for large unlabeled datasets. Then one can train a student network on the combination
of labeled and pseudo-labeled images (Xie et al., 2020; Pham et al., 2021b; Rizve et al., 2021). In
order to theoretically understand semi-supervised learning with pseudo-labelers, Oymak & Gulcu
(2021) considered learning a linear classifier in the Gaussian mixture model setting. They are able
to show that in the high dimensional limit, the predictors found by semi-supervised learning are cor-
related with the Bayes-optimal predictor. Frei et al. (2022c) further proved that the semi-supervised
learning algorithm can provably converge to the Bayes-optimal predictor for mixture models. How-
ever, their analyses are limited to linear classifiers, and cannot explain the success of semi-supervised
learning with neural networks.

1

Published as a conference paper at ICLR 2023

In this paper, we attempt to theoretically explain the success of semi-supervised learning with
pseudo-labelers in training neural networks. Specifically, we focus on a toy data model that con-
tains both signal patches and noise patches, where the signal patch is correlated to the label while
the noise patch is not. We consider semi-supervised learning with pre-training and linear probing.
In the pre-training state, we train a two-layer convolutional neural network (CNN) on an unlabeled
dataset with pseudo-labels. We then fine-tune the pre-trained model using linear probing on a small
amount of labeled data. We provide a comprehensive analysis of the learning process in both pre-
training and linear probing stages.

The contributions of our work are summarized as follows.

• We theoretically show that with the help of pseudo-labelers, CNN can learn the feature representa-
tion during the pre-training stage. Moreover, the learned feature is highly correlated with the true
labels of the data, even though the true labels are unknown and not used during the pre-training
stage.

• Based on our analysis of the pre-training process, we further show that when linear-probing the
pre-trained model in the downstream task, the final classifier can achieve near-zero test loss and
test error. Notably, these guarantees of small test loss and error only require a very small number
of labeled training data.

• As a comparison, we show that standard supervised learning cannot learn a good classifier under
the same setting. Specifically, we show that, even when the training process converges to a global
minimum of the training loss, the learned two-layer CNN can only achieve constant level test
loss. This, together with the aforementioned results for semi-supervised learning, demonstrates
the advantage of semi-supervised learning over standard supervised learning.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face let-
ters to denote scalars, vectors, and matrices respectively. For a scalar x, we use [x]+ to denote

max{x, 0}. For a vector v = (v1, · · · , vd)⊤, we denote by ∥v∥2 :=
(∑d

i=1 v
2
i

) 1
2 its ℓ2 norm, and

use supp(v) := {j : vj ̸= 0} to denote its support. For two sequences {ak} and {bk}, we denote
ak = O(bk) if |ak| ≤ C|bk| for some absolute constant C, denote ak = Ω(bk) if bk = O(ak), and
denote ak = Θ(bk) if |ak| ≤ C|bk| and ak = Ω(bk). We also denote ak = o(bk) if lim |ak/bk| = 0.
Finally, we use Θ̃(·), Õ(·) and Ω̃(·) to omit logarithmic terms in the notations.

2 RELATED WORK

Semi-supervised learning methods in practice. Since the invention of semi-supervised learning
in Scudder (1965); Fralick (1967); Agrawala (1970), a wide range of semi-supervised learning ap-
proaches have been proposed, including generative models (Miller & Uyar, 1996; Nigam et al.,
2000), semi-supervised support vector machines (Bennett & Demiriz, 1998; Xu et al., 2007; 2009),
graph-based methods (Zhu et al., 2003; Belkin et al., 2006; Zhou et al., 2003), and co-training (Blum
& Mitchell, 1998), etc. For a comprehensive review of classical semi-supervised learning methods,
please refer to Chapelle et al. (2010); Zhu & Goldberg (2009). In the past years, a number of deep
semi-supervised learning approaches have been proposed, such as generative methods (Odena, 2016;
Li et al., 2019), consistency regularization methods (Sajjadi et al., 2016; Laine & Aila, 2016; Ras-
mus et al., 2015; Tarvainen & Valpola, 2017) and pseudo-labeling methods (Lee et al., 2013; Zhai
et al., 2019; Xie et al., 2020; Pham et al., 2021a). In this work, we will focus on pseudo-labeling
methods.

Theory of semi-supervised learning. To understand semi-supervised learning, Castelli & Cover
(1995; 1996) studied the relative value of labeled data over unlabeled data under a parametric as-
sumption on the marginal distribution of input features. Later, a series of works proved that semi-
supervised learning can possess better sample complexity or generalization performance than su-
pervised learning under certain assumptions on the marginal distribution (Niyogi, 2013; Globerson
et al., 2017) or the ratio of labeled and unlabeled samples (Singh et al., 2008; Darnstädt, 2015), while
Balcan & Blum (2010) provided a unified PAC framework able to analyze both sample-complexity
and algorithmic issues. Oymak & Gulcu (2021); Frei et al. (2022c) considered semi-supervised
learning with pseudo-labers by learning a linear classifier for mixture models and convergence to
Bayes-optimal predictor.

2

Published as a conference paper at ICLR 2023

Self-supervised learning in practice. A closely related learning paradigm to semi-supervised
learning is called self-supervised learning, which creates human-designed supervised learning prob-
lems to leverage natural structures and learn representations from unlabeled data. Representative
self-supervised learning approaches include contrastive learning and pretext-based self-supervised
learning. Contrastive learning (Caron et al., 2020; He et al., 2020; Chen et al., 2020) aims to group
similar examples closer and dissimilar examples far from each other by utilizing a similarity metric,
while pretext-based self-supervised tries to learn a good representation from pretext tasks generated
from the unlabeled data to facilitate downstream learning tasks. In practice, various pretext tasks
have been proposed, which include (1) generation-based ones such as colorizing grayscale images
(Zhang et al., 2016), image inpainting (Pathak et al., 2016), image and video generation with GAN
(Goodfellow et al., 2014; Brock et al., 2018; Karras et al., 2019; Vondrick et al., 2016; Tulyakov
et al., 2018); and (2) context-based ones such as image jigsaw puzzle (Noroozi & Favaro, 2016),
geometric transformation (Gidaris et al., 2018; Jing et al., 2018), frame order verification and recog-
nition (Lee et al., 2017; Misra et al., 2016; Wei et al., 2018). The semi-supervised learning approach
with pseudo-labelers studied in this paper is related to pretext-based self-supervised learning because
the unlabeled data with pseudo-labels can be seen as a particular pretext task.

Theory of self-supervised learning. In order to understand self-supervised learning, there is a line
of work towards understanding contrastive learning (Saunshi et al., 2019; Tsai et al., 2020; Mitro-
vic et al., 2020; Tian et al., 2020; Wang & Isola, 2020; Tosh et al., 2021b;a; HaoChen et al., 2021;
Wen & Li, 2021; Saunshi et al., 2022), which is one of the most used self-supervised learning ap-
proaches based on data augmentation. Unlike contrastive learning, the theoretical understanding of
pretext-based self-supervised learning is still rather limited. The only notable works are Lee et al.
(2020) and Wei et al. (2020). Lee et al. (2020) proved generalization guarantees for self-supervised
algorithms using empirical risk minimization on the pretext task under certain conditional indepen-
dence assumptions. Wei et al. (2020) proved that under an “expansion” assumption, the minimizer
of the population loss based on self-training and input-consistency regularization will achieve high
prediction accuracy. Since semi-supervised learning with pseudo-labelers can be seen as a special
case of pretext-based self-supervised learning (the pretext task is generated by the pseudo-labelers),
we believe the case study in the current paper and its theoretical understanding can shed light on
pretext-based self-supervised learning as well.

Feature learning by neural networks. Our work is also closely related to several recent works
that study how neural networks learn the features. Allen-Zhu & Li (2020a) showed that adversar-
ial training purifies the learned features by removing certain “dense mixtures” in the hidden layer
weights of the network. Allen-Zhu & Li (2020b) studied how ensemble and knowledge distillation
work in deep learning when the data have “multi-view” features. Zou et al. (2021) studied an aspect
of feature learning by Adam and GD and showed that GD can learn the sparse features while Adam
may fail even with proper regularization. Notably, there are two concurrent works studying the be-
nign overfitting phenomenon in learning neural networks: Frei et al. (2022a) established theoretical
guarantees for benign overfitting of two-layer fully connected neural networks with zero training
error and test error close to the Bayes-optimal error, while Cao et al. (2022) studied the benign
overfitting phenomenon in training a two-layer convolutional neural network (CNN), achieving ar-
bitrarily small training and test loss. Our work studies a different aspect of feature learning afforded
by semi-supervised learning versus supervised learning: given a small amount of labeled data, semi-
supervised learning can learn the features with the help of pseudo-labelers, while supervised learning
fails to learn the features and tends to overfit the noise in the training data.

3 PROBLEM SETUP AND PRELIMINARIES

In this section, we first give a brief overview of the semi-supervised learning pipeline using pseudo-
labelers. Then we will introduce our data model, the convolutional neural network, and the detail of
the training algorithms considered in this paper.

3.1 SEMI-SUPERVISED LEARNING PIPELINE WITH PSEUDO-LABELERS

In this paper, we consider a kind of semi-supervised learning (Xie et al., 2020; Pham et al., 2021b;
Rizve et al., 2021), which leverages pseudo-labelers for pre-training. Such a semi-supervised learn-
ing method is related to a special kind of pretext-based self-supervised learning, whose pretext task

3

Published as a conference paper at ICLR 2023

Shared Feature

Representation
Source

𝜙

PretrainingTask Head

Task Head

ℎdownstream

ℎpretrain

Downstream training

𝑥
𝑥 → ො𝑦

𝑥 → 𝑦

Figure 1: The general pipeline of semi-supervised learning with pre-training and linear probing.

is designed by generating pseudo-labels for unlabeled data with the help of pseudo-labelers (Zhai
et al., 2019). The typical pipeline of this kind of semi-supervised learning is shown in Figure 1.
Moreover, the case study we carry out is shown in Figure 2. The pretext task trains a two-layer con-
volutional neural network with the help of pseudo-labelers, and the downstream task trains a linear
probe using the pre-trained models.

3.2 DATA DISTRIBUTION

Inspired by recent work (Allen-Zhu & Li, 2020b; Zou et al., 2021; Shen et al., 2022; Cao et al.,
2022), we consider a toy data model where each data input x consists of two patches x(1) and x(2),
where each patch has d dimensions. We focus on binary classification task, and present our data
distribution D in the following definition.

Definition 3.1. Each data point (x, y) with x = [x(1)⊤,x(2)⊤]⊤ ∈ R2d and y ∈ {−1,+1} is
generated as follows: the label y is generated as a Rademacher random variable; one of x(1),x(2) is
given by the feature vector y · v, the other is given by a noise vector ξ that is generated from a d-
dimensional Gaussian distribution N

(
0, σ2

p(I−vv⊤/∥v∥22)
)
. We denote by D the joint distribution

of (x, y), and denote by Dx the marginal distribution of x.

The most natural way to think of our data model is to treat patches x(1) and x(2) as the embedding of
the image data: one of them is a signal which is label-dependent, and the other one is the noise that
is label-independent. For simplicity, we assume that the noise patch is generated from the Gaussian
distribution N(0, σ2

p · (I− vv⊤ · ∥v∥−2
2)) to ensure that the noise vector is orthogonal to the signal

vector v, and only consider the case where the data consists of one signal patch and one noise
patch. However, our results and proof techniques can be easily extended to cover the setting with
non-orthogonal signal/noise and multiple signal/noise patches. With this simple data model, in this
case study we aim to show the effectiveness of semi-supervised learning and explain the mechanism
behind semi-supervised learning with neural networks.

Since the positions of signal and noise are not specified in Definition 3.1. It is natural to use a clas-
sifier with a convolutional structure that applies the same function to each patch. More specifically,
we consider learning a CNN with nl labeled examples S′ = {(x′

i, y
′
i)}

nl
i=1 generated from the dis-

tribution D and nu unlabeled examples S = {xi}nu
i=1 generated from the marginal distribution Dx,

where nl is significantly smaller than the dimension d. If we only use the labeled data, the CNN can
easily overfit the training dataset by memorizing the noise patches ξi. Consequently, the CNN will
perform badly on the fresh test data. Therefore, our case is hard to learn without using unlabeled
examples.

3.3 SUPERVISED LEARNING MODELS

For supervised learning, we consider a two-layer CNN whose filters are applied to the patches x(1)

and x(2) respectively and parameters in the second layers are set to be ±1. Then the CNN can be
written as fW(x) = f+1

W (x)− f−1
W (x) where fW(x)+1, fW(x)−1 are formulated as

f+1
W (x) =

m∑
j=1

[
σ
(
⟨wj ,x

(1)⟩
)
+ σ

(
⟨wj ,x

(2)⟩
)]
,

f−1
W (x) =

2m∑
j=m+1

[
σ
(
⟨wj ,x

(1)⟩
)
+ σ

(
⟨wj ,x

(2)⟩
)]
.

(3.1)

4

Published as a conference paper at ICLR 2023

𝐾 Different Pseudo Label Selection

Semi-supervised pretraining

Unlabeled Dataset
With Pseudo Labels

(, ො𝑦1)

(, ො𝑦2)

⁞

(, ො𝑦𝑛u)

Neural
Network

𝑓W 𝑥

Output

𝑓W 𝑥1

𝑓W 𝑥2

⁞

𝑓W 𝑥𝑛u

Objective
Function

𝑙𝑜𝑠𝑠(𝑓W 𝑥1 , ො𝑦1)

𝑙𝑜𝑠𝑠(𝑓W 𝑥2 , ො𝑦2)

⁞

𝑙𝑜𝑠𝑠(𝑓W 𝑥𝑛u , ො𝑦𝑛u)

𝑓W1
∗ 𝑥 , 𝑓W2

∗ 𝑥 ,⋯ , 𝑓W𝐾
∗ 𝑥

Supervised downstream task training

Labeled Dataset

(, 𝑦1)

(, 𝑦2)

⁞

(, 𝑦𝑛l)

Linear Model

𝑔a 𝑓W1
∗ 𝑥 , 𝑓W2

∗ 𝑥 ,⋯ , 𝑓W𝐾
∗ 𝑥 := 𝑔a Ԧ𝑓W∗ 𝑥

Output

𝑔a Ԧ𝑓W∗ 𝑥1

𝑔a Ԧ𝑓W∗ 𝑥2

⁞

𝑔a Ԧ𝑓W∗ 𝑥𝑛l

Objective Function

𝑙𝑜𝑠𝑠 𝑔a Ԧ𝑓W∗ 𝑥1 , 𝑦1

𝑙𝑜𝑠𝑠 𝑔a Ԧ𝑓W∗ 𝑥2 , 𝑦2

⁞

𝑙𝑜𝑠𝑠 𝑔a Ԧ𝑓W∗ 𝑥𝑛l , 𝑦𝑛l

Figure 2: Illustration of our model. The left figure characterizes semi-supervised pre-train schema:
NN is trained by minimizing errors between pseudo-labels ŷ and predictions fW(x). After semi-
supervised pre-training finished, the learned parameters {W∗

k}Kk=1 serve as pre-trained models and
are adapted to a downstream task using linear probing, as shown in the right figure.

Here σ is activation function ReLUq(·) = [·]q+(q > 2), m is the width of the network, wj ∈ Rd

denotes the j-th filter, and W is the collection of all filters {wj}2mj=1. Given labeled training dataset
S′ = {(x′

i, y
′
i)}

nl
i=1, we train the CNN model by minimizing the empirical cross-entropy loss

LS′(W) =
1

nl

nl∑
i=1

Li(W),

where Li(W) = ℓ
(
y′i · fW(x′

i)
)

with ℓ(z) = log(1 + exp(−z)) denotes the individual loss for the
training example (xi, yi). We minimize the empirical function LS′(W) with gradient descent as
follows

w
(t+1)
j = w

(t)
j − η · ∇wj

LS′(W(t)), w
(0)
j ∼ N (0, σ2

0I), j ∈ [2m],

where η > 0 is the learning rate and σ0 defines the scale of random initialization.

3.4 SEMI-SUPERVISED LEARNING MODELS

For semi-supervised pre-training, we assume that we have access to K pseudo-labelers {fw
k }Kk=1.

The accuracy of k-th pseudo-labeler is pk ∈ (1/2, 1). Then we use K pseudo-labelers to generate
K pseudo-labeled dataset {Sk}Kk=1, where Sk :=

{
(xi, ŷk,i)

∣∣ ŷk,i = fw
k (xi)

}nu

i=1
. Next we solve

K pre-training tasks with two-layer CNN models {fWk
}Kk=1 defined in (3.1) using {Sk}Kk=1 respec-

tively. Note that our result can cover K = 1 as a special case, where there is only one pseudo-labeler.

We consider learning the model parameter Wk by optimizing the empirical loss of both pseudo-
labeled dataset Sk and labeled dataset S′ = {(x′

i, y
′
i)}

nl
i=1 with weight decay regularization

LSk∪S′(Wk) =
1

nu + nl

(nu∑
i=1

Li(Wk) +

nl∑
i′=1

Li′(Wk)

)
+

λ

2
∥Wk∥2F ,

where λ ≥ 0 is the regularization parameter, Li(Wk) = ℓ
(
ŷk,i · fWk

(xi)
)

denotes the individual
loss for the pseudo-labeled data (xi, ŷk,i), Li′(Wk) = ℓ(y′i · fWk

(x′
i)) denotes the individual loss

for the labeled data (x′
i, y

′
i). Our result can cover nl = 0, which corresponds to the case that there

is no labeled data during pre-training. In light of this, our semi-supervised learning framework
will reduce to a special kind of pretext-based self-supervised learning, where the pretext tasks are
generated by pseudo-labelers.

We use gradient descent to minimize the regularized loss function LSk∪S′(Wk). Starting from
initial W(0)

k := {w(0)
k,j , j ∈ [2m]}, gradient descent update rule is as follows

w
(t+1)
k,j = w

(t)
k,j − η · ∇wk,j

LSk∪S′(W
(t)
k), w

(0)
k,j ∼ N (0, σ2

0Id), j ∈ [2m], k ∈ [K]

where η > 0 is the learning rate and σ0 defines the scale of random initialization.

• Downstream Task: Linear Model. The semi-supervised pre-training gives us K CNN models
with parameters {W∗

k}Kk=1. Based on them, for the downstream task, we consider a linear model

ga(x) =
K∑

k=1

akfW∗
k
(x),

5

Published as a conference paper at ICLR 2023

where ak ∈ R denotes the trainable weight for the k-th pre-trained model. Then, given {fW∗
k
}Kk=1

and labeled training data S′ = {(x′
i, y

′
i)}ni=1, we consider learning the downstream linear model

parameter a by optimizing the following empirical loss

LS′(a) =
1

n

n∑
i=1

ℓ
(
y′i · ga(x′

i)
)
.

We initialize a as an all zero vector and optimize the empirical loss by gradient descent with learning
rate η, i.e.,

a(t+1) = a(t) − η · ∇aLS′(a(t)), a(0) = 0.

4 MAIN RESULTS

In this section, we present the main theoretical results in this paper. We start with a condition that is
required by our analysis.

Condition 4.1. The strength of the signal is ∥v∥22 = Θ(d), the noise variance is σp = Θ(dϵ),
where 0 < ϵ < 1/8 is a small constant, and the width of the network satisfies m = polylog(d).
We also assume that the size of the unlabeled dataset nu = Ω(d4ϵ), and labeled data nl = Θ̃(1).
For both supervise learning and semi-supervised learning settings, we initialize the weight with
σ0 = Θ(d−3/4). For semi-supervised learning, we require λ = o(d3/4) and assume that there exists
a constant C such that for all pseudo-labelers, their test accuracy pk > 1/2 + C.

Since we generate the noise patch from the Gaussian distribution, the strength of the noise patch is
∥ξ∥22 ≈ d1+ϵ by standard concentration inequalities, which is larger than the strength of the signal
patch ∥v∥22 = Θ(d). Therefore, Condition 4.1 defines a setting with large noises. The condition of
d ≫ nu ≫ nl further ensures that learning is in a sufficiently over-parameterized setting. Here we
only require the neural network width m to be polylogarithmic in the dimension d and require the
psudolablers to perform better than a random guess.

