
Orion: Zero Knowledge Proof
with Linear Prover Time

Tiancheng Xie1, Yupeng Zhang2, and Dawn Song1(B)

1 University of California, Berkeley, Berkeley, USA
{tianc.x,dawnsong}@berkeley.edu

2 Texas A&M University, College Station, USA
zhangyp@tamu.edu

Abstract. Zero-knowledge proof is a powerful cryptographic primitive
that has found various applications in the real world. However, existing
schemes with succinct proof size suffer from a high overhead on the proof
generation time that is super-linear in the size of the statement repre-
sented as an arithmetic circuit, limiting their efficiency and scalability
in practice. In this paper, we present Orion, a new zero-knowledge argu-
ment system that achieves O(N) prover time of field operations and hash
functions and O(log2 N) proof size. Orion is concretely efficient and our
implementation shows that the prover time is 3.09 s and the proof size
is 1.5 MB for a circuit with 220 multiplication gates. The prover time
is the fastest among all existing succinct proof systems, and the proof
size is an order of magnitude smaller than a recent scheme proposed in
Golovnev et al. 2021.

In particular, we develop two new techniques leading to the efficiency
improvement. (1) We propose a new algorithm to test whether a random
bipartite graph is a lossless expander graph or not based on the densest
subgraph algorithm. It allows us to sample lossless expanders with an
overwhelming probability. The technique improves the efficiency and/or
security of all existing zero-knowledge argument schemes with a linear
prover time. The testing algorithm based on densest subgraph may be of
independent interest for other applications of expander graphs. (2) We
develop an efficient proof composition scheme, code switching, to reduce
the proof size from square root to polylogarithmic in the size of the com-
putation. The scheme is built on the encoding circuit of a linear code and
shows that the witness of a second zero-knowledge argument is the same
as the message in the linear code. The proof composition only introduces
a small overhead on the prover time.

1 Introduction

Zero-knowledge proof (ZKP) allows a prover to convince a verifier that a state-
ment is valid, without revealing any additional information about the prover’s
secret witness of the statement. Since it was first introduced in the seminal
paper by Goldwasser, Micali and Rackoff [GMR89], ZKP has evolved from
a purely theoretical interest to a concretely efficient cryptographic primitive,
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13510, pp. 299–328, 2022.
https://doi.org/10.1007/978-3-031-15985-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15985-5_11&domain=pdf
https://doi.org/10.1007/978-3-031-15985-5_11


300 T. Xie et al.

leading to many real-world applications in practice. It has been widely used
in blockchains and cryptocurrencies to achieve privacy (Zcash [BCG+14,zca])
and to improve scalability (zkRollup [zkr]). More recently, it also found applica-
tions in zero-knowledge machine learning [ZFZS20,LKKO20,LXZ21,FQZ+21,
WYX+21], zero-knowledge program analysis [FDNZ21], and zero-knowledge
middlebox [GAZ+22].

There are three major efficiency measures in ZKP: the overhead of the prover
to generate the proof, which is referred to as the prover time; the total commu-
nication between the prover and the verifier, which is called the proof size; and
the time to verify the proof, which is called the verifier time. Despite its recent
progress, the efficiency of ZKP is still not good enough for many applications.
In particular, the prover time is one of the major bottlenecks preventing exist-
ing ZKP schemes from scaling to large statements. As pointed out by Golovnev
et al. in [GLS+], to prove a statement that can be modeled as an arithmetic
circuit with N gates, existing schemes with succinct proof size either perform
a fast Fourier transform (FFT) due to the Reed-Solomon code encodings or
polynomial interpolations, or a multi-scalar exponentiation due to the use of
discrete-logarithm assumptions or bilinear maps, over a vector of size O(N).
The former takes O(N log N) field additions and multiplications and the latter
takes O(N log |F|) field multiplications, where |F| is the size of the finite field.
With the Pippenger’s algorithm [Pip], the complexity of the multi-scalar expo-
nentiation can be improved to O(N log |F|/ log N), which is still super-linear as
log |F| = ω(log N) to ensure security. These operations are indeed the domi-
nating cost of the prover time both asymptotically and concretely. See Sect. 1.3
for more discussions about existing ZKP schemes categorized by the underlying
cryptographic techniques.

The only exceptions in the literature are schemes in [BCG+17,BCG20,
BCL22,GLS+]. Bootle et al. [BCG+17] proposed the first ZKP scheme with
a prover time of O(N) field operations and a proof size of O(

√
N) using a linear-

time encodable error-correcting code. The proof size is later improved to O(N1/c)
for any constant c via a tensor code in [BCG20], and then to polylog(N) via a
generic proof composition with a probabilistic checkable proof (PCP) in [BCL22].
These schemes are mainly for theoretical interests and do not have implementa-
tions with good concrete efficiency. Recently, Golovnev et al. [GLS+] proposed a
ZKP scheme based on the techniques in [BCG20] by instantiating the linear-time
encodable code with a randomized construction. However, the security guarantee
(soundness error) is only inverse polynomial in the size of the circuit, instead of
negligible. Moreover, the proof size of the implemented scheme is O(

√
N) (more

details are presented in Sect. 1.3). Therefore, the following question still remains
open:

Can we construct a concretely efficient ZKP scheme with O(N) prover time
and polylog(N) proof size?



Orion: Zero Knowledge Proof with Linear Prover Time 301

Table 1. Comparison to existing ZKP schemes with linear prover time. N is the size
of the circuit/R1CS and c ≥ 2 is a constant.

Prover time Proof size Verifier time Soundness error Concrete efficiency

[BCG+17] O(N) O(
√
N) O(N) negl(N) ✗

[BCG20] O(N) O(N1/c) O(N) negl(N) ✗

[BCL22] O(N) polylog(N) O(N) negl(N) ✗

[GLS+] O(N) O(
√
N) O(N) O( 1

poly(N)
) ✓

our scheme O(N) O(log2 N) O(N) negl(N) ✓

1.1 Our Contributions

We answer the question above positively in this paper by proposing a new ZKP
scheme. In particular, our contributions include:

– First, we propose a random construction of the linear-time encodable code
that has a constant relative distance with overwhelming probability. Such
a code was used in all existing linear-time ZKP schemes [BCG+17,BCG20,
BCL22,GLS+] and thus our new construction also improves their efficiency.
The key technique is a new algorithm to test whether a random graph is a
good expander graph based on the densest sub-graph algorithm, which may
be of independent interest for other applications of expander graphs [SZT02].

– Second, we propose a new reduction that achieves a proof size of O(log2 N)
efficiently. Our new technique is a proof composition named “code switching”
that reduces the proof size of the schemes in [BCG20,GLS+] from O(

√
N) to

O(log2 N) with a small overhead on the prover time.
– Finally, we implement our new ZKP scheme, Orion, and evaluate it experi-

mentally. On a circuit with 220 gates (rank-1-constraint-system (R1CS) with
220 constraints), the prover time is 3.09 s, the proof size is 1.5 MBs and the
verifier time is 70 ms. Orion has the fastest prover time among all existing
ZKP schemes in the literature. The proof size is 6.5× smaller than the system
in [GLS+]. The scheme is plausibly post-quantum secure and can be made
non-interactive via the Fiat-Shamir heuristic [FS86].

Table 1 shows the comparison between our scheme and existing schemes with
linear prover time and succinct proof size.

1.2 Technical Overview

Testing Expander Graphs via Densest Sub-graph. All existing ZKP
schemes with linear prover time and succinct proof size [BCG+17,BCG20,BCL22,
GLS+] use linear-time encodable codes with a constant relative distance pro-
posed in [Spi96,DI14,GLS+], which in turn all rely on the existence of good
expander graphs. In a good expander graph, any subset of vertices expands to
a large number of neighbors. Figure 1 shows an example of a bipartite graph
where any subset of vertices on the left of size 2 expands to at least 5 vertices on
the right. See Sect. 2.1 for formal definitions and constructions. However, how to



302 T. Xie et al.

L R

G’

Fig. 1. An example of lossless expander. k = 6, k′ = 9, g = 3, δ = 1, ε = 1
6
.

construct such good expanders remain unclear in practice. Explicit construc-
tions [CRVW02] have large hidden constants in the complexity and thus are not
practical. A random graph tends to have good expansion, but the probability
that a random graph is not a good expander is inverse polynomial in the size
of the graph. The code constructed from such a non-expanding graph does not
have a good minimum distance, making the ZKP scheme insecure. Therefore, a
randomly sampled graph is not good for cryptographic applications.

In this paper, we propose a new algorithm to efficiently test whether a random
graph is a good expander or not. With the new testing algorithm, we are able to
re-sample the random graph until it passes the test, obtaining a good expander
with an overwhelming probability and boosting the soundness error of the ZKP
scheme to be negligible. The testing algorithm is based on the densest sub-graph
algorithm [Gol84]. The density of a graph G = (V,E) is defined as the number
of edges divided by the number of vertices |E|

|V | , and the densest sub-graph is
simply the sub-graph in a graph with the maximum density. We observe that a
good expander graph tends to have a small maximum density. This is because
assuming the degree g of each vertex is a constant, e.g. g = 3 for all vertices on
the left in Fig. 1, given any subset of vertices of size s in the graph, the total
number of edges is fixed as |E| = gs in the sub-graph defined by this subset and
its neighbors. For example, any two vertices on the left in Fig. 1 as highlighted
always have 6 outgoing edges. Then we differentiate two cases:

– In a good expander graph, any subset expands to a large number of neighbors,
thus the total number of vertices in this sub-graph is large. Therefore, the
density of any sub-graph is small;

– In contrast, if the graph is not a good expander, there is at least one subset
that does not expand. Taking the sub-graph defined by this subset and its
neighbors, again the number of edges is fixed, while the number of vertices is
small. Therefore, the density of this sub-graph is large, which will be detected
by the densest subgraph algorithm.

This observation gives us a way to differentiate good expanders. To the best of
our knowledge, we are the first to make the connection between expander and
the densest subgraph problem.



