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Abstract

This paper focuses on stochastic methods for solving smooth non-convex strongly-concave
min-max problems, which have received increasing attention due to their potential applica-
tions in deep learning (e.g., deep AUC maximization, distributionally robust optimization).
However, most of the existing algorithms are slow in practice, and their analysis revolves
around the convergence to a nearly stationary point. We consider leveraging the Polyak-
 Lojasiewicz (PL) condition to design faster stochastic algorithms with stronger convergence
guarantee. Although PL condition has been utilized for designing many stochastic mini-
mization algorithms, their applications for non-convex min-max optimization remain rare.
In this paper, we propose and analyze a generic framework of proximal stage-based method
with many well-known stochastic updates embeddable. Fast convergence is established in
terms of both the primal objective gap and the duality gap. Compared with existing
studies, (i) our analysis is based on a novel Lyapunov function consisting of the primal
objective gap and the duality gap of a regularized function, and (ii) the results are more
comprehensive with improved rates that have better dependence on the condition number
under different assumptions. We also conduct deep and non-deep learning experiments to
verify the effectiveness of our methods.

Keywords: Min-Max Problems, Non-Convex Optimization, Stochastic Optimization, PL
Condition, Proximal Stage-Based Method

1 Introduction

Min-max optimization has a broad range of applications in machine learning. In this pa-
per, we consider a family of min-max optimization problems where the objective function
is non-convex in terms of the min variable and is strongly concave in terms of the max
variable. It covers a number of important applications in machine learning, such as deep
AUC maximization (Ying et al., 2016; Liu et al., 2020b; Guo et al., 2020) and distribution-
ally robust optimization (DRO) (Namkoong and Duchi, 2016, 2017; Rafique et al., 2018).
In particular, we study stochastic gradient methods for solving the following non-convex
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strongly-concave (NCSC) min-max problem:

min
x∈Rd

max
y∈Y

f(x, y), (1)

where Y ⊆ R
d′ is a convex closed set, f(x, y) is smooth, non-convex in x and strongly

concave in y. We assume the optimization is only through a stochastic gradient oracle that
for any x, y returns unbiased stochastic gradient (Gx(x, y; ξ),Gy(x, y; ξ)), i.e., E[Gx(x, y; ξ)] =
∇fx(x, y) and E[Gy(x, y; ξ)] = ∇fy(x, y).

Stochastic algorithms for solving (1) have been studied in some recent papers (Lin et al.,
2020a,b; Liu et al., 2020b; Rafique et al., 2018; Yan et al., 2020; Yang et al., 2020a). How-
ever, most of them are slow in practice by suffering from a high order of stochastic first-
order oracle call complexity, while others hinge on a special structure of the objective
function for constructing the update (Liu et al., 2020b). How to improve the convergence
for generic non-convex strongly-concave min-max problems remains an active research area.
There are two lines of work trying to reduce the stochastic first-order oracle call complex-
ity of stochastic algorithms for NCSC min-max optimization. The first line is to leverage
the geometrical structure of the objective function, in particular the Polyak- Lojasiewicz
(PL) condition (Liu et al., 2020b; Yang et al., 2020a). The second line is leverage variance-
reduction techniques (Luo et al., 2020; Yang et al., 2020a; Huang et al., 2022; Xu et al.,
2020; Rafique et al., 2018).

In this paper, we conduct a comprehensive study to improve the convergence for NCSC
min-max optimization by leveraging the Polyak- Lojasiewicz (PL) condition of the objec-
tive function. A smooth function h(x) satisfies µ-PL condition on R

d, if for any x ∈
R
d there exists µ > 0 such that ‖∇h(x)‖2 ≥ 2µ(h(x) − h(x∗)), where x∗ denotes a

global minimum of h. Although the PL condition has been utilized extensively to im-
prove the convergence for minimization problems (Allen-Zhu et al., 2019; Arora et al., 2019;
Charles and Papailiopoulos, 2018; Du et al., 2019; Hardt and Ma, 2017; Karimi et al., 2016;
Lei et al., 2017; Li and Liang, 2018; Li and Yuan, 2017; Li and Li, 2018; Nguyen et al.,
2017; Polyak, 1963; Reddi et al., 2016; Wang et al., 2018; Zhou et al., 2018; Zhou and Liang,
2017), its application to non-convex min-max problems remains rare (Liu et al., 2020b;
Nouiehed et al., 2019; Yang et al., 2020a). The key difference between the present work
and these previous studies is that we focus on improving the dependence of conver-
gence rate on the condition number (the ratio of smoothness parameter to the PL
constant) for NCSC min-max optimization. Our contributions are summarized below.

• Algorithms. We analyze a generic framework of proximal stage-wise stochastic (PES)
method, which in design is similar to practical stochastic gradient methods for deep
learning. In particular, the step sizes are decreased geometrically in a stage-wise manner.
Various stochastic updates can be leveraged as a plug-in in the PES framework, including
stochastic optimistic gradient descent ascent (OGDA) update, stochastic gradient descent
ascent (SGDA) update, and min-max adaptive stochastic gradient (AdaGrad) update,
and min-max STORM update (a recursive variance reduced method).

• Analysis. We conduct novel analysis of the proposed stochastic methods by establishing
fast convergence in terms of both the primal objective gap and the duality gap under
different PL conditions. The analysis is based on a novel Lyapunov function that consists
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Table 1: Comparison of sample complexities for achieving ǫ-Objective Gap and and ǫ-
Duality Gap. P (x) is L-smooth and is assumed to obey µ-PL condition; f(x, y)
is ℓ-smooth in terms of x and y, and is µy strongly concave in terms of y. For
duality gap convergence, it requires a stronger assumption that f(x, y) satisfies
x-side µx-PL condition. ∗ marks the results that are not available in the original
work but are derived by us.

Objective Gap Duality Gap Remarks on
Conditions

L = ℓ+ ℓ2

µy
L < ℓ+ ℓ2

µy
L = ℓ+ ℓ2

µy
L < ℓ+ ℓ2

µy

Stoc-AGDA
(Yang et al., 2020a)

O
(

ℓ5

µ2µ4
yǫ

)
O
(

ℓ5

µ2µ4
yǫ

)
O
(

ℓ7

µ2µxµ5
yǫ

)∗
O
(

ℓ7

µ2µxµ5
yǫ

)∗
w/o strong concavity

PES-OGDA
PES-SGDA

Õ
(

ℓ4

µ2µ3
yǫ

)
Õ
(
(L+ℓ)2

µ2µyǫ

)
Õ
(

ℓ5

µ2µxµ3
yǫ

)
Õ
(

(L+ℓ)2ℓ
µ2µxµyǫ

)
w/ strong concavity

PES-OGDA
PES-SGDA

Õ
(

ℓ
min{µ,µy}ǫ

)
Õ
(

ℓ
min{µ,µy}ǫ

)
Õ
(

µℓ
µx min{µ,µy}ǫ

)
Õ
(

µℓ
µx min{µ,µy}ǫ

) ρ-weakly Convex
ρ < O(µ)

PES-AdaGrad Õ

((
ℓ4

µ2µ3
yǫ

) 1
2(1−α)

)
Õ
(
(L+ℓ)2

µ2µyǫ

) 1
2(1−α)

Õ

((
ℓ5

µ2µxµ3
yǫ

) 1
2(1−α)

)
Õ

((
(L+ℓ)2ℓ
µ2µxµyǫ

) 1
2(1−α)

)
Slow SG Growth

(growth rate α ∈ (0, 1/2))

PES-STORM Õ
(

ℓ2

µµ2
yǫ

)
Õ
(

ℓ2

µµ2
yǫ

)
Õ
(

ℓ4

µµxµ3
yǫ

)
Õ
(

ℓ4

µµxµ3
yǫ

)
Individual Smoothness

of the primal objective gap and the duality gap of a regularized problem. The convergence
of the primal objective gap only requires a weaker PL condition defined on the primal
objective. For the convergence of the duality gap, the objective function satisfying a
pointwise PL condition in terms of x is assumed.

• Improvements. We make non-trivial improvements of the basic convergence rate by
improving its dependence on the condition number under different conditions, include
the almost-convexity condition with a small weak-convexity parameter, the slow growth
condition of stochastic gradient for AdaGrad update, the individual smoothness condi-
tion for STORM update. The dependence on the condition number can be reduced
from O(ℓ4/µ2) to O(ℓ2/µ) and O(ℓ/µ) under appropriate conditions. We summarize our
convergence results on both objective gap and duality gap in Table 1.

Finally, we demonstrate the effectiveness of the proposed methods on non-convex AUC max-
imization with a square surrogate loss and non-convex distributionally robust optimization.
It is also notable that the proposed method has been used in the literature for maximizing
a robust objective for deep AUC maximization (Yuan et al., 2020), which further demon-
strates the effectiveness of the proposed methods.

2 Related Work

2.1 Non-Convex Min-Max Optimization

Recently, there has been an increasing interest on non-convex min-max optimization (Rafique et al.,
2018; Jin et al., 2019; Lin et al., 2018, 2020a; Liu et al., 2020a; Lu et al., 2020; Nouiehed et al.,
2019; Sanjabi et al., 2018; Thekumparampil et al., 2019; Ostrovskii et al., 2020; Lin et al.,
2020b; Yang et al., 2020a; Luo et al., 2020; Xu et al., 2020; Huang et al., 2022; Tran-Dinh et al.,
2020; Lu et al., 2020; Boţ and Böhm, 2020; Zhao, 2020; Wang et al., 2020; Yang et al.,
2020b; Zhang et al., 2021b; Qiu et al., 2020; Han et al., 2021; Tran-Dinh et al., 2020; Huang et al.,
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2021; Xian et al., 2021; Luo and Chen, 2021; Fiez et al., 2021; Xu et al., 2021; Lei et al.,
2021). Below, we focus on related works on stochastic optimization for non-convex con-
cave min-max problems. Rafique et al. (2018) proposed stochastic algorithms for solv-
ing non-smooth weakly-convex and concave problems based on a proximal point method
(Rockafellar, 1976). They established a convergence to a nearly stationary point of the pri-
mal objective function in the order of O(1/ǫ6), where ǫ is the level for the first-order station-
arity. When the objective function is strongly concave in terms of y and has certain special
structure, they can reduce the stochastic first-order oracle call complexity to O(1/ǫ4). The
same order stochastic first-order oracle call complexity was achieved in (Yan et al., 2020) for
weakly-convex strongly-concave problems without a special structure of the objective func-
tion. Lin et al. (2020a) analyzed a single-loop stochastic gradient descent ascent method for
smooth non-convex (strongly)-concave min-max problems. Their analysis yields an stochas-
tic first-order oracle call complexity of O(1/ǫ8) for smooth non-convex concave problems and
O(1/ǫ4) for smooth non-convex strongly-concave problems. Recently, Boţ and Böhm (2020)
extends the analysis to stochastic alternating (proximal) gradient descent ascent method.
Improved first-order convergence for smooth problems has been established by leveraging
variance-reduction techniques in (Luo et al., 2020; Yang et al., 2020a; Huang et al., 2022;
Xu et al., 2020; Rafique et al., 2018). However, none of these works explicitly use the PL
condition to improve the convergence. Directly applying PL condition to the first-order
convergence result leads to a stochastic first-order oracle call complexity worse than O(1/ǫ)
for the objective gap.

2.2 PL Games

PL conditions have been considered in min-max games. For example, Nouiehed et al. (2019)
assumed that hx(y) = −f(x, y) satisfies PL condition for any x, which is referred to as y-
side PL condition. The authors utilize the condition to design deterministic multi-step
gradient descent ascent method for finding a first-order stationary point. In contrast, we
consider the objective is strongly concave in terms of y, which is stronger than y-side
pointwise PL condition. Recently, Liu et al. (2018) assume a PL condition for a NCSC
formulation of deep AUC maximization, in which the PL condition is defined over the
primal objective P (x) = maxy∈Y f(x, y), which is referred to as primal PL condition.
They established a stochastic first-order oracle call complexity of O(1/ǫ) for the primal
objective gap convergence only. However, their algorithm and analysis are not applicable
to a general NCSC problem without a special structure. In contrast, our algorithm is
more generic and simpler as well, and we derive stronger convergence result in terms of the
duality gap. In addition, our analysis is based on a novel Lyapunov function that consists
of the primal objective gap and the duality gap of a regularized function, which allows us
to establish the convergence of both the primal objective gap and the duality gap.

More recently, Yang et al. (2020a) considered a class of smooth non-convex non-concave
problems, which satisfy both the y-side PL condition and x-side PL condition1. They pro-
posed stochastic alternating gradient descent ascent (Stoc-AGDA) algorithms and estab-
lished a global convergence for a Lyapunov function P (xt)−P∗ + λ(P (xt)− f(xt, yt)) for a
constant λ, which directly implies the convergence for the primal objective gap. After some

1. We notice that the x-side PL condition can be replaced by the primal PL condition for their analysis.
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manipulation, we can also derive the convergence for the duality gap under the assumption
that x-side PL condition holds. This work is different from (Yang et al., 2020a) in several
perspectives: (i) their algorithm is based on alternating gradient descent ascent method
with polynomially decreasing or very small step sizes, in contrast our algorithm is based
on stage-wise stochastic methods with geometrically decreasing step sizes. This feature
makes our algorithm more amenable to deep learning applications (Yuan et al., 2020); (ii)
we make use of strong concavity of the objective function in terms of y and develop stronger
convergence results. In particular, our stochastic first-order oracle call complexities have
better dependence on condition numbers.

Finally, we note that there are a lot of research on deep learning to justify the PL condi-
tion. PL condition of a risk minimization problem has been shown to hold globally or locally
on some networks with certain structures, activation or loss functions (Allen-Zhu et al., 2019;
Arora et al., 2019; Charles and Papailiopoulos, 2018; Du et al., 2019; Hardt and Ma, 2017;
Li and Liang, 2018; Li and Yuan, 2017; Zhou and Liang, 2017). For example, in (Du et al.,
2019), they have shown that if the width of a two layer neural network is sufficiently large,
PL condition holds within a ball centered at the initial solution and the global optimum
would lie in this ball. Allen-Zhu et al. (2019) further shows that in overparameterized deep
neural networks with ReLU activation, PL condition holds for a global optimum around a
random initial solution.

3 Preliminaries

We denote by ‖·‖ the Euclidean norm of a vector. A function h(x) is λ-strongly convex on X
if for any x, x′ ∈ X , ∇h(x′)⊤(x−x′)+ λ

2‖x−x′‖2 ≤ h(x)−h(x′). A function h(x) is ρ-weakly
convex on X if for any x, x′ ∈ X , ∇h(x′)⊤(x− x′)− ρ

2‖x − x′‖2 ≤ h(x) − h(x′). h(x) is L-
smooth if its gradient is L-Lipchitz continuous, i.e., ‖∇h(x)−∇h(x′)‖ ≤ L‖x−x′‖,∀x, x′ ∈
X . An L-smooth function is also a L-weakly convex function. A smooth function h(x)
satisfies µ-PL condition on R

d, if for any x ∈ R
d there exists µ > 0 such that ‖∇h(x)‖2 ≥

2µ(h(x) − h(x∗)), where x∗ denotes a global minimum of h. Let x̂(y) = argminx′ f(x′, y)
denote the set of optimal x for the fixed y and when the context is clear we abuse the
notation x̂(y) to denote any point in that set. Let ŷ(x) = argmax

y′∈Y
f(x, y′) denote the

optimal y for the fixed x.

For simplicity, we let z = (x, y)⊤, Z = X×Y = R
d×Y, F (z) = (∇xf(x, y),−∇yf(x, y))

⊤

and G(z; ξ) = (∇xf(x, y; ξ),−∇yf(x, y; ξ))
⊤ ∈ R

d+d′ . We abuse the notations ‖z‖2 =
‖x‖2+ ‖y‖2 and ‖F (z)−F (z′)‖2 = ‖∇xf(x, y)−∇xf(x

′, y′)‖2+ ‖∇yf(x, y)−∇yf(x
′, y′)‖2.

Let P (x) = maxy∈Y f(x, y). The primal objective gap of a solution x ∈ X is defined as
P (x)−minx∈X P (x). Below, we state some assumptions that will be used in our analysis.

Assumption 1 (i) F is ℓ-Lipchitz continuous, i.e., ‖F (z) − F (z′)‖ ≤ ℓ‖z − z′‖, for any
z, z′ ∈ Z (ii) f(x, y) is µy-strongly concave in y for any x; (iii) P (x) = maxy∈Y f(x, y) is
L-smooth and has a non-empty optimal set.

Remark: Assumption 1(i) implies that f(x, y) is ℓ-smooth in terms of x for any y ∈
Y. Note that under Assumption 1(i) and (ii), we can derive that P (x) is (ℓ + ℓ2/µy)-
smooth (Lin et al., 2020a). However, we note that the smoothness parameter L could be
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much smaller than (ℓ + ℓ2/µy), and hence we keep dependence on L, ℓ, µy explicitly. For
example, consider f(x, y) = x⊤y − µy

2 ‖y‖2 − ( 1
2µy

− L
2 )‖x‖2, Y = R

d′ with L ≪ 1 ≪ 1/µy.

Then we can see that F (z) is ℓ = (1+ 1
µy

−L)-Lipchitz continuous. However, P (x) = L
2 ‖x‖2

is L-smooth function and L could be much smaller than ℓ+ ℓ2/µy.
The following assumption is assumed regarding the stochastic gradients unless specified

otherwise.

Assumption 2 There exists σ > 0 such that E[‖∇xf(x, y; ξ) − ∇xf(x, y)‖2] ≤ σ2 and
E[‖∇yf(x, y; ξ)−∇yf(x, y)‖2] ≤ σ2.

Remark: In order to use a simple stochastic gradient descent ascent update, we need to
impose a different (non-typical) assumption on stochastic gradients for analysis, i.e., there
exists B > 0 such that E[‖∇xf(x, y; ξ)‖2] ≤ B2 and E[‖∇yf(x, y; ξ)‖2] ≤ B2.

If f(x, y) is ℓ-smooth, it is then weakly convex with a coefficient ρ no greater than ℓ,
however, ρ can be much less than ℓ. In order to explore possibilities for deriving faster
convergence, we could leverage the weak convexity of f(x, y) in terms of x.

Assumption 3 f(x, y) is ρ-weakly convex in terms of x for any y ∈ Y with 0 < ρ ≤ ℓ.

For example, consider f(x, y) = ℓx⊤y − µy

2 ‖y‖2 − ρ
2‖x‖2 with ρ ≤ ℓ. Then F (z) is (ℓ +

max(ρ, µy))-Lipchitz continuous. However, f(x, y) is ρ-weakly convex in terms of x for any
y.