Theorem 4.2 (Semi-supervised Learning: Pre-training). Let k ∈ [K] and consider the semi-
supervised pre-training of fWk

(x). For any test data point (x, y), denote ŷ = fw
k (x). Then un-

der Condition 4.1, after T0 = Θ̃(d−
3
4 η−1) training iterations with learning rate η = O(d−1.1),

the trained neural network can achieve nearly 0 test error on the distribution D: P(x,y)∼D[y ·
f
W

(T0)

k

(x) ≤ 0] = o(1).

Theorem 4.2 characterizes the prediction power of the feature representation learned in the pre-
trained models using unlabeled data. For any test data point (x, y), the sign of y can be predicted
based on fW(T0)(x) with high probability.

Theorem 4.3 (Semi-supervised Learning: Downstream). Let
{
f
W

(Tk
0)

k

}d
k=1

be the neural networks

trained according to the K pre-training tasks, and consider the learning of the downstream task
based in

{
f
W

(Tk
0)

k

}d
k=1

. Under Condition 4.1, after T ′ = Θ(d0.1/η) iterations with learning rate

η = Θ(1), with probability 1− o(1), the obtained a(T
′) satisfies:

• Training error is 0: 1
n

∑n
i=1 1[yi · ga(T ′)(xi) ≤ 0] = 0.

• Test error and loss are nearly 0: P(x,y)∼D[y · ga(T ′)(x) ≤ 0] = o(1), LD
(
a(T

′)
)
= o(1).

Theorem 4.3 shows that the feature representation learned based on the semi-supervised pre-training
can ensure small training and test errors for the supervised downstream task. Notably, this result
holds even though we assume that there are only a constant number of labeled data. This shows
that semi-supervised learning can significantly reduce the need for a large labeled training dataset.
For comparison, we also have the following guarantees on the performance of standard supervised
learning of CNNs.

Theorem 4.4 (Supervised Learning). Under supervised learning setting, after gradient descent for
T = Θ̃(d(1/4−ϵ)q−3/2η−1) iterations with learning rate η = O(d−1−2ϵ), then there exists t ≤ T
such that with probability 1− o(1) the CNNs defined in (3.1) with parameter W(t) satisfies:

6

Published as a conference paper at ICLR 2023

• Training loss is nearly zero: LS′
(
W(t)

)
= o(1).

• Test loss is high: LD
(
W(t)

)
= Θ(1).

Theorem 4.4 shows that although standard supervised learning can train a CNN model with nearly
zero training loss, the obtained CNN model generalizes poorly to test data. Comparing Theorem 4.4
with Theorem 4.3 shows that the generalization of semi-supervised learning and supervised learning
are largely different. The reason behind this difference is that, the pre-training, with a relatively
large number of unlabeled training data, helps learn a feature representation that captures the feature
v in our data model, while direct application of supervised learning can only memorize the noises
ξ′i, i ∈ [nl] in the training dataset, which is independent of the labels of the data.

A recent line of work (Oymak & Gulcu, 2021; Frei et al., 2022c) studies the semi-supervised learning
methods with pseudo-labelers. Our results are different from theirs in several aspects: (i) we are
considering learning with CNNs rather than a linear model, so the problem is highly non-convex with
various local minima, which makes the optimization analysis more challenging; (ii) the Bayesian
optimal predictor is no longer unique for CNNs. Therefore, we measure the quality of the learned
features via downstream task instead of making a comparison with the Bayesian optimal predictor;
(iii) They can only deal with the case where the teacher network (pseudo-labeler) is the same as
the student network (Frei et al., 2022c) or the case where the teacher network (pseudo-labeler) is
at least as complex as the student network (Oymak & Gulcu, 2021). However, our teacher network
(pseudo-labeler) is not specified and can be any structure, such as a linear network. Therefore we
can handle the case where the student network is more complex than the teacher network, one of the
most natural settings for semi-supervised learning with pseudo-labeler (Xie et al., 2020).

5 PROOF SKETCH

In this section, we present the proof sketch for the semi-supervised learning setting. And the proof
sketch of the supervised learning setting is given in the appendix.

Semi-supervised Pre-training. We consider learning K functions fWk
(x), k ∈ [K] based on the

pre-training. Since the learning process of these K functions can be analyzed in exactly the same
way, here we only focus on the learning of one of these functions. For simplicity of notation, we
drop the subscript k in the following proof sketch.

Our study of the pre-training focuses on two aspects of the training process: feature learning and
noise memorization. Specifically, we aim to monitor how the filters in the CNN model learn the
feature vector v and the noise vectors ξi’s. Therefore, we introduce the following notations.

Λ̂
(t)
1 := max

1≤j≤m
⟨w(t)

j ,v⟩, Λ̄(t)
1 := max

1≤j≤m
−⟨w(t)

j ,v⟩,

Λ̂
(t)
−1 := max

m+1≤j≤2m
−⟨w(t)

j ,v⟩, Λ̄(t)
−1 := max

m+1≤j≤2m
⟨w(t)

j ,v⟩,

Γ
(t)
i := max

1≤j≤2m
⟨w(t)

j , ξi⟩, Γ′(t)
i := max

1≤j≤2m
⟨w(t)

j , ξ′i⟩, Γ(t) = max
{
max
i∈[nu]

Γ
(t)
i ,max

i∈[nl]
Γ
′(t)
i ,

}
.

(5.1)
Based on the above definitions for r ∈ {±1}, a larger Λ̂(t)

r implies better feature learning along the
positive feature direction v, while a larger Λ̄(t)

r implies better feature learning along the negative
feature direction −v. Moreover, a larger Γ(t) implies a higher level of noise memorization.

Based on the update rule of gradient descent, for the inner products ⟨w(t)
j ,v⟩ and ⟨w(t)

j , ξl⟩, for
j ∈ [2m], l ∈ [nu], we can obtain iterative equations in (A.1). With the help of the iterative
equations and definitions in (5.1), we can further show the following lemma.
Lemma 5.1. Assume we use both unlabeled data with pseudo-labels generated by the pseudo-
labeler and labeled data for the training of our CNN model. Then for r ∈ {±1}, let Tr be the
first iteration that Λ̂(t)

r reaches Θ(1/m), then for t ∈ [0, Tr], we have

Λ̂(t+1)
r ≥ (1− ηλ) · Λ̂(t)

r + η · C ·Θ(d) · (Λ̂(t)
r)q−1, r ∈ {±1},

Λ̄(t+1)
r ≤ (1− ηλ) · Λ̄(t)

r , r ∈ {±1},
Γ(t+1) ≤ (1− ηλ) · Γ(t) + η · Θ̃(d1−2ϵ) · (Γ(t))q−1,

7

Published as a conference paper at ICLR 2023

where C is defined in Condition 4.1.
Lemma 5.2. Assume we use only labeled data for the training of our CNN model. Then for i ∈ [nl],
let T ′

i be the first iteration that Γ′(t)
i reaches Θ(1/m), then we have

Λ̂(t+1)
r ≤ (1− ηλ) · Λ̂(t)

r + η ·Θ(d) ·
(
(Λ̂(t)

r)q−1 + (Λ̄(t)
r)q−1

)
, r ∈ {±1},

Λ̄(t+1)
r ≤ (1− ηλ) · Λ̄(t)

r , r ∈ {±1},

Γ
′(t+1)
i ≥ (1− ηλ) · Γ′(t)

i + η · Θ̃(d1+2ϵ) · (Γ′(t)
i)q−1, i ∈ [nl], for t ∈ [0, T ′

i].

Based on the results in Lemma 5.1, we can observe that if both pseudo-labeled and labeled data
are used for training, the CNN will learn the positive direction of the feature vector v, while barely
tending to fit the negative direction of the feature vector or memorize the noise. And if only labeled
data are used, the CNN will fit noise faster than a feature, which can be seen from Lemma 5.2.
Leveraging Lemmas 5.1 and 5.2, we can obtain following Lemmas 5.3 and 5.4, which characterize
the magnitude of feature learning and noise memorization.
Lemma 5.3. If both pseudo-labeled and labeled data are used to train CNN, for r ∈ {±1}, let Tr be
the first iteration that Λ̂(t)

r reaches Θ(1/m) respectively. Let T0 = maxr∈{±1}{Tr}. Then, it holds
that Λ̂(T0)

r = Θ̃(1), Λ̄(t)
r = Õ(d−

1
4) and Γ(t) = Õ(d−

1
4+ϵ) for all t ∈ [0, T0].

Lemma 5.4. If only labeled data are used to train CNN, for i ∈ [nl], let T ′
i be the first iteration that

Γ
′(t)
i reaches Θ(1/m). Let T ′

0 = maxi∈[nl] T
′
i . Then, it holds that Λ̂r = Õ(d−

1
4), Λ̄r = Õ(d−

1
4)

for r ∈ {±1} and Γ
′(t)
i = Θ̃(1) for i ∈ [nl].

The above results indicate the deviation between the two settings. The reason is that assume we
consider a sequence {xt} with iterative equation xt+1 = xt + η · Ctx

q−1
t . If we only use labeled

data, as shown in Lemma 5.2, Γ′(t)
i has Ct = Θ̃(d1+2ϵ) while Λ̂

(t)
r has Ct = Θ(d), therefore Γ

′(t)
i

increases faster than Λ̂
(t)
r . In contrast, if we use both labeled data and pseudo-labeled data, Ct will

be Θ̃(d1−2ϵ) for Γ′(t)
i and Θ(d) for Λ̂(t)

r , leading to a slower increasing speed of Γ′(t)
i .

Downstream task. After the pre-training, we have obtained K CNN classifiers
{
f
W

(Tk
0)

k

}K
k=1

. Now

we train the second-layer parameters a with the training data whose true labels are available. The
following lemma shows that the l1-norm of a will increase with a logarithmic order.

Lemma 5.5. For any learning rate η = Θ(1), we have
∥∥a(t)∥∥

1
= log(t)/Θ̃(1). For any labeled data

(x′
i, y

′
i) ∈ S′, we have with high probability that y′i · fW(t)(x′

i) =
∥∥a(t)∥∥

1
· Θ̃(1). For any newly

generated data (x, y) ∼ D, we also have with high probability that y · fW(t)(x) =
∥∥a(t)∥∥

1
· Θ̃(1).

With the help of the above lemma and note that training error and test error are related to y·fW(T0)(x)
and test loss is related to ∥a(T0)∥1, we can prove that after T = Θ(d0.1/η) iterations with learning
rate η = Θ(1), the model can achieve nearly zero training error, test error, training loss and test loss.

6 EXPERIMENTS

In this section, we perform numerical experiments on synthetic datasets, generated according to
Definition 3.1, to verify our main theoretical results. The code and data for our experiments can be
found on Github 1. In particular, we set the problem dimension d = 10000, labeled training sample
size nl = 20 (10 positive samples and 10 negative samples), pseudo-labeled training sample size
nu = 20000 (10000 positive samples and 10000 negative samples), feature vector v sampled from
distribution N (0, I) and noise vector sampled from distribution N (0, σ2

pI) where σp = 10d0.01.

For semi-supervised learning task, we have a linear pseudo-labeler with test error 0.196 ± 0.044.
Then, we use this classifier to generate pseudo-labels for nu = 20000 unlabeled samples in order
to help semi-supervised learning. After that, for pre-training, we use these pseudo-labeled samples
and nl labeled samples together to train a CNN with network width m = 20, activation function
σ(z) = [z]3+, regularization parameter λ = 0.1 and learning rate η = 1 × 10−4. Besides, we

1https://github.com/uclaml/SSL Pseudo Labeler

8

https://github.com/uclaml/SSL_Pseudo_Labeler

Published as a conference paper at ICLR 2023

0 200 400 600 800 1000
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e

Feature Learning: max
j

wj, v

Noise Memorization: max
i

max
j

wj, i

0 20 40 60 80 100
Iterations

0

1

2

3

4

5

Va
lu

e Feature Learning: max
j

wj, v

Noise Memorization: max
i

max
j

wj, i

Figure 3: Visualization of the feature learning and noise memorization in the training process. (Left:
Semi-supervised, Right: Supervised)

Semi-supervised SupervisedPre-train Downstream
Training error 0.1753±0.0259 0 0

Test error 0 0 0.4982± 0.0208
Training loss 0.4155±0.0418 0.0150±0.0022 (6.473±5.031)×10−7

Test loss 0.2200±0.0886 0.0182±0.0021 0.6931±0.0005
Table 1: Training error and loss, test error and loss for semi-supervised and supervised learning.

initialize CNN parameters from N (0, σ2
0), where σ0 = 0.1 × d−3/4. After 200 iterations, we can

obtain a CNN model with training error close to the error of pseudo-labeler and zero test error,
according to Table 6. And for a downstream task, we use nl labeled samples to train a linear probe.
By applying learning rate η = 0.1 and after T = 100 iterations, we can obtain a final model with
low training and test loss as well as 100% training accuracy and test accuracy.

For supervised learning task, we directly use nl labeled data to train a CNN with network width
m = 20, activation function σ(z) = [z]3+, learning rate η = 1 × 10−4. After 200 iterations, we
obtain a CNN with 0 training error and small training loss, about 0.5 test error and high test loss,
which indicates supervised learning will give a model that behaves badly and even no better than a
random guess.

Moreover, for synthetic data experiments, we also calculate the inner products maxj∈[m]⟨w
(t)
j ,v⟩

and maxj∈[2m]

{
maxi∈[nu]⟨w

(t)
j , ξi⟩,maxi∈[nl]⟨w

(t)
j , ξ′i⟩

}
, i.e. Λ̂(t)

1 and Γ(t), representing feature
learning and noise memorization respectively, to verify our key lemmas. The results are reported in
Figure 3. It can be seen from Figure 3 that under semi-supervised learning setting the algorithm will
the feature learning will dominate the noise memorization though the noise patch has a larger norm
than the signal patch, while under the supervised learning setting, the algorithm will entirely forget
the feature but fit noise. This verifies Lemmas 5.3 and 5.4.

7 CONCLUSION AND FUTURE WORK

In this paper, we study semi-supervised learning with pseudo-labelers and provide a theoretical un-
derstanding of the success of semi-supervised learning. We show the advantage of semi-supervised
learning over supervised learning through a case study. By considering a simple data model and
two-layer CNN, we present a comprehensive analysis of the training procedure from a beyond-NTK
feature learning perspective. We prove that the final classifier of a semi-supervised learning sce-
nario can achieve near-zero test loss and error with only a small number of labeled training data,
while its supervised-learned counterpart fails to achieve the same performance with the same data
complexity.

In the current paper, we only focus on the simplest possible data and neural network models to study
semi-supervised learning. For example, the second layer of the CNN is fixed during the training.
What if the second layer is trainable? In addition, the stride is the same as the filter size in the
current CNN, and it is reasonable to have the stride be smaller than the filter size. On the other hand,
it would be interesting to consider linearly non-separable data (Shi et al., 2022; Frei et al., 2022b;
Damian et al., 2022) and ReLU activation function with the help of pre-activation noise (Allen-Zhu
& Li, 2020a). We leave these extensions as future works.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful comments. YK, ZC and QG are supported in
part by the National Science Foundation IIS-1855099, IIS-2008981 and the Sloan Research Fellow-
ship.

REFERENCES

A Agrawala. Learning with a probabilistic teacher. IEEE Transactions on Information Theory, 16
(4):373–379, 1970.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. arXiv preprint arXiv:2005.10190, 2020a.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020b.

Maria-Florina Balcan and Avrim Blum. A discriminative model for semi-supervised learning. Jour-
nal of the ACM (JACM), 57(3):1–46, 2010.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of machine learning research, 7
(11), 2006.

Kristin Bennett and Ayhan Demiriz. Semi-supervised support vector machines. Advances in Neural
Information processing systems, 11, 1998.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Computational learning theory, pp. 92–100, 1998.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Yuan Cao, Zixiang Chen, Mikhail Belkin, and Quanquan Gu. Benign overfitting in two-layer con-
volutional neural networks. arXiv preprint arXiv:2202.06526, 2022.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924, 2020.

V. Castelli and T.M. Cover. The relative value of labeled and unlabeled samples in pattern recog-
nition with an unknown mixing parameter. IEEE Transactions on Information Theory, 42(6):
2102–2117, 1996. doi: 10.1109/18.556600.

Vittorio Castelli and Thomas M. Cover. On the exponential value of labeled samples. Pattern
Recognition Letters, 16(1):105–111, 1995. ISSN 0167-8655. doi: https://doi.org/10.1016/
0167-8655(94)00074-D.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning. The MIT
Press, 2010.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Malte Darnstädt. An investigation on the power of unlabeled data. PhD thesis, Bochum, Ruhr-
Universität Bochum, Diss., 2015, 2015.

S. Fralick. Learning to recognize patterns without a teacher. IEEE Transactions on Information
Theory, 13(1):57–64, 1967. doi: 10.1109/TIT.1967.1053952.

10

Published as a conference paper at ICLR 2023

Spencer Frei, Niladri S Chatterji, and Peter L Bartlett. Benign overfitting without linearity:
Neural network classifiers trained by gradient descent for noisy linear data. arXiv preprint
arXiv:2202.05928, 2022a.

Spencer Frei, Niladri S Chatterji, and Peter L Bartlett. Random feature amplification: Feature
learning and generalization in neural networks. arXiv preprint arXiv:2202.07626, 2022b.

Spencer Frei, Difan Zou, Zixiang Chen, and Quanquan Gu. Self-training converts weak learners
to strong learners in mixture models. In International Conference on Artificial Intelligence and
Statistics, pp. 8003–8021. PMLR, 2022c.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580–587, 2014.

Amir Globerson, Roi Livni, and Shai Shalev-Shwartz. Effective semisupervised learning on mani-
folds. In Conference on Learning Theory, pp. 978–1003. PMLR, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. Advances in Neural Information Processing Systems,
34, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Longlong Jing, Xiaodong Yang, Jingen Liu, and Yingli Tian. Self-supervised spatiotemporal feature
learning via video rotation prediction. arXiv preprint arXiv:1811.11387, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4401–4410, 2019.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. Advances in neural information processing systems, 27,
2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
pp. 896, 2013.

Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsupervised represen-
tation learning by sorting sequences. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 667–676, 2017.

Jason D Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting what you already know helps:
Provable self-supervised learning. arXiv preprint arXiv:2008.01064, 2020.

Seungmin Lee, Dongwan Kim, Namil Kim, and Seong-Gyun Jeong. Drop to adapt: Learning
discriminative features for unsupervised domain adaptation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 91–100, 2019.

11

Published as a conference paper at ICLR 2023

Yang Li, Quan Pan, Suhang Wang, Haiyun Peng, Tao Yang, and Erik Cambria. Disentangled varia-
tional auto-encoder for semi-supervised learning. Information Sciences, 482:73–85, 2019.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

David J Miller and Hasan Uyar. A mixture of experts classifier with learning based on both la-
belled and unlabelled data. In M.C. Mozer, M. Jordan, and T. Petsche (eds.), Advances in Neural
Information Processing Systems, volume 9. MIT Press, 1996.

Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning
using temporal order verification. In European Conference on Computer Vision, pp. 527–544.
Springer, 2016.

Jovana Mitrovic, Brian McWilliams, Jacob Walker, Lars Buesing, and Charles Blundell. Represen-
tation learning via invariant causal mechanisms. arXiv preprint arXiv:2010.07922, 2020.

Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell. Text classification
from labeled and unlabeled documents using em. Machine learning, 39(2):103–134, 2000.

Partha Niyogi. Manifold regularization and semi-supervised learning: Some theoretical analyses.
Journal of Machine Learning Research, 14(5), 2013.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pp. 69–84. Springer, 2016.

Augustus Odena. Semi-supervised learning with generative adversarial networks. arXiv preprint
arXiv:1606.01583, 2016.

Samet Oymak and Talha Cihad Gulcu. Statistical and algorithmic insights for semi-supervised
learning with self-training. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2021.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

Matthew E Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-supervised
sequence tagging with bidirectional language models. arXiv preprint arXiv:1705.00108, 2017.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11557–11568, 2021a.

Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, and Quoc V. Le. Meta pseudo labels. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021b.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. Advances in neural information processing systems,
28, 2015.

Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. In defense of pseudo-
labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning.
In International Conference on Learning Representations (ICLR), 2021.

Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric tri-training for unsupervised
domain adaptation. In International Conference on Machine Learning, pp. 2988–2997. PMLR,
2017.

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic transfor-
mations and perturbations for deep semi-supervised learning. Advances in neural information
processing systems, 29, 2016.

12

Published as a conference paper at ICLR 2023

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar.
A theoretical analysis of contrastive unsupervised representation learning. In International Con-
ference on Machine Learning, pp. 5628–5637. PMLR, 2019.

Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. arXiv preprint arXiv:2202.14037, 2022.

H. Scudder. Probability of error of some adaptive pattern-recognition machines. IEEE Transactions
on Information Theory, 11(3):363–371, 1965. doi: 10.1109/TIT.1965.1053799.

Ruoqi Shen, Sebastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In International Conference on Machine Learning, pp. 19773–19808. PMLR, 2022.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neu-
ral networks: Emergence from inputs and advantage over fixed features. arXiv preprint
arXiv:2206.01717, 2022.

Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised
domain adaptation. arXiv preprint arXiv:1802.08735, 2018.

Aarti Singh, Robert Nowak, and Jerry Zhu. Unlabeled data: Now it helps, now it doesn't. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), Advances in Neural Information
Processing Systems, volume 21. Curran Associates, Inc., 2008.

Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical generative
adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 30, 2017.

Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive estimation reveals topic
posterior information to linear models. Journal of Machine Learning Research, 22(281):1–31,
2021a.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive estimation reveals topic
posterior information to linear models. Journal of Machine Learning Research, 22(281):1–31,
2021b.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pp. 4489–4497, 2015.

Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. De-
mystifying self-supervised learning: An information-theoretical framework. arXiv preprint
arXiv:2006.05576, 2020.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion
and content for video generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1526–1535, 2018.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the 48th annual meeting of the association for
computational linguistics, pp. 384–394, 2010.

13

Published as a conference paper at ICLR 2023

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics.
Advances in neural information processing systems, 29:613–621, 2016.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training with
deep networks on unlabeled data. arXiv preprint arXiv:2010.03622, 2020.

Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learning and using the ar-
row of time. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8052–8060, 2018.

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122.
PMLR, 2021.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10687–10698, 2020.

Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, and Michael Lyu. Efficient convex relaxation for
transductive support vector machine. Advances in neural information processing systems, 20,
2007.

Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, Michael Lyu, and Zhirong Yang. Adaptive regu-
larization for transductive support vector machine. Advances in Neural Information Processing
Systems, 22, 2009.

Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised semi-
supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1476–1485, 2019.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European confer-
ence on computer vision, pp. 649–666. Springer, 2016.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. Advances in neural information processing systems, 16, 2003.

Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis lectures
on artificial intelligence and machine learning, 3(1):1–130, 2009.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pp. 912–919, 2003.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

14

Published as a conference paper at ICLR 2023

A PROOF FOR SEMI-SUPERVISED LEARNING SETTING

We consider learning K functions fWk
(x), k ∈ [K] based on the pre-training. Since the learning

process of these K functions can be analyzed in exactly the same way, here we only focus on
the learning of one of these functions. For simplicity of notation, we drop the subscript k in the
following proof for Sections A.1, A.2, A.3, A.4, A.5, A.6 and A.7.

A.1 GRADIENT CALCULATION

Lemma A.1 (Gradient Calculation). The gradient of loss function LS(W) with respect to weight
parameters wj is

∇wj
LS∪S′(W) = − q

nl + nu

(nu∑
i=1

ciŷi
(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
+

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

))
+ λ ·wj ,

for 1 ≤ j ≤ m; and

∇wj
LS∪S′(W) =

q

nl + nu

(nu∑
i=1

ciŷi
(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
+

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

))
+ λ ·wj ,

for m+ 1 ≤ j ≤ 2m, where −ℓ′
(
ŷi · fW(xi)

)
= exp [−ŷi · fW(xi)]/(1 + exp [−ŷi · fW(xi)]) is

denoted by ci and −ℓ′(y′i · fW(x′
i)) = exp[−y′i · fW(x′

i)]/(1 + exp[−y′i · fW(x′
i)]) is denoted by

bi.

Proof of Lemma A.1. When 1 ≤ j ≤ m,

∇wj
ℓ
(
ŷi · fW(xi)

)
= ℓ′

(
ŷi · fW(xi)

)
· ŷi · ∇wj

fW(xi)

= −ci · ŷi · ∇wj
fW(xi)

= −ciŷi ·
(
σ′(⟨wj , yi · v⟩

)
· yi · v + σ′(⟨wj , ξi⟩

)
· ξi
)

= −qciŷi
(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
∇wj

ℓ
(
y′i · fW(x′

i)
)
= ℓ′

(
y′i · fW(x′

i)
)
· y′i · ∇wj

fW(x′
i)

= −bi · y′i · ∇wj
fW(x′

i)

= −biy
′
i ·
(
σ′(⟨wj , y

′
i · v⟩) · y′i · v + σ′(⟨wj , ξ

′
i⟩) · ξ′i

)
= −qbiy

′
i ·
(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
and when m+ 1 ≤ j ≤ 2m,

∇wj ℓ
(
ŷi · fW(xi)

)
= qciŷi

(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
∇wj ℓ

(
y′i · fW(x′

i)
)
= qbiy

′
i ·
(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
Note that ∇wjLS∪S′(W) =

(∑nu

i=1 ∇wj ℓ
(
ŷi ·fW(xi)

)
+
∑nl

i=1 ∇wj
ℓ
(
y′i ·fW(x′

i)
))
/(nl+nu)+

λ ·wj , we have proved the lemma.

A.2 INNER PRODUCT UPDATE RULE CALCULATION

When the model is trained by gradient descent, the update rule can be formulated by

w
(t+1)
j = w

(t)
j − η · ∇wj

LS(W
(t)), j ∈ [2m]. (A.1)

We study the performance of entire training process from two perspective: feature learning and noise
memorization. Mathematically, we will focus on two quantities: ⟨w(t)

j ,v⟩ and ⟨w(t)
j , ξl⟩. And then

we have following lemma for the inner product update rule.

15

Published as a conference paper at ICLR 2023

Lemma A.2 (Inner Product Update Rule). The feature learning and noise memorization perfor-
mance of gradient descent can be formulated by

⟨w(t+1)
j ,v⟩ = (1− ηλ) · ⟨w(t)

j ,v⟩+ qηuj

nl + nu

(nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j , yi · v⟩]q−1
+ ∥v∥22

+

nl∑
i=1

b
(t)
i [⟨w(t)

j , y′i · v⟩]
q−1
+ ∥v∥22

)
,

⟨w(t+1)
j , ξl⟩ = (1− ηλ) · ⟨w(t)

j , ξl⟩+
qηuj

nl + nu

(nu∑
i=1

ŷic
(t)
i [⟨w(t)

j , ξi⟩]q−1
+ ⟨ξi, ξl⟩

+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j , ξ′i⟩]
q−1
+ ⟨ξ′i, ξl⟩

)
,

⟨w(t+1)
j , ξ′l⟩ = (1− ηλ) · ⟨w(t)

j , ξ′l⟩+
qηuj

nl + nu

(nu∑
i=1

ŷic
(t)
i [⟨w(t)

j , ξi⟩]q−1
+ ⟨ξi, ξ′l⟩

+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j , ξ′i⟩]
q−1
+ ⟨ξ′i, ξ′l⟩

)
,

where j ∈ [2m], l ∈ [nu] and uj := 1[1≤j≤m] −1[m+1≤j≤2m].

Proof of Lemma A.2. According to Lemma A.1 and gradient descent update rule (A.1), we have

w
(t+1)
j = (1− ηλ) ·w(t)

j +
qηuj

nl + nu
·
(nu∑

i=1

ciŷi
(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
+

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

))
Taking inner product with feature vector v and noise patch ξl and note that v is orthogonal to ξl
according to the data model, we have

⟨w(t+1)
j ,v⟩ = (1− ηλ) · ⟨w(t)

j ,v⟩+ qηuj

nl + nu

(nu∑
i=1

c
(t)
i ŷi

(
[⟨wj , yi · v⟩]q−1

+ yi∥v∥22 + [⟨wj , ξi⟩]q−1
+ ⟨ξi,v⟩

)
+

nl∑
i=1

b
(t)
i y′i

(
[⟨wj , y

′
i · v⟩]

q−1
+ y′i∥v∥22 + [⟨wj , ξ

′
i⟩]

q−1
+ ⟨ξ′i,v⟩

))

= (1− ηλ) · ⟨w(t)
j ,v⟩+ qηuj

nl + nu

(nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j , yi · v⟩]q−1
+ ∥v∥22

+

nl∑
i=1

b
(t)
i [⟨w(t)

j , y′i · v⟩]
q−1
+ ∥v∥22

)
,

⟨w(t+1)
j , ξl⟩ = (1− ηλ) · ⟨w(t)

j , ξl⟩+
qηuj

nl + nu

(nu∑
i=1

c
(t)
i ŷi

(
[⟨wj , yi · v⟩]q−1

+ yi⟨v, ξl⟩+ [⟨wj , ξi⟩]q−1
+ ⟨ξi, ξl⟩

)
+

nl∑
i=1

b
(t)
i y′i

(
[⟨wj , y

′
i · v⟩]

q−1
+ y′i⟨v, ξl⟩+ [⟨wj , ξ

′
i⟩]

q−1
+ ⟨ξ′i, ξl⟩

))

= (1− ηλ) · ⟨w(t)
j , ξl⟩+

qηuj

nl + nu

(nu∑
i=1

ŷic
(t)
i [⟨w(t)

j , ξi⟩]q−1
+ ⟨ξi, ξl⟩

+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j , ξ′i⟩]
q−1
+ ⟨ξ′i, ξl⟩

)
,

16

Published as a conference paper at ICLR 2023

and

⟨w(t+1)
j , ξ′l⟩ = (1− ηλ) · ⟨w(t)

j , ξ′l⟩+
qηuj

nl + nu

(nu∑
i=1

ŷic
(t)
i [⟨w(t)

j , ξi⟩]q−1
+ ⟨ξi, ξ′l⟩

+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j , ξ′i⟩]
q−1
+ ⟨ξ′i, ξ′l⟩

)
,

which completes the proof.

A.3 ESTIMATE Λ̂
(0)
r , Λ̄

(0)
r ,Γ

(0)
i ,Γ

′(0)
i

Let Λ̂
(t)
1 = max1≤j≤m⟨w(t)

j ,v⟩, Λ̂
(t)
−1 = maxm+1≤j≤2m −⟨w(t)

j ,v⟩, Λ̄
(t)
1 =

maxm+1≤j≤2m⟨w(t)
j ,v⟩, Λ̄(t)

−1 = max1≤j≤m −⟨w(t)
j ,v⟩, which characterize the feature learning

aspect of training process. An easy way to distinguish between Λ̂
(t)
r and Λ̄

(t)
r is that Λ̂(t)

r should be
large while Λ̄

(t)
r should be small.

Let Γ(t)
i = max1≤j≤2m⟨wj , ξi⟩, i ∈ [nu], Γ

′(t)
i = max1≤j≤2m⟨wj , ξ

′
i⟩, i ∈ [nl], which character-

ize the noise memorization aspect of training process with respect to a particular sample.

Let Γ(t) = max
{
maxi∈[nu] Γ

(t)
i ,maxi∈[nl] Γ

′(t)
i

}
, which characterize the noise memorization as-

pect of training process regardless of the sample index.

We first provide the concentration inequality for Λ̂(0)
r and Λ̄

(0)
r in the following lemma.

Lemma A.3. With probability at least 1− 4δ with respect to the randomness of initialization of w,
we have ∣∣Λ̂(0)

r − E[Λ̂(0)
r]
∣∣ <√8 log

(1
δ

)
σ0∥v∥2,

∣∣Λ̄(0)
r − E[Λ̄(0)

r]
∣∣ <√8 log

(1
δ

)
σ0∥v∥2,

and
E[Λ̂(0)

r] ≍
√
log(m)σ0∥v∥2,E[Λ̄(0)

r] ≍
√
log(m)σ0∥v∥2, r ∈ {±1}.

Proof of Lemma A.3. Note that Λ̂(0)
1 = max1≤j≤m⟨w(0)

j ,v⟩, Λ̂(0)
−1 = maxm+1≤j≤2m −⟨w(0)

j ,v⟩,
Λ̄
(0)
1 = maxm+1≤j≤2m⟨w(0)

j ,v⟩ and Λ̄
(0)
−1 = maxm+1≤j≤2m −⟨w(0)

j ,v⟩, w(0)
j ∼ N (0, σ2

0I) and

v is a fixed vector. Therefore, ⟨w(0)
j ,v⟩ ∼ N (0, σ2

0∥v∥22), −⟨w(0)
j ,v⟩ ∼ N (0, σ2

0∥v∥22) for all

1 ≤ j ≤ 2m and Λ̂
(0)
r , Λ̄

(0)
r , r ∈ {±1} are identically distributed. Therefore, without loss of

generality, we only need to discuss the concentration of Λ̂(0)
1 . By applying Lemma C.1, we have

P
(∣∣Λ̂(0)

1 − E[Λ̂(0)
1]
∣∣ > t

)
≤ 2e

− t2

2σ2
0∥v∥22 .

By applying Lemma C.2, we have

E[Λ̂(0)
1] ≍

√
log(m)σ0∥v∥2,

which completes the proof.

Then we provide concentration inequality for Γ(0)
i in the following lemma.

Lemma A.4. Suppose that d ≥ Ω(log(m(nu + nl)/δ)), m = Ω(log(1/δ)). Then with probability
at least 1− δ,

σ0σp

√
d

4
≤ Γ

(0)
i ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d, for all i ∈ [nu],

σ0σp

√
d

4
≤ Γ

′(0)
i ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d, for all i ∈ [nl].

17

Published as a conference paper at ICLR 2023

Proof of Lemma A.4. By Lemma C.3, with probability at least 1− δ/4,

σp

√
d/

√
2 ≤ ∥ξi∥2 ≤

√
3/2 · σp

√
d, for i ∈ [nu],

σp

√
d/

√
2 ≤ ∥ξ′i∥2 ≤

√
3/2 · σp

√
d, for i ∈ [nl].

(A.2)

Therefore, by Gaussian tail bound and union bound, with probability at least 1− δ/4,

⟨w(0)
j , ξi⟩ ≤ |⟨w(0)

j , ξi⟩| ≤
√

2 log(8m/δ) · σ0∥ξi∥2, for i ∈ [nu],

⟨w(0)
j , ξ′i⟩ ≤ |⟨w(0)

j , ξ′i⟩| ≤
√

2 log(8m/δ) · σ0∥ξ′i∥2, for i ∈ [nl].
(A.3)

Note that P
(
σ0σp

√
d/4 > ⟨w(0)

j , ξi⟩
)

is an absolute constant and therefore by the condition on m,
we have

P
(
σ0σp

√
d

4
≤ Γ

(t)
i

)
= P

(
σ0σp

√
d

4
≤ max

j∈[2m]
⟨w(0)

j , ξi⟩
)

= 1− P
(
σ0σp

√
d

4
> max

j∈[2m]
⟨w(0)

j , ξi⟩
)

= 1−

(
P
(
σ0σp

√
d

4
> ⟨w(0)

j , ξi⟩
))2m

≥ 1− δ

4
,

and

P
(
σ0σp

√
d

4
≤ Γ

′(t)
i

)
≥ 1− δ

4
.

On the other hand, according to (A.2) and (A.3), we have

P
(
Γ
(t)
i ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d
)

= P
(

max
j∈[2m]

⟨w(0)
j , ξi⟩ ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d
)

≥ 1− δ

4
,

and
P
(
Γ
′(t)
i ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d
)
≥ 1− δ

4
,

which completes the proof.

A.4 STAGE I OF GD: ON-DIAGONAL FEATURE LEARNING

In this stage, Λ̂(t)
1 and Λ̂

(t)
−1 respectively increase to magnitude Θ(1/m) and Λ̄

(t)
1 , Λ̄(t)

−1 and Γ
(t)
j

remain small, the same magnitude as initialization. In order to characterize the behaviour of feature
learning and noise memorization during Stage I, we decompose the analysis into following three
parts:

1. First, in Lemma A.9, we provide a lower bound of the update rules of on-diagonal feature learning
term of Λ̂

(t)
1 , Λ̂

(t)
−1 to lower-bound their increasing speed, and an upper bound of off-diagonal

feature learning term Λ̄
(t)
1 , Λ̄

(t)
−1 to indicate their decrease.

2. Second, in Lemma A.11, we provide a upper bound of the update rules of noise memorization
term Γ(t) to upper-bound its increasing speed.

3. Third, we provide a useful lemma, which is a derivation of Claim C.20 in Allen-Zhu & Li
(2020b), which is called tensor power method. By applying tensor power method, we will prove
that:
• When Λ̂

(t)
1 reaches Θ(1/m) at T1, Λ̄(t)

1 and Γ(t) remain a magnitude no more than initialization.

• When Λ̂
(t)
−1 reaches Θ(1/m) at T−1, Λ̄−1 and Γ(t) remain a magnitude no more than initializa-

tion.

18

Published as a conference paper at ICLR 2023

A.4.1 UPPER BOUND AND LOWER BOUND FOR Λ̂
(t)
1 , Λ̂

(t)
−1 AND Λ̄

(t)
1 , Λ̄

(t)
−1

We first consider Stage I of GD when maxr∈{±1}
{
Λ̂
(t)
r , Λ̄

(t)
r

}
≤ Θ(m−1).

In this stage, we first prove following lemma:

Lemma A.5. As long as maxr∈{±1}
{
Λ̂
(t)
r , Λ̄

(t)
r

}
≤ Θ(m−1), we have c(t)i := −ℓ′

(
ŷi · fW(t)(xi)

)
and b

(t)
i := −ℓ′

(
y′i · fW(t)(x′

i)
)

remains 1/2± o(1).

Proof of Lemma A.5. Note that ℓ(z) = log(1+exp (−z)) and −ℓ′(z) = exp (−z)/
(
1+exp (−z)

)
,

and without loss of generality assuming ŷi = yi = 1, we can express c(t)i as follow:

c
(t)
i = −ℓ′(fW(t)(xi)) =

e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)]

e
∑m

j=1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)] + e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)]
,

Since σ(⟨w(t)
j ,v⟩) dominates σ(⟨w(t)

j , ξ⟩) for j ∈ [m], which will be proved later by using tensor
power method, we have

c
(t)
i =

e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)]

e
∑m

j=1 σ(⟨w(t)
j ,v⟩)+{lower order term} + e

∑2m
j=m+1[σ(⟨w

(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)]
.

On the one side,

c
(t)
i ≥ 1

e
∑m

j=1 σ(⟨w(t)
j ,v⟩)+{lower order term} + 1

≥ 1

em(Λ̂
(t)
1)q−1

+ 1
≥ 1

eΘ(m−(q−1)) + 1
=

1

2 + o(1)
=

1

2
−o(1).

On the other side, according to Lemma 5.3, we have Λ̄
(t)
1 = Õ(d−

1
4) and Γ(t) = Õ(d−

1
4+ϵ), it

follows that

c
(t)
i ≤ em(Λ̄

(t)
1)q−1+m(Γ(t))q−1

e
∑m

j=1 σ(⟨w(t)
j ,v⟩)+{lower order term} + em(Λ̄

(t)
1)q−1+m(Γ(t))q−1

=
1 + o(1)

e
∑m

j=1 σ(⟨w(t)
j ,v⟩)+{lower order term} + 1 + o(1)

≤ 1 + o(1)

1 + 1 + o(1)
=

1

2
+ o(1).

Therefore, we have c
(t)
i = 1/2± o(1) if ŷi = yi = 1 and other cases (ŷi = yi = 1, ŷi = −yi, b

(t)
i)

can be proved in a similar way.

By applying above lemma, we can obtain following lemma:
Lemma A.6. For any δ < 1/2, with probability at least 1− 2δ over pseudo-labels generated by the
pseudo-labeler, we have∣∣∣∣ 1nu

nu∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ <√ 1

8nu
log

1

δ
+ o(1),

where o(1) is with respect to d.