Orion: Zero Knowledge Proof with Linear Prover Time 303

The real testing algorithm involves random sampling and repeating the dens-
est sub-graph algorithm because of additional conditions of the expander. The
formal algorithm, theorem and proofs are presented in Sect. 3.

Proof Composition via Code-Switching. With the expander graph sampled
above and the corresponding linear code, we are able to build efficient ZKP
schemes following the approaches in [BCG+17,BCG20,GLS+]. However, the
proof size is O(N1/c) instead of polylog(N). To reduce the proof size, a common
technique in the literature is proof composition. Instead of sending the proof
directly to the verifier, the prover uses a second ZKP scheme to show that the
proof of the first ZKP is indeed valid. In particular, in [BCG+17,BCG20,GLS+],
the proof is a codeword of the linear-time encodable code, and the checks can
be represented as several inner products between the message in the codeword
of the proof and some public vectors.

Unfortunately, we do not have a second ZKP scheme with a polylog(N) proof
size to prove inner products. If we had it, we would already be able to build a
ZKP scheme with polylog(N) proof size in the first place. Instead, we rely on the
fact that the proof is a codeword of the linear code and construct the second ZKP
scheme as follows. One component of the second ZKP scheme is the encoding
circuit of the linear-time encodable code. It takes the witness of the second ZKP
scheme, encodes it and outputs several random locations of the codeword. The
verifier checks that these random locations are the same as the proof of the first
ZKP scheme, without receiving the entire proof. By the distance of the linear-
time encodable code, we show that the witness of the second ZKP must be the
same as the message in the proof of the first ZKP with overwhelming probability.
After that, the other component of the second ZKP checks the inner product
relationship modeled as an arithmetic circuit.

With this idea, we can use any general-purpose ZKP scheme on arithmetic
circuits with a polylog(N) proof size as the second ZKP scheme in the proof
composition. The size of this circuit is only O(

√
N), thus the second ZKP does

not introduce any overhead on the prover time as long as its prover time is no
more than quadratic. In our construction, we use the ZKP scheme in [ZXZS20] as
the second ZKP. The scheme is based on the interactive oracle proofs (IOP) and
the witness is encoded using the Reed-Solomon code. Therefore, the technique
is called code switching. The formal protocols are presented in Sect. 4.

1.3 Related Work

Zero-knowledge proof was introduced in [GMR89] and generic constructions
based on PCPs were proposed by Kilian [Kil92] and Micali [Mic00] in the
early days. Driven by various applications mentioned in the introduction, there
has been significant progress in efficient ZKP protocols and systems. Catego-
rized by their underlying techniques, there are ZKP systems based on bilinear
maps [PHGR13,BSCG+13,BFR+13,BSCTV14,CFH+15,WSR+15,FFG+16,
GKM+18,MBKM19,GWC19,CHM+20,KPPS20], MPC-in-the-head [GMO16,
CDG+17,AHIV17,KKW18], interactive proofs [ZGK+17a,ZGK+17b,WTS+18,



304 T. Xie et al.

ZGK+18,XZZ+19,ZLW+21], discrete logarithm [BBB+18,BFS20,Set20,SL20],
interactive oracle proofs (IOP) [BSCR+19,BSBHR19,ZXZS20,BFH+20,COS20,
BDFG20], and lattices [BBC+18,ESLL19,BLNS20,ISW21]. As mentioned in the
introduction, these schemes perform either an FFT (such as schemes based on
MPC-in-the-head and IOP) or a multi-scalar exponentiation (such as schemes
based on discrete-log and bilinear pairing), making the complexity of the prover
time super-linear in the size of the circuit.

With the techniques proposed in [XZZ+19,ZLW+21], the prover time of the
schemes based on the interactive proofs (the GKR protocol [GKR08]) is linear if
the size of the input is significantly smaller than the size of the circuit. However,
the goal of this paper is to make the prover time strictly linear without such a
requirement, and our polynomial commitment scheme can also be plugged into
these schemes to improve their efficiency.

Schemes with Linear Prover Time. As mentioned before, schemes in
[BCG+17,BCG20,BCL22,GLS+] are the only candidates in the literature with
linear prover time and succinct proof size. They all use linear-time encodable
codes based on expander graphs and our first contribution applies to all of them.
Moreover, our ZKP scheme is based on the polynomial commitment in [GLS+]
and the tensor IOP in [BCG20], and we improve the proof size to O(log2 N)
through a proof composition. In fact, the scheme in [BCL22] also proposes a
proof composition with the PCP in [Mie09]. However, the complexity of the
PCP is polynomial time. That is why the scheme in [BCL22] has to be built
on the scheme in [BCG20] with a proof size of O(N1/c) and is not concretely
efficient, while our scheme can be built on top of the efficient scheme in [GLS+]
with a proof size of O(

√
N). A similar proof composition with PCP was also used

in [RZR20] for a different purpose. We view our approach using the encoding
circuit as a variant of the proof composition that is efficient in practice, and we
inherit the name “code switching” from [RZR20].

Finally, the scheme in [GLS+] samples a random graph to build the linear-
time encodable code. The scheme achieves a soundness error of O( 1

poly(N) ) and
the authors spent great efforts to calculate parameters to achieve a concrete
failure probability of 2−100 for large circuits in practice [GLS+, Claim 2 and
Fig. 2]. Our sampling algorithm provides the provable security guarantee for a
negligible soundness error for their scheme. Moreover, we improve the proof size
from O(

√
N) to O(log2 N) efficiently, solving an open problem left in [GLS+].

Schemes with Linear Proof Size. Recently, there is a line of work construct-
ing ZKP based on secure multiparty computation (MPC) techniques [WYKW20,
DIO21,BMRS21,YSWW21] and these schemes have demonstrated fast prover
time in practice. If one treats a block cipher (e.g., AES) as a constant-time oper-
ation because of the CPU instruction, these schemes indeed have a linear time
prover (we are using a similar CPU instruction for the hash function SHA-256 in
our scheme to achieve linear prover time). However, they have linear proof size in
the size of the circuit, are inherently interactive, and are not publicly verifiable,
which are not desirable in many applications. We mainly focus on non-interactive
ZKP with succinct proof size and public verifiability in this paper.



Orion: Zero Knowledge Proof with Linear Prover Time 305

Expander Testing. Testing the properties of expander graphs is a deeply
explored area in computer science. Many works [NS07,CS07,GR11] have pro-
posed efficient testing algorithms without accessing the whole graph. However,
these algorithms do not directly apply to our testing of lossless expander. For
example, the algorithm in [NS07] based on random walks can differentiate good
expanders from graphs that are far from expanders, while our scheme can differ-
entiate whether a graph is a lossless expander or not with overwhelming prob-
ability. Of course our algorithm accesses the entire graph, which is fine in our
application of linear-time encodable code. To the best of our knowledge, we are
not aware of any testing algorithm with such properties.

There are also impossibility results on expander testing [KS16]. Due to differ-
ent definitions of expansion, our testing algorithm cannot distinguish the cases
in [KS16, Theorem 1.1] and thus it does not violate the impossibility results.

2 Preliminary

We use [N ] to denote the set {0, 1, 2, ..., N −1}. poly(N) means a function upper
bounded by a polynomial in N with a constant degree. We use λ = ω(log N) to
denote the security parameter, and negl(N) to denote the negligible function in
N , i.e. negl(N) ≤ 1

poly(N) for all sufficiently large N and any polynomial. Some
papers define negl(λ) as the negligible function. As λ is a function of N , they are
essentially the same and negl(N) ≤ 1

2λ . “PPT” stands for probabilistic polyno-
mial time. 〈A(x), B(y)〉(z) denotes an interactive protocol between algorithms
A,B with x as the input of A, y as the input of B and z as the common input.

2.1 Linear Time Encodable Linear Code

Definition 1 (Linear Code). A linear error-correcting code with message
length k and codeword length n is a linear subspace C ∈ F

n, such that there
exists an injective mapping from message to codeword EC : Fk → C, which is
called the encoder of the code. Any linear combination of codewords is also a
codeword. The rate of the code is defined as k

n . The distance between two code-
words u, v is the hamming distance denoted as Δ(u, v). The minimum distance
is d = minu,v Δ(u, v). Such a code is denoted as [n, k, d] linear code, and we also
refer to d

n as the relative distance of the code.

Generalized Spielman Code. In our construction, we use a family of lin-
ear codes that can be encoded in linear time and has a constant relative dis-
tance [Spi96,DI14,GLS+]. The code was first proposed by Daniel Spielman
in [Spi96] over the Boolean alphabet. Druk and Ishai [DI14] generalized it to
a finite field F, and introduced a distance boosting technique to achieve the
Gilbert-Varshamov bound [Gil52,Var57]. We only use the basic construction over
F without the distance boosting, and thus refer to it as the generalized Spielman
code in this paper. The code relies on the existence of lossless expander graphs,
which is defined below:



306 T. Xie et al.

Definition 2 (Lossless Expander [Spi96]). Let G = (L,R,E) be a bipartite
graph. 0 < ε < 1 and 0 < δ be some constants. The vertex set consists of L and
R, two disjoint subsets, henceforth the left and right vertex set. Let Γ (S) be the
neighbor set of some vertex set S. We say G is an (k, k′; g)-lossless expander
if |L| = k, |R| = k′ = αk for some constant α, and the following property hold:

1. Degree: The degree of every vertex in L is g.
2. Expansion: |Γ (S)| ≥ (1 − ε)g|S| for every S ⊆ L with |S| ≤ δ|L|

g .

Intuitively speaking, a lossless expander has very strong expansion. As the
degree of each left vertex is g, a set of |S| left vertices have at most g|S| neighbors,
while the second condition requires that every set expands to at least (1− ε)g|S|
vertices for a small constant ε. Meanwhile, as the right vertext set has |R| = αk
vertices, such an expansion is not possible if |S| > αk

(1−ε)g , thus there is a condition
|S| ≤ δk

g bounding the size of S. An example is shown in Fig. 1.