In the algorithms, let Πz̄(G) ∈ Z and Πγ
z̄,x0

(G) ∈ Z be defined as

Πz̄(G) = argmin
z∈Z

G⊤z +
1

2
‖z − z̄‖2,

Πγ
z̄,x0

(G) = argmin
z∈Z

G⊤z +
1

2
‖z − z̄‖2 + γ

2
‖x− x0‖2.

(2)

Let PY(·) denote an Euclidean projection to Y.

4 PL-Strongly-Concave Problems and Applications in Machine Learning

Firstly, based on the definition of PL condition given in the last section, we define the
different PL conditions for the min-max problem.

Definition 1 f(x, y) satisfies a primal µ-PL condition for some constant µ > 0 if P (x) =
maxy∈Y f(x, y) satisfies µ-PL condition, i.e., ‖∇P (x)‖2 ≥ 2µ(P (x)−minx′ P (x′)).

Definition 2 f(x, y) satisfies a x-side µx-PL condition for some constant µx > 0 if for
any y ∈ Y, f(x, y) satisfies µx-PL condition, i.e., ∀y ∈ Y, ‖∇xf(x, y)‖2 ≥ 2µx(f(x, y) −
f(x̂(y), y)).

We define almost PL conditions as follows.

Definition 3 f(x, y) satisfies an ǫ-almost primal µ-PL condition if for P (x) = maxy∈Y f(x, y),
there exists µ > 0 such that ‖∇P (x)‖2 ≥ 2µ(P (x) − minx′ P (x′) − ǫ), where ǫ > 0 is the
accuracy level.

6
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Definition 4 f(x, y) satisfies an ǫ-almost x-side µx-PL condition if there exists µx > 0
such that ‖∇xf(x, y)‖2 ≥ 2µx(f(x, y)− f(x̂(y), y)− ǫ), where ǫ > 0 is the accuracy level.

It is not hard to see that convergence rates under the ǫ-almost x-side PL condition or the
ǫ-almost primal PL condition are identical to that under the x-side PL condition or the
primal PL condition, respectively. Therefore, in the convergence analysis we focus on the
x-side PL condition and the primal PL condition.

We define two kinds of PL-strongly-concave problems as follows.

Definition 5 f(x, y) is primal-PL-strongly-concave if f(x, y) satisfies a primal µ-PL con-
dition and is strong concave in y for any x.

Definition 6 f(x, y) is x-side-PL-strongly-concave if f(x, y) satisfies a x-side µx-PL con-
dition and is strong concave in y for any x.

It has been shown in Yang et al. (2020a) that the x-side µx-PL condition of f(x, y) is
stronger than µ-PL condition of P (x) under strong concavity of f(x, y) in terms of y.

Lemma 7 (Lemma A.3 of Yang et al. (2020a)) If f(x, y) satisfies x-side µx-PL con-
dition on R

d and is strongly concave in y, then P (x) = maxy∈Y f(x, y) satisfies µ-PL con-
dition for some µ ≥ µx.

Here we show cases where the x-side µx-PL condition holds or does not hold. Fortunately,
x-side PL condition (Assumption 6) is only needed in Section 6 to develop duality gap
convergence. We can construct a function that does not obey a x-side µx-PL condition but
satisfies a primal µ-PL condition. Let us consider f(x, y) = xy − 1

2y
2 − 1

4x
2 and Y = R.

First, we show that µx-PL condition does not hold. To this end, fix y = 1, we can see
that |∇xf(x, y)|2 = (1 − x/2)2, and minx∈X f(x, 1) = minx x(1 − x/4) − 1

2 = −∞. Hence,
for x = 2 + ǫ, we have |∇xf(x, y)|2 = (ǫ/2)2 and f(x, 1) −minx∈X f(x, 1) = ∞. However,
there exists no constant µx such that |∇xf(x, y)|2 ≥ µx(f(x, 1)−minx∈X f(x, 1)) for ǫ → 0.

Second, we can see that P (x) = maxy f(x, y) =
x2

4 satisfies µ-PL condition with µ = 1/2.
This argument together with Theorem 10 implies that our result for the convergence of the
primal objective gap only requires a weaker µ-PL condition other than the x-side µx-PL
condition imposed in (Yang et al., 2020a). An example that satisfies both the x-side µx-PL
condition and y-side strong concavity is f(x, y) = 1

2x
2 +sin2 x sin2 y− 2y2, which is verified

in Lemma 44 in the Appendix.

Instead of imposing the x-side PL condition as in (Yang et al., 2020a), we use primal
PL condition (Assumption 4) for proving the convergence of the primal objective gap, and
use x-side PL condition (Assumption 6) only for proving the convergence of the duality gap.
Yang et al. (2020a) also makes an extra assumption that there exists a saddle point, i.e.,
there exists (x∗, y∗) such that f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗). However, we show in Lemma
8 that a saddle point (x∗, y∗) exists for the x-side-PL-strongly-concave problem.

Lemma 8 Assume f(x, y) satisfies a x-side µx-PL condition and is strongly concave in y
and let x∗ = argminx′ P (x′) where P (x) = maxy∈Y f(x, y). Then (x∗, ŷ(x∗)) is a saddle
point of f(x, y).
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It has been shown in Lemma 2.1 of (Yang et al., 2020a) that if the x-side µx-PL condition
holds, then the saddle points, global min-max points, and stationary points are equivalent
when Y = R

d′ , where global min-max points, and stationary points are defined as

1. (x∗, y∗) is a global min-max point if for any (x, y): f(x∗, y) ≤ f(x∗, y∗) ≤ maxy′ f(x, y
′).

2. (x∗, y∗) is a stationary point if ∇xf(x∗, y∗) = 0 and ∇yf(x∗, y∗) = 0.

Next we show two concrete application examples of PL-strongly-concave problems in
machine learning.

Deep AUC Maximization The area under the ROC curve (AUC) on a population
level for a scoring function h : X → R is defined as

AUC(h) = Pr(h(a) ≥ h(a′)|b = 1, b′ = −1), (3)

where a,a′ ∈ Rd0 are data features, b, b′ ∈ {−1, 1} are the labels, z = (a, b) and z′ = (a′, b′)
are drawn independently from P. By employing the squared loss as the surrogate for the
indicator function which is commonly used by previous studies (Ying et al., 2016; Liu et al.,
2018, 2020b), the deep AUC maximization problem can be formulated as

min
w∈Rd

Ez,z′
[
(1− h(w;a) + h(w;a′))2|b = 1, b′ = −1

]
, (4)

where h(w;a) denotes the prediction score for a data sample a made by a deep neural
network parameterized by w. It was shown in (Ying et al., 2016) that the above problem
is equivalent to the following min-max problem:

min
(w,s,r)

max
y∈R

f(w, s, r, y) = Ez[F (w, s, r, y, z)], (5)

where

F (w, s, r, y; z) =(1− p)(h(w;a) − s)2I[b=1] + p(h(w;a) − r)2I[b=−1]

+ 2(1 + y)(ph(w;a)I[b=−1] − (1− p)h(w;a)I[b=1])− p(1− p)y2,
(6)

where p = Pr(b = 1) denotes the prior probability that an example belongs to the positive
class, and I denotes an indicator function whose output is 1 when the condition holds and
0 otherwise. We denote the primal variable by x = (w, s, r).

Obviously, the problem (5) is strongly concave on dual variable y for any primal variable
x. Also, in the next lemma we show that f(x, y) satisfies an ǫ-almost µ-PL condition with a
high probability following the theory of over-parameterized deep learning for minimization
problems in Theorem 1, 2, 3, 5 of (Allen-Zhu et al., 2019). We put all the proof in the
appendix.

Lemma 9 Assume that input data {(a1, b1), . . . , (an, bn)}, where ai ∈ R
d0 , bi ∈ {−1, 1}, sat-

isfies ‖ai‖ = 1 and ‖ai−aj‖ ≥ δ. Consider a deep neural network with hi,0 = φ(Aai), hi,l =

φ(Wlhi,l−1), l = 1, . . . , L̃, b̂i = BThi,L̃ where A ∈ R
m×d0 ,Wl ∈ R

m×m, B ∈ R
m are ran-

domly initialized, and φ is the ReLU activation function. Let w denote the vectorization
of (W1, · · · ,WL̃) and x = (w, s, r) denote the primal variable. h(w; ai) = b̂i be the output

logit for the i-th data. Take m = Ω̃(poly(n, L̃, δ−1, ǫ)), then with a high probability over
randomness of W0, A,B for every x with ‖w−w0‖ ≤ O( logm√

m
), f(x, y) satisfies an ǫ-almost

primal µ-PL condition.
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Distributionally Robust Optimization (DRO)DRO problem (Namkoong and Duchi,
2017; Rafique et al., 2018) has a min-max formulation of

min
x

max
y∈Y

1

n

n∑

i=1

yifi(x)− r(y), (7)

where fi(x) can be a loss function on the i-th data using a neural network backbone param-
eterized by x, and r(y) is a reguralization function. The spirit of this formulation is to put
more weights to the data points with high losses, thus to increase the robustness of models.
It would be strongly concave on y for any x if r(y) is a strongly convex function. It has
been shown in proof of Lemma 2 of (Qi et al., 2021) that f(x, y) satisfies an ǫ-almost x-side
µx-PL condition with a high probability for a similar network structure as in the above
Lemma 9.

5 Algorithms and Objective Gap Convergence

In this section, we make the assumption of the primal PL condition.

Assumption 4 P (x) = max
y∈Y

f(x, y) satisfies µ-PL condition.

We present the proposed stochastic method in Algorithm 1. We would like to point
out that our method follows the proximal point framework analyzed in (Liu et al., 2020b;
Rafique et al., 2018; Yan et al., 2020). In particular, the proposed method includes multiple
consecutive stages. In each stage, we employ a stochastic algorithm to solve the following
proximal problem approximately:

fk(x, y) = f(x, y) +
γ

2
‖x− xk0‖2, (8)

where γ is an appropriate regularization parameter to make fk to be strongly convex and
strongly concave. The reference point xk0 = x̄k−1 is updated after each stage, i.e., after
each inner loop. Let x̂k(y) = argminx′ fk(x

′, y) denote the optimal x for the fixed y and
ŷk(x) = argmax

y′∈Y
fk(x, y

′) denote the optimal y for the fixed x.

However, there are some key differences between the proposed method from that are
analyzed in (Liu et al., 2020b; Rafique et al., 2018; Yan et al., 2020). We highlight the
differences below. First, our method explicitly leverages the PL condition of the objective
function by decreasing ηk, 1/Tk geometrically (e.g, e−αk for some α > 0). In contrast,
Rafique et al. (2018) and Yan et al. (2020) proposed to decrease ηk, 1/Tk polynomially (e.g.,
1/k). Second, the restating point and the reference point (x̄k−1, ȳk−1) is simply the averaged
or sampled solution of stochastic updates in our employed stochastic algorithm A. In
contrast, Liu et al. (2020b) and Rafique et al. (2018) assumed a special structure of the
objective function and leverage its structure to compute a restarted solution for y. This
makes our method much simpler to be implemented but makes the analysis more involved.

For stochastic algorithm A, one can employ many stochastic primal-dual methods to
solve minxmaxy fk(x, y). We consider four well-known methods with different stochastic up-
dates. Stochastic gradient descent ascent (SGDA) update (option I) and min-max adaptive

9
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Algorithm 1 Proximal Stage Stochastic Method: PES-A
1: Initialization: x̄0 ∈ R

d, ȳ0 ∈ Y, γ, T1, η1, a.
2: Option III: ū0 = ∇xf(x̄0, ȳ0; ξ̄), v̄0 = ∇yf(x̄0, ȳ0; ξ̄).
3: for k = 1, 2, ...,K do
4: xk0 = x̄k−1, y

k
0 = ȳk−1;

5: Option I∼ III: (x̄k, ȳk) = A(f, xk0, y
k
0 , ηk, Tk, γ);

6: Option IV: (x̄k, ȳk, ūk, v̄k) = A(f, xk0, y
k
0 , ηk, Tk, γ, ūk−1, v̄k−1);

7: ηk+1 = ηk/a, η
y
k+1 = ηyk/a, Tk+1 = aTk;

8: end for
9: return (x̄K , ȳK).

stochastic gradient (MinMax-AdaGrad) update (option III) are mostly interesting to practi-
tioners. Stochastic optimistic gradient descent ascent (OGDA) update (option II) yields an
algorithm with provable convergence result under standard assumptions for smooth prob-
lems that is more interesting to theoreticians, which was originated from stochastic mirror
prox method proposed by (Juditsky et al., 2011). Min-max stochastic update based on the
recursive variance reduced estimator STORM (Cutkosky and Orabona, 2019) (option IV)
can lead to an improved rate without using large mini-batch.

5.1 Basic Results

Below, we present the basic convergence results of Algorithm 1 by employing stochastic
OGDA update. Let Gap(x, y) = max

y′∈Y
f(x, y′)− min

x′∈X
f(x′, y) be the duality gap of (x, y) on

f and Gapk(x, y) = max
y′∈Y

fk(x, y
′)− min

x′∈X
fk(x

′, y) be the duality gap of (x, y) on fk.

Theorem 10 Consider Algorithm 1 that uses Option II: OGDA update in subroutine Algo-
rithm 2. Suppose Assumption 1, 2, 3, 4 hold. Take γ = 2ρ and denote L̂ = L+ 2ρ and c =

4ρ+ 248
53 L̂ ∈ O(L+ ρ). Define ∆k = P (xk0)−P (x∗)+

8L̂
53cGapk(x

k
0 , y

k
0 ) and ǫ0 = Gap(x̄0, ȳ0).

Then we set ηk = η0 exp(−(k − 1) 2µ
c+2µ) ≤ 1

2
√
2ℓ
, Tk =

⌈
212

η0 min{ρ,µy} exp
(
(k − 1) 2µ

c+2µ

)⌉
. Af-

ter K =
⌈
max

{
c+2µ
2µ log 4ǫ0

ǫ , c+2µ
2µ log 208η0L̂Kσ2

(c+2µ)ǫ

}⌉
stages, we have E[∆K+1] ≤ ǫ. The total

stochastic first-order oracle call complexity is Õ
(
max

{
ℓ(L+ρ)ǫ0

µmin{ρ,µy}ǫ ,
(L+ρ)2σ2

µ2 min{ρ,µy}ǫ

})
.

Remark. This result would imply that it takes Õ
(
(L+ℓ)2

µ2µyǫ

)
stochastic first-order oracle

calls to reach an ǫ-level objective gap by setting ρ = ℓ (i.e., f(x, y) is ℓ-weakly convex

in terms of x under Assumption 1). With the worse-case value of L = ℓ + ℓ2

µy
(i.e., the

ℓ-smoothness of f(x, y) and µy-strongly concavity can imply the ℓ + ℓ2/µy-smoothness of
P (x) (Nouiehed et al., 2019)) , the total stochastic first-order oracle call complexity would

be no greater than Õ
(

ℓ4

µ2µ3
yǫ

)
. This is better than the stochastic first-order oracle call

complexity of stochastic AGDA method in the order of O
(

ℓ5

µ2µ4
yǫ

)
(Yang et al., 2020a).

The above result is achieved by analysis based on a novel Lyapunov function that consists
of the primal objective gap P (xk0) − P (x∗) and the duality gap of the proximal function

10
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Algorithm 2 Stochastic Algorithm for Each Stage

Option I∼III: A(f, x0, y0, η, T, γ),
Option IV: A(f, x0, y0, η, T, γ, u0, v0)

Initialization: z̃0 = z0 = (x0, y0), Option III: g1:0 = []
Let {ξ0, ξ1, . . . , ξT } be independent random variables, and Gγ(z; ξ) =(

∇xf(x, y; ξ) + γ(x− x0)
−∇yf(x, y; ξ)

)
.

for t = 1, ..., T do
Option I: SGDA update:

zt = Πγ
zt−1,x0(ηG(zt−1; ξt−1));

Option II: OGDA update:
zt = Πz̃t−1(ηGγ(zt−1; ξt−1));
z̃t = Πz̃t−1(ηGγ(zt; ξt));

Option III: Min-Max AdaGrad update:

g1:t = [g1:t−1,Gγ(zt; ξt)], and st,i = ‖g1:t,i‖2;
Set Ht = δI + diag(st), ψt(z) =

1
2〈z − z0,Ht(z − z0)〉;

zt+1 = argmin
z∈Z

ηzT
(

1
t

t∑
τ=1

Gγ(zτ ; ξτ )

)
+ 1

tψt(z);

Option IV: Min-Max STORM update:

xt = xt−1 − ηxut−1,
yt = yt−1 + ηy(PY(yt−1 + λvt−1)− yt−1));
ut = (1− ax)ut−1 +∇xf(xt, yt; ξt)− (1− ax)∇xf(xt−1, yt−1; ξt),
vt = (1− ay)vt−1 +∇yf(xt, yt; ξt)− (1− ay)∇yf(xt−1, yt−1; ξt);

end for

Option I∼III: return x̄ = 1
T

T∑
t=1

xt, ȳ = 1
T

T∑
t=1

yt.

Option IV: return (xτ , yτ , uτ , vτ ) with a random index τ ∈ {1, . . . , T}.

fk(x, y). As a result, we can induce the convergence of duality gap in next section of the
original problem with some extra assumptions.

The convergence results of using SGDA update are similar to the results presented
above except that σ2 is replaced by the upper bound B2 of stochastic gradients, i.e., there
exists B > 0 such that E[‖∇xf(x, y; ξ)‖2] ≤ B2 and E[‖∇yf(x, y; ξ)‖2] ≤ B2. This is
a more restrictive assumption but holds in many practical applications (Hazan and Kale,
2014; Duchi et al., 2011).

Note that the number of iterations in k-th stage (i.e. Tk) does not depend on the initial
solution (x̄k−1, ȳk−1). In each stage, we do not expect to solve the sub-problem accurately,
i.e, to some ǫ-accurate level. Instead, each stage just optimizes the sub-problem in order

to make the upper bound of Lyaponov function ∆k = P (xk0) − P (x∗) +
8L̂
53cGapk(x

k
0 , y

k
0 )

decrease by a constant factor. And as k grows, (x̄k−1, ȳk−1) becomes a better and better
solution to the original problem.

Below we highlight the proof sketch. For details of proof, please refer to that of Theorem
27 in the Appendix. What we need from the sub-problem solver is that it can provide a

11
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convergence bound as

E[Gapk(x̄k, ȳk)] ≤
C1

ηkTk
E[‖x̂k(ȳk)− xk0‖2 + ‖ŷk(x̄k)− yk0‖2] + ηkC2,

which has Lemma 24 as an instantiation of Option II: OGDA subroutine. It is notable that
the above upper bound depends on the initial solution (xk0 , y

k
0 ) of this stage. To achieve this

the number of iterations Tk does not need to depend on (xk0 , y
k
0 ) and the constants C1 and

C2 do not depend on the initial solution and do not depend on the stage index k. In Lemma
24, we can see C1 = 1 and C2 = 13σ2, independent of the initial solution (x̄k−1, ȳk−1) and
stage index k.