If we denote {(xi, yi)|yi = 1, i ∈ [nu]} as S1, {(xi, yi)|yi = −1, i ∈ [nu]} as S−1, |S1| as n1 and
|S−1| as n−1, we have with probability at least 1− 4δ that∣∣∣∣ 1n1

n1∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ <√ 1

8n1
log

1

δ
+ o(1),

and ∣∣∣∣ 1

n−1

n−1∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ <
√

1

8n−1
log

1

δ
+ o(1).

19

Published as a conference paper at ICLR 2023

Proof of Lemma A.6. First, according to Lemma A.5, we have

1

nu

nu∑
i=1

ŷiyic
(t)
i =

1

nu

nu∑
i=1

ŷiyi

(
c
(t)
i − 1

2

)
+

1

2nu

nu∑
i=1

ŷiyi =
1

2nu

nu∑
i=1

ŷiyi ± o(1) (A.4)

Then, according to Hoeffding’s inequality when ai = −1, bi = 1, we have

P
(∣∣∣∣ 1nu

nu∑
i=1

ŷiyi − E
[1

nu

nu∑
i=1

ŷiyi

]∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2n2

ut
2∑nu

i=1(ai − bi)2

)
= 2 exp (−2nut

2).

Note that the pseudo-label ŷi generated by the pseudo-labeler takes yi with probability p and −yi
with probability 1− p, we have E

[
1
nu

∑nu

i=1 ŷiyi
]
= 1

nu

∑nu

i=1 E
[
ŷiyi

]
= 2p− 1. It follows that

P
(∣∣∣∣ 1

2nu

nu∑
i=1

ŷiyi −
(
p− 1

2

)∣∣∣∣ ≥ t

)
≤ 2 exp (−8nut

2),

and therefore ∣∣∣∣ 1

2nu

nu∑
i=1

ŷiyi −
(
p− 1

2

)∣∣∣∣ <√ 1

8nu
log

1

δ
(A.5)

holds with probability at least 1− 2δ. According to (A.4) and (A.5), we have∣∣∣∣ 1

2nu

nu∑
i=1

ŷiyi −
(
p− 1

2

)∣∣∣∣ <√ 1

8nu
log

1

δ
+ o(1),

which verifies the first statement of the lemma. And the other part of the lemma can be proved in a
similar way.

According to above lemma and note that nu, n1, n−1 = ω(1), we have further that∣∣∣∣ 1nu

nu∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ = o(1),

∣∣∣∣ 1nr

nr∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ = o(1), r ∈ {±1}, (A.6)

with high probability.

Besides, we also need an approximation about n1 and n−1, which is given as the following lemma:

Lemma A.7. For r ∈ {±1}, it holds with probability at least 1− 2δ that∣∣∣nr −
nu

2

∣∣∣ <√nu

2
log

1

δ
,

where nr := |{(xi, yi)|yi = r, i ∈ [nu]}|.

Proof of Lemma A.7. Note that nr =
∑nu

i=1 1[Xi = r], r ∈ {±1} where Xi takes label +1 or −1
with equal probability 1/2, according to Hoeffding’s inequality, we have

P
(∣∣∣∣ nu∑

i=1

1[Xi = r]− E
[nu∑

i=1

1[Xi = r]
]∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

nu

)
, r ∈ {±1},

and it follows that

P
(∣∣∣nr −

nu

2

∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2

nu

)
, r ∈ {±1},

leading to ∣∣∣nr −
nu

2

∣∣∣ <√nu

2
log

1

δ
,

with probability at least 1− 2δ.

For labeled dataset S′ = {(x′
i, y

′
i)}

nl
i=1, we also have

20

Published as a conference paper at ICLR 2023

Lemma A.8. For r ∈ {±1}, it holds with probability at least 1− 2δ that∣∣∣n′
r −

nl

2

∣∣∣ <√nl

2
log

1

δ
,

where n′
r := |{(x′

i, y
′
i)|y′i = r, i ∈ [nl]}|.

Then we are prepared to estimate a lower bound of increasing speed of Λ̂(t) and an upper bound of
decreasing speed of Λ̄(t) in the following lemma.

Lemma A.9. For Λ̂(t)
1 := max1≤j≤m⟨w(t)

j ,v⟩ and Λ̂
(t)
−1 := maxm+1≤j≤2m⟨w(t)

j ,−v⟩, we have
with high probability that

Λ̂(t+1)
r ≥ (1− ηλ) · Λ̂(t)

r + η ·
(
p− 1

2

)
·Θ(d) · (Λ̂(t)

r)q−1, r ∈ {±1}.

For Λ̄(t)
1 := maxm+1≤j≤2m⟨w(t)

j ,v⟩ and Λ̄
(t)
1 := max1≤j≤m⟨w(t)

j ,−v⟩, we have with high prob-
ability that

Λ̄(t+1)
r ≤ (1− ηλ) · Λ̄(t)

r , r ∈ {±1}.

Proof of Lemma A.9. We first prove the former inequality. Let j∗ = argmax1≤j≤m⟨w(t)
j ,v⟩ and

note that uj∗ = 1[1≤j≤m] −1[m+1≤j≤2m] = 1, then we have

Λ̂
(t+1)
1 ≥ ⟨w(t+1)

j∗ ,v⟩

= (1− ηλ) · ⟨w(t)
j∗ ,v⟩+

qη

nl + nu

(nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j∗ , yi · v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j∗ , y
′
i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

)

Then we respectively estimate terms ♣ and ⋆.

For ♣, note the definition of j∗ that Λ̂(t)
1 = ⟨w(t)

j∗ ,v⟩ and note the increasing property of Λ̂(t)
1 and

Λ̂
(0)
1 > 0 with high probability, we have ⟨w(t)

j∗ ,v⟩ > 0. It follows that
nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j∗ , yi · v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

=
∑
i∈S1

yiŷic
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

∑
i∈S−1

yiŷic
(t)
i [−⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22

=
∑
i∈S1

yiŷic
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22

=

(∑
i∈S1

yiŷic
(t)
i

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= n1 ·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
, (A.7)

where S1 := {(xi, yi)|yi = 1, i ∈ [nu]}, S−1 := {(xi, yi)|yi = −1, i ∈ [nu]}, n1 = |S1| and the
last equality is due to (A.6).

For ⋆, similarly we have
nl∑
i=1

b
(t)
i [⟨w(t)

j∗ , y
′
i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

=
∑
i∈S′

1

b
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

∑
i∈S′

−1

b
(t)
i [−⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22

=
∑
i∈S′

1

b
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22

=

(∑
i∈S′

1

b
(t)
i

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= n′
1 ·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
, (A.8)

21

Published as a conference paper at ICLR 2023

where S′
1 = {(x′

i, y
′
i)|y′i = 1, i ∈ [nl]}, S′

−1 = {(x′
i, y

′
i)|y′i = −1, i ∈ [nl]}, n′

1 = |S′
1| and the last

equality is due to Lemma A.5.

According to (A.7) and (A.8), we have

Λ̂
(t+1)
1

≥ (1− ηλ) · Λ̂(t)
1 +

qη

nl + nu

(
n1 ·

(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
+ n′

1 ·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
)

= (1− ηλ) · Λ̂(t)
1 +

qηn1

nl + nu
·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
+

qηn′
1

nl + nu
·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= (1− ηλ) · Λ̂(t)
1 + qη ·

(
n1

nl + nu
·
(
p− 1

2
± o(1)

)
+

n′
1

nl + nu
·
(1
2
± o(1)

))
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= (1− ηλ) · Λ̂(t)
1 + qη ·

(
n1

nl + nu
·
(
p− 1

2

)
+

n′
1

nl + nu
· 1
2︸ ︷︷ ︸

♠

±o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
. (A.9)

According to Lemma A.7 and Lemma A.8, and note that nl = Θ̃(1), nu = ω(d4ϵ), we have for ♠
that with probability at least 1− 4δ∣∣∣∣ n1

nl + nu
·
(
p− 1

2

)
+

n′
1

nl + nu
· 1
2︸ ︷︷ ︸

♠

− nu

2(nl + nu)
·
(
p− 1

2

)
− nl

2(nl + nu)
· 1
2

∣∣∣∣
≤

|n1 − nu

2 |
nl + nu

·
(
p− 1

2

)
+

|n′
1 − nl

2 |
nl + nu

· 1
2

≤

√
nu

2 log 1
δ

nl + nu
·
(
p− 1

2

)
+

√
nl

2 log 1
δ

nl + nu
· 1
2

= Θ
(1
√
nu

)
= o(1)

Therefore, note that nu = ω(nl) and nu = ω(1), we have
n1

nl + nu
·
(
p− 1

2

)
+

n′
1

nl + nu
· 1
2︸ ︷︷ ︸

♠

=
nu

2(nl + nu)
·
(
p− 1

2

)
+

nl

2(nl + nu)
· 1
2
± o(1)

=
1

2
·
(
p− 1

2

)
± o(1) (A.10)

Plugging (A.10) into (A.9), we have

Λ̂
(t+1)
1 ≥ (1− ηλ) · Λ̂(t)

1 + qη ·
(
1

2
·
(
p− 1

2

)
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= (1− ηλ) · Λ̂(t)
1 + η ·

(
p− 1

2

)
·Θ(d) ·

(
Λ̂
(t)
1

)q−1
, (A.11)

which verifies the first inequality of case r = 1 in the lemma.

Let j∗∗ = argmaxm+1≤j≤2m⟨w(t)
j ,−v⟩ and note that uj∗∗ = 1[1≤j≤m] −1[m+1≤j≤2m] = −1,

we have
Λ̂
(t+1)
−1 ≥ ⟨w(t+1)

j∗ ,−v⟩

= (1− ηλ) · ⟨w(t)
j∗∗ ,−v⟩+ qη

nl + nu

(nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j∗∗ , yi · v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j∗∗ , y
′
i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

)

22

Published as a conference paper at ICLR 2023

For ♣, note the definition of j∗∗ that Λ̂(t)
−1 = ⟨w(t)

j∗∗ ,−v⟩ and note the increasing property of Λ̂(t)
−1

and Λ̂
(0)
−1 > 0 with high probability, we have ⟨w(t)

j∗∗ ,−v⟩ > 0. According to (A.6), it follows that

nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j∗∗ , yi · v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

=
∑

i∈S−1

yiŷic
(t)
i [⟨w(t)

j∗∗ ,−v⟩]q−1
+ ∥v∥22

= n−1 ·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
−1

)q−1
, (A.12)

where S−1 := {(xi, yi)|yi = −1, i ∈ [nu]}, n−1 = |S−1|.
For ⋆, according to Lemma A.5, similarly we have

nl∑
i=1

b
(t)
i [⟨w(t)

j∗∗ , y
′
i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

=
∑

i∈S′
−1

b
(t)
i [⟨w(t)

j∗∗ ,−v⟩]q−1
+ ∥v∥22 = n′

−1·
(1
2
±o(1)

)
·∥v∥22·

(
Λ̂
(t)
−1

)q−1
,

(A.13)
where S′

−1 = {(x′
i, y

′
i)|y′i = −1, i ∈ [nl]} and n′

−1 = |S′
−1|.

According to (A.12) and (A.13), we have

Λ̂
(t+1)
−1 ≥ (1− ηλ) · Λ̂(t)

−1 + qη ·
(

n−1

nl + nu
·
(
p− 1

2

)
+

n′
−1

nl + nu
· 1
2︸ ︷︷ ︸

♠

±o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
−1

)q−1
.

(A.14)
According to Lemma A.7 and Lemma A.8, and note that nl = Θ̃(1), nu = ω(d4ϵ), we have for ♠
that with probability at least 1− 4δ∣∣∣∣ n−1

nl + nu
·
(
p− 1

2

)
+

n′
−1

nl + nu
· 1
2︸ ︷︷ ︸

♠

− nu

2(nl + nu)
·
(
p− 1

2

)
− nl

2(nl + nu)
· 1
2

∣∣∣∣
≤

|n−1 − nu

2 |
nl + nu

·
(
p− 1

2

)
+

|n′
−1 − nl

2 |
nl + nu

· 1
2

≤

√
nu

2 log 1
δ

nl + nu
·
(
p− 1

2

)
+

√
nl

2 log 1
δ

nl + nu
· 1
2

= Θ
(1
√
nu

)
= o(1).

Therefore, note that nu = ω(nl) and nu = ω(1), we have

n−1

nl + nu
·
(
p− 1

2

)
+

n′
−1

nl + nu
· 1
2︸ ︷︷ ︸

♠

=
nu

2(nl + nu)
·
(
p− 1

2

)
+

nl

2(nl + nu)
· 1
2
± o(1)

=
1

2
·
(
p− 1

2

)
± o(1) (A.15)

Plugging (A.15) into (A.14), we have

Λ̂
(t+1)
−1 ≥ (1− ηλ) · Λ̂(t)

−1 + qη ·
(
1

2
·
(
p− 1

2

)
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
−1

)q−1

= (1− ηλ) · Λ̂(t)
−1 + η ·

(
p− 1

2

)
·Θ(d) ·

(
Λ̂
(t)
−1

)q−1
, (A.16)

which verifies the first inequality of case r = −1 in the lemma.

23

Published as a conference paper at ICLR 2023

Next, we prove the latter part of the lemma. Let j♮ = argmaxm+1≤j≤2m⟨w(t+1)
j ,v⟩, then we have:

Λ̄
(t+1)
1 = ⟨w(t+1)

j♮
,v⟩

= (1− ηλ) · ⟨w(t)

j♮
,v⟩ − qη

nl + nu

(nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j♮
, yi · v⟩]q−1

+ ∥v∥22︸ ︷︷ ︸
♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j♮
, y′i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

)
.

For ♣, according to (A.6), we have

nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j♮
, yi · v⟩]q−1

+ ∥v∥22︸ ︷︷ ︸
♣

=
∑
i∈S1

yiŷic
(t)
i [⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22 +
∑

i∈S−1

yiŷic
(t)
i [⟨w(t)

j♮
,−v⟩]q−1

+ ∥v∥22

=

(∑
i∈S1

yiŷic
(t)
i

)
· [⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22 +
(∑

i∈S−1

yiŷic
(t)
i

)
· [⟨w(t)

j♮
,−v⟩]q−1

+ ∥v∥22

= n1 ·
(
p− 1

2
± o(1)

)
· [⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22 + n−1 ·
(
p− 1

2
± o(1)

)
· [⟨w(t)

j♮
,−v⟩]q−1

+ ∥v∥22 ≥ 0,

and for ⋆ it’s obvious that
nl∑
i=1

b
(t)
i [⟨w(t)

j♮
, y′i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

≥ 0.

Therefore, it follows that

Λ̄
(t+1)
1 ≤ (1− ηλ) · ⟨w(t)

j♮
,v⟩ ≤ (1− ηλ)Λ̄

(t)
1 .

Let j♮♮ = argmax1≤j≤m⟨w(t+1)
j ,−v⟩, then we have:

Λ̄
(t+1)
−1 = ⟨w(t+1)

j♮♮
,−v⟩

= (1− ηλ) · ⟨w(t)

j♮♮
,−v⟩ − qη

nl + nu

(nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j♮♮
, yi · v⟩]q−1

+ ∥v∥22

+

nl∑
i=1

b
(t)
i [⟨w(t)

j♮♮
, y′i · v⟩]

q−1
+ ∥v∥22

)
≤ (1− ηλ) · ⟨w(t)

j♮♮
,−v⟩

≤ (1− ηλ) · Λ̄(t)
−1,

which verifies the second part of the lemma.

Although the accuracy of pseudo-labeler is larger than 1/2, which is used as an assumption in the
previous proof, we can also analyse the model with high label flipping probability and the accuracy
of pseudo-labeler p is smaller than 1/2. In this case, the neural network for pre-training will turn
to fit the opposite direction of feature vector, Λ̄(t)

r will increase and Λ̂
(t)
r will decrease, which is

formulated as the following lemma.

24

Published as a conference paper at ICLR 2023

Lemma A.10. For Λ̂(t)
1 := max1≤j≤m⟨w(t)

j ,v⟩ and Λ̂
(t)
−1 := maxm+1≤j≤2m⟨w(t)

j ,−v⟩, we have
with high probability that

Λ̂(t+1)
r ≤ (1− ηλ) · Λ̂(t)

r , r ∈ {±1}.

For Λ̄(t)
1 := maxm+1≤j≤2m⟨w(t)

j ,v⟩ and Λ̄
(t)
1 := max1≤j≤m⟨w(t)

j ,−v⟩, we have with high prob-
ability that

Λ̄(t+1)
r ≥ (1− ηλ) · Λ̄(t)

r + η ·
(1
2
− p
)
·Θ(d) · (Λ̄(t)

r)q−1, r ∈ {±1}.

Proof of Lemma A.10. First, we prove the former part of this lemma. Let j∗ =

argmax1≤j≤m⟨w(t+1)
j ,v⟩ and note that uj∗ = 1[1≤j≤m] −1[m+1≤j≤2m] = 1, then we have

Λ̂
(t+1)
1 = ⟨w(t+1)

j∗ ,v⟩

= (1− ηλ) · ⟨w(t)
j∗ ,v⟩+

qη

nl + nu

(nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j∗ , yi · v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j∗ , y
′
i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

)
.

For ♣, according to (A.6), we have
nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j∗ , yi · v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

=
∑
i∈S1

yiŷic
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

∑
i∈S−1

yiŷic
(t)
i [⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22

=

(∑
i∈S1

yiŷic
(t)
i

)
· [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

(∑
i∈S−1

yiŷic
(t)
i

)
· [⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22

= n1 ·
(
p− 1

2
± o(1)

)
· [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 + n−1 ·

(
p− 1

2
± o(1)

)
· [⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22,

For ⋆, according to (A.6), we have
nl∑
i=1

b
(t)
i [⟨w(t)

j∗ , y
′
i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

=
∑
i∈S′

1

b
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

∑
i∈S′

−1

b
(t)
i [⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22

= n′
1 ·
(1
2
± o(1)

)
· [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 + n′

−1 ·
(1
2
± o(1)

)
· [⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22,

It follows that
nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j∗ , yi · v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j∗ , y
′
i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

=

(
n1 ·

(
p− 1

2
± o(1)

)
+ n′

1 ·
(1
2
± o(1)

))
· [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22

+

(
n−1 ·

(
p− 1

2
± o(1)

)
+ n′

−1 ·
(1
2
± o(1)

))
· [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22.

25

Published as a conference paper at ICLR 2023

According to Lemma A.7 and note that nu = ω(nl), it holds with probability at least 1− 8δ that

n′
1 ·
(1
2
± o(1)

)
≤
(
nl

2
+

√
nl

2
log

1

δ

)
·
(1
2
± o(1)

)
= Θ(nl) = o(nu)

≤
(
nu

2
+

√
nu

2
log

1

δ

)
·
(1
2
− p± o(1)

)
≤ n1 ·

(1
2
− p± o(1)

)
,

n′
−1 ·

(1
2
± o(1)

)
≤
(
nl

2
+

√
nl

2
log

1

δ

)
·
(1
2
± o(1)

)
= Θ(nl) = o(nu)

≤
(
nu

2
+

√
nu

2
log

1

δ

)
·
(1
2
− p± o(1)

)
≤ n−1 ·

(1
2
− p± o(1)

)
,

leading to ♣+⋆ ≤ 0. Therefore,

Λ̂
(t+1)
1 ≤ (1− ηλ)⟨w(t)

j∗ ,v⟩ ≤ (1− ηλ) · Λ̂(t)
1 .

And we can prove in a similar way that Λ̂(t+1)
−1 ≤ (1− ηλ) · Λ̂(t)

−1.

Next, we prove the second part of the lemma. Let j♮ = argmaxm+1≤j≤2m⟨w(t)
j ,v⟩ and note that

uj♮ = 1[1≤j≤m] −1[m+1≤j≤2m] = −1, then we have

Λ̄
(t+1)
1 ≥ ⟨w(t+1)

j♮
,v⟩

= (1− ηλ) · ⟨w(t)

j♮
,v⟩ − qη

nl + nu

(nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j♮
, yi · v⟩]q−1

+ ∥v∥22︸ ︷︷ ︸
♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j♮
, y′i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

)
.