Construction of Generalized Spielman Code. With the lossless expander, we
give a brief description of the generalized Spielman code. Let G = (L,R,E)
be a lossless expander with |L| = 2t, |R| = 2t−1. Let At be a 2t × 2t−1 matrix
where At[i][j] = 1 if there is an edge i, j in G for i ∈ [2t], j ∈ [2t−1]; otherwise
At[i][j] = 0. The generalized Spielman code is constructed as follows:

1. Let Et
C(x) be the encoder function of input length |x| = 2t, and its output

will be a codeword of size 2t+2. We use EC to denote the encoder function
when length is clear.

2. If |x| ≤ n0 then directly output x, for some constant n0.
3. Compute m1 = xAt. Each entry of m1 can be viewed as a vertex in R, and

value of each vertex is the summation of its neighbors in L. The length of m1

is 2t−1.
4. Recursively apply the encoder Et−1

C on m1, let c1 = Et−1
C (m1).

5. Compute c2 = c1At+1.
6. Output x 
 c1 
 c2 as the codeword of size 2t+2. 
 denotes concatenation.

Lemma 1 (Generalized Spielman code, [DI14]). Given a family of lossless
expander, that achieves (1 − ε)g|S| expansion with |S| ≤ δ|L|

g , for input size k,
the generalized Spielman code is a [4k, k, δ

8g k] linear code over F.

The code in [GLS+] is a variant of generalized Spielman code. In their con-
struction, random weights are assigned to each edge of lossless expander at line
3, 5. And randomize the output at line 6: (x⊗r)
c1
c2, here ⊗ is element-wise
multiply, r is a random vector.

Definition 3 (Tensor code). Let C be a [n, k, d] linear code, the tensor code
C⊗2 of dimension 2 is the linear code in F

n2
with message length k2, codeword

length n2, and distance nd. We can view the codeword as a n × n matrix. We
define the encoding function below:



Orion: Zero Knowledge Proof with Linear Prover Time 307

1. A message of length k×k is parsed as a k×k matrix. Each row of the matrix
is encoded using EC , resulting in a codeword C1 of size k × n.

2. Each column of C1 is then encoded again using EC . The result C2 of size n×n
is the codeword of the tensor code.

2.2 Collision-Resistant Hash Functions and Merkle Tree

Let H : {0, 1}2λ → {0, 1}λ be a hash function. A Merkle Tree is a data structure
that allows one to commit to l = 2dep messages by a single hash value h, such
that revealing any bit of the message require dep + 1 hash values.

A Merkle hash tree is represented by a binary tree of depth dep where l
messages elements m1,m2, ...,ml are assigned to the leaves of the tree. The
values assigned to internal nodes are computed by hashing the value of its two
child nodes. To reveal mi, we need to reveal mi together with the values on the
path from mi to the root. We denote the algorithm as follows:

1. h ← Merkle.Commit(m1, ...,ml).
2. (mi, πi) ← Merkle.Open(m, i).
3. {accept, reject} ← Merkle.Verify(πi,mi, h).

2.3 Zero-Knowledge Arguments

An argument system for an NP relation R is a protocol between a computa-
tionally bounded prover P and a verifier V. At the end of the protocol V will
be convinced that there exits a witness w such that (x,w) ∈ R for some public
input x. We focus on arguments of knowledge which require the prover know the
witness w. We formally define zero-knowledge as follows:

Definition 4 (View). We denote by View(〈P,V〉(x)) the view of V in an
interactive protocol with P. Namely, it is the random variable (r, b1, b2, ..., bn,
v1, v2, ..., vm) where r is V’s randomness, b1, ..., bn are messages from V to P,
and v1, ..., vm are messages from P to V.

Definition 5. Let R be an NP relation. A tuple of algorithm (G,P,V) is a
zero-knowledge argument of knowledge for R if the following holds.

– Correctness. For every pp output by G(1λ) and (x,w) ∈ R,

Pr[〈P(w),V()〉(pp, x) = accept] = 1.

– Knowledge Soundness. For any PPT adversary P∗, there exists a PPT
extractor ε such that for every pp output by G(1λ) and any x, the following
probability is negl(N):

Pr[〈P∗(), V()〉(pp, x) = accept, (x, w) /∈ R|w ← ε(pp, x,View(〈P∗(), V()〉(pp, x)))]



308 T. Xie et al.

– Zero knowledge. There exists a PPT simulator S such that for any PPT
algorithm V∗, (x,w) ∈ R, pp output by G(1λ), it holds that

View(〈P(w),V∗()〉(x)) ≈ SV∗
(pp, x)

Where SV∗
(x) denotes that S is given oracle accesses to V∗’s random tape.

We say that (G,P,V) is a succinct argument system if the total communication
between P and V (proof size) is poly(λ, |x|, log |w|).
Definition 6 (Arithmetic circuit). An arithmetic circuit C over F and a set
of variables x1, ..., xN is a directed acyclic graph as follows:

1. Each vertex is called a “gate”. A gate with in-degree zero is an input gate and
is labeled as a variable xi or a constant field element in F.

2. Other gates have 2 incoming edges. It calculates the addition or multiplication
over the two inputs and output the result.

3. The size of the circuit is defined as the number of gates N .

2.4 Polynomial Commitment

A polynomial commitment consists of three algorithms:

– PC.Commit(φ(·)): the algorithm outputs a commitment R of the polynomial
φ(·).

– PC.Prove(φ, �x,R): given an evaluation point φ(�x), the algorithm outputs a
tuple 〈�x, φ(�x), π�x〉, where π�x is the proof.

– PC.VerifyEval(π�x, �x, φ(�x),R): given π�x, �x, φ(�x),R, the algorithm checks if φ(�x)
is the correct evaluation. The algorithm outputs accept or reject.

Definition 7 ((Multivariate) Polynomial commitment). A polynomial
commitment scheme has the following properties:

– Correctness. For every polynomial φ and evaluation point �x, the following
probability holds:

Pr

⎛
⎜⎜⎜⎝

PC.Commit(φ) → R
PC.Prove(φ, �x,R) → �x, y, π

y = φ(�x)
PC.VerifyEval(π, �x, y,R) → accept

⎞
⎟⎟⎟⎠ = 1

– Knowledge Soundness. For any PPT adversary P∗ with PC.Commit∗,
PC.Prove∗, there exists a PPT extractor E such that the probability below
is negligible:

Pr

⎛
⎜⎝

PC.Commit∗(φ∗) → R∗

PC.Prove∗(φ∗, �x, R∗) → �x, y∗, π∗

PC.VerifyEval(π∗, �x, y∗, R∗) → accept

∣∣∣∣∣∣∣
φ∗ ← E(R∗, �x, π∗, y∗) ∧ y∗ 	= φ∗(�x)

⎞
⎟⎠



Orion: Zero Knowledge Proof with Linear Prover Time 309

– Zero-knowledge. For security parameter λ, polynomial φ, any PPT adver-
sary A, there exists a simulator S = [S0,S1], we consider following two
experiments:

RealA,φ(pp):
1. R ← Commit(pp, φ)
2. �x ← A(R, pp)
3. (�x, y, π) ← Prove(φ, �x, R)
4. b ← A(π, �x, y, R)
5. Output b

IdealA,SA(pp):

1. R ← S0(1
λ, pp)

2. �x ← A(R, pp)
3. (�x, y, π) ← SA

1 (�x, pp), given oracle
access to y = φ(�x)

4. b ← A(π, �x, y, R)
5. Output b

For any PPT adversary A, two experiments are identically distributed:

Pr[|RealA,f (pp) − IdealA,SA(pp)| = 1] ≤ negl(N)

3 Testing Algorithm for Lossless Expander

As explained above, the generalized Spielman code relies on the existence of loss-
less expanders. On one hand, there are explicit constructions of lossless expanders
in the literature [CRVW02]. However, there are large hidden constants in the
complexity and the constructions are not practical. On the other hand, a random
bipartite graph is a lossless expander with a high probability of 1 − O( 1

poly(k) ),
where k is the size of the left vertex set in the bipartite graph. However, this is
not good enough for cryptographic applications.

In this section, we propose a new approach to sample a lossless expander
with a negligible failure probability. The key ingredient of our approach is a
new algorithm to test whether a randomly sampled bipartite graph is a lossless
expander or not. We begin the section by introducing the classical randomized
construction of a lossless expander and its analysis.

3.1 Random Construction of Lossless Expander

As defined in Definition 2, a lossless expander graph is a g-left-regular bipartite
graph G = (L,R,E). Wigderson et al. [HLW06, Lemma 1.9] showed that a ran-
dom bipartite graph is a lossless expander with a high probability. In particular,
we have the following lemma:

Lemma 2 ([HLW06]). For fixed constant parameters g, δ, α, ε, a random g-
left-regular bipartite graph is a (k, k′; g)-lossless-expander with probability 1 −
O( 1

poly(k) ).

Proof. Let G = (L,R,E) be a random bipartite graph with k vertices on the
left and k′ = O(k) vertices on the right, where each left vertex connects to a
randomly chosen set of g vertices on the right.