Then by setting ηk = η0 exp(−(k− 1) 2µ
c+2µ), Tk =

⌈
212C1

η0 min{ρ,µy} exp
(
(k − 1) 2µ

c+2µ

)⌉
, both

independent of the initial solution, we can guarantee that

E[Gapk(x̄k, ȳk)] ≤
min{ρ, µy}

212
E[‖x̂k(ȳk)− xk0‖2 + ‖ŷk(x̄k)− yk0‖2] + ηkC2, (9)

which then by some theoretical deduction can lead to

E[∆k+1] ≤
c

c+ 2µ
E[∆k] +

8ηkL̂C2

c+ 2µ
. (10)

As ηk decreases exponentially as k increases, we can then guarantee the convergence of the
∆k+1 and therefore the convergence of the original problem.

5.2 Improved Rates when ρ < O(µ)

Our first improved rate is for almost convex function, whose weak convexity parameter
ρ is small enough. Such a condition has been considered in the literature for improving
the convergence of non-convex minimization problem (Yuan et al., 2019; Chen et al., 2019a;
Lan and Yang, 2019). In particular, we consider ρ is smaller than O(µ).

Theorem 11 Suppose Assumption 1, 2, 3 , 4 hold and 0 < ρ ≤ µ
8 . Take γ = µ

4 . Define
∆k = 475(P (xk0) − P (x∗)) + 57Gapk(x

k
0 , y

k
0 ) and ǫ0 = Gap(x̄0, ȳ0). Then we can set ηk =

η0 exp(−k−1
16 ) ≤ 1

2
√
2ℓ
, Tk =

⌈
384

η0 min{µ/8,µy} exp
(
k−1
16

)⌉
. After K =

⌈
max

{
16 log 1200ǫ0

ǫ ,

16 log 15600η0Kσ2

ǫ

}⌉
stages, we can have E[∆K+1] ≤ ǫ. The total stochastic first-order oracle

call complexity is Õ
(
max{ℓǫ0,σ2}
min{µ,µy}ǫ

)
.

5.3 Improved Rates of Using Min-Max AdaGrad

Similar to the literature of AdaGrad for improving convergence of convex and non-convex
minimization problems (Duchi et al., 2011; Chen et al., 2019b, 2018), we can also improve
the convergence of NCSC min-max optimization by leveraging Min-Max AdaGrad update.
In particular, the dependence on 1/ǫ can be further reduced if the growth rate of the
stochastic gradients is slow. In particular, we have the following theorem regarding Min-
Max AdaGrad.

12
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Theorem 12 (Informal) Suppose Assumption 1, 3, 4 hold. Let gk1:Tk
denote the cumulative

matrix of gradients in k-th stage. Suppose ‖gk1:Tk ,i
‖2 ≤ δTα

k and with α ∈ (0, 1/2]. Then
by setting parameters appropriately, PES-AdaGrad has the total stochastic first-order oracle

call complexity of Õ

((
δ2(L+ρ)2(d+d′)
µ2 min{ρ,µy}ǫ

) 1
2(1−α)

)
in order to have E[∆K+1] ≤ ǫ, where ∆k is

defined as in Theorem 10.

Remark: First let us justify the slow growth condition ‖gk1:Tk ,i
‖2 ≤ δTα

k . Supposing the

stochastic gradients are bounded, it is clear that ‖gk1:Tk,i
‖2 ≤ O(T

1/2
k ). But the ‖gk1:Tk ,i

‖2
can actually grow in a slower order than that because as the algorithm goes on, more and
more data would become easy for the model and thus generate small gradients. For ex-
ample, in deep learning where the models are able to memorize a lot of the training data.
We verify this assumption in the Experiment section (Figure 3) and similar phenomena
has been reported in previous research on min-max optimization (see Figure 2 of Liu et al.
(2020a)). Indeed it has been observed that overparameterized deep neural networks ex-
hibit interpolation phenomenon, meaning that the model will have zero gradient at every
example in the limit (Zhang et al., 2021a). Nevertheless, it is still nontrivial to prove this
condition rigorously and we leave it as an open problem. The improvements lies at when
the stochastic gradient grows slowly, the sample complexity has a better dependence than
1/ǫ, i.e. O(1/ǫ1/(2(1−α)) ≤ O(1/ǫ) when α ∈ (0, 1/2).

5.4 Improved Rates of Using Min-Max STORM

Our last improved rate is by leveraging the recursive variance reduced stochastic gradient
estimator called STORM (Cutkosky and Orabona, 2019). This estimator has been used
for non-convex min-max optimization (Huang et al., 2022). However, to the best of our
knowledge, an improved rate under a PL condition for a NCSC optimization problem has
not been established before. We make an additional assumption about the problem (1).

Assumption 5 f(x, y; ξ) is ℓ-smooth in terms of x and y in expectation, i.e., Eξ[‖G(z; ξ)−
G(z′; ξ)‖2] ≤ ℓ‖z − z′‖2.

Theorem 13 (Informal) Suppose Assumption 1, 2, 4, 5 hold. By setting parameters appro-

priately, PES-STORM has the total stochastic first-order oracle call complexity of Õ
(

ℓ2

µµ2
yǫ

)

in order to have E[P (x̄K)− P (x∗)] ≤ ǫ.

Remark: Compared to the complexity of PES-OGDA as implied by Theorem 10, the
complexity of PES-STORM has a better dependence on the PL constant µ, which is usually
small in practice.

6 Duality Gap Convergence

In this section, we provide a stronger guarantee by analyzing the duality gap convergence
utilizing some extra assumptions. Similar to (Yang et al., 2020a), we make the following
assumption. However, a difference is that we can prove the existence of a saddle point
instead of imposing it.

13
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Assumption 6 hy(x) = f(x, y) satisfies x-side µx-PL condition for any y ∈ Y, i.e.,
‖∇xf(x, y)‖2 ≥ 2µx(f(x, y)−minx f(x, y)), for any x, y ∈ Y.

Using Theorem 10 and Assumption 6, we have

Corollary 14 Under the same setting as in Theorem 10, and suppose Assumption 6 holds
as well. To achieve E[Gap(x̄K , ȳK)] ≤ ǫ, the total number of stochastic first-order oracle
call is
Õ
(
max

{
(ρ/µx+1)ℓ(L+ρ)ǫ0

µmin{ρ,µy}ǫ , (ρ/µx+1)(L+ρ)2σ2

µ2 min{ρ,µy}ǫ

})
.

Remark. Note that compared with the stochastic first-order oracle call complexity of
the primal objective gap convergence, the stochastic first-order oracle call complexity of the
duality gap convergence is worse by a factor of ρ/µx + 1. When f(x, y) is ℓ-weakly convex
with ρ = ℓ, the stochastic first-order oracle call complexity for having ǫ-level duality gap

is Õ
(

(L+ℓ)2ℓ
µ2µxµyǫ

)
, which reduces to Õ

(
ℓ5

µ2µxµ3
yǫ

)
for the worst-case value of L. This result is

better than the stochastic first-order oracle call complexity of stochastic AGDA method in

the order of O
(

ℓ7

µ2µxµ5
yǫ

)
that is derived by us based on the result of (Yang et al., 2020a)

(c.f. Lemma 17 in the Supplement). In addition, when f(x, y) is ρ-weakly convex with µx <
ρ < µy, the stochastic first-order oracle call complexity of PES-OGDA for having ǫ-level

duality gap is Õ
(
(L+ℓ)2

µ2µxǫ

)
. Further, when ρ < µx, we can set ρ = µx and then the stochastic

first-order oracle call complexity for having ǫ-level duality gap is Õ
(

(L+ℓ)2

µ2 min{µx,µy}ǫ

)
.

Using Theorem 11 and Assumption 6, we have

Corollary 15 Under the same setting as in Theorem 11 and suppose Assumption 6 holds
as well. To achieve E[Gap(x̄K , ȳK)] ≤ ǫ, the total number of stochastic first-order oracle

calls is Õ
(

µmax{ℓǫ0,σ2}
µx min{µ,µy}ǫ

)
.

Remark: Compared with results in Theorem 10 and Corollary 14, the sample com-
plexities in Theorem 11 and Corollary 15 have better dependence on µ, µy. In addition, by

setting µ = µx, the rate in Corollary 11 becomes Õ( 1
min{µx,µy}ǫ), which matches that es-

tablished optimal rate in (Yan et al., 2020) for µx-strongly convex and µy-strongly concave
problems up to a logarithmic factor. But we only require x-side µx-PL condition instead of
µx-strongly convex in terms of x.

7 Experiments

In this section, we show some empirical results to verify the effectiveness of the proposed
algorithms for deep and non-deep learning tasks.

Non-convex Distributionally Robust Optimization. This task has been consid-
ered in (Rafique et al., 2018). The problem is formulated as:

min
x∈Rd

max
y∈S

n∑

i=1

yiφ(log(1 + exp(−biai
Tx)))− θ

2
‖y − 1

n
‖2 (11)

where (ai, bi) denotes feature label pair, bi ∈ {−1, 1}, φ(s) = log(1 + s/2) is a non-convex
truncation function used to tackle outliers and noisy data, and S is a simplex. In experi-
ments the simplex constraint is handled by a projection algorithm in Duchi et al. (2008).
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Figure 1: Results for Non-convex DRO.

We conduct experiments on four datasets from LibSVM website (Chang and Lin, 2011),
i.e., gisette-scale, cod-rna, skin-nonskin and usps. For skin-nonskin, we randomly partition
the dataset into training set and testing set of equal size. For other data sets we use the
provided training/testing split. For usps, we make the first class to be the positive class
and merge the other 9 classes into the negative class.

We first verify the PL condition of primal problem P (x) of (11) empirically. We plot
‖∇P (x)‖2/2(P (x) − P (x∗)) in the second figure of the Figure 1.

We compare three variants of our method (PES-SGDA, PES-STORM, PES-AdaGrad)
with two baselines Stoc-AGDA (Yang et al., 2020a), PGA (algorithm 1 (Rafique et al.,
2018)). For all algorithms, we set θ = 10. For Stoc-AGDA, the step sizes for x and y
are set to be τ1

λ+t and τ1
λ+t , respectively. τ1 and τ2 are tuned in [1 ∼ 1e3]. γ is tuned

in [1 ∼ 1e4]. For PES-SGDA, PES-STORM, and PES-AdaGrad, we set Tk = T02
k and

ηk = η0/2
k, where T0 and η0 are tuned in [500 ∼ 5000], [0.1, 0.05, 0.01, 0.001]. γ is tuned in

[1 ∼ 2000]. The results are plotted in Figure 1. We can see that the proposed algorithms
PES-SGDA, PES-STORM and PES-AdaGrad converge faster than the baselines in most
cases. PES-STORM and PES-AdaGrad perform better than PES-SGDA on this task, which
shows the potential to improve the performance by using STORM type variance techniques
or adaptive methods when a task satisfies corresponding assumptions.

Deep AUC maximization. This task is similar to that considered in (Liu et al.,
2020b). Deep AUC maximization with a square surrogate loss function is formulated as
a NCSC min-max problem which has been introduced in the Section 4. We compare our
algorithms, PES-SGDA (Option I), PES-OGDA (Option II), PES-AdaGrad (Option III),
with five baseline methods, including stochastic gradient method (SGD) for solving a stan-
dard minimization formulation with cross-entropy loss, Stoc-AGDA (Yang et al., 2020a),
PGA (algorithm 1 (Rafique et al., 2018)), PPD-SG and PPD-AdaGrad (Liu et al., 2020b)
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Figure 2: Comparison of testing AUC on Cat&Dog, CIFAR10, CIFAR100.

for solving the same AUC maximization problem. We learn ResNet-20 (He et al., 2016)
with an ELU activation function.

For the parameter settings, we use a common stage-wise stepsize for SGD, i.e., the
initial stepsize is divided by 10 at 40K, 60K of stochastic first-order oracle calls. For PPD-
SG and PPD-AdaGrad, we follow the instructions in their works, i.e., Tk = T03

k, ηk =
η0/3

k and T0, η0 and γ are tuned in [500 ∼ 2000], [0.1, 0.05, 0.01, 0.001], and [100 ∼ 2000],
respectively. For Stoc-AGDA, the stepsize strategy follows τ1

λ+t ,
τ2
λ+t for the dual and primal

variables, respectively, where τ1 ≪ τ2. The initial values τ1, τ2, λ are tuned in [1, 5, 10, 15],
[5, 10, 15, 20], and [1e3, 1e4], respectively. For our methods, we adopt the same strategy as
PPD-SG and PPD-AdaGrad to tune the parameters.

We compare on three benchmark datasets: Cat&Dog (C2) (Elson et al., 2007), CIFAR10
(C10), CIFAR100 (C100) (Krizhevsky et al., 2009) which have 2, 10, 100 classes, respectively.
To fit our task, we convert them into imbalanced datasets following the instructions in
(Liu et al., 2020b). We firstly construct the binary dataset by splitting the original dataset
into two portions with equal size (50% positive: 50% negative) and then we randomly
remove 90%, 80%, 60% data from negative samples on training data, which generate the
imbalanced datasets with a positive:negative ratio of 91/9, 83/17, 71/29, respectively. We
keep the testing data unchanged. We set the batch size to 128 for all datasets.

The testing AUC curve of all algorithms are reported in Figure 2, where the sample
complexity indicates the number of samples used in the training up to 80K of stochastic
first-order oracle calls. From the results, we can see that SGD works better (or similar to)
than AUC-based methods on the balanced data (50%). However, PES-SGDA and PES-
AdaGrad generally outperform SGD when the data is imbalanced, and outperforms PGA
and Stoc-AGDA in almost all cases. In addition, the proposed methods performs similarly
sometimes better than PPD-SG/PPD-AdaGrad except on C100 (91% positive ratio). This
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Figure 3: Verification of the Slow Growth Condition

is not surprising since PPD-SG/PPD-AdaGrad are designed for AUC maximization under
the same PL condition by leveraging its structure and extra data samples for computing a
restarted dual solution. In contrast, our algorithms directly use averaged dual solution for
restarting. When the positive ratio is 91% on C100, we observe that PPD-AdaGrad per-
forms better than our algorithms, showing that using the extra data samples may help in the
extreme imbalanced cases. We also observe that the Stoc-AGDA performs worst in all cases
with O(1t ) stepsize. For our methods, PES-SGDA and PES-AdaGrad perform generally bet-
ter than PES-OGDA. In Figure 3, we verify the slow growth condition, i.e. ‖gk1,Tk,i

‖ ≤ δTα
k

used in the analysis of AdaGrad based algorithms, by plotting the 1
d+d′

∑
i
‖g11:t,i‖2 versus

the sample complexity. We can seen that the growth of the aggregate of stochastic gradients
is slower than the order of O(

√
T ).

8 Conclusion

In this paper, we have presented generic stochastic algorithms for solving non-convex and
strongly concave min-max optimization problems. We established convergence for both
the objective gap and the duality gap under PL conditions of the objective function for
different stochastic updates. The experiments on deep and non-deep learning tasks have
demonstrated the effectiveness of our methods.
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Appendix A. Convergence of Duality Gap by Stoc-AGDA Algorithm

To compare our algorithm with Stoc-AGDA in terms of convergence of duality gap, we
derive Lemma 17 based on Theorem 3.3 of (Yang et al., 2020a). We first present an auxiliary
lemma which is an extension of the Danskin’s theorem.

Lemma 16 (Corollary of Theorem 1 of (Bernhard and Rapaport, 1995)) In the
min-max problem, when f(x, y) is strong concave in y for any x then the gradient of the
function P (x) = maxy∈Y is ∇P (x) = ∇xf(x, ŷ(x)) where ŷ(x) = argmaxy∈Y f(x, y).

Then the convergence of duality gap by Stoc-AGDA algorithm is given in next lemma.

Lemma 17 Supposes Assumption 1, 2, 4 and 6 hold. Stoc-AGDA would reach a ǫ-duality

gap by a stochastic first-order oracle call complexity of O
(

ℓ7

µ2µxµ5
yǫ

)
.

Proof Yang et al. (2020a) defines the measure as following potential function,

Pt = E[P (xt)− P (x∗)] +
1

10
E[P (xt)− f(xt, yt)]. (12)

By Theorem 3.3 of (Yang et al., 2020a), in Stoc-AGDA, Pt ≤ ǫ̂ after O
(

ℓ5

µ2µ4
y ǫ̂

)
stochastic

first-order oracle calls. It directly follows that the objective gap will be less than ǫ̂ after

O
(

ℓ5

µ2µ4
y ǫ̂

)
stochastic first-order oracle calls, i.e.,

P (xt)− P (x∗) ≤ Pt ≤ ǫ̂. (13)

Besides, after O
(

ℓ5

µ2µ4
y ǫ̂

)
stochastic first-order oracle calls, we also have

f(xt, ŷ(xt))− f(xt, yt) = P (xt)− f(xt, yt) ≤ 10ǫ̂, (14)

where the equality holds by the Lemma 16. By the µy-strong concavity of f(x, ·), we have

‖yt − ŷ(xt)‖2 ≤ f(xt, ŷ(xt))− f(xt, yt)

2µy
≤ 5ǫ̂

µy
, (15)

and

‖ŷ(xt)− y∗‖2 ≤
f(xt, ŷ(xt))− f(xt, y∗)

2µy

≤ f(xt, ŷ(xt))− f(x∗, y∗) + f(x∗, y∗)− f(xt, y∗)
2µy

≤ f(xt, ŷ(xt))− f(x∗, y∗)
2µy

=
P (xt)− P (x∗)

2µy
≤ ǫ̂

2µy
.

(16)

Thus,

‖yt − y∗‖2
(a)

≤ 2‖yt − ŷ(xt)‖2 + 2‖ŷ(xt)− y∗‖2 ≤
11ǫ̂

µy
, (17)
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where (a) holds since ‖a − b‖2 = ‖a − c + c − b‖2 ≤ 2‖a − c‖2 + 2‖c − b‖2. Since f(·, ·)
is ℓ-smooth and f(·, y) satisfies µx-PL condition for any y, we know D(y) = min

x′

f(x′, y) is

smooth with coefficient ℓ+ ℓ2

µx
≤ 2ℓ2

µx
(Nouiehed et al., 2019; Yang et al., 2020a). Thus,

f(x∗, y∗)− f(x̂(yt), yt) = D(y∗)−D(yt) ≤
2ℓ2

2µx
‖yt − y∗‖2 ≤

11ℓ2ǫ̂

µxµy
, (18)

where the first equality holds by Lemma A.5 of (Nouiehed et al., 2019).
Then we know the duality gap is

f(xt, ŷ(xt))− f(x̂(yt), yt) = f(xt, ŷ(xt))− f(x∗, y∗) + f(x∗, y∗)− f(x̂(yt), yt)

≤ ǫ̂+
11ℓ2ǫ̂

µxµy
.