For ♣, note the definition of j♮ that Λ̄(t)
1 = ⟨w(t)

j♮
,v⟩ and note the increasing property of Λ̄(t)

1 in this

case and Λ̄
(0)
1 > 0 with high probability, we have ⟨w(t)

j♮
,v⟩ > 0. It follows that

nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j♮
, yi · v⟩]q−1

+ ∥v∥22︸ ︷︷ ︸
♣

=
∑
i∈S1

yiŷic
(t)
i [⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22 +
∑

i∈S−1

yiŷic
(t)
i [−⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22

=
∑
i∈S1

yiŷic
(t)
i [⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22

=

(∑
i∈S1

yiŷic
(t)
i

)
· ∥v∥22 ·

(
Λ̄
(t)
1

)q−1

= n1 ·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̄
(t)
1

)q−1
, (A.17)

For ⋆, similarly we have
nl∑
i=1

b
(t)
i [⟨w(t)

j♮
, y′i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

=
∑
i∈S′

1

b
(t)
i [⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22 +
∑

i∈S′
−1

b
(t)
i [−⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22

=
∑
i∈S′

1

b
(t)
i [⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22

=

(∑
i∈S′

1

b
(t)
i

)
· ∥v∥22 ·

(
Λ̄
(t)
1

)q−1

= n′
1 ·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̄
(t)
1

)q−1
. (A.18)

26

Published as a conference paper at ICLR 2023

According to Lemma A.7, (A.17) and (A.18), we have n′
1 = o(n1) with high probability, therefore

♣+⋆ = n1 ·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̄
(t)
1

)q−1
,

leading to

Λ̄
(t+1)
1 ≥ (1− ηλ) · ⟨w(t)

j♮
,v⟩ − qηn1

nl + nu
·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̄
(t)
1

)q−1

= (1− ηλ) · Λ̄(t)
1 + η ·

(1
2
− p
)
·Θ(d) ·

(
Λ̄
(t)
1

)q−1
.

And we can prove in a similar way that

Λ̄
(t+1)
1 ≥ (1− ηλ) · Λ̄(t)

1 + η ·
(1
2
− p
)
·Θ(d) ·

(
Λ̄
(t)
1

)q−1
.

In this case (p < 1/2), given a small amount of labeled data, downstream task parameter a will
learn the negative direction and the main theorems still hold.

A.4.2 UNIFORM UPPER BOUND FOR Γ(t)

The following lemma provides an upper bound for the increasing rate of Γ(t).

Lemma A.11. For Γ
(t)
i := maxj∈[2m]⟨wj , ξi⟩, i ∈ [nu], Γ

′(t)
i := maxj∈[2m]⟨wj , ξ

′
i⟩, i ∈ [nl],

Γ(t) := max{maxi∈[nu] Γ
(t)
i ,maxi∈[nl] Γ

′(t)
i }, we have with high probability that

Γ
(t+1)
i ≤ (1− ηλ) · Γ(t)

i + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
·
(
Γ(t)

)q−1
, i ∈ [nl],

Γ
′(t+1)
i ≤ (1− ηλ) · Γ′(t)

i + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
·
(
Γ(t)

)q−1
, i ∈ [nl],

and

Γ(t+1) ≤ (1− ηλ) · Γ(t) + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
·
(
Γ(t)

)q−1
,

where ϵ < 1/8.

Proof of Lemma A.11. We first prove the former inequality. Let j⋆ = argmax1≤j≤2m⟨w(t+1)
j , ξl⟩,

where l ∈ [nu] is fixed. According to Lemma A.2, we have

Γ
(t+1)
l = ⟨w(t+1)

j⋆ , ξl⟩

= (1− ηλ) · ⟨w(t)
j⋆ , ξl⟩+

qηuj⋆

nl + nu

(nu∑
i=1

ŷic
(t)
i [⟨w(t)

j⋆ , ξi⟩]
q−1
+ ⟨ξi, ξl⟩+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j⋆ , ξ
′
i⟩]

q−1
+ ⟨ξ′i, ξl⟩

)

≤ (1− ηλ) · ⟨w(t)
j⋆ , ξl⟩+

qη

nl + nu

(nu∑
i=1

c
(t)
i [⟨w(t)

j⋆ , ξi⟩]
q−1
+ |⟨ξi, ξl⟩|︸ ︷︷ ︸

♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j⋆ , ξ
′
i⟩]

q−1
+ |⟨ξ′i, ξl⟩|︸ ︷︷ ︸

⋆

)
,

(A.19)
where the last inequality is due to triangle inequality.

For ♣, note that l ∈ [nu] and there exists an i ∈ [nu] equivalent to l, it follows that
nu∑
i=1

c
(t)
i [⟨w(t)

j⋆ , ξi⟩]
q−1
+ |⟨ξi, ξl⟩|︸ ︷︷ ︸

♣

=
∑

i∈[nu],i ̸=l

c
(t)
i [⟨w(t)

j⋆ , ξi⟩]
q−1
+ |⟨ξi, ξl⟩|+ c

(t)
l [⟨w(t)

j⋆ , ξl⟩]
q−1
+ ∥ξl∥22

≤ (nu − 1) ·
(1
2
+ o(1)

)
· Θ̃(d

1
2+2ϵ) ·

(
Γ(t)

)q−1
+
(1
2
+ o(1)

)
· Θ̃(d1+2ϵ) ·

(
Γ(t)

)q−1

= (nu − 1) · Θ̃(d
1
2+2ϵ) ·

(
Γ(t)

)q−1
+ Θ̃(d1+2ϵ) ·

(
Γ(t)

)q−1
,

(A.20)

27

Published as a conference paper at ICLR 2023

where the inequality is due to Lemma A.5, ∥ξl∥22 = Θ̃(dσ2
p) = Θ̃(d1+2ϵ), |⟨ξi, ξl⟩| = Θ̃(d

1
2σ2

p) =

Θ̃(d
1
2+2ϵ) according to Lemma C.3 and the definition of Γ(t).

For ⋆, we have
nl∑
i=1

b
(t)
i [⟨w(t)

j⋆ , ξ
′
i⟩]

q−1
+ |⟨ξ′i, ξl⟩|︸ ︷︷ ︸

⋆

≤ nl ·
(1
2
+o(1)

)
·Θ̃(d

1
2+2ϵ)·

(
Γ(t)

)q−1
= nl ·Θ̃(d

1
2+2ϵ)·

(
Γ(t)

)q−1
,

(A.21)
Plugging (A.20) and (A.21) into (A.19), we have

Γ
(t+1)
l ≤ (1− ηλ) · Γ(t)

l + η ·
(

q

nl + nu
·
(
(nu + nl − 1) · Θ̃(d

1
2+2ϵ) + Θ̃(d1+2ϵ)

))
·
(
Γ(t)

)q−1

≤ (1− ηλ) · Γ(t)
l + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
·
(
Γ(t)

)q−1
,

which is the first part of this lemma.

Let j⋆ = argmax1≤j≤2m⟨w(t+1)
j , ξ′l⟩, where l ∈ [nl] is fixed. According to Lemma A.2, we have

Γ
′(t+1)
l = ⟨w(t+1)

j⋆ , ξ′l⟩

= (1− ηλ) · ⟨w(t)
j⋆ , ξ

′
l⟩+

qηuj⋆

nl + nu

(nu∑
i=1

ŷic
(t)
i [⟨w(t)

j⋆ , ξi⟩]
q−1
+ ⟨ξi, ξ′l⟩+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j⋆ , ξ
′
i⟩]

q−1
+ ⟨ξ′i, ξ′l⟩

)

≤ (1− ηλ) · ⟨w(t)
j⋆ , ξ

′
l⟩+

qη

nl + nu

(nu∑
i=1

c
(t)
i [⟨w(t)

j⋆ , ξi⟩]
q−1
+ |⟨ξi, ξ′l⟩|︸ ︷︷ ︸

♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j⋆ , ξ
′
i⟩]

q−1
+ |⟨ξ′i, ξ′l⟩|︸ ︷︷ ︸

⋆

)
,

(A.22)
For ♣, we have
nu∑
i=1

c
(t)
i [⟨w(t)

j⋆ , ξi⟩]
q−1
+ |⟨ξi, ξl⟩|︸ ︷︷ ︸

♣

≤
nu∑
i=1

(1
2
±o(1)

)
·Θ̃(d

1
2+2ϵ)·

(
Γ(t)

)q−1
= nu·Θ̃(d

1
2+2ϵ)·

(
Γ(t)

)q−1
,

(A.23)
where the inequality is due to Lemma A.5, |⟨ξi, ξl⟩| = Θ̃(d

1
2σ2

p) = Θ̃(d
1
2+2ϵ) and the definition of

Γ(t).

For ⋆, note that l ∈ [nl] and there exists an i ∈ [nl] equivalent to l, it follows that
nl∑
i=1

b
(t)
i [⟨w(t)

j⋆ , ξ
′
i⟩]

q−1
+ |⟨ξ′i, ξ′l⟩|︸ ︷︷ ︸

⋆

=
∑

i∈[nl],i̸=l

b
(t)
i [⟨w(t)

j⋆ , ξ
′
i⟩]

q−1
+ |⟨ξ′i, ξ′l⟩|+ b

(t)
l [⟨w(t)

j⋆ , ξ
′
l⟩]

q−1
+ ∥ξ′l∥22

≤ (nl − 1) ·
(1
2
+ o(1)

)
· Θ̃(d

1
2+2ϵ) ·

(
Γ(t)

)q−1
+
(1
2
+ o(1)

)
· Θ̃(d1+2ϵ) ·

(
Γ(t)

)q−1

= (nl − 1) · Θ̃(d
1
2+2ϵ) + Θ̃(d1+2ϵ) ·

(
Γ(t)

)q−1

(A.24)

Plugging (A.23) and (A.24) into (A.22), we have

Γ
′(t+1)
l ≤ (1− ηλ) · Γ′(t+1)

l + η ·
(

q

nl + nu
·
(
(nu + nl − 1) · Θ̃(d

1
2+2ϵ) + Θ̃(d1+2ϵ)

))
·
(
Γ(t)

)q−1

≤ (1− ηλ) · Γ′(t+1)
l + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
·
(
Γ(t)

)q−1
,

which verifies the second inequality in this lemma.

28

Published as a conference paper at ICLR 2023

Note that Γ(t) = max{maxl∈[nu] Γ
(t)
l ,maxl∈[nl] Γ

′(t)
l }, without loss of generality, we assume

Γ(t) = maxl∈[nu] Γ
(t)
l and assume l∗ = argmaxl∈[nu] Γ

(t+1)
l , we have

Γ(t+1) = Γ
(t+1)
l∗ ≤ (1− ηλ) · Γ(t)

l∗ + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
·
(
Γ(t)

)q−1

≤ (1− ηλ) · Γ(t) + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
·
(
Γ(t)

)q−1
,

which verifies the third inequality in this lemma.

A.4.3 TENSOR POWER METHOD: PROVING Γ(t) = O(Γ(0)) DURING [0, Tr] AND COMPUTING
THE MAGNITUDE OF Tr

In this section, we first show that off-diagonal correlation (Λ̄(t)
r for p > 1/2 and Λ̂

(t)
r for p < 1/2)

remains initialization magnitude during [0, Tr]. If the accuracy of pseudo-labeler p > 1/2, we have
off-diagonal correlation Λ̄

(t+1)
r ≤ (1 − ηλ) · Λ̄(t)

r for r ∈ {±1}, therefore, Λ̄(t)
r = O(Λ̄

(0)
r) =

Õ(d−
1
4). If p < 1/2, we have off-diagonal correlation Λ̂

(t+1)
r ≤ (1 − ηλ) · Λ̂(t)

r for r ∈ {±1},
therefore, Λ̂(t)

r = O(Λ̂
(0)
r) = Õ(d−

1
4). In this paper, we mainly focus on p > 1/2.

According to Sections A.4.1 and A.4.2, we have obtained following upper bounds and lower bounds
for feature learning term Λ̂

(t)
r , Λ̄

(t)
r , r ∈ {±1} and noise memorization term Γ(t): When t ∈ [0, Tr],

we have

Λ̂(t+1)
r ≥ Λ̂(t)

r + η · (2p− 1) ·Θ(d) · (Λ̂(t)
r)q−1 and Λ̄(t+1)

r ≤ (1− ηλ) · Λ̄(t)
r , for r ∈ {±1};

Γ(t+1) ≤ (1− ηλ) · Γ(t) + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
· (Γ(t))q−1.

(A.25)

According to Condition 4.1, assume nu = Ω(d4ϵ) and note that ϵ < 1/8, we have

max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
= max

{
Θ̃(d

1
2+2ϵ), Õ(d1−2ϵ)

}
= Õ(d1−2ϵ),

leading to
Γ(t+1) ≤ (1− ηλ) · Γ(t) + η · Θ̃(d1−2ϵ) · (Γ(t))q−1.

By leveraging tensor power method introduced in Lemma C.4, we can prove following lemma about
the magnitude of Γ(t):

Lemma A.12. Γ(t) remains initialization magnitude during [0,maxr∈{±1}{Tr}].

Proof of Lemma A.12. Let T ∗
r be the first iteration t in which Λ̂

(t)
r ≥ A for r ∈ {±1}, let T ∗ be the

first iteration t in which Γ(t) ≥ A′, then according to Lemma C.4, we know∑
t≥0,xt≤A

η ≤ δ

(1− (1 + δ)−(q−2))x0C1
+ η · C2

C1
(1 + δ)q−1

(
1 +

log (A/x0)

log (1 + δ)

)
,

∑
t≥0,xt≤A

η ≥
δ
(
1− (x0/A)q−2

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
x0C2

− η · (1 + δ)−(q−1)

(
1 +

log (A/x0)

log (1 + δ)

)
.

And it follows that

η · T ∗
r ≤ δ

(1− (1 + δ)−(q−2))Λ̂
(0)
r C1

+ η · C2

C1
(1 + δ)q−1

(
1 +

log (A/Λ̂
(0)
r)

log (1 + δ)

)
,

η · T ∗ ≥
δ′
(
1− (x0/A

′)q−2
)

(1 + δ)q−1
(
1− (1 + δ)−(q−2)

)
Γ(0)C ′

2

− η · (1 + δ′)−(q−1)

(
1 +

log (A′/Γ(0))

log (1 + δ′)

)
,

29

Published as a conference paper at ICLR 2023

where C1, C2 = (2p− 1) · Θ̃(d) and C ′
1, C

′
2 = Θ̃(d1−2ϵ) according to (A.25).

Taking A = Θ(1/m), A′ = C · Γ(t) where C is a large constant and C = Θ(1), δ = δ′ = 1
2 and

note that Λ̂(0)
r = Θ̃(σ0d

1
2) = Θ̃(d−

1
4),Γ(0) = Θ̃(σ0σpd

1
2) = Θ̃(d−

1
4+ϵ), we have

η · T ∗
r ≤ Θ̃(d−

3
4) + η · Θ̃(1) = Θ̃(d−

3
4), (A.26)

and

η · T ∗ ≥ Θ̃(d−
3
4+ϵ)− η · Θ̃(1) = Θ̃(d−

3
4+ϵ). (A.27)

Therefore, combining (A.26) and (A.27), we have η ·T ∗ ≥ Θ̃(d−
3
4+ϵ) > Θ̃(d−

3
4) ≥ η ·T ∗

r , leading
to T ∗ > T ∗

r for both r ∈ {−1.+1}. This indicates that when Λ̂
(t)
1 , Λ̂

(t)
−1 reach Θ(1/m), Γ(t) remain

the same magnitude as initialization.

By leveraging tensor power method, we can also estimate the length of Stage I, i.e. T1, T−1, by
applying tensor power method. To use tensor power method, we need to upper-bound the increasing
speed of Λ̂(t)

r . We have the following lemma:

Lemma A.13. For r ∈ {±1}, we have with high probability that

Λ̂(t+1)
r ≥ (1− ηλ) · Λ̂(t)

r + η · q
(
p− 1

2
− o(1)

)
· ∥v∥22 ·

(
Λ̂(t)
r

)q−1
,

Λ̂(t+1)
r ≤ (1− ηλ) · Λ̂(t)

r + η · q
(
p− 1

2
+ o(1)

)
· ∥v∥22 ·

(
Λ̂(t)
r

)q−1
.

Proof of Lemma A.13. Let j∗ = argmax1≤j≤m⟨w(t+1)
j ,v⟩ and note that uj∗ = 1[1≤j≤m] =

1[m+1≤j≤2m] = 1, then we have

Λ̂
(t+1)
1 = ⟨w(t+1)

j∗ ,v⟩

= (1− ηλ) · ⟨w(t)
j∗ ,v⟩+

qη

nl + nu

(∑
i∈S1

yiŷic
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

∑
i∈S−1

yiŷic
(t)
i [−⟨w(t)

j∗ ,v⟩]
2
+∥v∥

q−1
2︸ ︷︷ ︸

♣

)

+
qη

nl + nu

(∑
i∈S′

1

b
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

∑
i∈S′

1

b
(t)
i [−⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

)
.

(A.28)
For ♣, according to Lemma A.6, we have∑

i∈S1

yiŷic
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

∑
i∈S−1

yiŷic
(t)
i [−⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

= n1 ·
(
p− 1

2
± o(1)

)
· [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 + n−1 ·

(
p− 1

2
± o(1)

)
· [−⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22

≤ n1 ·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
+ n−1 ·

(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̄
(t)
−1

)q−1

= n1 ·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
,

(A.29)
where the last equality is due to Λ̂

(t)
1 = ω(Λ̄

(t)
−1).

30

Published as a conference paper at ICLR 2023

For ⋆, according to Lemma A.5, we have∑
i∈S′

1

b
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

∑
i∈S′

1

b
(t)
i [−⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

= n′
1 ·
(1
2
± o(1)

)
· [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 + n′

−1 ·
(1
2
± o(1)

)
· [−⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22

≤ n′
1 ·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
+ n′

−1 ·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̄
(t)
−1

)q−1

= n′
1 ·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
,

(A.30)

where the last equality is due to Λ̂
(t)
1 = ω(Λ̄

(t)
−1).

Plugging (A.29) and (A.30) into (A.28), we have

Λ̂
(t+1)
1

≤ (1− ηλ) · Λ̂(t)
1 +

qη

nl + nu

(
n1 ·

(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
+ n′

1 ·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
)

= (1− ηλ) · Λ̂(t)
1 +

qηn1

nl + nu
·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
+

qηn′
1

nl + nu
·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= (1− ηλ) · Λ̂(t)
1 + qη ·

(
n1

nl + nu
·
(
p− 1

2
± o(1)

)
+

n′
1

nl + nu
·
(1
2
± o(1)

))
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= (1− ηλ) · Λ̂(t)
1 + qη ·

(
n1

nl + nu
·
(
p− 1

2

)
+

n′
1

nl + nu
· 1
2︸ ︷︷ ︸

♠

±o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
.

(A.31)

Note that we have already proved in (A.9) that

Λ̂
(t+1)
1 ≤ (1− ηλ) · Λ̂(t)

1 + qη ·
(

n1

nl + nu
·
(
p− 1

2

)
+

n′
1

nl + nu
· 1
2︸ ︷︷ ︸

♠

±o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
.

(A.32)
Note we have already prove in (A.10) that

n1

nl + nu
·
(
p− 1

2

)
+

n′
1

nl + nu
· 1
2︸ ︷︷ ︸

♠

=
1

2
·
(
p− 1

2

)
± o(1)

Therefore, we have

Λ̂
(t+1)
1 ≥ (1− ηλ) · Λ̂(t)

1 + qη ·
(
p− 1

2
− o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
,

Λ̂
(t+1)
1 ≤ (1− ηλ) · Λ̂(t)

1 + qη ·
(
p− 1

2
+ o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
.

In a similar way, we can prove that

Λ̂
(t+1)
−1 ≥ (1− ηλ) · Λ̂(t)

−1 + qη ·
(
p− 1

2
− o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
−1

)q−1
,

Λ̂
(t+1)
−1 ≤ (1− ηλ) · Λ̂(t)

−1 + qη ·
(
p− 1

2
+ o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
−1

)q−1
,

which completes the proof of this lemma.