Let s = |S| be the cardinality of a left subset of vertices S ⊆ L such that
s ≤ δk

g , and let t = |T | be the cardinality of a right subset of vertices T ⊆ R such
that t ≤ (1−ε)gs. Let XS,T be an indicator random variable for the event that all



310 T. Xie et al.

the edges from S connect to T . Then for a particular S, if
∑

T∈R XS,T = 0, then
the number of neighboring vertices of S must be larger than (1−ε)gs. Otherwise,
if there exists a T ∈ R such that XS,T = 1, i.e., all edges from S connect to T ,
the graph is not a lossless expander. As the edges are sampled randomly, the
probability of this non-expanding event is ( t

k′ )sg. Therefore, summing over all S
and by the union bound, the probability of a non-expanding graph is:

Pr[(
∑
S,T

XS,T ) > 0] ≤
∑
S,T

Pr[XS,T = 1] =
∑
S,T

(
t

k′ )
sg

≤
δk
g∑

s=2

(
k

s

)(
k′

t

)
(

t

k′ )
sg ≤

δk
g∑

s=2

(
k

s

)(
k′

(1 − ε)gs

)
(
(1 − ε)gs

k′ )sg

Using the inequality
(
k
s

) ≤ (ke
s )s, the probability above is

≤
δk
g∑

s=2

(
ke

s
)s(

k′e
(1 − ε)gs

)(1−ε)gs(
(1 − ε)gs

k′ )sg

=

δk
g∑

s=2

(
ke

s
)se(1−ε)gs(

(1 − ε)gs

k′ )εgs

=

δk
g∑

s=2

e(1−ε)gs+s · (
k

s
)s · (

(1 − ε)gs

k′ )εgs (1)

When s, ε, g are constants and k′ = O(k), e(1−ε)gs+s is a constant, (k
s )s is

O(poly(k)), and ( (1−ε)gs
k′ )εgs is O( 1

poly(k) ). Therefore, the overall upper bound is
at least O( 1

poly(k) ).

The derivation above shows that the probability that a random graph is
not a lossless expander is upper-bounded by O( 1

poly(k) ), which is not negligible.
Furthermore, we show that the lower-bound of the non-expanding probability is
also not negligible through a simple argument here.

We focus on the case where s is a constant. The number of all possible sub-
graphs induced by a left subset of vertices S is at most k′sg = O(poly(k)). That is,
the size of the entire probability space is bounded by a polynomial. The number
of non-expanding graphs is at least 1 (e.g., all edges from S connect to a single
vertex in R). Therefore, the non-expanding probability is at least O( 1

poly(k) ).

Lossless Expander in [GLS+]. As explained in Sect. 2.1, in [GLS+], the authors
extended the generalized Spielman code by adding random weights to the edges
in the bipartite graph. However, the graph still needs to be a lossless expander in
order to achieve a constant relative distance, and the same issue above applies to



Orion: Zero Knowledge Proof with Linear Prover Time 311

their construction. In particular, as shown by [GLS+, Claim 2], the probability
of not sampling a lossless expander is

2kH(15/k)+αkH(19.2/(αk))−15g log αk
19.2 ,

where H(x) = −x log x − (1 − x) log(1 − x). We show that the probability above
is not negligible. First, for any constant const,

xH(const/x) = x(−const

x
log

const

x
− (1 − const

x
) log(

x − const

x
)

= (const log(x) − const log const) + (1 − const

x
) log(

x − const

x
).

By taking the limit, we have limx→∞ xH(const/x) = (const log(x) −
const log const) + 1 × 0. Therefore, xH(const/x) = O(log x). Applying this
fact to the equation above, kH(15/k) + αkH(19.2/(αk)) = O(log k), and
−15g log αk

19.2 = −O(log k). Therefore, 2kH(15/k)+αkH(19.2/(αk))−15g log αk
19.2 is at

least 2−O(log k) = 1
poly(k) . The failure probability is similar to the upper bound

in Eq. 1.

3.2 Algorithm Based on Densest Sub-graph

To reduce the non-expanding probability of the random construction, we take a
closer look at the equations above. Equation 1 shows that the probability that a
random bipartite graph is a not lossless expander is upper bounded by 1

poly(k) .
However, we observe that within the summation, the probability is actually
negligible when s is large. In particular, if we decompose the summation in Eq. 1
into two sums, one for 2 ≤ s ≤ log log k, and the other for s ≥ log log k, the
second part is

δk
g∑

s=log log k

e(1−ε)gs+s · (
k

s
)s · (

(1 − ε)gs

k′ )εgs. (2)

Lemma 3. Equation 2 is negligible if the following conditions are met:

1. (1 − ε)δ + δ
g + δ

g log( g
δ ) + log( δ

α )εδ < −0.001,
2. εd > 2.

Here –0.001 is just any small constant that is less than 0. We give a proof in
the full version of the paper. To provide an intuition on how these parameters
are set, we give an example here: δ = 1

11 , ε = 7
16 , g = 16, k′ = 1

2k. We can verify
the condition:

1. εg = 7 > 2.
2. (1 − ε)δ + δ

g + δ
g log( g

δ ) + log( δ
α )εδ = −0.009 < −0.001.



312 T. Xie et al.

Sampling Lossless Expander with Negligible Failure Probability. The
observation above shows that the non-expanding probability is dominated by
small sub-graphs with size 2 ≤ s ≤ log log k. This actually matches our lower
bound in Sect. 3.1, as there are only polynomially many such sub-graphs and
there exist ones that do not expand. Therefore, in order to reduce the non-
expanding probability, we propose a new algorithm that detects small sub-graphs
of size s ≤ log log k that do not expand. The algorithm is based on the densest
sub-graph problem, and we are the first to make the connection between the
densest sub-graph and the lossless expander.

Definition 8 (Densest Sub-graph Problem). Let G = (V,E) be an undi-
rected graph, and let S = (ES , VS) be a subgraph of G. The density of S is
defined to be den(S) = ES

VS
. The densest sub-graph problem is to find S such that

it maximizes den(S). We denote the maximum density by Den(G).

Theorem 1 [Gol84]. For any graph G = (V,E), there is a polynomial time
algorithm that find the densest sub-graph G′ = (V ′, E′) such that V ′ ⊆ V and
G′ is the sub-graph. And |E′|

|V ′| is maximized. The running time of the algorithm
is O(|V ||E| log |E| log |V |).

We will use this algorithm as a building block of our testing algorithm. First,
we define a notion of perfect expander, and then derive the density of a perfect
expander.

Definition 9 (Perfect expander). Let G = (L,R,E) be a bipartite graph.
We say G is an (k∗, k′; g)-perfect expander if |L| = k∗, |R| = k′, the following
property holds (where Γ (S) denotes the set of neighbors of a set S in G):

1. Degree: every vertex a ∈ L, it has constant degree g.
2. Expansion: |Γ (S)| ≥ (1 − ε)g|S| for every S ⊆ L.

Compared to lossless expander, the perfect expander does not have the upper
bound on |S| in the expansion property. Therefore, k′ has to be much larger than
k∗, unlike the case of lossless expander where k′ = O(k). Now we show that the
density of a perfect expander is low:

Theorem 2. If a bipartite graph is a perfect expander, its density is at most
g

1+(1−ε)g ; otherwise, the density of the graph is larger than g
1+(1−ε)g .

Proof. We first show that the density of a perfect expander is at most g
1+(1−ε)g .

For any subset L′ ⊆ L, we prove that among all sub-graphs that L′ is the left
vertex set, the graph induced by (L′, Γ (L′)) has the maximum density.

To see this, suppose V ′ = (L′, R′), R′ �= Γ (L′) has density |E′|
|V ′| that is the

densest sub-graph with L′ as its left vertex set.

Case 1: If there exists a vertex y ∈ R′, y /∈ Γ (L′), then there is no edge
between y and L′. We can increase the density by removing y from R′, as

|E′|
|V ′|−1 > |E′|

|V ′| . This is a contradiction. Therefore, R′ ⊆ Γ (L′).



Orion: Zero Knowledge Proof with Linear Prover Time 313

Case 2: If there exists an element y ∈ Γ (L′), y �∈ R′, let c ≥ 1 be the number of
edges between y and L′, by adding y to R′, the density becomes |E′|+c

|V ′|+1 > |E′|
|V ′| .

This is a contradiction again and thus Γ (L′) ⊆ R′.

Therefore, we have Γ (L′) = R′ and V ′ = (L′, Γ (L′)) maximizes the den-
sity among all sub-graphs with L′ as the left vertex set. Let that sub-graph
be G′. By the expansion property of the perfect expander, den(G′) = |E′|

|V ′| ≤
|L′|g

|L′|+(1−ε)g|L′| = g
1+(1−ε)g . Therefore, the maximum density Den(G) = maxL′⊆L

den(G′) ≤ g
1+(1−ε)g .

Next, we show that if a bipartite graph is not a perfect expander, its density is
larger than g

1+(1−ε)g . Let S∗ be the set such that |Γ (S∗)| < (1−ε)g|S∗|, then the

density of the sub-graph G′ = (V ′ = (S∗, Γ (S∗)), E′) is |E′|
|V ′| > g|S∗|

|S∗|+(1−ε)g|S∗| =
g

1+(1−ε)g , so Den(G) ≥ den(G′) > g
1+(1−ε)g .

3.3 Testing Random Lossless Expander

Theorem 2 suggests a way to test whether a random graph is a lossless expander.
As discussed in Lemma 3, when s ≥ log log k the non-expanding probability is
negligible. Thus, it suffices to test whether there is a sub-graph of size s <
log log k that does not expand. In particular, we are trying to distinguish the
following two cases:

1. Yes case: For G = (L,R,E), ∀S ⊆ L, |S| ≤ log log k, we have |Γ (S)| ≥
(1 − ε)g|S|.

2. No case: For G = (L,R,E), there exists a subset S∗ ⊆ L, |S∗| ≤ log log k,
such that |Γ (S∗)| < (1 − ε)g|S0|.
To distinguish these two cases, we cannot directly apply the densest sub-

graph algorithm on the entire bipartite graph, because the expansion property
only holds for |S| ≤ δk

g by Definition 2 of the lossless expander. The densest
sub-graph algorithm would return a large sub-graph with |S| > δk

g even if it is
a lossless expander, as the density of the large sub-graph could be larger than

g
1+(1−ε)g by Theorem 2.

Instead, we randomly sample sub-graphs G∗ = ((L′, Γ (L′)), E′) with δk
g ver-

texes in the left vertex set. If there exists a small non-expanding sub-graph
with at most log log k vertices on the left, the density of this small sub-graph
is larger than g

1+(1−ε)g and the probability of it is in the sub-graph G∗ is at
least ( δ

g )log log k. Once it is contained in G′, the densest-sub-graph algorithm
will output a sub-graph with density larger than g

1+(1−ε) . We will sample G∗

g
δ
log log k times to amplify the probability. The formal algorithm is presented in

Algorithm 1.