(19)

To make the duality gap less than ǫ, we need ǫ̂ ≤ O
(µxµyǫ

ℓ2

)
. Therefore, it takes O

(
ℓ7

µ2µxµ5
yǫ

)

stochastic first-order oracle calls to have a ǫ-duality gap for the Algorithm Stoc-AGDA that
has been proposed in (Yang et al., 2020a).

Appendix B. Convergence Analysis of PES-SGDA

We present the convergence rate of primal gap and duality gap if SGDA update is used in
Algorithm 2. Since the proof is similar to the version with Option II: OGDA as update, we
include the proof in later sections together with the version using OGDA update.

Theorem 18 Consider Algorithm 1 that uses Option I: SGDA update in subroutine Algo-
rithm 2. Suppose Assumption 1, 3, 4 hold. Assume E‖∇xf(x, y; ξ)‖2 ≤ B2 and
E‖∇yf(x, y; ξ)‖2 ≤ B2. Take γ = 2ρ and denote L̂ = L + 2ρ and c = 4ρ + 248

53 L̂ ∈
O(L + ρ). Define ∆k = P (xk0) − P (x∗) +

8L̂
53cGapk(x

k
0 , y

k
0) and ǫ0 = Gap(x̄0, ȳ0). Then

we can set ηk = η0 exp(−(k − 1) 2µ
c+2µ) ≤ 1

ρ , Tk =
⌈

212C1
η0 min{ρ,µy} exp

(
(k − 1) 2µ

c+2µ

)⌉
. After

K =
⌈
max

{
c+2µ
2µ log 4ǫ0

ǫ , c+2µ
2µ log 80η0L̂KB2

(c+2µ)ǫ

}⌉
stages, we can have ∆K+1 ≤ ǫ. The total

stochastic first-order oracle call complexity is Õ
(

(L+ρ)2B2

µ2 min{ρ,µy}ǫ

)
.

Remark. The bounded stochastic gradient assumption i.e., E[‖∇xf(x, y; ξ)‖2] ≤ B2 and
E[‖∇yf(x, y; ξ)‖2] ≤ B2 is only used for the analysis of our algorithm employing the SGDA
update (Option I), and it is not used for other updates. It is notable that in min-max
optimization it is an open question to get rid of the bounded stochastic gradient assumption
for the vanilla SGDA updates in order to establish convergence bound for the duality gap.
To the best of our knowledge, in the existing works over the gap convergence of stochastic
min-max optimization that can achieve state-of-the-art complexity, they either use this
bounded stochastic gradient assumption Nemirovski et al. (2009); Yan et al. (2020), or use
some extra steps other than simple SGDA (Juditsky et al., 2011; Zhao, 2022; Hsieh et al.,
2019; Zhao et al., 2019; Yang et al., 2020a).
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Corollary 19 Under the same setting as in Theorem 18 and suppose Assumption 6 holds
aw well. To reach an ǫ-duality gap, it takes a total stochastic first-order oracle call complexity

of Õ
(
(L+ρ)2(ρ/µx+1)B2

µ2 min{ρ,µy}ǫ

)
.

Theorem 20 Suppose Assumption 1, 6, 3 hold and 0 < ρ ≤ µ
8 . Assume E‖∇xf(x, y; ξ)‖2 ≤

B2 and E‖∇yf(x, y; ξ)‖2 ≤ B2. Take γ = 2ρ. Define ∆k = 475(P (xk0) − P (x∗)) +
57Gapk(x

k
0 , y

k
0 ) and ǫ0 = Gap(x̄0, ȳ0). Then we can set ηk = η0 exp(−k−1

16 ) ≤ 1
ρ , Tk =⌈

768
η0 min{µ/8,µy} exp

(
k−1
16

)⌉
. After K =

⌈
max

{
16 log 1200ǫ0

ǫ , 16 log 6000η0KB2

ǫ

}⌉
stages, we

can have ∆K+1 ≤ ǫ. The total stochastic first-order oracle call complexity is Õ
(

B2

min{µ,µy}ǫ

)
.

Corollary 21 Under the same setting as in Theorem 20 and suppose Assumption 6 holds
as well. To reach an ǫ-duality gap, it takes total stochastic first-order oracle call complexity

of Õ
(
(µ/µx+1)B2

min{µ,µy}ǫ

)
.

Appendix C. One Stage Analysis of PES-OGDA

We need the following lemmas from (Nemirovski, 2004).

Lemma 22 (Lemma 3.1 of (Nemirovski, 2004)) For z0 ∈ Z, let w1 = Πz0(ζ1), w2 =
Πz0(ζ2). For any z ∈ Z,

〈ζ2, w1 − z〉 ≤ 1

2
‖z − z0‖2 −

1

2
‖w2 − z‖2 − 1

2
‖w1 − z0‖2 −

1

2
‖w1 − w2‖2 + ‖ζ1 − ζ2‖2. (20)

Lemma 23 (Corollary 2 of (Juditsky et al., 2011)) Let ζ1, ζ2, ... be a sequence, we
define a corresponding sequence {vt ∈ Z}Tt=0 as

vt = Πvt−1(ζt), v0 ∈ Z, (21)

we have for any u ∈ Z,

T∑

t=1

〈ζt, vt−1 − u〉 ≤ 1

2
‖v0 − u‖2 + 1

2

T∑

t=1

‖ζt‖2. (22)

Next we present the lemma that guarantees the converge of one call of Algorithm 2 with
Option II: OGDA update.

Lemma 24 Suppose f(x, y) is convex-concave and Assumption 2 holds. By running Algo-
rithm 2 with OGDA update and input (f, x0, y0, η ≤ 1

4
√
3ℓ
, T ), we have

E[f(x̄, ŷ(x̄))− f(x̂(ȳ), ȳ)]≤ 1

ηT
E(‖x̂(ȳ)− x0‖2 + ‖ŷ(x̄)− y0‖2) + 13ησ2. (23)
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Proof [Proof of Lemma 24] Applying Lemma 22 with z0 = z̃t−1, ζ1 = ηG(zt−1; ξt−1),
ζ2 = ηG(zt; ξt), and accordingly w1 = zt, w2 = z̃t, we get for any z ∈ Z,

〈G(zt; ξt), zt − z〉 ≤ 1

2η
[‖z − z̃t−1‖2 − ‖z̃t − z‖2]− 1

2η
[‖zt − z̃t−1‖2 + ‖zt − z̃t‖2]

+ η‖G(zt−1; ξt−1)− G(zt; ξt)‖2.
(24)

Taking average over t = 1, ..., T and by the convexity of f(x, y) in x, we have for any
x ∈ X ,

1

T

T∑

t=1

〈G(zt; ξt), zt − z〉 ≤ ‖z − z̃0‖2
2ηT

− 1

2ηT

T∑

t=1

(‖zt − z̃t−1‖2 + ‖zt − z̃t‖2)

+
η

T

T∑

t=1

‖G(zt−1; ξt−1)− G(zt; ξt)‖2

≤ ‖z − z0‖2
2ηT

− 1

2ηT

T∑

t=1

(‖zt − z̃t−1‖2 + ‖zt − z̃t‖2) +
3η

T

T∑

t=1

‖F (zt−1)− F (zt)‖2

+
3η

T

T∑

t=1

(‖G(zt; ξt)− F (zt)‖2 + ‖G(zt−1; ξt−1)− F (zt−1)‖2),

(25)

where the last inequality is due to

∥∥∥∥
K∑
k=1

ak

∥∥∥∥
2

≤ K
K∑
k=1

‖ak‖2. Note that

T∑

t=1

(‖zt − z̃t−1‖2 + ‖zt − z̃t‖2) =
T−1∑

t=0

‖zt+1 − z̃t‖2 +
T∑

t=1

‖zt − z̃t‖2

=

T−1∑

t=1

‖zt+1 − z̃t‖2 + ‖z1 − z̃0‖2 +
T−1∑

t=1

‖zt − z̃t‖2 ≥
1

2

T−1∑

t=1

‖zt − zt+1‖2 + ‖z1 − z̃0‖2

≥ 1

2

T−1∑

t=0

‖zt − zt+1‖2 =
1

2

T∑

t=1

‖zt−1 − zt‖2.

(26)

By the ℓ-smoothness of f(x, y), we have

‖F (zt−1)− F (zt)‖2 =‖∇xf(xt, yt)−∇xf(xt−1, yt−1)‖2 + ‖∇yf(xt, yt)−∇yf(xt−1, yt−1)‖2

≤2‖∇xf(xt, yt)−∇xf(xt, yt−1)‖2 + 2‖∇xf(xt, yt−1)−∇xf(xt−1, yt−1)‖2

+ 2‖∇yf(xt, yt)−∇yf(xt, yt−1)‖2 + 2‖∇yf(xt, yt−1)−∇yf(xt−1, yt−1)‖2

≤2ℓ2‖yt − yt−1‖2 + 2ℓ2‖xt − xt−1‖2 + 2ℓ2‖yt − yt−1‖2 + 2ℓ2‖xt − xt−1‖2

=4ℓ2‖zt−1 − zt‖2.
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Denote Θt = F (zt)− G(zt; ξt). With the above two inequalities, (25) becomes

1

T

T∑

t=1

〈G(zt; ξt), zt − z〉

≤ ‖z − z0‖2
2ηT

− 1

4ηT

T∑

t=1

‖zt−1 − zt‖2 +
12ηℓ2

T

T∑

t=1

‖zt−1 − zt‖2 +
3η

T

T∑

t=1

(‖Θt‖2 + ‖Θt−1‖2)

≤ ‖z − z0‖2
2ηT

+
3η

T

T∑

t=1

(‖Θt‖2 + ‖Θt−1‖2),

(27)

where the last inequality holds because η ≤ 1
4
√
3ℓ
.

Define a virtual sequence {ẑt ∈ X}Tt=0 as

ẑt = Πẑt−1(ηΘt), ẑ0 = z0. (28)

Applying Lemma 23 with ζt = ηΘt = η(F (zt) − G(zt; ξt)), vt = ẑt and u = z, we have for
any z ∈ Z,

1

T

T∑

t=1

〈Θt, ẑt−1 − z〉 ≤ 1

2ηT
‖z0 − z‖2 + η

2T

T∑

t=1

‖Θt‖2. (29)

Using (27) and (29), we get

1

T

T∑

t=1

〈F (zt), zt − z〉 = 1

T

T∑

t=1

[〈G(zt; ξt), zt − z〉+ 〈Θt, zt − z〉]

=
1

T

T∑

t=1

〈G(zt; ξt), zt − z〉+ 1

T

T∑

t=1

〈Θt, zt−ẑt−1〉+
1

T

T∑

t=1

〈Θt, ẑt−1− z〉

≤ 1

ηT
‖z0 − z‖2 + η

T

T∑

t=1

(
7

2
‖Θx,t‖2 + 3‖Θx,t−1‖2

)
+

1

T

T∑

t=1

〈Θx,t, xt−x̂t−1〉.

(30)

Note

E[〈Θt, zt − ẑt−1〉|zt, ẑt−1,Θt−1, ...,Θ0] = 0,

and by Assumption 2

E[‖Θt‖2|zt, z̃t−1,Θt−1, ...,Θ0] ≤ 2σ2.

Thus, taking expectation on both sides of (30), we get

E

[
1

T

T∑

t=1

〈F (zt), zt − z〉
]
≤ 1

ηT
E
[
‖z0 − z‖2

]
+ 13ησ2. (31)
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By the fact f(x, y) is convex-concave,

E[f(x̄, y)− f(x, ȳ)] ≤E

[
1

T

T∑

t=1

(f(xt, y)− f(x, yt))

]

=E

[
1

T

T∑

t=1

(f(xt, y)− f(xt, yt) + f(xt, yt)− f(x, yt))

]

≤E

[
1

T

T∑

t=1

(〈−∇yf(xt, yt), yt−y〉+ 〈∇xf(xt, yt), xt−x〉)
]

=E

[
1

T

T∑

t=1

〈F (zt), zt − z〉
]
≤ 1

ηT
E[‖z0 − z‖2] + 13ησ2.

(32)

Then we can conclude by plugging in z = (x, y) = (x̂(ȳ), ŷ(x̄)).

Appendix D. Proof of Theorem 10 and Theorem 18

Before we prove these two theorems, we first present two lemmas from (Yan et al., 2020)
and we introduce Theorem 27 that unifies the proof of Theorem 10 and Theorem 18.

Lemma 25 (Lemma 1 of (Yan et al., 2020)) Suppose a function h(x, y) is λ1-strongly
convex in x and λ2-strongly concave in y. Consider the following problem

min
x∈X

max
y∈Y

h(x, y),

where X and Y are convex sets. Denote x̂h(y) = arg min
x′∈X

h(x′, y) and ŷh(x) = argmax
y′∈Y

h(x, y′).

Suppose we have two solutions (x0, y0) and (x1, y1). Then the following relation between
variable distance and duality gap holds

λ1

4
‖x̂h(y1)− x0‖2 +

λ2

4
‖ŷh(x1)− y0‖2 ≤max

y′∈Y
h(x0, y

′)− min
x′∈X

h(x′, y0)

+ max
y′∈Y

h(x1, y
′)− min

x′∈X
h(x′, y1).

(33)

Lemma 26 (Lemma 5 of (Yan et al., 2020)) We have the following lower bound for
Gapk(x̄k, ȳk)

Gapk(x̄k, ȳk) ≥
3

50
Gapk+1(x

k+1
0 , yk+1

0 ) +
4

5
(P (xk+1

0 )− P (xk0)),

where xk+1
0 = x̄k and yk+1

0 = ȳk.
We will introduce the following theorem that can unify the proof of Theorem 10 and

Theorem 18 since their have pretty similar forms of bounds in solving the subproblem.
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Theorem 27 Suppose Assumption 1 and Assumption 4 hold. Assume we have a subroutine
in the k-th stage of Algorithm 1 that can return x̄k, ȳk such that

E[Gapk(x̄k, ȳk)] ≤
C1

ηkTk
E[‖x̂k(ȳk)− xk0‖2 + ‖ŷk(x̄k)− yk0‖2] + ηkC2, (34)

where C1 and C2 are constants corresponding to the specific subroutine. Take γ = 2ρ
and denote L̂ = L + 2ρ and c = 4ρ + 248

53 L̂ ∈ O(L + ρ). Define ∆k = P (xk0) − P (x∗) +
8L̂
53cGapk(x

k
0 , y

k
0 ) and ǫ0 = Gap(x̄0, ȳ0). Then we can set ηk = η0 exp(−(k − 1) 2µ

c+2µ),

Tk =
⌈

212C1
η0 min{ρ,µy} exp

(
(k − 1) 2µ

c+2µ

)⌉
. After K =

⌈
max

{
c+2µ
2µ log 4ǫ0

ǫ , c+2µ
2µ log 16η0L̂KC2

(c+2µ)ǫ

}⌉

stages, we can have ∆K+1 ≤ ǫ. The total stochastic first-order oracle call complexity is

Õ
(
max

{
(L+ρ)C1ǫ0

η0µmin{ρ,µy}ǫ ,
(L+ρ)2C2

µ2 min{ρ,µy}ǫ

})
.

Proof [Proof of Theorem 27] Since f(x, y) is ρ-weakly convex in x for any y, P (x) =
max
y′∈Y

f(x, y′) is also ρ-weakly convex. Taking γ = 2ρ, we have

P (x̄k−1) ≥ P (x̄k) + 〈∇P (x̄k), x̄k−1 − x̄k〉 −
ρ

2
‖x̄k−1 − x̄k‖2

= P (x̄k) + 〈∇P (x̄k) + 2ρ(x̄k − x̄k−1), x̄k−1 − x̄k〉+
3ρ

2
‖x̄k−1 − x̄k‖2

(a)
= P (x̄k) + 〈∇Pk(x̄k), x̄k−1 − x̄k〉+

3ρ

2
‖x̄k−1 − x̄k‖2

(b)
= P (x̄k)−

1

2ρ
〈∇Pk(x̄k),∇Pk(x̄k)−∇P (x̄k)〉+

3

8ρ
‖∇Pk(x̄k)−∇P (x̄k)‖2

= P (x̄k)−
1

8ρ
‖∇Pk(x̄k)‖2 −

1

4ρ
〈∇Pk(x̄k),∇P (x̄k)〉+

3

8ρ
‖∇P (x̄k)‖2,

(35)

where (a) and (b) hold by the definition of Pk(x).
Rearranging the terms in (35) yields

P (x̄k)− P (x̄k−1) ≤
1

8ρ
‖∇Pk(x̄k)‖2 +

1

4ρ
〈∇Pk(x̄k),∇P (x̄k)〉 −

3

8ρ
‖∇P (x̄k)‖2

(a)

≤ 1

8ρ
‖∇Pk(x̄k)‖2 +

1

8ρ
(‖∇Pk(x̄k)‖2 + ‖∇P (x̄k)‖2)−

3

8ρ
‖P (x̄k)‖2

=
1

4ρ
‖∇Pk(x̄k)‖2 −

1

4ρ
‖∇P (x̄k)‖2

(b)

≤ 1

4ρ
‖∇Pk(x̄k)‖2 −

µ

2ρ
(P (x̄k)− P (x∗)),

(36)

where (a) holds by using 〈a,b〉 ≤ 1
2(‖a‖2 + ‖b‖2), and (b) holds by the µ-PL property of

P (x).
Thus, we have

(4ρ+ 2µ) (P (x̄k)− P (x∗))− 4ρ(P (x̄k−1)− P (x∗)) ≤ ‖∇Pk(x̄k)‖2. (37)

Since γ = 2ρ, fk(x, y) is ρ-strongly convex in x and µy strong concave in y. Apply
Lemma 25 to fk, we know that

ρ

4
‖x̂k(ȳk)− xk0‖2 +

µy

4
‖ŷk(x̄k)− yk0‖2 ≤ Gapk(x

k
0 , y

k
0 ) + Gapk(x̄k, ȳk). (38)
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By the setting of ηk = η0 exp
(
−(k − 1) 2µ

c+2µ

)
, and Tk =

⌈
212C1

η0 min{ρ,µy} exp
(
(k − 1) 2µ

c+2µ

)⌉
,

we note that C1
ηkTk

≤ min{ρ,µy}
212 . Applying (34), we have

E[Gapk(x̄k, ȳk)] ≤ ηkC2 +
1

53
E

[ρ
4
‖x̂k(ȳk)− xk0‖2 +

µy

4
‖ŷk(x̄k)− yk0‖2

]

≤ ηkC2 +
1

53
E

[
Gapk(x

k
0 , y

k
0 ) + Gapk(x̄k, ȳk)

]
.