Lemma A.14 (Length of pre-training). For r ∈ {±1}, let Tr be the first iteration that Λ̂(t)
r reaches

Θ(1/m) respectively. Then Tr = Θ̃(d−
3
4)/η for all r ∈ {±1}.

31

Published as a conference paper at ICLR 2023

Proof of Lemma A.14. By leveraging tensor power method given in Lemma C.4,∑
t≥0,xt≤A

η ≤ δ

(1− (1 + δ)−(q−2))x0C1
+ η · C2

C1
(1 + δ)q−1

(
1 +

log (A/x0)

log (1 + δ)

)
,

∑
t≥0,xt≤A

η ≥
δ
(
1− (x0/A)q−2

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
x0C2

− η · (1 + δ)−(q−1)

(
1 +

log (A/x0)

log (1 + δ)

)
,

we have for r ∈ {±1} that

η · T ∗
r =

∑
t≥0,Λ̂

(t)
r ≤A

η ≤ δ

(1− (1 + δ)−(q−2))Λ̂
(0)
r C1︸ ︷︷ ︸

(i)

+ η · C2

C1
(1 + δ)q−1

(
1 +

log (A/Λ̂
(0)
r)

log (1 + δ)

)
︸ ︷︷ ︸

(ii)

,

η · T ∗
r =

∑
t≥0,Λ̂

(t)
r ≤A

η ≥
δ
(
1− (x0/A)q−2

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
Λ̂
(0)
r C2︸ ︷︷ ︸

(iii)

− η · (1 + δ)−(q−1)

(
1 +

log (A/Λ̂
(0)
r)

log (1 + δ)

)
︸ ︷︷ ︸

(iv)

,

where C1 is taken as q
(
p− 1

2 − o(1)
)
· ∥v∥22 and C2 is taken as q

(
p− 1

2 + o(1)
)
· ∥v∥22 according to

Lemma A.13. Taking δ = 1
k , A = Θ(1/m) and note that terms (ii), (iv) are respectively dominated

by terms (i), (iii) when η is sufficiently small and letting k → ∞, we have

1

Λ̂
(0)
r C2

− {lower order terms} ≤ η · T ∗
r ≤ 1

Λ̂
(0)
r C1

+ {lower order terms},

for r ∈ {±1}. And it follows that

η · T ∗
r =

1

q
(
p− 1

2

)
∥v∥22 · Λ̂

(0)
r

± {lower order terms}. (A.33)

And by Lemma A.3, we have η ·T ∗
r = Θ(1/q

(
p− 1

2

)
∥v∥22 ·

√
log(m)σ0∥v∥2) = Θ̃(d−3/4), which

completes the proof.

The discussion in this section verifies Lemma 5.3 and provides a clear understanding about how
Λ̂
(t)
r , Λ̄

(t)
r varies within the iteration range [0, Tr] for r ∈ {±1}. Note that the iteration numbers

when Λ̂
(t)
1 and Λ̂

(t)
−1 reaches Θ(1/m) (T1 and T−1) are different, however, since T−1 and T1 have

the same magnitude, it remains clear that although T1 ̸= T−1 (wlog, assume T1 < T−1), we still
have Λ̂

(t)
1 = Θ̃(1) and Λ̄

(t)
1 = Õ(d−

1
4) within the iteration range [T1, T−1], since off-diagonal

feature learning also costs time no less than order Θ(1/ησ0∥v∥32
√
logm), which is higher order

than |T1 − T−1| = Θ(1/ησ0∥v∥32 logm), according to (A.33) and Lemma A.3. Therefore, at
time T0 := max{T1, T−1}, off-diagonal Λ̄(t)

1 , Λ̄
(t)
−1 still remain initialization magnitude Õ(d−

1
4),

Γ
(t)
1 ,Γ

(t)
−1 remain initialization magnitude Õ(d−

1
4+ϵ), while on-diagonal Λ̂(t)

1 , Λ̂
(t)
−1 reach and then

remain Θ̃(1).

A.5 PROOF OF LEMMA 5.2

If we only use labeled data S′ for the optimization of CNN, according to Lemma B.1, we have

w
(t+1)
j = w

(t)
j −∇wj

LS′(W)

= (1− ηλ) ·w(t)
j +

qηuj

nl

nl∑
i=1

b
(t)
i y′i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
,

where uj := 1[1≤j≤m] −1[m+1≤2m], b
(t)
i = −ℓ′(y′i ·fW(x′

i)) = exp[−y′i ·fW(x′
i)]/(1+exp[−y′i ·

fW(x′
i)]).

32

Published as a conference paper at ICLR 2023

Notice that v and ξ′i are orthogonal to each other, we have

⟨w(t+1)
j ,v⟩ = (1− ηλ) · ⟨w(t)

j ,v⟩+ qηuj

nl

nl∑
i=1

b
(t)
i · [⟨w(t)

j , y′i · v⟩]
q−1
+ · ∥v∥22,

⟨w(t+1)
j , ξ′l⟩ = (1− ηλ) · ⟨w(t)

j , ξi⟩+
qηuj

nl

nl∑
i=1

b
(t)
i y′i · [⟨w

(t)
j , ξ′i⟩]

q−1
+ · ⟨ξ′i, ξ′l⟩, i ∈ [nl].

Let T ′
i be the first iteration that Γ′(t)

i reaches Θ(1/m), then we have following lemma:

Lemma A.15. As long as Γ′(t)
i ≤ Θ(1/m), b(t)i := −ℓ′(y′i · fW(t)(x′

i)) will remain 1/2± o(1).

Proof of Lemma A.15. Note that ℓ(z) = log(1+exp (−z)) and −ℓ′(z) = exp (−z)/
(
1+exp (−z)

)
,

and without loss of generality assuming y′i = 1, we can express b(t)i as follow:

b
(t)
i = −ℓ′(fW(t)(x′

i)) =
e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξ′
i⟩)]

e
∑m

j=1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξ′
i⟩)] + e

∑2m
j=m+1[σ(⟨w

(t)
j ,v⟩)+σ(⟨w(t)

j ,ξ′
i⟩)]

,

Since σ(⟨w(t)
j , ξ⟩) will dominate σ(⟨w(t)

j ,v⟩) , which will be proved later by using tensor power
method, we have

b
(t)
i = −ℓ′(fW(t)(x′

i)) =
e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξ′
i⟩)]

e
∑m

j=1 σ(⟨w(t)
j ,ξ′

i⟩){+lower order term} + e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξ′
i⟩)]

,

On the one side,

b
(t)
i ≥ 1

e
∑m

j=1 σ(⟨w(t)
j ,ξ′

i⟩){+lower order term} + 1

≥ 1

em(Γ
′(t)
i)q{+lower order term} + 1

≥ 1

eΘ(m−(q−1)) + 1
=

1

2 + o(1)
=

1

2
− o(1).

On the other side, according to Lemma 5.4, we have Λ̄
(t)
1 = Õ(d−

1
4), it follows that

b
(t)
i ≤ em(Λ̄

(t)
1)q+o(1)

e
∑m

j=1 σ(⟨w(t)
j ,ξ′

i⟩)+{lower order term} + em(Λ̄
(t)
1)q+o(1)

=
1 + o(1)

e
∑m

j=1 σ(⟨w(t)
j ,ξ′

i⟩)+{lower order term} + 1 + o(1)

≤ 1 + o(1)

1 + 1 + o(1)
=

1

2
+ o(1).

Therefore, we have b
(t)
i = 1/2 ± o(1) and the other case of yi = −1 can be proved in a similar

way.

With the help of above lemma, we are now ready to prove Lemma 5.2.

33

Published as a conference paper at ICLR 2023

Proof of Lemma 5.2. Let j∗ = argmax1≤j≤m⟨w(t+1)
j ,v⟩ and note that uj = 1, according to

Lemma A.15, we have

Λ̂
(t+1)
1 = ⟨w(t+1)

j∗ ,v⟩

= (1− ηλ) · ⟨w(t)
j∗ ,v⟩+

qη

nl

nl∑
i=1

b
(t)
i [⟨w(t)

j∗ , y
′
i · v⟩]

q−1
+ ∥v∥22

= (1− ηλ) · ⟨w(t)
j∗ ,v⟩+

qη

nl

∑
i∈S′

1

b
(t)
i [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22 +

qη

nl

∑
i∈S′

−1

b
(t)
i [⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22

= (1− ηλ) · ⟨w(t)
j∗ ,v⟩+

qη

nl

∑
i∈S′

1

(1
2
± o(1)

)
[⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

+
qη

nl

∑
i∈S′

−1

(1
2
± o(1)

)
[⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

(A.34)
For ♣, we have∑

i∈S′
1

(1
2
± o(1)

)
[⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

= n′
1 ·
(1
2
± o(1)

)
· [⟨w(t)

j∗ ,v⟩]
q−1
+ ∥v∥22

≤ n′
1 ·
(1
2
± o(1)

)
· ∥v∥22 · (Λ̂

(t)
1)q−1.

(A.35)

For ⋆, we have∑
i∈S′

−1

(1
2
± o(1)

)
[⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

= n′
−1 ·

(1
2
± o(1)

)
· [⟨w(t)

j∗ ,−v⟩]q−1
+ ∥v∥22

≤ n′
−1 ·

(1
2
± o(1)

)
· ∥v∥22 · (Λ̄

(t)
−1)

q−1.

(A.36)

By plugging (A.35) and (A.36) in (A.34), and according to Lemma A.8, we have with probability at
least 1− 4δ that

Λ̂
(t+1)
1 ≤ (1− ηλ) · Λ̂(t)

1 +
qη

nl

(
n′
1 ·
(1
2
± o(1)

)
· ∥v∥22 · (Λ̂

(t)
1)q−1 + n′

−1 ·
(1
2
± o(1)

)
· ∥v∥22 · (Λ̄

(t)
−1)

q−1

)
≤ (1− ηλ) · Λ̂(t)

1 +
qη

nl

((
nl

2
+

√
nl

2
log

1

δ

)
·
(1
2
± o(1)

)
· ∥v∥22 · (Λ̂

(t)
1)q−1

+

(
nl

2
+

√
nl

2
log

1

δ

)
·
(1
2
± o(1)

)
· ∥v∥22 · (Λ̄

(t)
−1)

q−1

)
= (1− ηλ) · Λ̂(t)

1 + qη

((1
4
± o(1)

)
· ∥v∥22 · (Λ̂

(t)
1)q−1 +

(1
4
± o(1)

)
· ∥v∥22 · (Λ̄

(t)
−1)

q−1

)
= (1− ηλ) · Λ̂(t)

1 + η ·Θ(d) ·
(
(Λ̂

(t)
1)2 + (Λ̄

(t)
−1)

q−1
)
.

And we can prove in the same way that with probability at least 1− 4δ we have

Λ̂
(t+1)
−1 ≤ (1− ηλ) · Λ̂(t)

−1 + η ·Θ(d) ·
(
(Λ̂

(t)
−1)

q−1 + (Λ̄
(t)
1)q−1

)
.

34

Published as a conference paper at ICLR 2023

Let j⋆ = argmaxm+1≤j≤2m⟨w(t+1)
j ,v⟩ and note that uj = −1, we have

Λ̄
(t+1)
1 = ⟨w(t+1)

j⋆ ,v⟩

= (1− ηλ) · ⟨w(t)
j⋆ ,v⟩ −

qη

nl

nl∑
i=1

b
(t)
i [⟨w(t)

j⋆ , y
′
i · v⟩]

q−1
+ ∥v∥22

≤ (1− ηλ) · ⟨w(t)
j⋆ ,v⟩

≤ (1− ηλ) · Λ̄(t)
1 .

(A.37)

And we can prove in the same way that Λ̄(t+1)
−1 ≤ (1− ηλ) · Λ̄(t)

−1.

Next, we consider the increasing rate of Γ
′(t)
l where l ∈ [nl] is fixed. If yl = 1, let j♮ =

argmax1≤j≤m⟨w(t)
j , ξ′l⟩ and note that uj = 1, we have

Γ
′(t+1)
l ≥ ⟨w(t+1)

j♮
, ξ′l⟩

= (1− ηλ) · ⟨w(t)

j♮
, ξ′l⟩+

qη

nl

nl∑
i=1

b
(t)
i y′i · [⟨w

(t)

j♮
, ξ′i⟩]

q−1
+ · ⟨ξ′i, ξ′l⟩

= (1− ηλ) · ⟨w(t)

j♮
, ξ′l⟩+

qη

nl
b
(t)
l [⟨w(t)

j♮
, ξ′l⟩]

q−1
+ ∥ξ′l∥22 +

qη

nl

∑
i∈[nl],i̸=l

b
(t)
i y′i[⟨w

(t)

j♮
, ξ′i⟩]

q−1
+ ⟨ξ′i, ξ′l⟩

= (1− ηλ) · ⟨w(t)

j♮
, ξ′l⟩+

qη

nl
b
(t)
l [⟨w(t)

j♮
, ξ′l⟩]

q−1
+ ∥ξ′l∥22{± lower order terms}

≥ (1− ηλ) · Γ′(t)
l +

qη

nl
·
(1
2
− o(1)

)
· ∥ξ′l∥22 · (Γ

′(t)
l)q−1

= (1− ηλ) · Γ′(t)
l + η · Θ̃(d1+2ϵ) · (Γ′(t)

l)q−1,
(A.38)

where the third equality holds if we properly choose the order of λ.

If yl = −1, let j♯ = argmaxm+1≤j≤2m⟨w(t)
j , ξ′l⟩ and note that uj = −1, we have

Γ
′(t+1)
l ≥ ⟨w(t+1)

j♮
, ξ′l⟩

= (1− ηλ) · ⟨w(t)

j♮
, ξ′l⟩ −

qη

nl

nl∑
i=1

b
(t)
i y′i · [⟨w

(t)

j♮
, ξ′i⟩]

q−1
+ · ⟨ξ′i, ξ′l⟩

= (1− ηλ) · ⟨w(t)

j♮
, ξ′l⟩+

qη

nl
b
(t)
l [⟨w(t)

j♮
, ξ′l⟩]

q−1
+ ∥ξ′l∥22 −

qη

nl

∑
i∈[nl],i̸=l

b
(t)
i y′i[⟨w

(t)

j♮
, ξ′i⟩]

q−1
+ ⟨ξ′i, ξ′l⟩

= (1− ηλ) · ⟨w(t)

j♮
, ξ′l⟩+

qη

nl
b
(t)
l [⟨w(t)

j♮
, ξ′l⟩]

q−1
+ ∥ξ′l∥22{± lower order terms}

≥ (1− ηλ) · Γ′(t)
l +

qη

nl
·
(1
2
− o(1)

)
· ∥ξ′l∥22 · (Γ

′(t)
l)q−1

= (1− ηλ) · Γ′(t)
l + η · Θ̃(d1+2ϵ) · (Γ′(t)

l)q−1,
(A.39)

where the third equality holds if we properly choose the order of λ.

According to (A.38) and (A.39), we always have

Γ
′(t+1)
l ≥ (1− ηλ) · Γ′(t)

l + η · Θ̃(d1+2ϵ) · (Γ′(t)
l)q−1.

A.6 PROOF OF LEMMA 5.4

By applying Lemma C.4 to Γ
(t)
i and taking C1 = Θ̃(d1+2ϵ), δ = 1/2, A = Θ(1/m), we have∑

t≥0,Γ
(t)
i ≤A

η ≤ Θ(1/C1Γ
(t)
i) = Θ̃(d−

3
4−3ϵ).

35

Published as a conference paper at ICLR 2023

And note the definition of T ′
i , we have

η · T ′
i = Θ̃(d−

3
4−3ϵ). (A.40)

In Lemma 5.2, we have already prove that

Λ̂(t+1)
r ≤ (1− ηλ) · Λ̂(t)

r + η ·Θ(d) ·
(
(Λ̂(t)

r)q−1 + (Λ̄
(t)
−r)

q−1
)
,

Λ̂(t+1)
r ≤ (1− ηλ) · Λ̂(t+1)

r , r ∈ {±1}.
(A.41)

Define Λ(t) := maxr∈{±1}{Λ̂
(t)
r , Λ̄

(t)
r }, according to (A.41), we have

Λ(t+1) ≤ (1− ηλ) · Λ(t) + η ·Θ(d) · (Λ(t))q−1.

By applying Lemma C.4 to Λ(t), and taking C1 = Θ(d), δ = 1/2, A = C · Λ(0), where A is a large
constant, we have ∑

t≥0,Λ(t)≤A

η ≥ Θ(1/C1Λ
(0)) = Θ̃(d

1
4).

Let T ′ be the first iteration that Λ(t) reaches C · Λ(0), then we have

η · T ′ = Θ̃(d−
3
4). (A.42)

According to (A.40) and (A.42), we have T ′ = ω(T ′
i), which indicates that when Γ

(t)
i reaches

Θ(1/m), Λ(t) remains initialization magnitude Θ̃(d−
1
4).

A.7 EMPIRICAL, TEST ERROR AND LOSS FOR EARLY STOPPED CLASSIFIER

Assume the accuracy of pseudo-labeler p is larger than 1/2. We first estimate the empirical loss
for early stopped classifier fW(T0) , where T0 = maxr∈{±1}{Tr} and Tr is defined as the first
iteration that Λ̂(t)

r reaches Θ(1/m). According to Section A.4.3 and Lemma A.12, we have Λ̂(T0)
r =

Θ̃(1), Λ̄
(T0)
r = Õ(d−

1
4),Γ(t) = Õ(d−

1
4+ϵ), for r ∈ {±1}. We have the following lemma:

Lemma A.16. Early stopped classifier fW(T0)(x) possesses following properties:

1. Training error of early stopped classifier fW(T0)(x) is asymptotically 1− p: 1
nu+nl

(∑nu

i=1 1[ŷi ·
fW(T0)(xi) ≤ 0] +

∑nl

i=1 1[y
′
i · fW(T0)(x′

i) ≤ 0]
)
= 1− p± o(1).

2. Test error is nearly 1 − p, if we use pseudo-label ŷ generated by pseudo-labeler as target:
P(x,y)∼D,ŷ∼y·B(p)[ŷ · fW(T0)(x) ≤ 0] = 1− p± o(1).

3. Test error is nearly 0, if we use true label y as target: P(x,y)∼D[y · fW(T0)(x) ≤ 0] = o(1) and
hence sign fW(T0)(x) = sign(y) with high probability,

where p is the accuracy of the pseudo-labeler. We can regard p as the probability that xi is paired
with true label yi, 1− p is the probability that xi is paired with wrong label −yi.

Proof of Lemma A.16. Recall the definition of fW in (3.1) that

fW(T0)(xi) =
m∑
j=1

[
σ
(
⟨w(T0)

j , yi · v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
⟨w(T0)

j , yi · v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]
.

According to Section A.4.3 and Lemma A.12, we have Λ̂
(T0)
r = Θ̃(1), Λ̄

(T0)
r = Õ(d−

1
4),Γ(t) =

max
{
maxi∈[nu] Γ

(t)
i ,maxi∈[nl] Γ

′(t)
i

}
= Õ(d−

1
4+ϵ), for r ∈ {±1}. If yi = 1, we have following

lower bound for fW(T0)(xi)

fW(T0)(xi) =
m∑
j=1

[
σ
(
⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

≥
(
Λ̂
(T0)
1

)q
+
(
Γ
(T0)
i

)q −m
(
Λ̄
(T0)
1

)q −m
(
Γ
(T0)
i

)q
≥
(
Λ̂
(T0)
1

)q{− lower order terms},

36

Published as a conference paper at ICLR 2023

and following upper bound for fW(T0)(xi):

fW(T0)(xi) =
m∑
j=1

[
σ
(
⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

≤ m(Λ̂
(T0)
1)q +m(Γ

(T0)
i)q −

(
Λ̄
(T0)
1

)q − (Γ(T0)
i

)q
≤ (Λ̂

(T0)
1)q{+ lower order terms}.