Theorem 3 (Distinguisher). Algorithm 1 achieves the following properties:

1. If G is a Yes case, then the algorithm will return SUCC with probability 1.



314 T. Xie et al.

Algorithm 1. Distinguisher
1: Let G = (L, R, E) be the random bipartite graph.
2:
3: for i ∈ [( g

δ
)log log k] do

4: Sample a random set L′, where |L′| = δk
g

.

5: Run densest graph algorithm in [Gol84] on the subgraph induced by L′: G∗ =
((L′, Γ (L′)), E′) to find its densest subgraph.

6: if Den(G∗) > g
1+(1−ε)g

then
7: return FAIL
8: return SUCC

2. If G is a No case, then the algorithm will return FAIL with probability at
least 1 − 1

e .

Proof. By Theorem 2, if the random graph is in Yes case, then the dis-
tinguisher will always return SUCC, since for every induced sub-graph G∗,
it is a perfect expander. Otherwise, if the random graph contains a subset
S0 ⊆ L, |S0| ≤ log log k such that |Γ (S0)| < (1 − ε)g|S0|, then with prob-

ability at least (
δk
g

k )log log k = ( δ
g )log log k, S0 will be a subset of L′ sampled

by the algorithm. In this case, L′ is not a perfect expander graph and by
Theorem 2, Den(G∗) > g

1+(1−ε)g and the algorithm will return FAIL. Since

we repeat it g
δ
log log n times, the probability that we did not successfully sam-

ple S0 is (1 − ( δ
g )log log k)(

g
δ )

log log k

. By the inequality (1 − 1
n )n ≤ 1

e , we have

(1 − ( δ
g )log log k)(

g
δ )

log log k ≤ 1
e .

By repeating the distinguisher λ times, we can amplify the detection prob-
ability of the No case to 1 − 1

eλ . Finally, we re-sample the random graph until
the distinguisher returns SUCC. The successful probability of one sampling is
1 − O( 1

poly(k) ), so the expected number of sampling is a constant. The algorithm
runs λ( g

δ )log log k instances of the densest sub-graph algorithm, and each instance
involves a graph with at most δ k

g vertices and δk edges, so the total running time is
O(λ( g

δ )log log kk2 log2 k) = O(λpolylog(k)k2). The same algorithm can also apply
to the lossless expander graph in [GLS+]. Our sampling algorithm is very efficient
in practice. First, it does not involve any cryptographic operations and is done
once. Second, k =

√
N in our protocol of the polynomial commitment in the next

section, so the complexity is actually quasi-linear in the size of the zero-knowledge
argument instance. Finally, the complexity of the densest sub-graph algorithm in
Theorem 1 is for arbitrary graphs. As observed in our experiments, the algorithm
is faster on random bipartite graphs and we conjecture that there is a better com-
plexity analysis, which is left as an interesting future work.

4 Our New Zero-Knowledge Argument

In this section, we present the construction of our zero-knowledge argu-
ment scheme. Many existing papers show that one can build zero-knowledge



Orion: Zero Knowledge Proof with Linear Prover Time 315

arguments from polynomial commitments [WTS+18,ZXZS20,CHM+20,Set20,
GWC19,BFS20,GLS+]. We adopt the same technique and focus on construct-
ing a polynomial commitment because of its simplicity and efficiency, but our
approach can be applied directly to the zero-knowledge arguments for R1CS
in [BCG20,BCL22] to improve the prover time and the proof size. We start the
section by describing the polynomial commitment scheme in [GLS+] based on
the tensor IOP protocol in [BCG20] with a proof size of O(

√
N).

4.1 Polynomial Commitment from Tensor Query

In [GLS+], Golovnev et al. observed that a polynomial evaluation can be
expressed as a tensor product. Here we only consider multilinear polynomial
commitments, which can be used to construct zero-knowledge arguments based
on the approaches in [ZGK+17b,WTS+18,XZZ+19,ZXZS20,Set20], but our
scheme can be extended to univariate polynomials. In particular, given a multi-
linear polynomial φ, its evaluation on input vector x0, x1, ..., xlog N−1 is:

φ(x0, x1, ..., xlog N−1) =
1∑

i0=0

1∑
i1=0

...
1∑

ilog N−1=0

wi0i1...ilog N−1x
i0
0 xi1

1 ...x
ilog N−1
log N−1.

The degree of each variable is either 0 or 1 by the definition of a multilinear poly-
nomial, and thus there are N monomials and coefficients with log N variables. We
let i =

∑log N−1
j=0 2jij , that is, i0i1...ilog N−1 is the binary representation of num-

ber i. We use w to denote the coefficients where w[i] = wi0i1...ilog N−1 . Similarly
we define Xi = xi0

0 xi1
1 ...x

ilog N−1
log N−1. Let k =

√
N , r0 = {X0,X1, ...,Xk−1}, r1 =

{X0×k,X1×k,X2×k, ...,X(k−1)×k}. Then we have X = r0 ⊗ r1. The polynomial
evaluation is reduced to a tensor product φ(x0, x1, ..., xlog N−1) = 〈w, r0 ⊗ r1〉.
Using the tensor IOP protocol in [BCG20], one can build a polynomial commit-
ment [GLS+] and we present the protocol in Protocol 2 for completeness. Here
we reuse the notation k as it is exactly the message length of the linear code.

As shown in the protocol, to commit to a polynomial, PC.Commit parses
the coefficients w as a k × k matrix and encodes it using the tensor code with
dimension 2 as defined in Definition 3. Then the algorithm constructs a Merkle
tree commitment for every column C2[:, i] of the n × n codeword C2, and finally
builds another Merkle tree on top of their roots as the final commitment.

To answer the tensor query, there are two checks in the protocol: a proximity
check and a consistency check. The proximity check ensures that the matrix in
the commitment is indeed close to a codeword of the tensor code. The consistency
check ensures that y = 〈r0 ⊗ r1, w〉 assuming R is a commitment of a codeword.

Proximity Check. The proximity heck has two steps. First, the verifier sends a
random vector γ0 to the prover, and the prover computes the linear combination
of all rows of C1 and w with γ0, as in Step 8 in Protocol 2. Because of the property
of a linear code, cγ0 is a codeword with message yγ0 , and this step is referred to
as the “fold” operation in [BCG20]. Second, the prover shows that cγ0 is indeed
computed from the committed tensor codeword. To do so, the verifier randomly



316 T. Xie et al.

Protocol 2. Polynomial commitment from [BCG20,GLS+]
Public input: The evaluation point �x, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial φ, the coefficient of φ is denoted by w.
Let C be the [n, k, d]-linear code, EC : Fk → F

n be the encoding function, N = k×k.
If N is not a perfect square, we can pad it to the next perfect square.
We use a python style notation to select the i-th column of a matrix mat[:, i].

1: function PC.Commit(φ)
2: Parse w as a k×k matrix. The prover computes the tensor code encoding C1,C2

locally as defined in Definition 3. Here C1 is a k×n matrix and C2 is a n×n matrix.
3: for i ∈ [n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).

5: Compute a Merkle tree root R = Merkle.Commit([Root0, ...,Rootn−1]) and out-
put R as the commitment.

6: function PC.Prove(φ, �x, R)
7: The prover receives a random vector γ0 ∈ F

k from the verifier.
8: cγ0 =

∑k−1
i=0 γ0[i]C1[i], yγ0 =

∑k−1
i=0 γ0[i]w[i]. 
 Proximity

9: c1 =
∑k−1

i=0 r0[i]C1[i], y1 =
∑k−1

i=0 r0[i]w[i]. 
 Consistency
10: Prover sends c1, y1, cγ0 , yγ0 to the verifier.
11: Verifier randomly samples t ∈ [n] indexes as an array Î and send it to prover.
12: for idx ∈ Î do
13: Prover sends C1[:, idx] and the Merkle tree proof of Rootidx for C2[:, idx] under

R to verifier
14: function PC.VerifyEval(π�x, �x, y = φ(�x), R)
15: ∀idx ∈ Î , cγ0 [idx] == 〈γ0,C1[:, idx]〉 and EC(yγ0) == cγ0 . 
 Proximity
16: ∀idx ∈ Î , c1[idx] == 〈r0,C1[:, idx]〉 and EC(y1) == c1. 
 Consistency
17: y == 〈r1, y1〉. 
 Tensor product
18: ∀idx ∈ Î, EC(C1[:, idx]) is consistent with Rootidx, and Rootidx’s Merkle tree proof

is valid.
19: Output accept if all conditions above holds. Otherwise output reject.

selects t columns and the prover opens them with their Merkle tree proofs. The
verifier checks that the inner product between each column and the random
vector γ0 is equal to the corresponding element of cγ0 (Step 15). As shown
in [BCG+17,BCG20], if the linear code has a constant relative distance, the
committed matrix is close to a tensor codeword with overwhelming probability.

Consistency Check. The consistency check follows exactly the same steps of the
proximity check. Instead of using a random vector from the verifier, the linear
combination is done with r0 of the tensor query r0⊗r1. Similarly, c1 is a codeword
of the linear code with message y1, and φ(x) = 〈y1, r1〉 by the definition of
tensor product and polynomial evaluation. As shown in [BCG20], by the check
in Step 16, if the committed matrix in R is close to a tensor codeword, then
y = φ(x) with overwhelming probability. In particular, there exist an extractor
to extract a polynomial φ from the commitment such that y = φ(x).

Theorem 4 (Polynomial commitment [BCG20,GLS+]). Protocol 2 is a
polynomial commitment that is correct and sound as defined in Definition 7.