(39)

Since P (x) is L-smooth and γ = 2ρ, then Pk(x) is L̂ = (L+ 2ρ)-smooth. According to
Theorem 2.1.5 of (Nesterov, 2004), we have

E[‖∇Pk(x̄k)‖2] ≤ 2L̂E(Pk(x̄k)− min
x∈Rd

Pk(x)) ≤ 2L̂E[Gapk(x̄k, ȳk)]

= 2L̂E[4Gapk(x̄k, ȳk)− 3Gapk(x̄k, ȳk)]

≤ 2L̂E

[
4

(
ηkC2 +

1

53

(
Gapk(x

k
0 , y

k
0 ) + Gapk(x̄k, ȳk)

))
− 3Gapk(x̄k, ȳk)

]

= 2L̂E

[
4ηkC2 +

4

53
Gapk(x

k
0 , y

k
0 )−

155

53
Gapk(x̄k, ȳk)

]
.

(40)

Applying Lemma 26 to (40), we have

E[‖∇Pk(x̄k)‖2] ≤ 2L̂E

[
4ηkCk +

4

53
Gapk(x

k
0 , y

k
0 )

− 155

53

(
3

50
Gapk+1(x

k+1
0 , yk+1

0 ) +
4

5
(P (xk+1

0 )− P (xk0))

)]

= 2L̂E

[
4ηkC2+

4

53
Gapk(x

k
0 , y

k
0 )−

93

530
Gapk+1(x

k+1
0 , yk+1

0 )− 124

53
(P (xk+1

0 )− P (xk0))

]
.

Combining this with (37), rearranging the terms, and defining a constant c = 4ρ+ 248
53 L̂ ∈

O(L+ ρ), we get

(c+ 2µ)E[P (xk+1
0 )− P (x∗)] +

93

265
L̂E[Gapk+1(x

k+1
0 , yk+1

0 )]

≤
(
4ρ+

248

53
L̂

)
E[P (xk0)− P (x∗)] +

8L̂

53
E[Gapk(x

k
0 , y

k
0 )] + 8ηkL̂C2

≤ cE

[
P (xk0)− P (x∗) +

8L̂

53c
Gapk(x

k
0 , y

k
0 )

]
+ 8ηkL̂C2.

(41)

Using the fact that L̂ ≥ µ,

(c+ 2µ)
8L̂

53c
=

(
4ρ+

248

53
L̂+ 2µ

)
8L̂

53(4ρ + 248
53 L̂)

≤ 8L̂

53
+

16µL̂

248L̂
≤ 93

265
L̂. (42)
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Then, we have

(c+ 2µ)E

[
P (xk+1

0 )− P (x∗) +
8L̂

53c
Gapk+1(x

k+1
0 , yk+1

0 )

]

≤ cE

[
P (xk0)− P (x∗) +

8L̂

53c
Gapk(x

k
0 , y

k
0 )

]
+ 8ηkL̂C2.

(43)

Defining ∆k = P (xk0)− P (x∗) +
8L̂
53cGapk(x

k
0 , y

k
0 ), then

E[∆k+1] ≤
c

c+ 2µ
E[∆k] +

8ηkL̂C2

c+ 2µ
. (44)

Using this inequality recursively, it yields

E[∆K+1] ≤
(

c

c+ 2µ

)K

E[∆1] +
8L̂C2

c+ 2µ

K∑

k=1

(
ηk

(
c

c+ 2µ

)K+1−k
)
. (45)

By definition,

∆1 = P (x10)− P (x∗) +
8L̂

53c
Gap1(x

1
0, y

1
0)

= P (x̄0)− P (x∗) +
(
f(x̄0, ŷ1(x̄0)) +

γ

2
‖x̄0 − x̄0‖2 − f(x̂1(ȳ0), ȳ0)−

γ

2
‖x̂1(ȳ0)− x̄0‖2

)

≤ ǫ0 + f(x̄0, ŷ1(x̄0))− f(x̂(ȳ0), ȳ0) ≤ 2ǫ0.

Using inequality 1− x ≤ exp(−x), we have

E[∆K+1] ≤ exp

(−2µK

c+ 2µ

)
E[∆1] +

8η0L̂C2

c+ 2µ

K∑

k=1

exp

(
− 2µK

c+ 2µ

)

≤ 2ǫ0 exp

(−2µK

c+ 2µ

)
+

8η0L̂C2

c+ 2µ
K exp

(
− 2µK

c+ 2µ

)
.

To make this less than ǫ, it suffices to make

2ǫ0 exp

(−2µK

c+ 2µ

)
≤ ǫ

2
,

8η0L̂C2

c+ 2µ
K exp

(
− 2µK

c+ 2µ

)
≤ ǫ

2
.

Let K be the smallest value such that exp
(
−2µK
c+2µ

)
≤ min{ ǫ

4ǫ0
, (c+2µ)ǫ

16η0L̂KC2
}. We can set

K =

⌈
max

{
c+2µ
2µ log 4ǫ0

ǫ , c+2µ
2µ log 16η0L̂KC2

(c+2µ)ǫ

}⌉
. Then, the total stochastic first-order oracle
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call complexity is

K∑

k=1

Tk ≤ O

(
212C1

η0min{ρ, µy}

K∑

k=1

exp

(
(k − 1)

2µ

c+ 2µ

))

≤ O

(
212C1

η0min{ρ, µy}
exp(K 2µ

c+2µ)− 1

exp( 2µ
c+2µ)− 1

)

(a)

≤ Õ

(
cC1

η0µmin{ρ, µy}
max

{
ǫ0
ǫ
,
η0L̂KC2

(c+ 2µ)ǫ

})

≤ Õ

(
max

{
(L+ ρ)C1ǫ0

η0µmin{ρ, µy}ǫ
,

(L+ ρ)2C2

µ2min{ρ, µy}ǫ

})
,

where (a) uses the setting of K and exp(x)−1 ≥ x, and Õ suppresses logarithmic factors.

Proof [Proof of Theorem 10] With the above theorem, Theorem 10 directly follows. Noting
Lemma 24, we can plug in η0 =

1
2
√
2ℓ
, C1 = 1 and C2 = 13σ2 to Theorem 27.

Proof [Proof of Theorem 18] We need the following lemma to bound the convergence of
the subproblem at each stage,

Lemma 28 (Lemma 4 of (Yan et al., 2020)) Suppose Assumption 1 holds,
E‖∇xf(xt, yt; ξt)‖2 ≤ B2 and E‖∇yf(xt, yt; ξt)‖2 ≤ B2. Set γ = 2ρ. By running Algorithm
1 with Option II: SGDA, it holds for k ≥ 1,

E[Gapk(x̄k, ȳk)] ≤ 5ηkB
2 +

1

Tk

{(
1

ηk
+

ρ

2

)
E[‖x̂k(ȳk)− xk0‖2] +

1

ηk
E[‖ŷk(x̄k)− yk0‖2]

}
.

Using this lemma , we can set γ = 2ρ and η0 =
1
ρ . Then it follows that

E[Gapk(x̄k, ȳk)] ≤ 5ηkB
2 +

2

ηkTk

(
E[‖x̂k(ȳk)− xk0‖2] + E[‖ŷk(x̄k)− yk0‖2

)
.

We plug in η0 ≤ 1
ρ , C1 = 2 and C2 = 5B2 to Theorem 27 and the conclusion follows.

Appendix E. Proof of Theorem 11 and Theorem 20

We first present a lemma by plugging in Lemma 8 of (Yan et al., 2020). And then we a
theorem that can unify the proof of Theorem 11 and Theorem 20. In the last, we prove
Theorem 11 and Theorem 20.

Lemma 29 (Lemma 8 of (Yan et al., 2020)) Suppose f(x, y) is µ
8 -weakly convex in x

for any y and set γ = µ
4 . Thus, fk(x, y) is µ

8 -strongly convex in x. Then Gapk(x̄k, ȳk) can
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be lower bounded by the following inequalities

Gapk(x̄k, ȳk) ≥
(
3− 2

α

)
Gapk+1(x

k+1
0 , yk+1

0 )− µα

8(1− α)
‖xk+1

0 − xk0‖2, (0 < α ≤ 1), (46)

and

Gapk(x̄k, ȳk) ≥ P (xk+1
0 )− P (xk0) +

µ

8
‖x̄k − xk0‖2, where P (x) = max

y′∈Y
f(x, y′). (47)

Theorem 30 Suppose 0 < ρ ≤ µ
8 and suppose Assumption 1, 2, 3, 4 hold. Assume we

have a subroutine in the k-th stage of Algorithm 1 that can return x̄k, ȳk such that

E[Gapk(x̄k, ȳk)] ≤
C1

ηkTk
E[‖x− xk0‖2 + ‖y − yk0‖2] + ηkC2, (48)

where C1 and C2 are constants corresponding to the specific subroutine. Take γ = µ
4 . Define

∆k = 475(P (xk0) − P (x∗)) + 57Gapk(x
k
0 , y

k
0 ) and ǫ0 = Gap(x̄0, ȳ0). Then we can set ηk =

η0 exp(−k−1
16 ) ≤ 1

2
√
2ℓ
, Tk =

⌈
384C1

η0 min{µ/8,µy} exp
(
k−1
16

)⌉
. After

K =
⌈
max

{
16 log 1200ǫ0

ǫ , 16 log 1200η0KC2

ǫ

}⌉
stages, we can have ∆K+1 ≤ ǫ. The total

stochastic first-order oracle call complexity is Õ
(
max

{
C1ǫ0

η0 min{µ,µy}ǫ ,
C2

min{µ,µy}ǫ

})
.

Proof [Proof of Theorem 30] We have the following relation between P (xk0) − P (x∗) and
Gapk(x

k
0 , y

k
0 ),

P (xk0)− P (x∗) = f(xk0, ŷ(x
k
0))− f(x∗, y∗) ≤ f(xk0, ŷ(x

k
0))− f(x∗, y

k
0 )

= f(xk0 , ŷ(x
k
0)) +

γ

2
‖xk0 − xk0‖2 − f(x∗, y

k
0 )−

γ

2
‖x∗ − xk0‖2 +

γ

2
‖x∗ − xk0‖2

= fk(x
k
0 , ŷ(x

k
0))− fk(x∗, y

k
0 ) +

γ

2
‖x∗ − xk0‖2

≤ f̂k(x
k
0 , ŷk(x

k
0))− fk(x̂k(y

k
0 ), y

k
0 ) +

γ

2
‖x∗ − xk0‖2

= Gapk(x
k
0 , y

k
0 ) +

γ

2
‖x∗ − xk0‖2

≤ Gapk(x
k
0 , y

k
0 ) +

γ

4µ
(P (xk0)− P (x∗)),

(49)

where the first inequality holds by the Lemma 16, and the last inequality due to the µ-PL
condition of P (x). Since we take γ = µ

4 , we know that 1− γ
4µ = 15

16 . Then it follows that

P (xk0)− P (x∗) ≤
16

15
Gapk(x

k
0, y

k
0 ). (50)

Since ρ < µ
8 and γ = µ

4 , we know that fk(x, y) is λx = µ
8 -strongly convex in x. By the

setting ηk = η0 exp
(
−k−1

16

)
, Tk =

⌈
384C1

η0 min{λx,µy} exp
(
k−1
16

)
}
⌉
, we note that C1

ηkTk
≤ min{λx,µy}

384 .

Applying 48, we have

E[Gapk(x̄k, ȳk)]≤ηkC2 +
1

96

(
λx

4
E[‖x̂k(ȳk)− xk0‖2] +

µy

4
E[‖ŷk(x̄k)− yk0‖2]

)

≤ηkC2 +
1

96
E[Gapk(x

k
0 , y

k
0 )] +

1

96
E[Gapk(x̄k, ȳk)],

(51)
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where the last inequality follows from Lemma 25. Rearranging the terms, we have

95

96
E[Gapk(x̄k, ȳk)] ≤ ηkC2 +

1

96
E[Gapk(x

k
0 , y

k
0 )]. (52)

Since ρ ≤ µ
8 , f(x, y) is also

µ
8 -weakly convex in x. Then we use Lemma 29 to lower bound

the LHS of (52) with α = 5
6 ,

95

96
Gapk(x̄k, ȳk) =

95

576
Gapk(x̄k, ȳk) +

475

576
Gapk(x̄k, ȳk)

(a)

≥ 95

576

(
3

5
Gapk+1(x

k+1
0 , yk+1

0 )− 5

8
µ‖xk+1

0 − xk0‖2
)

+
475

576
(P (xk+1

0 )− P (x∗)) +
475

576
(P (x∗)− P (xk0)) +

475

576

µ

8
‖xk0 − xk+1

0 ‖2

=
57

576
Gapk+1(x

k+1
0 , yk+1

0 ) +
475

576
(P (xk+1

0 )− P (x∗))

− 475

576
· 15
16

(P (xk0)− P (x∗))−
475

576

(
1− 15

16

)
(P (xk0)− P (x∗))

(b)

≥ 57

576
Gapk+1(x

k+1
0 , yk+1

0 ) +
475

576
(P (xk+1

0 )− P (x∗))

− 475

576
· 15
16

(P (xk0)− P (x∗))−
475

576
· 1

15
Gapk(x

k
0 , y

k
0 ),

(53)

where (a) uses Lemma 29 and (b) uses (50). Combining (52) and (53), we get

E

[
475

576
(P (xk+1

0 )− P (x∗)) +
57

576
Gapk+1(x

k+1
0 , yk+1

0 )

]

≤ E

[
ηkC2 +

475

576
· 15
16

(P (xk0)− P (x∗)) +
475

576
· 1

15
Gapk(x

k
0 , y

k
0 ) +

1

96
Gapk(x

k
0 , y

k
0 )

]

≤ ηkC2 +
15

16
E

[
475

576
(P (xk0)− P (x∗)) +

57

576
Gapk(x

k
0 , y

k
0 )

]
.

(54)

Defining ∆k = 475(P (xk0)− P (x∗)) + 57Gapk(x
k
0 , y

k
0), we have

E[∆k+1] ≤ 600ηkC2 +
15

16
E[∆k] ≤ exp (−1/16)E[∆k] + 600ηkC2, (55)

and

∆1 = 475(P (x10)− P (x∗)) + 57Gap1(x
1
0, y

1
0)

= 475(P (x̄0)− P (x∗)) + 57
(
f(x̄0, ŷ1(x̄0)) +

γ

2
‖x̄0 − x̄0‖2 − f(x̂1(ȳ0), ȳ0)− ‖x̂1(ȳ0)− x̄0‖2

)

≤ 475ǫ0 + 57 (f(x̄0, ŷ1(x̄0))− f(x̂(ȳ0), ȳ0)) ≤ 600ǫ0.

Thus,

E[∆K+1] ≤ exp (−K/16)∆1 + 600C2

K∑

k=1

ηk exp (−(K + 1− k)/(16))

= exp (−K/16)∆1 + 600C2

K∑

k=1

(η0 exp (−K/16))

≤ 600ǫ0 exp (−K/16) + 600η0C2K exp (−K/16) .

(56)
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To make this less than ǫ, we just need to make

600ǫ0 exp (−K/16) ≤ ǫ

2
,

600η0C2K exp (−K/16) ≤ ǫ

2
.

Let K be the smallest value such that exp
(−K

16

)
≤ min{ ǫ

1200ǫ0
, ǫ
1200η0C2K

}. We can set K =⌈
max

{
16 log

(
1200ǫ0

ǫ

)
, 16 log

(
1200η0C2K

ǫ

)}⌉
. Then the total stochastic first-order oracle call

complexity is

K∑

k=1

Tk ≤ O

(
384C1

η0 min{λx, µy}

K∑

k=1

exp

(
k − 1

16

))

≤ O

(
384C1

η0 min{λx, µy}
exp

(
K
16

)
− 1

exp
(

1
16

)
− 1

)

≤ Õ

(
max

{
C1ǫ0

η0 min{µ, µy}ǫ
,

KC2

min{µ, µy}ǫ

})

≤ Õ

(
max

{
C1ǫ0

η0 min{µ, µy}ǫ
,

C2

min{µ, µy}ǫ

})
.

(57)

Proof [Proof of Theorem 11] Plugging in Theorem 30 with η0 =
1

2
√
2ℓ
, C1 = 1 and C2 = 5B2,

we get the conclusion.

Proof [Proof of Theorem 20] We can plug in η0 =
1
ρ , C1 = 2 and C2 = 5B2 to Theorem 27.

And the conclusion follows.

Appendix F. Analysis of PES-AdaGrad

In this section, we analyze AdaGrad in solving the strongly convex-strongly concave prob-
lem. Define ‖u‖H =

√
uTHu, ψ0(z) = 0, ψ∗

T to be the conjugate of 1
ηψT , i.e., ψ

∗
t (z) =

sup
z′∈Z

{〈z, z′〉 − 1
ηψt(z

′)}. We first present a supporting lemma,

Lemma 31 For a sequence ζ1, ζ2, ..., define a sequence {ut ∈ Z}T+1
t=0 as

ut+1 = argmin
u∈X

η

t

t∑

τ=1

〈ζτ , u〉+
1

t
ψt(u), u0 = z0, (58)

where ψt(·) is defined in Algorithm 2 with Option III: AdaGrad. Then for any u ∈ Z,

T∑

t=1

〈ζt, ut − u〉 ≤ 1

η
ψT (u) +

η

2

T∑

t=1

‖ζt‖2ψ∗

t−1
. (59)
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Proof [Proof of Lemma 31]

T∑

t=1

〈ζt, ut − u〉 =
T∑

t=1

〈ζt, ut〉 −
T∑

t=1

〈ζt, u〉 −
1

η
ψT (u) +

1

η
ψT (u)

≤ 1

η
ψT (x) +

T∑

t=1

〈ζt, ut〉+ sup
u∈Z

{〈
−

T∑

t=1

ζt, u

〉
− 1

η
ψT (u)

}

=
1

η
ψT (u) +

T∑

t=1

〈ζt, ut〉+ ψ∗
T

(
−

T∑

t=1

ζt

)
.

(60)

Note that

ψ∗
T

(
−

T∑

t=1

ζt

)
(a)
=

〈
−

T∑

t=1

ζt, uT+1

〉
− 1

η
ψT (uT+1)

(b)

≤
〈
−

T∑

t=1

ζt, uT+1

〉
− 1

η
ψT−1(uT+1)

≤ sup
u∈Z

{〈
−

T∑

t=1

ζt, u

〉
− 1

η
ψT−1(u)

}
= ψ∗

T−1

(
−

T∑

t=1

ζt

)

(c)

≤ ψ∗
T−1

(
−

T−1∑

t=1

ζt

)
+

〈
−ζT ,∇ψ∗

T−1

(
−

T−1∑

t=1

ζt

)〉
+

η

2
‖ζT ‖2ψ∗

T−1

,

(61)

where (a) holds due to the updating rule, (b) holds since ψt+1(u) ≥ ψt(u), (c) uses the fact
that ψt(u) is 1-strongly convex w.r.t. ‖ · ‖ψt = ‖ · ‖Ht and hence ψ∗

t (·) is η-smooth w.r.t.
‖ · ‖ψ∗

t
= ‖ · ‖(Ht)−1 .