If yi = −1, we have following upper bound for fW(T0)(xi):

fW(T0)(xi) =
m∑
j=1

[
σ
(
− ⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
− ⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

≤ m
(
Λ̄
(T0)
−1

)q
+m

(
Γ
(T0)
i

)q − (Λ̂(T0)
−1

)q − (Γ(T0)
i

)q
≤ −

(
Λ̂
(T0)
−1

)q{+ lower order terms},
and following lower bound for fW(T0)(xi):

fW(T0)(xi) =

m∑
j=1

[
σ
(
− ⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
− ⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

≥
(
Λ̄
(T0)
−1

)q
+
(
Γ
(T0)
i

)q −m
(
Λ̂
(T0)
−1

)q −m
(
Γ
(T0)
i

)q
≥ −m

(
Λ̄
(T0)
−1

)q{− lower order terms}.

Therefore, for unlabeled data, we have yi ·fW(T0)(xi) ∈
[(
1−o(1)

)
·(Λ̂(T0)

yi)q,
(
m+o(1)

)
·(Λ̂(T0)

yi)q
]

and hence sign
(
fW(T0)(xi)

)
= sign(yi) holds with high probability. We can also prove for labeled

data (x′
i, y

′
i) that y′i·fW(T0)(x′

i) ∈
[(
1−o(1)

)
·(Λ̂(T0)

y′
i

)q,
(
m+o(1)

)
·(Λ̂(T0)

y′
i

)q
]
, sign

(
fW(T0)(x′

i)
)
=

sign(y′i) in the same way.

Note that ŷi takes yi with probability p, −yi with probability p and nl = o(nu), the first statement
in this lemma follows obviously.

To prove the other two statement, we need to give an upper bound for the norm of wj . According to
the update rule of w(t)

j , we have

w
(t+1)
j = (1− ηλ) ·w(t)

j +
qηuj

nl + nu
·
(nu∑

i=1

ciŷi
(
[⟨w(t)

j , yi · v⟩]q−1
+ · yi · v + [⟨w(t)

j , ξi⟩]q−1
+ · ξi

)
+

nl∑
i=1

biy
′
i

(
[⟨w(t)

j , y′i · v⟩]
q−1
+ · y′i · v + [⟨w(t)

j , ξ′i⟩]
q−1
+ · ξ′i

))
,

leading to

∥w(t+1)
j ∥2 ≤ (1− ηλ) · ∥w(t)

j ∥2 +
qη

nl + nu
·
(nu∑

i=1

(
[⟨w(t)

j , yi · v⟩]q−1
+ · ∥v∥2 + [⟨w(t)

j , ξi⟩]q−1
+ · ∥ξi∥2

)
+

nl∑
i=1

(
[⟨w(t)

j , y′i · v⟩]
q−1
+ · ∥v∥2 + [⟨w(t)

j , ξ′i⟩]
q−1
+ · ∥ξ′i∥2

))
≤ (1− ηλ) · ∥w(t)

j ∥2 +
qη

nl + nu
·
(
(nl + nu) · ∥v∥2 ·

(
max

r∈{±1}
{Λ̂(t)

r , Λ̄(t)
r }
)q−1

+
(∑

i∈[nu]

∥ξi∥2 +
∑
i∈[nl]

∥ξ′i∥2
)
·
(
Γ(t)

)q−1
)

≤ ∥w(t)
j ∥2 + η ·

(
Θ(d

1
2) · Θ̃(1) + Θ(d

1
2+ϵ) · Õ(d(q−1)(− 1

4+ϵ))
)

= ∥w(t)
j ∥2 + η · Θ̃(d

1
2),

(A.43)

37

Published as a conference paper at ICLR 2023

where the first inequality is by triangle inequality; the second inequality is due to the definition of
Λ̂
(t)
r , Λ̄

(t)
r ,Γ(t), the last inequality is due to Lemma 5.3.

According to Lemma A.14, we know that Tr ·η = Θ̃(d−
3
4), r ∈ {±1} and T0 ·η = maxr∈{±1}{Tr ·

η} = Θ̃(d−
3
4). Note that w(0)

j ∼ N (0, σ2
0Id), σ0 = Θ(d−

3
4) and hence ∥w(0)

j ∥2 = Θ̃(d−
1
4), we

know that

∥w(T0)
j ∥2 ≤ ∥w(0)

j ∥2 + η · T0 · Θ̃(d−
1
4) = Θ̃(d−

1
4) + Θ̃(d−

1
4) = Θ̃(d−

1
4).

Therefore, for any (x, y) sampled from distribution D where x = [y · v⊤, ξ⊤]⊤ and ξ ∼ N (0, σ2
p),

we have

⟨w(T0)
j , ξ⟩ ∼ N (0, σ2

p∥w
(T0)
j ∥22), |⟨w

(T0)
j , ξ⟩| = Θ(σp∥w(T0)

j ∥2) = Õ(d−
1
4+ϵ). (A.44)

And this indicates that ⟨w(T0)
j , ξ⟩ will still be dominated by ⟨w(T0)

j ,v⟩, therefore it holds for newly
sampled (x, y) that

y · fW(T0)(x) ∈
[(
1− o(1)

)
· (Λ̂(T0)

yi
)q,
(
m+ o(1)

)
· (Λ̂(T0)

yi
)q
]
,

which means that
P(x,y)∼D[y · fW(T0)(x) ≤ 0] = o(1).

This verifies the third statement that test error is nearly zero.

For the second statement, note that

P(x,y)∼D,ŷ∼y·B(p)[ŷ · fW(T0)(x) ≤ 0]

= P(x,y)∼D[ŷ · fW(T0)(x) ≤ 0|ŷ = y] · Pŷ∼y·B(p)(ŷ = y)

+ P(x,y)∼D[ŷ · fW(T0)(x) ≤ 0|ŷ = −y] · Pŷ∼y·B(p)(ŷ = −y)

= p · P(x,y)∼D[y · fW(T0)(x) ≤ 0] + (1− p) · P(x,y)∼D[y · fW(T0)(x) ≥ 0]

= p · o(1) + (1− p) · (1− o(1))

= 1− p± o(1),

which verifies the second statement.

A.8 DOWNSTREAM TASK

For downstream tasks, we use early stopped classifiers, which are stopped when on-diagonal feature
Λ̂
(t)
r are learned while off-diagonal feature Λ̄(t)

r and noise Γ(t) are not memorized. Assume we have
learned K early stopped classifiers f

W
(T1

0)

1

(x), · · · , f
W

(TK
0)

K

(x) by using nu pseudo-labeled data

generated by pseudo-labeler fw
1 , · · · , fw

K and nl labeled data.

Then, we want to design a classifier on the learned representation f
W

(T1
0)

1

(x), · · · , f
W

(TK
0)

K

(x) to fit

y. Here we consider training a downstream linear model

ga(x) =
K∑

k=1

akf
W

(Tk
0)

k

(x),

where ak ∈ R denotes the weight as the k-th pre-trained model. Given labeled training data S′ =
{(x′

i, y
′
i)}

nl
i=1, we want to optimize the empirical loss function

LS′(a) =
1

nl

nl∑
i=1

ℓ
(
y′i · ga(x′

i)
)
,

where ℓ(z) = log(1+exp(−z)) denotes the cross entropy loss. We initialize a as zero and optimize
empirical loss function by gradient descent, i.e.

a(t+1) = a(t) − η · ∇aLS′(a(t)),a(0) = 0.

In order to estimate the training error and test error for downstream task, we first introduce following
lemma about the increasing rate of

∥∥a(t)∥∥
1
.

38

Published as a conference paper at ICLR 2023

Lemma A.17 (Logarithmic increasing rate). For any learning rate η > 0, a(t)k will always increase
for any k ∈ [K] and hence

∥∥a(t)∥∥
1
=
∑K

k=1 a
(t)
k . And it holds that

∥∥a(t)∥∥
1
= Θ(log(t)).

In order to give the increasing rate of
∥∥a(t)∥∥

1
, we introduce and prove the following lemma:

Lemma A.18. Consider following sequence {xt}∞t=1 with

xt+1 = xt + C · a−xt , x0 = 0,

where a > 1 and C > 0 are constants, and it follows that

loga
(
ln a · C · t+ 1

)
≤ xt ≤ loga

(
ln a · C · t+ 1

)
+ C,

and
xt+1 − xt ≤

C

C · ln a · t+ 1
.

Proof of Lemma A.18. Note that

xi+1 − xi = C · a−xi ⇐⇒ axi(xi+1 − xi) = C,

by adding up above equation from i = 0 to i = t− 1, we have
t−1∑
i=0

axi(xi+1 − xi) = C · t (A.45)

=⇒
∫ xt

x0

axdx ≥ C · t

=⇒ axt − ax0

ln a
≥ C · t

=⇒ axt ≥ C · ln a · t+ 1

=⇒
{

xt ≥ loga
(
C · ln a · t+ 1

)
,

xt+1 − xt = C · a−xt ≤ C
C·ln a·t+1 ,

where the first arrow is due to ax is monotone increasing.

On the other hand,

axi+1 = axi+C·a−xi
= axi · aC·a−xi ≤ axi · aC/(C·ln a·i+1) ≤ axi · aC ,

which implies
t−1∑
i=0

axi+1 · (xi+1 − xt) ≤ aC
t−1∑
i=0

axi · (xi+1 − xi)

=⇒
t−1∑
i=0

axi+1 · (xi+1 − xi) ≤ aC · Ct

=⇒
∫ xt

x0

axdx ≤ aC · Ct,

where the first arrow is due to (A.45) and the last arrow is due to ax is monotone increasing.

This leads to

xt ≤ loga
(
ln a · C · aC · n+ 1

)
≤ loga

(
ln a · C · aC · n+ aC

)
= loga

(
ln a · C · t+ 1

)
+ C

Therefore, we have

loga
(
ln a · C · t+ 1

)
≤ xt ≤ loga

(
ln a · C · t+ 1

)
+ C,

and
xt+1 − xt ≤

C

ln a · C · t+ 1
.

39

Published as a conference paper at ICLR 2023

Now we are ready to prove Lemma A.17.

Proof of Lemma A.17. Note that we take downstream task linear model ga(x) as

ga(x) =
d∑

k=1

ak

{
m∑
j=1

[
σ
(
⟨w(Tk

0)
k,j , y · v⟩

)
+ σ

(
⟨w(Tk

0)
k,j , ξ⟩

)]

−
2m∑

j=m+1

[
σ
(
⟨w(Tk

0)
k,j , y · v⟩

)
+ σ

(
⟨w(Tk

0)
k,j , ξ⟩

)]}

=
d∑

k=1

akf
W

(Tk
0)

k

(x).

Then, we have following update rule for model parameter a:

a
(t+1)
k = a

(t)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)
· y′if

W
(Tk

0)

k

(x′
i),

where we initialize a
(0)
k as zero for all k ∈ [K].

Next, we prove following statement by using induction method: when t ≥ 1,

• a
(t)
k , ∀k ∈ [K] is non-negative and increasing.

•
∥∥a(t)∥∥

1
=
∑K

i=1 a
(t)
k .

• a
(t+1)
k = a

(t)
k + η · Θ̃(1) ·

(
exp

(
− ∥a(1)∥1 · Θ̃(1)

))
, ∀k ∈ [K].

Note that a(0)k = 0 for all k ∈ [d] and therefore ga(0)(x′
i) = 0, ℓ′

(
y′i · ga(0)(x′

i)
)
= ℓ′(0) = −1/2,

a
(1)
k = a

(0)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(0)(x′

i)
)
· y′if

W
(Tk

0)

k

(x′
i)

= a
(0)
k + η · 1

2nl

nl∑
i=1

y′if
W

(Tk
0)

k

(x′
i) = η · 1

2nl

nl∑
i=1

y′if
W

(Tk
0)

k

(x′
i) for all k ∈ [K].

Note that the accuracy of the k-th pseudo-labeler pk > 1/2, accoring to the proof of Lemma A.16,
we have

f
W

(Tk
0)

k

(x′
i) =

m∑
j=1

[
σ
(
⟨w(Tk

0)
k,j , y′i · v⟩

)
+ σ

(
⟨w(Tk

0)
k,j , ξ′i⟩

)]

−
2m∑

j=m+1

[
σ
(
⟨w(Tk

0)
k,j , y′i · v⟩

)
+ σ

(
⟨w(Tk

0)
k,j , ξ′i⟩

)]
= y′i · Θ̃

(
(Λ̂

(Tk
0)

y′
i

)q
)
,

for all k ∈ [K]. Therefore

a
(1)
k = η · 1

2nl

nl∑
i=1

y′if
W

(Tk
0)

k

(x′
i) ≥

η

2
· Θ̃
(
(Λ̂

(Tk
0)

y′
i

)q
)
> 0, ∀k ∈ [K].

It follows that ∥∥a(t)∥∥
1
=

K∑
i=1

|a(t)k | =
K∑
i=1

a
(t)
k .

40

Published as a conference paper at ICLR 2023

Note that

y′i · ga(1)(x′
i) = y′i ·

K∑
k=1

a
(1)
k f

W
(Tk

0)

k

(x′
i)

=
K∑

k=1

a
(1)
k ·

(
y′i · f

W
(Tk

0)

k

(x′
i)
)

=
K∑

k=1

a
(1)
k · Θ̃

(
(Λ̂

(Tk
0)

y′
i

)q
)

=
K∑

k=1

a
(1)
k · Θ̃(1)

= ∥a(1)∥1 · Θ̃(1).

(A.46)

This leads to

ℓ′
(
y′i · ga(1)(x′

i)
)
= − exp (−y′i · ga(1)(x′

i))

1 + exp (−y′i · ga(1)(x′
i))

= −c ·
(
exp

(
− y′i · ga(1)(x′

i)
))

= −c ·
(
exp

(
− ∥a(1)∥1 · Θ̃(1)

))
,

where the second equality is due to y′i · ga(1)(x′
i) > 0, exp (−y′i · ga(1)(x′

i)) < 1 and c ∈ (1/2, 1);
the last equality is due to (A.46). It follows that

a
(2)
k = a

(1)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(1)(x′

i)
)
· y′ifW(T0)

k

(x′
i)

= a
(1)
k + η · c · Θ̃(1) ·

(
exp

(
− ∥a(1)∥1 · Θ̃(1)

))
, ∀k ∈ [K]

where c ∈ (1/2, 1). By then, we have already proved the induction hypothesis of t = 1.

Next, assume the induction hypotheses hold for t. For t+ 1, we have

a
(t+1)
k = a

(t)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)︸ ︷︷ ︸

<0

· y′if
W

(Tk
0)

k

(x′
i)︸ ︷︷ ︸

>0

> a
(t)
k > 0.

And it follows that

∥a(t+1)∥1 =
K∑
i=1

a
(t+1)
k and y′i · ga(t+1)(x′

i) = ∥a(t+1)∥1 · Θ̃(1), (A.47)

leading to

ℓ′
(
y′i · ga(t+1)(x′

i)
)
= −c ·

(
exp

(
− ∥a(t+1)∥1 · Θ̃(1)

))
, c ∈ (1/2, 1),

and
a
(t+2)
k = a

(t+1)
k + η · Θ̃(1) ·

(
exp

(
− ∥a(t+1)∥1 · Θ̃(1)

))
, ∀k ∈ [K].

This indicates that if induction hypotheses hold for t, then they holds for t+ 1.

Adding up k ∈ [K], we can obtain

∥a(t+1)∥1 =
∥∥a(t)∥∥

1
+ η · Θ̃(1) · exp

(
− Θ̃(1) ·

∥∥a(t)∥∥
1

)
(A.48)

According to Lemma A.18, we know that
∥∥a(t)∥∥

1
= log t/Θ̃(1){± lower order terms w.r.t. t}.

The following lemma gives the convergence guarantee of downstream task:

41

Published as a conference paper at ICLR 2023

Lemma A.19. (Convergence Guarantee) For any learning rate η > 0,

∥∇aLS′(a(t))∥1 ≤ Θ̃(1)

η · Θ̃(1) · t+ 1
and ∇2

aLS(a) ⪰ 0 for any a ∈ Rd,

which means within polynomial steps, gradient descent is guaranteed to find a point with small
gradient.

Proof of Lemma A.19. Note that

∥∇aLS′(a(t))∥1 =
K∑

k=1

|∂ak
LS′(a(t))|

= −
K∑

k=1

∂ak
LS′(a(t))

=
K∑

k=1

a
(t+1)
k − a

(t)
k

η

=
∥a(t+1)∥1 − ∥a(t)∥1

η
,

then according to Lemma A.18 and (A.48), we know

∥a(t+1)∥1 − ∥a(t)∥1 ≤ η · Θ̃(1)

η · Θ̃(1) · t+ 1
. (A.49)

And it follows that

∥∇aLS′(a(t))∥1 ≤ Θ̃(1)

η · Θ̃(1) · t+ 1
,

which shows that within polynomial steps, gradient descent is guaranteed to find a point with small
gradient.

Note that

∂ak
LS′(a) =

1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)
· y′if

W
(Tk

0)

k

(x′
i),

∂ak
∂aj

LS′(a) =
1

nl

nl∑
i=1

ℓ′′
(
y′i · ga(t)(x′

i)
)
·
(
f
W

(Tk
0)

k

(xi) · f
W

(T
j
0)

j

(xi)
)

for all k, j ∈ [K],

Denote
[
f
W

(T1
0)

1

(x′
i), · · · , f

W
(TK

0)

K

(x′
i)
]⊤

as fW∗(x′
i), then

∇2
aLS(a) =

1

nl

nl∑
i=1

ℓ′′
(
y′i · ga(t)(x′

i)
)
·
(
fW∗(x′

i) · fW∗(x′
i)

⊤
)
.

Note that fW∗(x′
i) · fW∗(x′

i)
⊤ is a non-negative definite matrix, ℓ′′(z) = exp (−z)/

(
1 +

exp (−z)
)2

> 0 and the fact that sum of non-negative definite matrices is still a non-negative definite
matrix, it follows that ∇2

aLS(a) ⪰ 0.

Theorem A.20 (Restatement of Theorem 4.3). Under semi-supervised learning setting, for down-
stream task, suppose K early stopped classifiers {fW∗

k
}Kk=1 are obtained after the pre-training of

K CNN models finished, and after Tdt = Θ(d0.1/η) iterations with learning rate η = Θ(1),
then we can find a linear model a(Tdt), which satisfies: Both test error and loss are nearly 0, i.e.
P(x,y)∼D[y · ga(Tdt)(x) ≤ 0] = o(1), LD(ℓ(y · ga(Tdt)(x))) = o(1).

42

Published as a conference paper at ICLR 2023

Proof of Theorem A.20. For test error, we have

P(x,y)∼D[y · ga(Tdt)(x) ≤ 0] = P(x,y)∼D

[K∑
k=1

a
(Tdt)
k ·

(
y · fW∗

k
(x)
)
≤ 0

]

= P(x,y)∼D

[K∑
k=1

a
(Tdt)
k · Θ̃(1) ≤ 0

]
= o(1)

where the last equality is due to a
(Tdt)
k > 0 according to Lemma A.17.

For test loss, we have

LD(ℓ(y · ga(Tdt)(x))) = E(x,y)∼D[ℓ(y · ga(Tdt)(x))],

i.e., we estimate for newly generated data (x, y) the magnitude of ℓ(y · ga(t)(x)). In order to do so,
we will first estimate ℓ(y′i · ga(t)(xi)). Then, we will show that ℓ(y · ga(t)(x)) and ℓ(y′i · ga(t)(xi))
nearly equal to each other.

According to the update rule of a(t)k , we have

a
(t+1)
k = a

(t)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)
· y′if

W
(Tk

0)

k

(x′
i).

Adding up the above equation for k ∈ [K], we obtain

∥a(t+1)∥1 = ∥a(t)∥1 − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)
· y′i

K∑
k=1

f
W

(Tk
0)

k

(x′
i).

And according to (A.49), we have

∥a(t+1)∥1 − ∥a(t)∥1 ≤ η · Θ̃(1)

η · Θ̃(1) · t+ 1
,

therefore it follows that

− 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)
· y′i

K∑
k=1

f
W

(Tk
0)

k

(x′
i) ≤

Θ̃(1)

η · Θ̃(1) · t+ 1
.

Note that K = Θ(1) and for all k ∈ [K] we have y′i · f
W

(Tk
0)

k

(x′
i) = Θ̃(1), it follows that

− 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
.