Orion: Zero Knowledge Proof with Linear Prover Time 317

(rowi)

Check 1:
Check 2:  = ( )

Check 3:  = ⟨ 1, 1⟩

Check 4: =

Fold

= ⟨ 0, ⟩

(coli = )

( 1 = )

Codeword

Encoding Circuit

Input:

Random selector 

Inner 
product 
circuit

Final output 
Size ( ):

Check consistency 
on few outputs

Code-Switch

Fig. 2. An illustration of code switching. The circuit on the right for Check 1, 2 and
Check 3, 4 are the same.

Efficiency. The prover’s computation is dominated by encoding the tensor code,
which takes O(N) time using a linear-time encodable code such as the generalized
Spielman code. The proof size is O(t

√
N), as the prover opens t random columns

of size
√

N to the verifier. The verifier time is also O(t
√

N) to check the inner
products and to encode t columns.

4.2 Efficient Proof Composition via Code Switching

The proof size of the polynomial commitment in Protocol 2 is O(
√

N) (the
complexity hides a security parameter t). There are three steps that incur O(

√
N)

proof size in Protocol 2: Step 8, 9, and 13. In this section, we present a new
protocol that reduces the proof size to O(log2 N) via the technique of proof
composition. The idea is to use a second proof system to prove that the checks
of these three steps are satisfied, without sending the proofs of these steps to
the verifier directly.

To design the second proof system efficiently, our key observation is that the
values sent by the prover in these three steps are messages of the linear-time
encodable code. That is, yγ0 is the message of cγ0 in Step 8, y1 is the message
of c1 in Step 9 and C1[:, idx] is the message of C2[:, idx] for every idx in Step 13.
Therefore, the second proof system takes yγ0 , y1 and C1[:, idx] for idx ∈ I as the
witness, and performs the following computations:

1. It encodes the witness using the encoding circuit of the linear-time encodable
code.

2. It outputs a subset of random indices of the codewords chosen by the veri-
fier. By checking whether the values of these indices are consistent with the
commitments by the prover via the Merkle tree, it guarantees that the wit-
ness is indeed the same as the messages specified above with overwhelming
probability because of the minimum distance property of the code.



318 T. Xie et al.

Protocol 3. Code Switching Statement CCS

Witness: yγ0 , y1, C1[:, idx] ∀idx ∈ Î in Protocol 2.
Public input: γ0, r0, r1, y.
Public information: Î and I chosen by the verifier.

1: Encode cγ0 := EC(yγ0), c1 := EC(y1).
2: for idx ∈ Î do
3: Encode C2[:, idx] := EC(C1[:, idx)

4: for idx ∈ Î do
5: Check if cγ0 [idx] == 〈γ0,C1[:, idx]〉. 
 Proximity
6: Check if c1[idx] == 〈r0,C1[:, idx]〉. 
 Consistency

7: Check if 〈r1, y1〉 == y. 
 Tensor product
8: for 0 ≤ j < |I| do 
 Encoder check
9: Output c1[I[j]], cγ0 [I[j]].

10: for idx ∈ Î do
11: Output C2[I[j], idx]

3. Finally, it checks that these messages and their codewords satisfy the condi-
tions in line 15, 16 and 17 of Protocol 2.

The idea is illustrated in Fig. 2, and we formally present the statement of the
second proof system in Protocol 3. Note that Î is the random set chosen by
the verifier in Protocol 2, and is only used as a notation for the subscripts in
Protocol 3. I is the random set chosen by the verifier for the code switching. In
this way, we switch the message encoded using the linear-time encodable code to
the witness of the second proof system. In our implementation, we are using an
IOP-based zero-knowledge argument with the Reed-Solomon code, we use the
name “code switching” as in [RZR20].

We apply any zero-knowledge argument scheme ZK on the statement and
then check the consistency between the output and the Merkle tree commitment
R of the codeword of the linear-time encodable code. We present the new proto-
col in Protocol 4 and highlight the differences from Protocol 2 in blue. As shown
in the protocol, instead of sending c1, y1, cγ0 , yγ0 , the prover commits to c1 and
cγ0 in Step 8 and 9. The codeword C2 was already committed column-wise in
R. The prover then proves the constraints of c1, y1, cγ0 , yγ0 and C1[:, idx] using
the code switching technique in Step 13. In this way, we are able to reduce the
proof size and the verifier time of Protocol 2 to O(log2 N).

Theorem 5. Protocol 4 is a polynomial commitment as defined in Definition 7.

The proof is presented in the full version of the paper.

Complexity of Protocol 4. The prover time remains O(N). This is because in
Step 8 and 9, the prover additionally commits to c1, cγ0 , which only takes O(n) =
O(

√
N) time. In Step 13, the prover invokes another zero-knowledge argument

on CCS. CCS consists of t + 2 encoding circuits EC of the linear-time encodable
code and t + 2 inner products. As the encoding circuit is of size O(k), we will



Orion: Zero Knowledge Proof with Linear Prover Time 319

Protocol 4. Polynomial commitment with code-switching
Public input: The evaluation point �x, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial φ with coefficients w.

1: function Commit(φ)
2: Parse w as a k×k matrix. The prover computes the tensor code encoding C1,C2

locally as defined in Definition 3.
3: for i ∈ [n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).

5: Compute a Merkle tree root R = Merkle.Commit([Root0, ...,Rootn−1]) and out-
put R as the commitment.

6: function Prove(φ, �x, R)
7: The prover receives a random vector γ0 ∈ F

k from the verifier.
8: c1 =

∑k−1
i=0 r0[i]C1[i], y1 =

∑k−1
i=0 r0[i]w[i], Rc1 = Merkle.Commit(c1)

9: cγ0 =
∑k−1

i=0 γ0[i]C1[i], yγ0 =
∑k−1

i=0 γ0[i]w[i], Rγ0 = Merkle.Commit(cγ0)
10: The prover computes the answer y := 〈y0, r1〉. Prover sends Rc1 , Rγ0 , y to the

verifier.
11: The verifier randomly samples t ∈ [n] indexes as an array Î and send it to

prover.
12: The verifier randomly samples another index set I ⊆ [k], |I| = t and sends it to

the prover.
13: The prover calls the zero-knowledge argument protocol ZK.P on CCS. Let πzk

be the proof of the zero-knowledge argument. The prover sends the output of CCS:
C2[I[j], idx] ∀idx ∈ Î , c1[I[j]], cγ0 [I[j]] and πzk to the verifier.

14: The prover sends the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î under Rootidx.
15: The prover sends the Merkle tree proofs of Rootidx ∀idx ∈ Î under R.
16: The prover sends the Merkle tree proofs of c1[I[j]], cγ0 [I[j]] under Rc1 , Rcγ0

.

17: function VerifyEval(π�x, �x, y = φ(�x), R)
18: The verifier calls the zero-knowledge argument protocol ZK.V on CCS.
19: The verifier checks the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î.
20: The verifier checks the Merkle tree proofs of Rootidx ∀idx ∈ Î using R.
21: The verifier checks the Merkle tree proofs of c1[I[j]], cγ0 [I[j]] using Rc1 , Rcγ0

.
22: Output accept if all checks pass. Otherwise output reject.

present the analysis in the full version of the paper, and the circuit to compute an
inner product is of size O(k), the overall circuit size is O(t ·k). By using any zero-
knowledge argument scheme with a quasi-linear prover time, such as [ZXZS20],
the prover time of this step is O(t · k log k). Since k =

√
N , the prover time is

still O(N) dominated by the encoding and the commitment of the k × k matrix
in COMMIT(). With the code switching technique, the proof size and the verifier
time becomes O(t log2 k) = O(t log2 N).

4.3 Putting Everything Together

In this section, we show how to achieve zero-knowledge on top of our new poly-
nomial commitment in Protocol 4, and sketch how to build a zero-knowledge
argument using the polynomial commitment.



320 T. Xie et al.

Protocol 5. zk-Polynomial commitment
Public input: The evaluation point �x, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial φ with coefficients w.

1: function zkCommit(φw)
2: The prover randomly samples m ∈ F

|w|.
3: Output Rw+m = COMMIT(w + m), Rm = COMMIT(m).

4: function zkProve(φ, �x, R)
5: Let φm be the masking polynomial, φm+w be the masked polynomial.
6: Run Prove(φm+w, �x, Rm+w). Let the random index set used during the protocol

be Î0, I0.
7: Run Prove(φm, �x, Rm). In this step, the verifier samples the random index set

Î1, I1. used during the protocol such that Î0 ∩ Î1 = ∅ ∧ I0 ∩ I1 = ∅.

8: function zkVerify(πw+m
�x , πm

�x , �x, yw+m, ym, Rw+m, Rm)
9: The final polynomial evaluation φ(�x) should be yw+m − ym.

10: Execute VerifyEval(πw+m, �x, yw+m, Rw+m).
11: Execute VerifyEval(πm, �x, ym, Rm).
12: Output accept if all checks above passes, otherwise output reject.

Achieving Zero-Knowledge. We apply a masking technique similar to the one
in [BCG+17]. The codeword C2 is masked by a codeword MSK of a mask-
ing polynomial with random coefficients m. We use our proof system to prove
yw+m = 〈(w + m), r0 ⊗ r1〉 and ym = 〈m, r0 ⊗ r1〉 simultaneously, and the final
answer of the polynomial evaluation is y = yw+m − ym. We present the protocol
in Protocol 5.

Theorem 6. Protocol 5 is a zero-knowledge polynomial commitment scheme by
definition 7.

We present the proof in the full version of the paper.

Zero-Knowledge Argument. Finally, we build our zero-knowledge argument sys-
tem by combining the multivariate polynomial commitment with the sumcheck
protocol as in [Set20,GLS+]. We state the theorem here and refer the readers
to [Set20,GLS+] for the construction and the proof.

Theorem 7. There exists a zero-knowledge argument scheme by definition 5
with O(N) prover time, O(log2 N) proof size and O(N) verifier time.