Noting ∇ψ∗
T−1

(
−

T−1∑
t=1

ζt

)
= uT and adding

T∑
t=1

〈ζt, ut〉 to both sides of (61),

T∑

t=1

〈ζt, ut〉+ ψ∗
T

(
−

T∑

t=1

ζt

)
≤

T−1∑

t=1

〈ζt, ut〉+ ψ∗
T−1

(
−

T−1∑

t=1

ζt

)
+

η

2
‖ζT ‖2ψ∗

T−1
. (62)

Using (62) recursively and noting that ψ0(u) = 0, we have

T∑

t=1

〈ζt, ut〉+ ψ∗
x,T

(
−

T∑

t=1

ζt

)
≤ η

2

T∑

t=1

‖ζt‖2ψ∗

t−1
. (63)

Combining (60) and (63), we have

T∑

t=1

〈ζt, ut − u〉 ≤ 1

η
ψT (u) +

η

2

T∑

t=1

‖ζt‖2ψ∗

t−1
.

Lemma 32 Suppose f(x, y) is convex-concave. And also assume ‖Gt‖∞ ≤ δ.

Set T = M

⌈
max{ δ+maxi ‖g1:T,i‖

m ,m
d+d′∑
i=1

‖g1:T,i‖}
⌉
. By running Algorithm 2 with Option III:
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AdaGrad, with input (f, x0, y0, η, T ), we have

E[Gap(x̄, ȳ)] ≤ m

ηM
(‖z − z0‖2) +

4η

mM
. (64)

Proof Applying Lemma 31 with ζt = Gt and ut = zt, for any z ∈ Z,

T∑

t=1

〈Gt, zt − z〉 ≤ 1

η
ψT (z) +

η

2

T∑

t=1

‖Gt‖2ψ∗

t−1
. (65)

By Lemma 4 of (Duchi et al., 2011), we know that
T∑
t=1

‖Gt‖2ψ∗

t−1
≤ 2

d+d′∑
i=1

‖g1:T,i‖. Hence,
for any z ∈ Z

T∑

t=1

〈Gt, zt − z〉 ≤ 1

η
ψT (z) + η

d+d′∑

i=1

‖g1:T,i‖2

=
δ‖z0 − z‖2

2η
+

〈z0 − z, diag (sT )(z0 − z)〉
2η

+ η

d+d′∑

i=1

‖g1:T,i‖

≤ δ +maxi ‖g1:T,i‖
2η

‖z0 − z‖2 + η
d+d′∑

i=1

‖g1:T,i‖.

(66)

Then, we define the following auxiliary sequence {ẑt ∈ Z}Tt=0,

ẑt+1 = argmin
z∈Z

η

t

t∑

τ=1

〈F (zt)− G(zt; ξt)), z〉+
1

t
ψt(z), ẑ0 = z0. (67)

Denote Θt = F (zt)− G(zt; ξt). Applying Lemma 31 with ζt = Θt and ut = ẑt, we have

T∑

t=1

〈Θt, ẑt − z〉 ≤ 1

η
ψT (z) +

η

2

T∑

t=1

‖Θt‖2ψ∗

t−1

≤ δ +maxi ‖g1:T,i‖
2η

‖z0 − z‖2 + η

2

T∑

t=1

‖Θt‖2ψ∗

t−1
.

(68)

To deal with the last term in the above inequality, we have in expectation that

E

[
T∑

t=1

‖Θt‖2ψ∗

t−1

]
=

T∑

t=1

E

[
‖Θt‖2ψ∗

t−1

]

=

T∑

t=1

(E
[
‖G(zt; ξt)‖2ψ∗

t−1

]
− ‖F (zt)‖2ψ∗

t−1
)

≤ E

[
T∑

t=1

‖G(zt; ξt)‖2ψ∗

t−1

]
≤ 2E

[
d+d′∑

i=1

‖g1:T,i‖
]
,

(69)
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where the second equality uses the fact that E[G(zt; ξt)] = F (zt) and the last inequality uses
Lemma 4 of (Duchi et al., 2011).

Thus,

E

[
1

T

T∑

t=1

〈F (zt), zt − z〉
]
= E

[
1

T

T∑

t=1

〈G(zt; ξt), zt − z〉
]
+ E

[
1

T

T∑

t=1

〈Θt, zt − z〉
]

= E

[
1

T

T∑

t=1

〈G(zt; ξt), zt − z〉
]
+ E

[
1

T

T∑

t=1

〈Θt, zt − ẑt〉
]
+ E

[
1

T

T∑

t=1

〈Θt, ẑt − z〉
]

(a)

≤ E

[
δ +maxi ‖g1:T,i‖

ηT
‖z0 − z‖2

]
+ 2

η

T
E

[
d∑

i=1

‖g1:T,i‖
]
+ E

[
1

T

T∑

t=1

〈Θt, zt − ẑt〉
]

= E

[
δ +maxi ‖g1:T,i‖

ηT
‖z0 − z‖2

]
+ 2

η

T
E

[
d+d′∑

i=1

‖g1:T,i‖
]
,

(70)

where the last equality holds because E[〈Θt, zt − ẑt〉|zt, ẑt,Θt−1, ...,Θ0] = 0, and (a) uses
(66), (68) and (69). Then for any x ∈ X and y ∈ Y,

E[f(x̄, y)− f(x, ȳ)] ≤E

[
1

T

T∑

t=1

(f(xt, y)− f(x, yt))

]

=E

[
1

T

T∑

t=1

(f(xt, y)− f(xt, yt) + f(xt, yt)− f(x, yt))

]

≤E

[
1

T

T∑

t=1

(〈−∇yf(xt, yt), yt − y〉+ 〈∇xf(xt, yt), xt − x〉)
]

=E

[
1

T

T∑

t=1

〈F (zt), zt − z〉
]

(a)

≤E

[
δ +maxi ‖g1:T,i‖

ηT
‖z0 − z‖2

]
+ 2

η

T
E

[
d+d′∑

i=1

‖g1:T,i‖
]

(b)

≤ m

ηM
E[‖x0 − x‖2 + ‖y0 − y‖2] + 4η

mM
,

(71)

where (a) uses (70), and the last inequality is due to T =M

⌈
max{ δ+maxi ‖g1:T,i‖

m ,m
d+d′∑
i=1

‖g1:T,i‖}
⌉
.

Then we can conclude by plugging in (x, y) = (x̂(ȳ), ŷ(x̄)).

Now we formally restate the Theorem 12 as:

Theorem 33 (Formal version of Theorem 12) Suppose Assumption 1, 3, 4 hold. Let
gk1:Tk

denote the cumulative matrix of gradients in k-th stage. Suppose ‖gk1:Tk ,i
‖2 ≤ δTα

k and

with α ∈ (0, 1/2]. Then by setting parameters appropriately, γ = 2ρ, m = 1/
√
d+ d′, ηk =
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2η0 exp
(
− (k−1)

2
2µ

c+2µ

)
, Mk = 212m

η0 min(ℓ,µy)
exp

(
k−1
2

2µ
c+2µ

)
, and Tk =

⌈
Mk max

{
δ+maxi ‖gk1:Tk,i‖2

2m ,

m
d+d′∑
i=1

‖gk1:Tk ,i
‖2
}⌉

, and after K =
⌈
max

{
c+2µ
2µ log

(
4ǫ0
ǫ

)
, c+2µ

2µ log
(
16η20 L̂min(ρ,µy)K

53m2(c+2µ)ǫ

)}⌉
stages,

we have PES-AdaGrad has the total stochastic first-order oracle call complexity of

Õ

((
δ2(L+ρ)2(d+d′)
µ2 min{ρ,µy}ǫ

) 1
2(1−α)

)
in order to have E[∆K+1] ≤ ǫ, where ∆k is defined as in The-

orem 10.

Proof By analysis in proof of Theorem 10, we have the following inequalities that do not
depend on the optimization algorithm

(
1 +

µ

2ρ

)
(P (x̄k)− P (x∗))− (P (x̄k−1)− P (x∗)) ≤

1

4ρ
‖∇Pk(x̄k)‖2, (72)

Gapk(x̄k, ȳk) ≥
3

50
Gapk+1(x

k+1
0 , yk+1

0 ) +
4

5
(P (xk+1

0 )− P (xk0)), (73)

and

ρ

4
‖x̂k(ȳk)− xk0‖2 +

µy

4
‖ŷk(x̄k)− yk0‖2 ≤ Gapk(x

k
0 , y

k
0 ) + Gapk(x̄k, ȳk). (74)

Set m = 1/
√
d+ d′, ηk = η0 exp

(
− (k−1)

2
2µ

c+2µ

)
, Mk =

⌈
212m

η0 min{ρ,µy} exp
(
(k−1)

2
2µ

c+2µ

)⌉
. Note

that,

Tk =

⌈
Mk max

{
δ +maxi ‖g1:T,i‖

m
,m

d+d′∑

i=1

‖g1:T,i‖
}⌉

≤ 2
√
d+ d′δMkT

α
k . (75)

Thus, Tk ≤ (2
√
d+ d′δMk)

1
1−α . Noting m

ηkMk
≤ min{ρ,µy}

212 , we can plug in Lemma 32 as

E[Gapk(x̄k, ȳk)] ≤ E

[
4ηk
mMk

]
+

1

53
E

[
Gapk(x

k
0 , y

k
0 ) + Gapk(x̄k, ȳk)

]
. (76)

E[‖∇Pk(x̄k)‖2] ≤ 2L̂E[Pk(x̄k)− min
x∈Rd

Pk(x)] ≤ 2L̂E[Gapk(x̄k, ȳk)]

= 2L̂E[4Gapk(x̄k, ȳk)− 3Gapk(x̄k, ȳk)]

≤ 2L̂E

[
4

(
4ηk
mMk

+
1

53

(
Gapk(x

k
0 , y

k
0) + Gapk(x̄k, ȳk)

))
− 3Gapk(x̄k, ȳk)

]

= 2L̂E

[
16

ηk
mMk

+
4

53
Gapk(x

k
0 , y

k
0 )−

155

53
Gapk(x̄k, ȳk)

]

≤ 2L̂E

[
16

ηk
mMk

+
4

53
Gapk(x

k
0 , y

k
0 )−

93

530
Gapk+1(x

k+1
0 , yk+1

0 )− 124

53
(P (xk+1

0 )− P (xk0))

]
,
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where the last inequality uses (73). Combining this with (72) and arranging terms, with a
constant c = 4ρ+ 248

53 L̂, we have

(c+ 2µ)E[P (xk+1
0 )− P (x∗)] +

93L̂

265
E[Gapk+1(x

k+1
0 , yk+1

0 )]

≤ cE[P (xk0)− P (x∗)] +
8L̂

53
E[Gapk(x

k
0 , y

k
0 )] +

32ηkL̂

mMk
.

(77)

Then using the fact that L̂ ≥ µ, by similar analysis as in proof of Theorem 10, we have

(c+ 2µ)E

[
P (xk+1

0 )− P (x∗) +
8L̂

53c
Gapk+1(x

k
0 , y

k
0 )

]

≤ cE

[
P (xk0)− P (x∗) +

8L̂

53c
Gapk(x

k
0 , y

k
0 )

]
+

32ηkL̂

mMk
.

(78)

Defining ∆k = P (xk0)− P (x∗) +
8L̂
53cGapk(x

k
0 , y

k
0 ) and ǫ0 = Gap(x0, y0), then

E[∆k+1] ≤
c

c+ 2µ
E[∆k] +

32ηkL̂

(c+ 2µ)mMk
. (79)

Noting ∆1 ≤ 2ǫ0 and (1− x) ≤ exp(−x),

E[∆k+1] ≤
(

c

c+ 2µ

)K

E[∆1] +
32L̂

(c+ 2µ)m

K∑

k=1

ηk
Mk

(
c

c+ 2µ

)K+1−k

≤ 2ǫ0 exp

(−2µK

c+ 2µ

)
+

32L̂η20 min(ρ, µy)

212m2(c+ 2µ)

K∑

k=1

exp

(
(k − 1)

2µ

c+ 2µ

)
exp

(
−2µ(K + 1− k)

c+ 2µ

)

≤ 2ǫ0 exp

(−2µK

c+ 2µ

)
+

8η20L̂min(ρ, µy)

53m2(c+ 2µ)
K exp

(
− 2µK

c+ 2µ

)
.

(80)

To make this less than ǫ, we just need to make

2ǫ0 exp

(−2µK

c+ 2µ

)
≤ ǫ

2
,

8η20L̂min(ρ, µy)

53m2(c+ 2µ)
K exp

(
− 2µK

c+ 2µ

)
≤ ǫ

2
.

(81)

Let K be the smallest integer such that exp
(
−2µK
c+2µ

)
≤ min{ ǫ

4ǫ0
, 53m2(c+2µ)ǫ

16η20 L̂min(ρ,µy)K
}. We can

set K =
⌈
max

{
c+2µ
2µ log

(
4ǫ0
ǫ

)
, c+2µ

2µ log
(
16η20 L̂min(ρ,µy)K

53m2(c+2µ)ǫ

)}⌉
. Recall

Tk ≤ (2
√
d+ d′δMk)

1
1−α ≤

[
424δ

η0 min{ρ, µy}
exp

(
(k − 1)

2

2µ

c+ 2µ

)] 1
1−α

. (82)
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Then the total number of stochastic first-order oracle calls is

K∑

k=1

Tk ≤ O

(
K∑

k=1

[
δ

η0 min{ρ, µy}
exp

(
(k − 1)

2

2µ

c+ 2µ

)] 1
1−α

)

≤ O

(
K∑

k=1

(
δ

η0min{ρ, µy}

) 1
1−α

exp

(
k − 1

2(1− α)

2µ

c+ 2µ

))

≤ O



(

δ

η0min{ρ, µy}

) 1
1−α exp

(
K 2µ

2(1−α)(c+2µ) − 1
)

exp
(

2µ
2(1−α)(c+2µ)

)
− 1




(a)

≤ O



(

δ

η0 min{ρ, µy}

) 1
1−α

(
c+ 2µ

2µ

) 1
2(1−α)

(
max

{
4ǫ0
ǫ
,
16η20L̂min(ρ, µy)K

53ǫm2(c+ µ)

}) 1
2(1−α)




≤ Õ



(
max

{
δ2c

η20µ(min{ρ, µy})2
,

δ2L̂c(d+ d′)
µ2 min{ρ, µy}ǫ

}) 1
2(1−α)




≤ Õ

((
δ2(L+ ρ)2(d+ d′)
µ2min{ρ, µy}ǫ

) 1
2(1−α)

)
,

where (a) uses the inequality that exp(ax) − 1 ≥ xa for any 0 < a < 1 and x > 0, noting
that 0 < 2µ

c+2µ < 1 and 1
2(1−α) > 0.

Appendix G. More Analysis on PES-AdaGrad

We have already shown in Theorem 12 about the convergence of primal gap for our Algo-
rithm with Option III: Adagrad update. In this section, we show a corollary about the
convergence of duality gap based on Theorem 12. What is more, in parallel with our anal-
ysis on Option II: OGDA update, we show some convergence results under the condition
that ρ ≤ µ

8 .

Corollary 34 Under same setting as in Theorem 12 and suppose Assumption 6 holds as
well. To reach an ǫ-duality gap, the total stochastic first-order oracle call complexity is

Õ

(((
ρ
µx

+ 1
)

δ2(L+ρ)2(d+d′)
µ2 min{ρ,µy}ǫ

) 1
2(1−α)

)
.

Theorem 35 Suppose Assumption 1, 3, 6, hold and ρ ≤ µ
8 . Define a constant c = 4ρ +

248
53 L̂ ∈ O(L+ ρ). gk1:Tk

denotes the cumulative matrix of gradients g1:T in k-th stage. Sup-

pose ‖gk1:Tk,i
‖2 ≤ δTα

k and with α ∈ (0, 1/2]. Then by setting γ = 2ρ, m = 1/
√
d+ d′, ηk =

2η0 exp
(
− (k−1)

2
2µ

c+2µ

)
, Mk = 212m

η0 min(ℓ,µy)
exp

(
k−1
2

2µ
c+2µ

)
, and Tk =

⌈
Mk max

{
δ+maxi ‖gk1:τ,i‖2

2m ,m
d+d′∑
i=1

‖gk1:τ,i‖2
}⌉

,
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and after K =

⌈
max

{
c+2µ
2µ log

(
4ǫ0
ǫ

)
,

c+2µ
2µ log

(
16η20 L̂min(ρ,µy)K

53m2(c+2µ)ǫ

)}⌉
stages, we have Õ

((
δ2(d+d′)

min{µ,µy}ǫ

) 1
2(1−α)

)
.

Corollary 36 Under same setting as in Theorem 35 and suppose Assumption 6 holds as
well. To reach an ǫ-duality gap, the total stochastic first-order oracle call complexity is

Õ

(((
µ
µx

+ 1
)

δ2(d+d′)
min{µ,µy}ǫ

) 1
2(1−α)

)
.

Proof [Proof of Theorem 35 ] By analysis in the Proof of Theorem 11, we know that when
ρ < µ

8 and γ = µ
4 ,

P (xk0)− P (x∗) ≤
16

15
Gapk(x

k
0 , y

k
0 ) (83)

and fk(x, y) is λx = µ
8 -strongly convex in x.