Note that nl = Θ̃(1) and according to Lemma A.8, there exists a positive sample (xi1 , yi1) and a
negative sample (xi2 , yi2) with the property that

−ℓ′
(
y′i1 · ga(t)(x′

i1)
)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
, −ℓ′

(
y′i2 · ga(t)(x′

i2)
)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
.

Note that ℓ(z) = log(1 + exp(−z)) and ℓ′(z) = − exp(−z)/
(
1 + exp(−z)

)
, we know that for

z > 0,

−ℓ′(z) = c · exp(−z),

ℓ(z) < exp(−z) = −ℓ′(z)/c, c ∈ (1/2, 1).

It follows that

ℓ
(
y′i1 · ga(t)(x′

i1)
)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
, ℓ
(
y′i2 · ga(t)(x′

i2)
)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
.

43

Published as a conference paper at ICLR 2023

Note that ℓ(z) is 1-Lipschitz, we have∣∣ℓ(y · ga(t)(x)
)
− ℓ
(
y′i1 · ga(t)(x′

i1)
)∣∣ ≤ ∣∣y · ga(t)(x)− y′i1 · ga(t)(x′

i1)
∣∣,∣∣ℓ(y · ga(t)(x)

)
− ℓ
(
y′i2 · ga(t)(x′

i2)
)∣∣ ≤ ∣∣y · ga(t)(x)− y′i2 · ga(t)(x′

i2)
∣∣. (A.50)

If y = 1, we have∣∣y · ga(t)(x)− y′i1 · ga(t)(x′
i1)
∣∣ = ∣∣ga(t)(x)− ga(t)(x′

i1)
∣∣

=

∣∣∣∣∣
K∑

k=1

a
(t)
k f

W
(Tk

0)

k

(x)−
K∑

k=1

a
(t)
k f

W
(Tk

0)

k

(x′
i1)

∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

a
(t)
k

(
f
W

(Tk
0)

k

(x)− f
W

(Tk
0)

k

(x′
i1)
)∣∣∣∣∣,

(A.51)

and

f
W

(Tk
0)

k

(x)− f
W

(Tk
0)

k

(x′
i1) =

m∑
j=1

[
σ
(
⟨w(Tk

0)
j ,v⟩

)
+ σ

(
⟨w(Tk

0)
j , ξ⟩

)]

−
2m∑

j=m+1

[
σ
(
⟨w(Tk

0)
j ,v⟩

)
+ σ

(
⟨w(Tk

0)
j , ξ⟩

)]
−

m∑
j=1

[
σ
(
⟨w(Tk

0)
j ,v⟩

)
+ σ

(
⟨w(Tk

0)
j , ξ′i1⟩

)]

+

2m∑
j=m+1

[
σ
(
⟨w(Tk

0)
j ,v⟩

)
+ σ

(
⟨w(Tk

0)
j , ξ′i1⟩

)]
=

m∑
j=1

[
σ
(
⟨w(Tk

0)
j , ξ⟩

)
− σ

(
⟨w(Tk

0)
j , ξ′i1⟩

)]

+

2m∑
j=m+1

[
σ
(
⟨w(Tk

0)
j , ξ′i1⟩

)
− σ

(
⟨w(Tk

0)
j , ξ⟩

)]
= Õ(d−

1
4+ϵ),

(A.52)

where the last equality is due to (A.44) and Lemma 5.3.

Plugging (A.52) into (A.51), we have∣∣y · ga(t)(x)− y′i1 · ga(t)(x′
i1)
∣∣ = Õ(d−

1
4+ϵ) · ∥a(t)∥1. (A.53)

If y = −1, we can prove in a similar way that∣∣y · ga(t)(x)− y′i2 · ga(t)(x′
i2)
∣∣ = Õ(d−

1
4+ϵ) · ∥a(t)∥1. (A.54)

Plugging (A.53) and (A.54) into (A.50), we have

ℓ
(
y · ga(t)(x)

)
≤ max

{
y′i1 · ga(t)(x′

i1), y
′
i2 · ga(t)(x′

i2)
}
+ Õ(d−

1
4+ϵ) · ∥a(t)∥1

According to Lemma A.18 and (A.48), we have ∥a(t)∥1 =

log t/Θ̃(1){± lower order terms w.r.t. t}, therefore

ℓ
(
y · ga(t)(x)

)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
+ Õ(d−

1
4+ϵ) · log t {± lower order terms w.r.t. t}

Taking η = Θ(1) and Tdt = Θ(dα/η) where α > 0 is a sufficiently small constant, we know that
LD(ℓ(y · ga(Tdt)(x)))

=E(x,y)∼D[ℓ(y · ga(Tdt)(x))]

≤ Θ̃(1)

η · Θ̃(1) · Tdt + 1
+ Õ(d−

1
4+ϵ) · log Tdt {± lower order terms w.r.t. Tdt}+ o(1)

=o(1),

which completes the proof.

44

Published as a conference paper at ICLR 2023

B PROOF OF SUPERVISED LEARNING SETTING

Here we prove Theorem 4.4. First, we give following lemma to facilitate the proof.
Lemma B.1 (Gradient Calculation). The gradient of loss function LS(W) with respect to weight
parameter wj is

∇wj
LS′(W) = −quj

nl
·

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
,

where uj :=
(
1[1≤j≤m] −1[m+1≤j≤2m]

)
and −ℓ′

(
y′i · fW(x′

i)
)

= exp [−y′i · fW(x′
i)]/(1 +

exp [−y′i · fW(x′
i)]) is denoted as bi.

Proof of Lemma B.1. When 1 ≤ j ≤ m,

∇wj ℓ
(
y′i · fW(x′

i)
)
= ℓ′

(
y′i · fW(x′

i)
)
· y′i · ∇wjfW(x′

i)

= −bi · y′i · ∇wjfW(x′
i)

= −biy
′
i ·
(
σ′(⟨wj , y

′
i · v⟩

)
· y′i · v + σ′(⟨wj , ξ

′
i⟩
)
· ξ′i
)

= −qbiy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
and when m+ 1 ≤ j ≤ 2m,

∇wj
ℓ
(
y′i · fW(x′

i)
)
= qbiy

′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
Combining above two cases, we have

∇wj
ℓ
(
y′i · fW(x′

i)
)
= −q

(
1[1≤j≤m] −1[m+1≤j≤2m]

)
biy

′
i

(
[⟨wj , yi · v⟩]q−1

+ · y′i · v + [⟨wj , ξ
′
i⟩]

q−1
+ · ξ′i

)
= −qujbiy

′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
and therefore

∇wjLS′(W) =
1

nl

nl∑
i=1

∇wj
Li(W) =

1

nl

nl∑
i=1

∇wj
ℓ
(
y′i · fW(x′

i)
)

= −quj

nl

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
.

Proof of Theorem 4.4. Recall the definition of fW in (3.1) that

fW(x) =
m∑
j=1

[
σ
(
⟨wj , y · v⟩

)
+ σ

(
⟨wj , ξ⟩

)]
−

2m∑
j=m+1

[
σ
(
⟨wj , y · v⟩

)
+ σ

(
⟨wj , ξ⟩

)]
.

Define w̃j := m1/q ·wj , we have

fW(x) =
m∑
j=1

[
σ
(
⟨m−1/q · w̃j , y · v⟩

)
+ σ

(
⟨m−1/q · w̃j , ξ⟩

)]

−
2m∑

j=m+1

[
σ
(
⟨m−1/q · w̃j , y · v⟩

)
+ σ

(
⟨m−1/q · w̃j , ξ⟩

)]

=
1

m

m∑
j=1

[
σ
(
⟨w̃j , y · v⟩

)
+ σ

(
⟨w̃j , ξ⟩

)]
− 1

m

2m∑
j=m+1

[
σ
(
⟨w̃j , y · v⟩

)
+ σ

(
⟨w̃j , ξ⟩

)]
: = f

W̃
(x).

Since the standard deviation of Gaussian initialization of wj is σ0 and note that w̃j := m1/q ·wj ,
the standard deviation of Gaussian initialization of w̃j is m1/qσ0 := σ̃0.

45

Published as a conference paper at ICLR 2023

On the other hand, note that the update rule of w(t)
j is w(t+1)

j = w
(t)
j − η · ∇wj

LS′(W(t)), and in
Lemma B.1, we have

∇wj
LS′(W) = −quj

nl
·

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
.

It follows that

w
(t+1)
j = w

(t)
j +

qηuj

nl
·

nl∑
i=1

b
(t)
i y′i

(
[⟨w(t)

j , y′i · v⟩]
q−1
+ · y′i · v + [⟨w(t)

j , ξ′i⟩]
q−1
+ · ξ′i

)
. (B.1)

By plugging wj = m−1/q · w̃j into (B.1), we have

w̃
(t+1)
j = w̃

(t)
j +

qηm− 1
q uj

nl
·

nl∑
i=1

b
(t)
i y′i

(
[⟨w̃(t)

j , y′i · v⟩]
q−1
+ · y′i · v + [⟨w̃(t)

j , ξ′i⟩]
q−1
+ · ξ′i

)
Assume η̃ = m− 1

q η, we have w̃
(t+1)
j = w̃

(t)
j − η̃ · ∇w̃j

LS′(W̃(t)). Therefore, our data model and
training algorithm is equivalent to the model and algorithm below:

f
W̃+1(x) =

1

m

m∑
j=1

[
σ
(
⟨w̃j , y · v⟩

)
+ σ

(
⟨w̃j , ξ⟩

)]
,

f
W̃−1(x) =

1

m

2m∑
j=m+1

[
σ
(
⟨w̃j , y · v⟩

)
+ σ

(
⟨w̃j , ξ⟩

)]
,

f
W̃
(x) = f

W̃+1(x)− f
W̃−1(x),

and we use gradient decent with learning rate η̃ and cross-entropy loss to optimize such a data model,
i.e.

w̃
(t)
0 ∼ N (0, σ̃2

0Id), w̃
(t+1)
j = w̃

(t)
j − η̃ · ∇w̃j

LS′(W̃(t)), LS′(W̃(t)) =

nl∑
i=1

ℓ(y′i · fW̃(x′
i)),

where ℓ(z) = log(1+exp(−z)), σ̃0 = m1/qσ0. Note that the new model meets the one used in Cao
et al. (2022). To leverage their result, we introduce condition 4.3 from Cao et al. (2022) and verify
that the new model meets the new condition.
Condition B.2 (Condition 4.2 in Cao et al. (2022)). Dimension d is sufficiently large that d =

Ω̃(m2∨[4/(q−2)]n4∨[(2q−2)/(q−2)]). Training sample size n and neural network width m sat-
isfy n,m = Ω(polylog(d)). Learning rate η satisfies η ≤ Õ(min{∥v∥−2

2 , σ−2
p d−1}). The

standard deviation of Gaussian initialization σ0 is approximately chosen such that Õ(nd−
1
2) ·

min{(σp

√
d)−1, ∥v∥−1

2 } ≤ σ0 ≤ Õ(m−2/(q−2)n−[1/(q−2)]∨1) ·min{(σp

√
d)−1, ∥v∥−1

2 }.

Theorem B.3 (Theorem 4.4 in Cao et al. (2022)). For any ϵ > 0, let T = Θ̃(η−1m · n(σp

√
d)−q ·

σ
−(q−2)
0 + η−1ϵ−1nm3d−1σ−2

p). Under Condition B.2, if n−1 · SNR−q = Ω̃(1), SNR =

∥v∥2/σp

√
d, then with probability at least 1− d−1, there exists 0 ≤ t ≤ T such that:

1. The training loss converges to δ, i.e., LS(W
(t)) ≤ δ.

2. The trained CNN has a constant order test loss: LD(W
(t)) = Θ(1).

Note that in our setting, m = Θ(polylog(d)), nl = Θ̃(1), ∥v∥2 = Θ(d
1
2), σ̃0 = m1/qσ0, σ0 =

Θ(d−
3
4) σp = Θ(d0.01), η̃ = m− 1

q η and η = O(d−1−2ϵ), it’s not difficult to verify that Condition
B.2 holds. Besides, SNR = d−0.01, n−1 · SNR−q = Θ̃(dqϵ) = Ω̃(1). Therefore, the conclusion of
Theorem B.3 holds for

T = Θ̃(η̃−1m · n(σp

√
d)−q · σ−(q−2)

0 + η̃−1ϵ−1nm3d−1σ−2
p)

= Θ̃(η̃−1 · (d1/2+ϵ)−q · (d−3/4)−(q−2) + η̃−1ϵ−1d−1d−2ϵ)

= Θ̃(η̃−1 · d(1/4−ϵ)q−3/2 + η̃−1ϵ−1d−1−2ϵ)

= Θ̃(η−1 · d(1/4−ϵ)q−3/2).

46

Published as a conference paper at ICLR 2023

C AUXILIARY LEMMAS

For the estimation of Λ̄(0) and Λ̂(0), we introduce the following lemma.
Lemma C.1 (Borell-TIS inequality). Let X be a centered Gaussian on Rm and set σ2

X :=
maxi∈[m] E(X2

i). Then for each t > 0,

P
(∣∣∣max

i∈[m]
Xi − E

(
max
i∈[m]

Xi

)∣∣∣ > t

)
≤ 2e

− t2

2σ2
X .

For the expectation of Λ̂(0)
r and Λ̄

(0)
r , we give the following lemma.

Lemma C.2. Let Y = max1≤i≤m Xi, where Xi ∼ N (0, σ2) are i.i.d. random variables. Then

1√
π log 2

σ
√

logm ≤ E[Y] ≤
√
2σ
√

logm.

For the estimation of ∥ξi∥22 and ⟨ξi, ξl⟩, we introduce following lemma.
Lemma C.3 (Lemma B.2 in Cao et al. (2022)). Suppose that δ > 0 and d = Ω(log(4n/δ)). Then
with probability at least 1− δ,

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξl⟩| ≤ 2σ2
p ·
√

d log(4n2/δ),

for all i, l ∈ [n], i ̸= l.

Besides, we introduce following lemma about tensor power method.

Lemma C.4. Consider an increasing sequence xt ≥ 0 defined as xt+1 = xt + η · Ctx
q−1
t , and

C1 ≤ Ct ≤ C2 for all t > 0, then we have for A > x0, every δ > 0, and every η > 0:∑
t≥0,xt≤A

η ≤ δ

(1− (1 + δ)−(q−2))x0C1
+ η · C2

C1
(1 + δ)q−1

(
1 +

log (A/x0)

log (1 + δ)

)
,

∑
t≥0,xt≤A

η ≥
δ
(
1− (x0/A)q−2

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
x0C2

− η · (1 + δ)−(q−1)

(
1 +

log (A/x0)

log (1 + δ)

)
.

Proof of Lemma C.4. For every g = 0, 1, 2, · · · , let τg be the first iteration such that xt ≥ (1+δ)gx0.
Let b be the smallest integer such that (1 + δ)bx0 ≥ A. By the definition of τg , we have xt ∈
[(1 + δ)gx0, (1 + δ)g+1x0) for all t ∈ [τg, τg+1) and xτg+1

≥ (1 + δ)g+1x0, xτg−1 < (1 + δ)gx0,
leading to∑
t∈[τg,τg+1)

η · Ct[(1 + δ)gx0]
q−1 ≤ xτg+1 − xτg =

∑
t∈[τg,τg+1)

(xt+1 − xt)

=
∑

t∈[τg,τg+1)

η · Ctx
q−1
t ≤

∑
t∈[τg,τg+1)

η · Ct[(1 + δ)g+1x0]
q−1,

following lower bound for xτg+1
− xτg :

xτg+1
− xτg = xτg+1

− xτg−1 − η · Cτg−1x
q−1
τg−1

≥ (1 + δ)g+1x0 − (1 + δ)gx0 − η · Cτg−1[(1 + δ)gx0]
q−1

= δ(1 + δ)gx0 − η · Cτg−1(1 + δ)(q−1)gxq−1
0 ,

and following upper bound for xτg+1
− xτg :

xτg+1
− xτg = xτg+1−1 + η · Cτg+1−1x

q−1
τg+1−1 − xτg

≤ (1 + δ)g+1x0 + η · Cτg+1−1[(1 + δ)(g+1)x0]
q−1 − (1 + δ)gx0

= δ(1 + δ)gx0 + η · Cτg+1−1(1 + δ)(q−1)(g+1)xq−1
0 .

47

Published as a conference paper at ICLR 2023

Therefore,∑
t∈[τg,τg+1)

η · Ct[(1 + δ)gx0]
q−1 ≤ δ(1 + δ)gx0 + η · Cτg+1−1(1 + δ)(q−1)(g+1)xq−1

0 ,

∑
t∈[τg,τg+1)

η · Ct[(1 + δ)g+1x0]
q−1 ≥ δ(1 + δ)gx0 − η · Cτg−1(1 + δ)(q−1)gxq−1

0 .

These imply that∑
t∈[τg,τg+1)

η ·Ct ≤
δ

(1 + δ)(q−2)gx0
+η ·Cτg+1−1(1+δ)q−1 ≤ δ

(1 + δ)(q−2)gx0
+η ·C2(1+δ)q−1,

∑
t∈[τg,τg+1)

η · Ct ≥
δ

(1 + δ)(q−2)g+(q−1)x0
− η · Cτg−1(1 + δ)−(q−1)

≥ δ

(1 + δ)(q−2)g+(q−1)x0
− η · C2(1 + δ)−(q−1).

Recall b is the smallest integer such that (1 + δ)bx0 ≥ A, so we can calculate that

∑
t≥0,xt≤A

η · Ct ≤
b−1∑
g=0

δ

(1 + δ)(q−2)gx0
+ η · C2(1 + δ)q−1b

=
δ
(
1− (1 + δ)−(q−2)b

)(
1− (1 + δ)−(q−2)

)
x0

+ η · C2(1 + δ)q−1b

≤ δ

(1− (1 + δ)−(q−2))x0
+ η · C2(1 + δ)q−1b,

and ∑
t≥0,xt≤A

η · Ct ≥
b−1∑
g=0

δ

(1 + δ)(q−2)g+(q−1)x0
− η · C2(1 + δ)−(q−1)b

=
δ
(
1− (1 + δ)−(q−2)b

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
x0

− η · C2(1 + δ)−(q−1)b

≥
δ
(
1− (x0/A)q−2

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
x0

− η · C2(1 + δ)−(q−1)b,

where the last inequality is due to (1 + δ)bx0 ≥ A.

Note that (1 + δ)b−1x0 < A, i.e. b ≤ 1 + log (A/x0)
log (1+δ) , therefore∑

t≥0,xt≤A

η · Ct ≤
δ

(1− (1 + δ)−(q−2))x0
+ η · C2(1 + δ)q−1

(
1 +

log (A/x0)

log (1 + δ)

)
,

∑
t≥0,xt≤A

η · Ct ≥
δ
(
1− x0/A

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
x0

− η · C2(1 + δ)−(q−1)

(
1 +

log (A/x0)

log (1 + δ)

)
,

Note that C1 ≤ Ct ≤ C2, we have∑
t≥0,xt≤A

η ≤ δ

(1− (1 + δ)−(q−2))x0C1
+ η · C2

C1
(1 + δ)q−1

(
1 +

log (A/x0)

log (1 + δ)

)
,

∑
t≥0,xt≤A

η ≥
δ
(
1− (x0/A)q−2

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
x0C2

− η · (1 + δ)−(q−1)

(
1 +

log (A/x0)

log (1 + δ)

)
.

48

	Introduction
	Related Work
	Problem Setup and Preliminaries
	Semi-supervised Learning Pipeline with Pseudo-labelers
	Data distribution
	Supervised Learning Models
	Semi-supervised Learning Models

	Main Results
	Proof Sketch
	Experiments
	Conclusion and Future Work
	Proof for Semi-supervised Learning Setting
	Gradient Calculation
	Inner Product Update Rule Calculation
	Estimate
	Stage I of GD: On-diagonal feature learning
	Upper bound and lower bound for
	Uniform upper bound for
	

	Proof of Lemma 5.2
	Proof of Lemma 5.4
	Empirical, test error and loss for early stopped classifier
	Downstream task

	Proof of supervised learning setting
	Auxiliary Lemmas