As we are using the IOP-based scheme in [ZXZS20] as the second zero-
knowledge argument in the proof composition, our scheme is an IOP with a
linear proof size and logarithmic query complexity. The scheme can be made
non-interactive via the Fiat-Shamir [FS86] heuristic, and has plausible post-
quantum security. Following the frameworks in [CHM+20,COS20,Set20,GLS+],
our scheme can be turned into a holographic proof with a polylog(N) verifier time
in a straight-forward way.



Orion: Zero Knowledge Proof with Linear Prover Time 321

211212213214215216217218219

101

102

103

104

Number of vertices in L

T
im

e(
s)

Fig. 3. Running time of our expander testing algorithm.

5 Experiments

We have implemented our scheme, Orion, and we present the evaluations of the
system and the comparions to existing ZKP schemes in this section.
Settings and Parameters. Our polynomial commitment scheme is imple-
mented in C++ with 6000 lines of code. The proof composition uses Virgo
in [ZXZS20] and its open-source implementation. We combine the polynomial
commitment with a sumcheck protocol to get our zero-knowledge argument fol-
lowing the approach in [Set20] and we implement our own code for this part.
Expander Graph used in Our Implementation. We use a modified version of gen-
eralized Spielman code in [GLS+]. The code assigns a random weight to each
edge of the expander graph, achieving a better minimum distance. We take a step
further and fine-tune the dimensions more aggressively. With our testing algo-
rithm, the failure probability of the expander sampling remains negligible. There
are two types of expander graph used in our construction and the parameters
are G1: α = 0.33, δ = 0.6, ε = 0.78, g = 6; G2: α = 0.337, g = 6, δ = g, ε = 0.88.
Parameters of the our Linear Code. With expanders above, the final relative
distance is 0.055. We set the security parameter λ = 128. This leads to opening
t = −128

log (1−0.055) = 1568 columns and locations in Protocol 4.

Hash Function and Finite Field. We use the SHA-256 hash function implemented
by [arm]. We use the extension field of GF((261 − 1)2) as our underlying field to
be compatible with the zero-knowledge argument in [ZXZS20].
Environment and Method. We use an AWS m6i-32xlarge instance with Intel(R)
Xeon(R) Platinum 8375C CPU @ 2.90 GHz CPU and 512 GB memory to execute
all of our experiments. However, the largest instance in our experiment only
utilize 16 GB of memory. All experiments are using a single thread except the
expander testing algorithm. For each data point, we run the experiments 10
times and report the average.

5.1 Expander Testing

We first show the performance of our expander testing algorithm in Sect. 3. We
implemented the densest sub-graph algorithm in [Gol84], which uses network-



322 T. Xie et al.

213215217219221223225227

10−2

100

102

Size N

P
ro

ve
r 

T
im

e(
s)

Orion
Brakedown

213215217219221223225227
0.1

1

10

100

Size N

P
ro

of
 S

iz
e 

(M
B

) Orion
Brakedown

21321521721922122322522710−5

10−2

101

Size N

V
er

ifi
er

 T
im

e 
(s

) Orion
Brakedown

Fig. 4. Performance of polynomial commitments.

flow algorithm as a black-box. In our implementation, we use Dinic’s algo-
rithm [Din70], the complexity of which is O(|V |2|E|) on general graphs. However,
on random bipartite graphs, the Dinic’s algorithm runs significantly faster and
as observed in our experiments, it scales almost linearly in the size of the graph.

Figure 3 shows the running time of the algorithm. We vary the size of left vertex
set L in the random bipartite graph from 212 to 218, and the size of R is set to be
|L| × α. The implementation uses multi-threading utilizing all 128 CPU cores. As
shown in the figure, it only takes 163 s to test whether a random bipartite graph
with |L| = 215 vertices is a lossless expander with a failure probability negl(N) =
2−128. The running time almost grows linearly in |L|. As k =

√
N in our zero-

knowledge argument, this is enough for our experiments. As the sampling of the
lossless expander is done once, our testing algorithm is very practical.

5.2 Polynomial Commitment

In this section, we report the performance of our polynomial commitment scheme
and compare it with the scheme Brakedown in [GLS+], which is the only imple-
mented polynomial commitment scheme with a linear prover time. We use the
open-source implementation of Brakedown at [Wla] in the comparison. Our cur-
rent implementation is for the plain version of the polynomial commitment with-
out zero-knowledge, which is the same as Brakedown.

Figure 4 shows the performance of our polynomial commitment and the poly-
nomial commitment in Brakedown. We vary the size of the polynomials from 215



Orion: Zero Knowledge Proof with Linear Prover Time 323

to 229 and measure the prover time, the proof size and the verifier time. As shown in
the figure, our prover time is even slightly faster thanBrakedown. It only takes 115 s
for a polynomial with 227 coefficients, while it is 132 s inBrakedown. This is because
we use more aggressive parameters of the expander code, while still achieving 128-
bit of security thanks to our expander testing algorithm. Moreover, the additional
proof composition in our scheme involves a second zero-knowledge argument on
a circuit of size O(

√
N). In our experiments, this extra zero-knowledge argument

takes less than 20% of the total prover time, justifying that our code switching
technique only introduces a small overhead on the prover time.

Our proof size and verifier time is significantly smaller than Brakedown. The
proof size is only 6 MBs for a polynomial of size 227, 16× smaller than Brakedown.
The verifier time is 70 ms for N = 227, 33× faster than Brakedown. The result
shows the improvement of the O(log2 N) proof size in our scheme.

Note that there is a jump from N = 221 to N = 223 in the proof size and
verifier time. This is because in our implementation, instead of directly parsing
the coefficients into

√
N × √

N matrix, we optimize the dimensions for better
performance. When N < 223, it is not meaningful to do code-switching on the
columns. The prover only does the code-switching on the row (Protocol 4 Step 8
and 9), but opens the columns directly. We observe that this gives the best prover
time and the proof size. When N ≥ 223, the prover does the code-switching for
both the row and the columns (Protocol 4, Step 8–13). Therefore, the proof size
and the verifier time have a big increase because of the larger column size and
the additional code-switching protocol.

5.3 Zero-Knowledge Arguments

Finally, we present the performance of our zero-knowledege argument scheme for
R1CS as a whole in this section. We focus the comparison to existing schemes
that work on R1CS and have transparent setup and plausible post-quantum secu-
rity. They include Brakedown [GLS+], Aurora [BSCR+19] and Ligero [AHIV17].
We use the implementation of Brakedown at [Wla], and the open-source code of
Ligero and Aurora at [aur] in the experiments.

We randomly generate the R1CS instances and vary the number of con-
straints from 215 to 220. As shown in Fig. 5, Orion has the fastest prover among
all schemes. It only takes 3.09 s to generate the proof for N = 220. This is slightly
faster than Brakedown for the same reason as explained in Sect. 5.2. It is 20×
faster than Ligero and 142× faster than Aurora because of the linear prover time
and the simplified reduction via polynomial commitments.

The proof size of Orion is significantly smaller than Brakedown and Ligero. It
is only 1.5 MB for N = 220, 6.5× smaller than Brakedown and 12.5× smaller than
Ligero. The proof size is even comparable to Aurora, which has O(log2 N) proof
size and uses the Reed-Solomon code with a much better minimum distance than
our linear code. The result justifies the improvement of our code switching.



324 T. Xie et al.

215 216 217 218 219 22010−2
10−1
100
101
102
103
104

Number of constraints N

P
ro

ve
r 

T
im

e 
(s

) Aurora Brakedown
Ligero Orion

215 216 217 218 219 220
0.1

1

10

100

Number of constraints N

P
ro

of
 S

iz
e(

M
B

)

Aurora Brakedown
Ligero Orion

215 216 217 218 219 220
10−2

100

102

Number of constraints N

V
er

ifi
er

 T
im

e 
(s

) Aurora Brakedown
Ligero Orion

Fig. 5. Performance of zero-knowledge arguments on R1CS.

The verifier time of all schemes grow linearly with N and the comparisons
are similar to the prover time. One can reduce the verifier time to sublinear in
the holographic setting using the techniques in [CHM+20,COS20,Set20].

Other Related Schemes. There are several other existing transparent zero-
knowledge argument schemes. Hyrax [WTS+18], Virgo [ZXZS20] and Virgo++
[ZLW+21] work on layered arithmetic circuits and STARK [BSBHR19] works on
an algebraic intermediate representation that is close to a RAM program. It is
hard to compare directly to R1CS, but we expect our prover time to be faster
than these systems for similar computations based on the results shown in prior
papers [ZXZS20,ZLW+21]. Spartan and schemes in [SL20] are using the same
framework of polynomial commitment and sumcheck as in our scheme. However,
they are based on discrete-log and bilinear pairing and thus are not post-quantum
secure. As shown in [GLS+], their prover time is slower than Brakedown while
the proof size is better (tens of KBs). Finally, Bulletproofs [BBB+18] and Super-
sonic [BFS20] are also based on discrete-log and group of unknown order. Their
prover time is orders of magnitude slower than schemes mentioned above, while
providing the smallest proof size (1–2 KBs) because of the underlying crypto-
graphic techniques.

Acknowledgements. We thank Yuval Ishai for helpful discussions and valuable
feedback on the paper. The material is supported by DARPA under Contract No.
HR001120C0087, the NSF award #2144625 and the Center for Long-Term Cybersecurity



Orion: Zero Knowledge Proof with Linear Prover Time 325

(CLTC). Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of DARPA,
NSF or CLTC.