Set m = 1/
√
d+ d′, ηk = η0 exp

(
− (k−1)

32

)
, Mk = 384m

η0 min{λx,µy} exp
(
(k−1)
32

)
. Note that,

Tk =

⌈
Mk max

{
δ +maxi ‖g1:T,i‖

m
,m

d+d′∑

i=1

‖g1:T,i‖
}⌉

≤ 2
√
d+ d′δMkT

α
k . (84)

Thus, Tk ≤ (2
√
d+ d′δMk)

1
1−α . Since m

ηkMk
≤ min{λx,µy}

384 , we can apply Lemma 32 to get

E[Gapk(x̄k, ȳk)] ≤
4ηk
mMk

+
1

96

(
λx

4
E[‖x̂k(ȳk)− xk0‖2] +

µy

4
E[‖ŷk(x̄k)− yk0‖2]

)

≤ 4ηk
mMk

+
1

96
E[Gapk(x

k
0 , y

k
0 )] +

1

96
E[Gapk(x̄k, ȳk)],

(85)

where the last inequality follows from Lemma 25. Rearranging terms, we have

95

96
E[Gapk(x̄k, ȳk)] ≤

4ηk
mMk

+
1

96
E[Gapk(x

k
0 , y

k
0 )]. (86)

Since ρ ≤ µ
8 , f(x, y) is also

µ
8 -weakly convex in x. Then, similar to the analysis in proof

of Theorem 11, we use Lemma 29 to lower bound the LHS of (86) with α = 5
6 ,

95

96
Gapk(x̄k, ȳk) ≥

57

576
Gapk+1(x

k+1
0 , yk+1

0 ) +
475

576
(P (xk+1

0 )− P (x∗))

− 475

576
· 15
16

(P (xk0)− P (x∗))−
475

576
· 1

15
Gapk(x

k
0 , y

k
0 )

(87)

Combining (86) and (87), we get

E

[
475

576
(P (xk+1

0 )− P (x∗)) +
57

576
Gapk+1(x

k+1
0 , yk+1

0 )

]

≤ 4ηk
mMk

+
475

576
· 15
16

E[P (xk0)− P (x∗)] +
475

576
· 1

15
E[Gapk(x

k
0 , y

k
0 )] +

1

96
E[Gapk(x

k
0 , y

k
0 )]

≤ 4ηk
mMk

+
15

16
E

[
475

576
(P (xk0)− P (x∗)) +

57

576
Gapk(x

k
0 , y

k
0 )

]
.
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Defining ∆k = 475(P (xk0)− P (x∗)) + 57Gapk(x
k
0 , y0

k) and ǫ0 = Gap(x0, y0), we have

E[∆k+1] ≤
15

16
E[∆k] +

4ηk
mMk

≤ exp

(
− 1

16

)
E[∆k] +

4ηk
mMk

(88)

and ∆1 ≤ 600ǫ0. Thus,

E[∆K+1] ≤ exp

(
−K

16

)
∆1 +

4

m

K∑

k=1

ηk
Mk

exp

(
−K + 1− k

16

)

=exp

(
−K

16

)
∆1 +

η20 min{λx, µy}
96m2

K∑

k=1

exp

(
−K

16

)

≤600ǫ0 exp

(
−K

16

)
+

η20 min{λx, µy}
96m2

K exp

(
−K

16

)
.

(89)

To make this less than ǫ, we just need to make

600ǫ0 exp

(
−K

16

)
≤ ǫ

2
,

η20 min{ρ, µy}
96m2

K exp

(
−K

16

)
≤ ǫ

2
.

(90)

Let K be the smallest integer such that exp
(−K

16

)
≤ min{ ǫ

1200ǫ0
, 48m2ǫ
η20 min{ρ,µy}K }. Recall

Tk ≤ (2
√
d+ d′δMk)

1
1−α =

(
768δ

η0 min{λx,µy} exp
(
k−1
32

)) 1
1−α

. Then the total stochastic first-

order oracle call complexity is

K∑

k=1

Tk ≤O

(
K∑

k=1

[
δ

η0 min{λx, µy}
exp

(
k − 1

32

)] 1
1−α

)

≤O

(
K∑

k=1

(
δ

η0 min{λx, µy}

) 1
1−α

exp

(
k − 1

32(1 − α)

))

≤O



(

δ

η0 min{λx, µy}

) 1
1−α exp

(
K

2(1−α)·16

)
− 1

exp
(

1
2(1−α)·16

)
− 1




≤Õ

((
δ

η0min{λx, µy}

) 1
1−α

(
max

{
ǫ0
ǫ
,
η20 min{λx, µy}K

m2ǫ

}) 1
2(1−α)

)

≤Õ

((
max

{
δ2ǫ0

η20(min{µ, µy})2ǫ
,

δ2(d+ d′)
min{µ, µy}ǫ

}) 1
2(1−α)

)

≤Õ

((
δ2(d+ d′)
min{µ, µy}ǫ

) 1
2(1−α)

)
.
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Appendix H. Proof of Corollary 14, 19, 34

Proof Let (x∗, y∗) denote a saddle point solution of min
x∈Rd

max
y∈Y

f(x, y).

Note that xK+1
0 = xK , yK+1

0 = ȳK . Suppose we have E[GapK+1(x
K+1
0 , yK+1

0 )] ≤ ǫ̂ after
K stages. Noting γ = 2ρ, fk(x, y) is ρ-strongly convex and µy-strongly concave. By Lemma
25, we know that

E[‖x̂K+1(y
K+1
0 )− xK+1

0 ‖2] ≤ 4

ρ
2E[GapK+1(x

K+1
0 , yK+1

0 )] ≤ 8ǫ̂

ρ
. (91)

Since∇xfK+1(x̂K+1(y
K+1
0 ), yK+1

0 ) = ∇xf(x̂K+1(y
K+1
0 ), yK+1

0 )+γ(x̂K+1(y
K+1
0 )−xK+1

0 ) =
0, we have

E[‖∇xf(x̂K+1(y
K+1
0 ), yK+1

0 )‖2] = γ2E[‖x̂K+1(y
K+1
0 )− xK+1

0 ‖2] ≤ 32ρǫ̂

Using the µx-PL condition of f(·, yK+1
0 ) in x,

E

[
f(x̂K+1(y

K+1
0 ), yK+1

0 )− f(x̂(yK+1
0 ), yK+1

0 )
]
≤ E

[
‖∇xf(x̂K+1(y

K+1
0 ), yK+1

0 )‖2
2µx

]
≤ 16ρǫ̂

µx
.

Hence,

E
[
Gap(xK+1

0 , yK+1
0 )

]
= E

[
f(xK+1

0 , ŷ(xK+1
0 ))− f(x̂(yK+1

0 ), yK+1
0 )

]

= E

{
f(xK+1

0 , ŷ(xK+1
0 )) +

γ

2
‖xK+1

0 − xK+1
0 ‖2 − f(x̂K+1(y

K+1
0 ), yK+1

0 )− γ

2
‖x̂K+1(y

K+1
0 )− xK+1

0 ‖2

+ f(x̂K+1(y
K+1
0 ), yK+1

0 )− f(x̂(yK+1
0 ), yK+1

0 ) +
γ

2
‖x̂K+1(y

K+1
0 )− xK+1

0 ‖2
}

= E[GapK+1(x
K+1
0 , yK+1

0 )] + E[f(x̂K+1(y
K+1
0 ), yK+1

0 )− f(x̂(yK+1
0 ), yK+1

0 )]

+
γ

2
E[‖x̂K+1(y

K+1
0 )− xK+1

0 ‖2]

≤ ǫ̂ +
16ρǫ̂

µx

+ 8ǫ̂ ≤ O

(
ρǫ̂

µx

+ ǫ̂

)
.

To have Gap(xK+1
0 , yK+1

0 ) ≤ ǫ, we need ǫ̂ ≤ O

((
ρ
µx

+ 1
)−1

ǫ

)
. Plug ǫ̂ into Theorem

10, 12, 18, we can prove Corollary 14, 34, 19, respectively.

Appendix I. Proof of Corollary 15, 21, 36

Proof Let (x∗, y∗) denote a saddle point solution of min
x∈Rd

max
y∈Y

f(x, y) and x∗K+1 = min
x∈Rd

Pk(x).

Note that xK+1
0 = xK , yK+1

0 = ȳK . Suppose E[GapK+1(x
K+1
0 , yK+1

0 )] ≤ ǫ̂ after K stages.

By the setting ρ ≤ µ
8 and γ = µ

4 , fk(x, y) is
µ
8 -strongly convex and µy-strongly concave.

By Lemma 25, we know that

E[‖x̂K+1(y
K+1
0 )− xK+1

0 ‖2] ≤ 64

µ
E[GapK+1(x

K+1
0 , yK+1

0 )] ≤ 64ǫ̂

µ
. (92)
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Since∇xfK+1(x̂K+1(y
K+1
0 ), yK+1

0 ) = ∇xf(x̂K+1(y
K+1
0 ), yK+1

0 )+γ(x̂K+1(y
K+1
0 )−xK+1

0 ) = 0,
we have

E[‖∇xf(x̂K+1(y
K+1
0 ), yK+1

0 )‖2] = γ2E[‖x̂K+1(y
K+1
0 )− xK+1

0 ‖2] ≤ 4µǫ̂. (93)

Using the µx-PL condition of f(·, yK+1
0 ) in x,

E

[
f(x̂K+1(y

K+1
0 ), yK+1

0 )− f(x̂(yK+1
0 ), yK+1

0 )
]
≤ E

[
‖∇xf(x̂K+1(y

K+1
0 ), yK+1

0 )‖2
2µx

]
≤ 2µǫ̂

µx
.

Hence,

E

[
Gap(xK+1

0 , yK+1
0 )

]
= E

[
f(xK+1

0 , ŷ(xK+1
0 ))− f(x̂(yK+1

0 ), yK+1
0 )

]

= E

{
f(xK+1

0 , ŷ(xK+1
0 )) +

γ

2
‖xK+1

0 − xK+1
0 ‖2 − f(x̂K+1(y

K+1
0 ), yK+1

0 )− γ

2
‖x̂K+1(y

K+1
0 )− xK+1

0 ‖2

+ f(x̂K+1(y
K+1
0 ), yK+1

0 )− f(x̂(yK+1
0 ), yK+1

0 ) +
γ

2
‖x̂K+1(y

K+1
0 )− xK+1

0 ‖2
}

= E[GapK+1(x
K+1
0 , yK+1

0 )] + E[f(x̂K+1(y
K+1
0 ), yK+1

0 )− f(x̂(yK+1
0 ), yK+1

0 )]

+
γ

2
E[‖x̂K+1(y

K+1
0 )− xK+1

0 ‖2]

≤ ǫ̂+
2µǫ̂

µx
+ 8ǫ̂ ≤ O

(
µǫ̂

µx
+ ǫ̂

)
.

To have Gap(xK+1
0 , yK+1

0 ) ≤ ǫ, we need ǫ̂ ≤ O

((
µ
µx

+ 1
)−1

ǫ

)
. Plug ǫ̂ into Theorem11,

20, 35 we can prove Corollary 15, 21, 36, respectively.

Appendix J. Analysis of Option IV: PES-Storm

In this section, we present the formal version of Theorem 13 in the Theorem 41 and show
its proof. Denote dt = (vt, ut), where the component vt is corresponding to primal variable
x and the component ut is corresponding to dual variable. Also denote η = (ηx, ηy), a =
(ax, ay).

J.1 Auxiliary Lemmas

In this subsection, we show some lemmas that are needed to prove Theorem 41.

Lemma 37 In Algorithm 2 with Option IV: Storm. setting 0 < ηx ≤ 1
2L , we have

P (xt+1)− P (xt) ≤ −ηx

4
‖vt‖2 + ηxℓ2‖ŷ(xt)− yt‖2 + ηx‖∇xf(xt, yt)− vt‖2. (94)
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Proof Using the L-smoothness of P (x) = max
y′∈Y

f(x, y′),

P (xt+1) ≤ P (xt) + 〈∇P (xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= P (xt) + 〈∇P (xt)−∇xf(xt, yt), xt+1 − xt〉+ 〈∇xf(xt, yt)− vt, xt+1 − xt〉

+ 〈vt, xt+1 − xt〉+
L(ηx)2

2
‖vt‖2

≤ P (xt) + ηx‖∇P (xt)−∇xf(xt, yt)‖2 +
1

4ηx
‖xt+1 − xt‖2

+ ηx‖∇xf(xt, yt)− vt‖2 +
1

4ηx
‖xt+1 − xt‖2 + 〈vt, xt+1 − xt〉+

L(ηx)2

2
‖vt‖2

= P (xt) + ηx‖∇P (xt)−∇xf(xt, yt)‖2 +
ηx

4
‖vt‖2 + ηx‖∇xf(xt, yt)− vt‖2

+
ηx

4
‖vt‖2 − ηx‖vt‖2 +

L(ηx)2

2
‖vt‖2

≤ P (xt) + ηxℓ2‖yt − ŷ(xt)‖2 + ηx‖∇xf(xt, yt)− vt‖2 −
ηx

4
‖vt‖2,

where the last inequality uses the setting ηx ≤ 1
2L .

Lemma 38 In Algorithm 2 with Option IV: Storm, setting 0 < ax, ay < 1, we have

E‖∇xf(xt+1, yt+1)− vt+1‖2

≤ (1− ax)E‖∇xf(xt, yt)− vt‖2 + 8(1− ax)
2ℓ2(‖xt+1 − xt‖2 + ‖yt+1 − yt‖2) + 2a2xσ

2,

and

E‖∇yf(xt+1, yt+1)− ut+1‖2

≤ (1− ay)E‖∇yf(xt, yt)− ut‖2 + 8(1− ay)
2ℓ2(‖xt+1 − xt‖2 + ‖yt+1 − yt‖2) + 2a2yσ

2.

Proof By the update rule of v, we get

E‖∇xf(xt+1, yt+1)− vt+1‖2

= E‖∇xf(xt+1, yt+1; ξt+1) + (1− ax)vt − (1− ax)∇xf(xt, yt; ξt+1)−∇xf(xt+1, yt+1)‖2

≤ E‖(1− ax)(vt −∇xf(xt, yt)) + (1− ax)[∇xf(xt, yt)−∇xf(xt, yt; ξt+1)]

− [∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1; ξt+1)‖2]
= E‖(1− ax)(vt −∇xf(xt, yt))‖2

+ E‖(1− ax)[∇xf(xt, yt)−∇xf(xt, yt; ξt+1)]− [∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1; ξt+1)]‖2

= E‖(1− ax)(vt −∇xf(xt, yt))‖2

+ E‖(1− ax)[∇xf(xt, yt)−∇xf(xt, yt; ξt+1)]− (1− ax)[∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1; ξt+1)]

− ax[∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1; ξt+1)]‖2
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Then using E[∇xf(xt, yt)−∇xf(xt, yt; ξt+1)] = 0 and E[∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1; ξt+1)] =
0, we continue the above inequality as

E‖∇xf(xt+1, yt+1)− vt+1‖2 ≤ (1− ax)E‖vt −∇xf(xt, yt)‖2

+ 2(1− ax)
2
E‖[∇xf(xt, yt)−∇xf(xt, yt; ξt+1)]− [∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1; ξt+1)]

+ 2a2xE‖∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1; ξt+1)‖2

≤ (1− ax)E‖vt −∇xf(xt, yt)‖2 + 4(1 − ax)
2
E‖∇xf(xt, yt)−∇xf(xt+1, yt+1)‖2

+ 4(1− ax)
2
E‖∇xf(xt, yt; ξt+1)−∇xf(xt+1, yt+1; ξt+1)‖2 + 2a2xσ

2

≤ (1− ax)E‖∇xf(xt, yt)− vt‖2 + 8(1 − ax)
2ℓ2(‖xt+1 − xt‖2 + ‖yt+1 − yt‖2) + 2a2xσ

2.

By similar analysis on y-side, we have

E‖∇yf(xt+1, yt+1)− ut+1‖2

≤ (1− ay)E‖∇yf(xt, yt)− ut‖2 + 8(1− ay)
2ℓ2(‖xt+1 − xt‖2 + ‖yt+1 − yt‖2) + 2a2yσ

2.

The next lemma follows from Lemma 18 of (Huang et al., 2022). We include the proof
for the sake of completeness.

Lemma 39 In Algorithm 2 with Option IV, setting ηy ≤ min{1, 1
6ℓ}, λ = 1

6ℓ , we have

‖yt+1 − ŷ(xt+1)‖2 ≤(1− µyη
yλ

4
)‖yt − ŷ(xt)‖2 −

3ηyλ2

4
‖ut‖2 +

5ηyλ

µy
‖∇yf(xt, yt)− ut‖2

+
5ℓ2(ηx)2

ηyλµ3
y

‖vt‖2.

Proof Using µy-strong concavity of f(x, y) in y,

f(xt, y) ≤ f(xt, yt) + 〈∇yf(xt, yt), y − yt〉 −
µy

2
‖y − yt‖2

= f(xt, yt) + 〈ut, y − ỹt+1〉+ 〈∇yf(xt, yt)− ut, y − ỹt+1〉
+ 〈∇yf(xt, yt), ỹt+1 − yt〉 −

µy

2
‖y − yt‖2.

(95)

Using ℓ-smoothness of f(x, y),

−f(xt, ỹt+1) ≤ −f(xt, yt)− 〈∇yf(xt, yt), ỹt+1 − yt〉+
ℓ

2
‖ỹt+1 − yt‖2. (96)

Adding the above two inequalities, we get

f(xt, y)− f(xt, ỹt+1) ≤

〈ut, y − ỹt+1〉+ 〈∇yf(xt, yt)− ut, y − ỹt+1〉 −
µy

2
‖y − yt‖2 +

ℓ

2
‖ỹt+1 − yt‖2.

(97)
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Note that the update of y is

ỹt+1 = PY(yt + λut),

yt+1 = yt + ηy(ỹt+1 − yt),
(98)

where λ = 1
6ℓ . Since ỹt+1 = PY(yt+λut) = argminy∈Y

1
2‖y−yt−λut‖2 and 1

2‖y−yt−λut‖2
is convex in y, we have

〈ỹt+1 − yt − λut, y − ỹt+1〉 ≥ 0, y ∈ Y. (99)

Then we get

〈ut, y − ỹt+1〉 ≤
1

λ
〈ỹt+1 − yt, y − ỹt+1〉 =

1

λ
〈ỹt+1 − yt, yt − ỹt+1〉+

1

λ
〈ỹt+1 − yt, y − yt〉

= − 1

λ
‖ỹt+1 − yt‖2 +

1

λ
〈ỹt+1 − yt, y − yt〉.

Thus,

f(xt, y)− f(xt, ỹt+1) ≤ −
(
1

λ
− ℓ

2

)
‖ỹt+1 − yt‖2 +

1

λ
〈ỹt+1 − yt, y − yt〉

+ 〈∇yf(xt, yt)− ut, y − ỹt+1〉 −
µy

2
‖y − yt‖2.

(100)

Plugging in y = ŷ(xt),

0 ≤ f(xt, ŷ(xt))− f(xt, ỹt+1) ≤ −
(
1

λ
− ℓ

2

)
‖ỹt+1 − yt‖2 +

1

λ
〈ỹt+1 − yt, ŷ(xt)− yt〉

+ 〈∇yf(xt, yt)− ut, ŷ(xt)− ỹt+1〉 −
µy

2
‖ŷ(xt)− yt‖2.