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Lightweight sub-
linear arguments without a trusted setup. In: CCS, Ligero (2017)

[arm] armfazh. flo-shani-aesni. https://github.com/armfazh/flo-shani-aesni
[aur] libIOP. https://github.com/scipr-lab/libiop

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: IEEE
S&P (2018)

[BBC+18] Baum, C., Bootle, J., Cerulli, A., Del Pino, R., Groth, J., Lyubashevsky,
V.: Sub-linear lattice-based zero-knowledge arguments for arithmetic cir-
cuits. In: CRYPTO (2018)

[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Decentralized anonymous payments from bitcoin. In: IEEE
S&P, Zerocash (2014)

[BCG+17] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiabil-
ity. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 12

[BCG20] Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear
verification from tensor codes. In: TCC (2020)

[BCL22] Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear-time
prover and polylogarithmic-time verifier. In: Dunkelman, O., Dziem-
bowski, S. (eds.) Advances in Cryptology - EUROCRYPT 2022. EURO-
CRYPT 2022. Lecture Notes in Computer Science, vol. 13276, pp. 275–
304. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-
3 10

[BDFG20] Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Recursive zk-
SNARKs from any additive polynomial commitment scheme. Cryptology
ePrint Archive, Report 2020/1536 (2020)

[BFH+20] Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T.,
Zhang, Y.: Ligero++: a new optimized sublinear IOP. In: CCS (2020)

[BFR+13] Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish,
M.: Verifying computations with state. In: SOSP (2013)

[BFS20] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK
compilers. In: Eurocrypt (2020)

[BLNS20] Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP app-
roach to succinct quantum-safe zero-knowledge. In: CRYPTO (2020)

[BMRS21] Baum, C., Malozemoff, A.J., Rosen, M., Scholl, P.: Mac’n’cheese: zero-
knowledge proofs for arithmetic circuits with nested disjunctions. In:
CRYPTO (2021)

[BSBHR19] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowl-
edge with no trusted setup. In: CRYPTO (2019)

https://github.com/armfazh/flo-shani-aesni
https://github.com/scipr-lab/libiop
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-031-07085-3_10
https://doi.org/10.1007/978-3-031-07085-3_10


326 T. Xie et al.

[BSCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Verify-
ing program executions succinctly and in zero knowledge. In: CRYPTO,
SNARKs for C (2013)

[BSCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Eurocrypt
(2019)

[BSCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge
via cycles of elliptic curves. In: CRYPTO (2014)

[CDG+17] Chase, M., et al.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: CCS (2017)

[CFH+15] Costello, C., Zahur, S.: Versatile verifiable computation. In: IEEE S&P,
Geppetto (2015)

[CHM+20] Chiesa, A., Yuncong, H., Maller, M., Mishra, P., Vesely, N., Ward, N.:
Preprocessing zksnarks with universal and updatable SRS. In: Eurocrypt,
Marlin (2020)

[COS20] Chiesa, A., Ojha, D., Spooner, N.: Post-quantum and transparent recur-
sive proofs from holography. In: Eurocrypt, Fractal (2020)

[CRVW02] Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness con-
ductors and constant-degree lossless expanders. In: STOC (2002)

[CS07] Czumaj, A., Sohler, C.: Testing expansion in bounded-degree graphs. In:
IEEE FOCS (2007)

[DI14] Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-
varshamov bound and their cryptographic applications. In: ITCS (2014)

[Din70] Dinic, E.A.: Algorithm for solution of a problem of maximum flow in
networks with power estimation. In: Soviet Math. Doklady (1970)

[DIO21] Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its
applications. In: ITC (2021)

[ESLL19] Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-
knowledge proofs: new techniques for shorter and faster constructions and
applications. In: CRYPTO (2019)

[FDNZ21] Fang, Z., Darais, D., Near, J., Zhang, Y.: Zero knowledge static program
analysis. In: CCS (2021)

[FFG+16] Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno,
B.: Hash first, argue later: adaptive verifiable computations on outsourced
data. In: CCS (2016)

[FQZ+21] Feng, B., Qin, L., Zhang, Z., Ding, Y., Chu, S.: ZEN: efficient zero-
knowledge proofs for neural networks. Cryptology ePrint Archive, Report
2021/087 (2021)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: CRYPTO (1986)

[GAZ+22] Grubbs, P., Arun, A., Bonneau, J., Walfish, M.: Zero-knowledge middle-
boxes. In: USENIX Security, Ye Zhang (2022)

[Gil52] Gilbert, E.N.: A comparison of signalling alphabets. Bell Syst. Tech. J.
31(3), 504–522 (1952)

[GKM+18] Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKs.
In: CRYPTO (2018)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.: Delegating computation: inter-
active proofs for muggles. In: STOC (2008)



Orion: Zero Knowledge Proof with Linear Prover Time 327

[GLS+] Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown:
linear-time and post-quantum snarks for r1cs. Cryptology ePrint Archive
(2021). https://ia.cr/2021/1043

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: Faster zero-knowledge for boolean
circuits. In: USENIX Security, ZKBoo (2016)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[Gol84] Goldberg, A.V.: Finding a maximum density subgraph. University of Cal-
ifornia Berkeley (1984)

[GR11] Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs.
In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscel-
lanea on the Interplay between Randomness and Computation. LNCS, vol.
6650, pp. 68–75. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22670-0 9

[GWC19] Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953 (2019)

[HLW06] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applica-
tions. Bull. Amer. Math. Soc. 43(4), 439–561 (2006)

[ISW21] Ishai, Y., Su, H., Wu, D.J.: Shorter and faster post-quantum designated-
verifier zksnarks from lattices. In: CCS (2021)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: STOC (1992)

[KKW18] Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In: CCS (2018)

[KPPS20] Kosba, A.E., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE:
succinct arguments for randomized algorithms with applications to uni-
versal zk-SNARKs. In: USENIX Security (2020)

[KS16] Khot, S., Saket, R.: Hardness of bipartite expansion. In: ESA (2016)
[LKKO20] Lee, S., Ko, H., Kim, J., Oh, H.: vCNN: Verifiable convolutional neu-

ral network based on zk-SNARKs. Cryptology ePrint Archive, Report
2020/584 (2020)

[LXZ21] Liu, T., Xie, X., Zhang, Y.: zkCNN: zero knowledge proofs for convolu-
tional neural network predictions and accuracy. In: CCS (2021)

[MBKM19] Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
snarks from linear-size universal and updatable structured reference
strings. In: CCS (2019)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[Mie09] Mie, T.: Short PCPPs verifiable in polylogarithmic time with O(1) queries.
Ann. Math. Artif. Intell. 56(3), 313–338 (2009)

[NS07] Nachmias, A., Shapira, A.: Testing the expansion of a graph. Electr. Col-
loquium Comput. Complex. (ECCC) 14, 01 (2007)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Nearly practical verifiable
computation. In: IEEE S&P, Pinocchio (2013)

[Pip] Pippenger, N.: On the evaluation of powers and related problems. In:
SFCS, IEEE Computer Society (1976)

[RZR20] Ron-Zewi, N., Rothblum, R.D.: Local proofs approaching the witness
length. In: FOCS (2020)

[Set20] Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without
trusted setup. In: CRYPTO (2020)

https://ia.cr/2021/1043
https://doi.org/10.1007/978-3-642-22670-0_9
https://doi.org/10.1007/978-3-642-22670-0_9


328 T. Xie et al.

[SL20] Setty, S., Lee, J.: Quarks: quadruple-efficient transparent zkSNARKs.
Cryptology ePrint Archive, Report 2020/1275 (2020)

[Spi96] Spielman, D.A.: Linear-time encodable and decodable error-correcting
codes. IEEE Trans. Inf. Theor. 42(6), 1723–1731 (1996)

[SZT02] Song, D., Zuckerman, D., Tygar, J.D.: Expander graphs for digital stream
authentication and robust overlay networks. In: S&P, IEEE (2002)

[Var57] Varshamov, R.R.: Estimate of the number of signals in error correcting
codes. Docklady Akad. Nauk, SSSR 117, 739–741 (1957)

[Wla] Wahby, R.S.: lcpc authors. lcpc. https://github.com/conroi/lcpc
[WSR+15] Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient

RAM and control flow in verifiable outsourced computation. In: NDSS
(2015)

[WTS+18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zkSNARKs without trusted setup. In: S&P (2018)

[WYKW20] Weng, C/. Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic
circuits. In: S&P (2020)

[WYX+21] Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: efficient con-
versions for zero-knowledge proofs with applications to machine learning.
In: USENIX Security (2021)

[XZZ+19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Succinct zero-
knowledge proofs with optimal prover computation. In: CRYPTO, Libra
(2019)

[YSWW21] Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: efficient and afford-
able zero-knowledge proofs for circuits and polynomials over any field. In:
CCS (2021)

[zca] Zcash. https://z.cash/
[ZFZS20] Zhang, J., Fang, Z., Zhang, Y., Song, D.: Zero knowledge proofs for deci-

sion tree predictions and accuracy. In: CCS (2020)
[ZGK+17a] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou,

C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced
databases. In: S&P (2017)

[ZGK+17b] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.:
A zero-knowledge version of vSQL. Cryptology ePrint Archive: Report
2017/1146 (2017)

[ZGK+18] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.:
vRAM: faster verifiable RAM with program-independent preprocessing.
In: S&P (2018)

[zkr] An incomplete guide to rollups. https://vitalik.ca/general/2021/01/05/
rollup.html

[ZLW+21] Zhang, J., et al.: Doubly efficient interactive proofs for general arithmetic
circuits with linear prover time. In: CCS (2021)

[ZXZS20] Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delega-
tion and its applications to zero knowledge proof. In: S&P, IEEE (2020)

https://github.com/conroi/lcpc
https://z.cash/
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html

	Orion: Zero Knowledge Proof with Linear Prover Time
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminary
	2.1 Linear Time Encodable Linear Code
	2.2 Collision-Resistant Hash Functions and Merkle Tree
	2.3 Zero-Knowledge Arguments
	2.4 Polynomial Commitment

	3 Testing Algorithm for Lossless Expander
	3.1 Random Construction of Lossless Expander
	3.2 Algorithm Based on Densest Sub-graph
	3.3 Testing Random Lossless Expander

	4 Our New Zero-Knowledge Argument
	4.1 Polynomial Commitment from Tensor Query
	4.2 Efficient Proof Composition via Code Switching
	4.3 Putting Everything Together

	5 Experiments
	5.1 Expander Testing
	5.2 Polynomial Commitment
	5.3 Zero-Knowledge Arguments

	References