(101)

By yt+1 = yt + ηy(ỹt+1 − yt), we have

‖yt+1 − ŷ(xt)‖2 = ‖yt + ηy(ỹt+1 − yt)− ŷ(xt)‖2

= ‖yt − ŷ(xt)‖2 + 2ηy〈ỹt+1 − yt, yt − ŷ(xt)〉+ (ηy)2‖ỹt+1 − yt‖2

≤ ‖yt − ŷ(xt)‖2 + (ηy)2‖ỹt+1 − yt‖2 − ηy(2− ℓλ)‖ỹt+1 − yt‖2

+ 2ηyλ〈∇yf(xt, yt)− ut, ŷ(xt)− ỹt+1〉 − µyη
yλ‖ŷ(xt)− yt‖2

≤ ‖yt − ŷ(xt)‖2 − (2ηy − (ηy)2 − ℓληy)‖ỹt+1 − yt‖2

+ 2ηyλ

[
2

µy
‖∇yf(xt, yt)− ut‖2 +

µy

8
‖ŷ(xt)− yt+1‖2

]
− µyη

yλ‖ŷ(xt)− yt‖2

≤ (1− µyη
yλ)‖yt − ŷ(xt)‖2 − (2ηy − (ηy)2 − ℓληy)‖ỹt+1 − yt‖2 +

ηyµyλ

2
‖ŷ(xt)− yt‖2

+
ηyµyλ

2
‖yt − ỹt+1‖2 +

4ηyλ

µy
‖∇yf(xt, yt)− ut‖2

≤ (1− µyη
yλ

2
)‖yt − ŷ(xt)‖2 − (2ηy − (ηy)2 − ℓληy − ηyµyλ

2
)‖ỹt+1 − yt‖2 +

4ηyλ

µy
‖∇yf(xt, yt)− ut‖2

≤ (1− µyη
yλ

2
)‖yt − ŷ(xt)‖2 −

3

4
ηy‖ỹt+1 − yt‖2 +

4ηyλ

µy
‖∇yf(xt, yt)− ut‖2

= (1− µyη
yλ

2
)‖yt − ŷ(xt)‖2 −

3ηyλ2

4
‖ut‖2 +

4ηyλ

µy
‖∇yf(xt, yt)− ut‖2,
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where the last inequality holds because µy ≤ ℓ, ηy ≤ min{1, 1
6ℓ}. Using the above inequali-

ties, we get

‖yt+1 − ŷ(xt+1)‖2 = ‖yt+1 − ŷ(xt) + ŷ(xt)− ŷ(xt+1)‖2

≤ (1 +
ηyµyλ

4
)‖yt+1 − ŷ(xt)‖2 + (1 +

4

ηyµyλ
)‖ŷ(xt)− ŷ(xt+1)‖2

≤ (1 +
ηyµyλ

4
)‖yt+1 − ŷ(xt)‖2 + (1 +

4

ηyµyλ
)
ℓ2

µ2
y

‖xt+1 − xt‖2

≤ (1− µyη
yλ

2
)(1 +

ηyµyλ

4
)‖yt − ŷ(xt)‖2 −

3ηyλ2

4
‖ut‖2

+ (1 +
ηyµyλ

4
)
4ηyλ

µy
‖∇yf(xt, yt)− ut‖2 + (1 +

4

ηyµyλ
)
ℓ2

µ2
y

(ηx)2‖vt‖2

≤ (1− µyη
yλ

4
)‖yt − ŷ(xt)‖2 −

3ηyλ2

4
‖ut‖2 +

5ηyλ

µy
‖∇yf(xt, yt)− ut‖2 +

5ℓ2(ηx)2

ηyλµ3
y

‖vt‖2,

where the second inequality is because ŷ(·) is ℓ
µy
-Lipshitz (Lin et al., 2020a).

The following lemma analyze the convergence of one stage in PES-Storm.

Lemma 40 By setting ηx =
µ2
2

1000ℓ2
ηy, ax = 800ℓ

µy
(ηy)2, ay = 800ℓ

µy
(ηy)2, ηy ≤ O( 1

30

√
µy

ℓ ) to

ensure 0 < ax, ay < 1, one stage of Algorithm 2 with Option IV: Storm returns an solution
(xτ , yτ ) such that

E‖yτ − ŷ(xτ )‖2 +
ηy

ηx
E[‖∇xf(xτ , yτ )− vτ‖2] +

ηy

ηx
E[‖∇yf(xτ , yτ )− vτ‖2] +

1

8
E‖vτ‖2]

≤ Γ1 − ΓT+1

ηxT
+

4Cℓ(ηy)3σ2

µyηx
,

where C = 1600 and τ is sampled from 1, ..., T .

Proof Defining a Lyapunov function as in (Huang et al., 2022),

Γt = P (xt) +
µy

ℓ

(
9ℓ2‖yt − ŷ(xt)‖2 +

1

ηy
‖∇xf(xt, yt)− vt‖2 +

1

ηy
‖∇yf(xt, yt)− ut‖2

)
.
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Then we have

Γt+1 − Γt

= P (xt+1)− P (xt) +
9µy

ℓ
ℓ2(‖yt+1 − ŷ(xt+1)‖2 − ‖yt − ŷ(xt)‖2)

+
µy

ℓ

(
1

ηy
‖∇xf(xt+1, yt+1)− vt+1‖2 −

1

ηy
‖∇xf(xt, yt)− vt‖2

)

+
µy

ℓ

(
1

ηy
‖∇yf(xt+1, yt+1)− ut+1‖2 −

1

η
‖∇yf(xt, yt)− ut‖2

)

≤ −ηx

4
‖vt‖2 + ηxℓ2‖ŷ(xt)− yt‖2 + ηx‖∇xf(xt, yt)− vt‖2

+
9µy

ℓ
ℓ2

(
−µyη

yλ

4
‖yt − ŷ(xt)‖2 −

3ηyλ2

4
‖ut‖2 +

5ηyλ

µy
‖∇yf(xt, yt)− ut‖2 +

5ℓ2(ηx)2

ηyλµ3
y

‖vt‖2
)

− µyax
16ℓηy

E[‖∇xf(xt, yt)− vt‖2] +
µyℓ

2

2ℓηy
((ηx)2E[‖vt‖2] + (ηy)2λ2

E[‖ut‖2]) +
µya

2
xσ

2

8ℓηy

− µyay
16ℓηy

E[‖∇yf(xt, yt)− ut‖2] +
µyℓ

2

2ℓηy
((ηx)2E[‖vt‖2] + (ηy)2λ2

E[‖ut‖2]) +
µya

2
yσ

2

8ℓηy

≤ (−
9µ2

yℓλη
y

4
+ ηxℓ2)‖yt − ŷ(xt)‖2

+ (ηx − µyax
16ℓηy

)E[‖∇xf(xt, yt)− vt‖2] + (45ηyℓλ− µyay
16ℓηy

)E[‖∇yf(xt, yt)− ut‖2]

− (
ηx

4
− µyℓ(η

x)2

ηy
− 45ℓ3(ηx)2

ηyλµ2
y

)E‖vt‖2 + (µyℓη
y − 9µyℓ

3ηy

4
)λ2

E[‖ut‖2] +
2µya

2
xσ

2

ℓηy
+

2µya
2
yσ

2

ℓηy
,

where the first inequality uses Lemma 37, Lemma 38, Lemma 39.

Taking ηx =
µ2
2

1000ℓ2 η
y, ax = 800ℓ

µy
(ηy)2, ay = 800ℓ

µy
(ηy)2, ηy ≤ O(

√
µy

ℓ ) to ensure 0 <

ax, ay < 1, we get

Γt+1 − Γt ≤− ηx‖yt − ŷ(xt)‖2 − ηyE[‖∇xf(xt, yt)− vt‖2]

− ηyE[‖∇yf(xt, yt)− vt‖2]−
1

8
ηxE‖vt‖2 +

4Cℓ(ηy)3σ2

µy
,

(102)

where C = 1600.
Thus,

ηx‖yt − ŷ(xt)‖2 + ηyE[‖∇xf(xt, yt)− vt‖2] + ηyE[‖∇yf(xt, yt)− vt‖2] +
1

8
ηxE‖vt‖2

≤ Γt − Γt+1 +
4Cℓ(ηy)3σ2

µy
.

(103)

Taking average over t = 1, .., T ,

1

T

T∑

t=1

[‖yt − ŷ(xt)‖2 +
ηy

ηx
E[‖∇xf(xt, yt)− vt‖2] +

ηy

ηx
E[‖∇yf(xt, yt)− vt‖2] +

1

8
E‖vt‖2]

≤ Γ1 − ΓT+1

ηxT
+

4Cℓ(ηy)3σ2

µyηx
.

(104)

51



Guo, Yan, Yuan, Yang

Randomly sample τ from 1, ..., T , we obtain

E‖yτ − ŷ(xτ )‖2 +
ηy

ηx
E[‖∇xf(xτ , yτ )− vτ‖2] +

ηy

ηx
E[‖∇yf(xτ , yτ )− vτ‖2] +

1

8
E‖vτ‖2]

≤ Γ1 − ΓT+1

ηxT
+

4Cℓ(ηy)3σ2

µyηx
.

Theorem 13 is formally restated as follows:

Theorem 41 (Formal version of Theorem 13) Assume Assumption 1, 2, 4, 5 hold.

Define a constant ǫ1 =
Cℓ2σ2

2µµ2
y

and ǫk = ǫ1/2
k, where C = 1600. By setting ηyk = min{ 1

30

√
µy

ℓ ,

√
µµ3

yǫk
320Cℓ3σ2 },

ηxk =
µ2
y

1000ℓ2 η
y
k, Tk = O

(
max{ 1

µηxk
,

µ3
y

ℓ3ηxkη
y
k
}
)
, after K = O(log(ǫ1/ǫ)) stages, E[P (x̄k) −

P (x∗)] ≤ ǫ. The total stochastic first-order oracle call complexity is Õ

(
ℓ7/2

µ3/2µ
7/2
y ǫ1/2

+ ℓ2

µµ2
yǫ

)
.

Proof Without loss of generality, let us assume that the initialization of the first stage

P (x10) − P (x∗) = ǫ0 ≥ Cℓ2σ2

2µµ2
y
, i.e.

√
µµ3

yǫ0
320Cℓ3σ2 > 1

30

√
µy

ℓ . The case where ǫ0 ≤ 320Cℓ2σ2

µµ2
y

can

be simply covered by our proof. Then denote ǫ1 =
Cℓ2σ2

2µµ2
y

and ǫk = ǫ1/2
k.

Let’s consider the first stage, we have initialization such that P (x0) − P (x∗) = ǫ0 and
E[‖∇xf(x0, y0)− v0‖2 + ‖∇yf(x0, y0)− u0‖2] ≤ σ2.

We bound the error of the first stage’s output as follows

Eℓ2‖ȳ1 − ŷ(x̄1)‖2 +
ηy1
ηx1

E[‖∇xf(x̄1, ȳ1)− v̄1‖2] +
ηy1
ηx1

E[‖∇yf(x̄1, ȳ1)− v̄1‖2] +
1

8
E‖v̄1‖2]

≤ E[P (x0)]− P (x∗)
ηx1T1

+
µyℓ

2‖y0 − ŷ(x0)‖2
ℓηx1T1

+
µy

ℓηy1η
x
1T1

‖∇xf(x̄1, ȳ1)− v̄1‖2

+
µy

ℓηy1η
x
1T1

‖∇yf(x̄1, ȳ1)− ū1‖2 +
4Cℓ(ηy1)

3σ2

µyηx1

≤ µǫ1
16

,

where the last inequality is by the setting ηx1 =
µ2
y

1000ℓ2
ηy1 , η

y
1 =

√
µy

ℓ and

T1 = O
(
max{ ǫ0

ηx1µǫ1
,

µyσ2

µηx1 η
y
1 ǫ1

,
µyℓD
ηx1µǫ1

}
)
, which is in the order of a constant and where D

denotes the diameter of Y. This result implies that

Eℓ2‖ȳ1 − ŷ(x̄1)‖2 ≤ µǫ1
16

,

E[‖∇xf(xτ , yτ )− vτ‖2] + E[‖∇yf(xτ , yτ )− vτ‖2] ≤
µµ2

yǫ1

16ℓ2
,

E‖v̄1‖2 ≤
µǫ1
2

.

(105)
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Using the µ-PL condition of P (x),

P (x̄1)− P (x∗) ≤
1

2µ
‖∇P (x̄1)‖2 =

1

2µ
‖∇P (x̄1)−∇xf(x̄1, ȳ1) +∇xf(x̄1, ȳ1)− v̄1 + v̄1‖2

≤ 1

2µ
(3ℓ2‖ȳ1 − ŷ(x̄1)‖2 + 3‖∇xf(xt, yt)− vt‖2 + 3‖vt‖2) ≤ ǫ1,

where the second inequality has used ∇P (x) = ∇f(x, ŷ(x)), which is by the Lemma 16.

Starting from the second stage, we will prove by induction. Suppose the initialization
of k-th stage (k ≥ 2) satisfies E[P (x̄k−1) − P (x∗)] ≤ ǫk−1, E[‖∇xf(x̄k−1, ȳk−1) − vk−1‖2 +
‖∇yf(x̄k−1, ȳk−1)−uk−1‖2] ≤

µµ2
yǫk−1

ℓ2
. The error of the output of k-th stage can be bounded

as

Eℓ2‖ȳk − ŷ(x̄k)‖2 +
ηyk
ηxk

E[‖∇xf(x̄k, ȳk)− vk‖2] +
ηyk
ηxk

E[‖∇yf(x̄k, ȳk)− vk‖2] +
1

8
E‖vk‖2]

≤ E[P (x̄k−1)]− P (x∗)
ηxkTk

+
µyℓ

2‖ȳk−1 − ŷ(x̄k−1)‖2
ℓηxkTk

+
µy

ℓηykη
x
kTk

‖∇xf(x̄k, ȳk)− vk‖2

+
µy

ℓηykη
x
kTk

‖∇yf(x̄k, ȳk)− uk‖2 +
4Cℓ(ηyk)

3σ2

µyη
x
k

≤ ǫk−1

ηxkTk
+

µyℓ
2µǫk−1

ℓηxkTk
+

µµ3
yǫk−1

ℓ3ηykη
x
kTk

+
µµ3

yǫk−1

ℓ3ηykη
x
kTk

+
4Cℓ(ηyk)

3σ2

µyη
x
k

≤ µǫk
16

,

(106)

where the last inequality is due to the setting ηyk =

√
µµ3

yǫk
320Cℓ3σ2 , ηxk =

µ2
y

1000ℓ2
ηyk , Tk =

O
(
max

{
1

µηxk
,

µ3
y

ℓ3ηxkη
y
k

})
.

Similar to in the analysis of first stage, this result implies that

E[ℓ2‖ȳk − ŷ(x̄k)‖2] ≤
µǫk−1

16
,

E[‖∇xf(x̄k, ȳk)− vk‖2] + E[‖∇yf(x̄k, ȳk)− vk‖2] ≤
µµ2

yǫk

16ℓ2
,

E‖vk‖2 ≤
µǫk
2

.

(107)

Using the µ-PL condition of P (x), we obtain

P (x̄k)− P (x∗) ≤
1

2µ
‖∇P (x̄k)‖2 =

1

2µ
‖∇P (x̄k)−∇xf(x̄k, ȳk) +∇xf(x̄k, ȳk)− vk + vk‖2

≤ 1

2µ
(3ℓ2‖ȳk − ŷ(x̄k)‖2 + 3‖∇xf(x̄k, ȳk)− vk‖2 + 3‖vk‖2) ≤ ǫk.

(108)
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By induction we know that after K = 1 + log(ǫ1/ǫ) stages, P (x̄K) − P (x∗) ≤ 0. Total
complexity is

K∑

k=1

Tk = O

(
K∑

k=2

(
1

µηxk
+

µ3
y

ℓ3ηxkη
y
k

))

= O




K∑

k=2


 ℓ2

µµ2
y

√
µµ3

yǫk/ℓ
3
+

µ3
yℓ

2

µ2
yµµ

3
yǫk






= Õ

(
ℓ7/2

µ3/2µ
7/2
y ǫ1/2

+
ℓ2

µµ2
yǫ

)
.

(109)

In the following corollary, we analyze the convergence of duality gap by PES-Storm.

Corollary 42 Under the same setting as in Theorem 41 and suppose Assumption 5 as
well. To achieve E[Gap(x̄K , ȳK)] ≤ ǫ, the total number of stochastic first-order oracle calls

is Õ

(
ℓ9/2

µ3/2µ
1/2
x µ

9/2
y ǫ1/2

+ ℓ4

µµxµ3
yǫ

)
.

Proof Assume after K stages, we have the output x̄K , ȳK such that

P (x̄K)− P (x∗) ≤
1

2µ
‖∇P (x̄K)‖2

≤ 1

2µ

[
3ℓ2‖ȳK − ŷ(x̄K)‖2 + 3‖∇xf(x̄K , ȳK)− vK‖2 + 3‖vK‖2

]

≤ ǫ̂,

(110)

and

E‖ȳK − ŷ(x̄K)‖2 ≤ µǫ̂

16ℓ2
. (111)

Hence, by the strong concavity,

‖ŷ(x̄K)− y∗‖2 ≤
f(x̄K , ŷ(x̄K))− f(x̄K , ȳK)

2µy

≤ f(x̄K , ŷ(x̄K))− f(x∗, y∗) + f(x∗, y∗)− f(x̄K , ȳK)

2µy

≤ f(x̄K , ŷ(x̄K))− f(x∗, y∗)
2µy

≤ P (x̄K)− P (x∗)
2µy

≤ ǫ̂

2µy
.

(112)
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Thus,

‖ȳK − y∗‖2 ≤ 2‖ȳK − ŷ(x̄K)‖2 + 2‖ŷ(x̄K)− y∗‖2 ≤ ǫ̂

µy
. (113)

And the dual function D(y) = minx′ f(x′, y) is ℓ+ ℓ2

µx
≤ 2ℓ2

µx
, where µx is the x-side PL

condition coefficient. Therefore, we have

f(x∗, y∗)− f(x̂(ȳK), ȳK) = D(y∗)−D(ȳK) ≤ 2ℓ2

µx
‖ȳK − y∗‖2 ≤

ℓ2ǫ̂

µxµy
. (114)

Then we know the duality gap is

f(x̄K , ŷ(x̄K))− f(x̂(ȳK), ȳK) = f(x̄K , ŷ(x̄K))− f(x∗, y∗) + f(x∗, y∗)− f(x̂(ȳK), ȳK)

≤ ǫ̂+
ℓ2ǫ̂

µxµy
.

(115)

To make the duality gap less than ǫ, we need ǫ̂ ≤ O(
µxµyǫ
ℓ2

). Therefore, it takes

Õ

(
ℓ9/2

µ3/2µ
1/2
x µ

9/2
y ǫ1/2

+ ℓ4

µµxµ3
yǫ

)
to have a ǫ-duality gap.

Appendix K. Justification of PL condition

In this section, we show the analysis of cases where the x-side PL condition can hold, and
show the properties that follow from the x-side PL condition. We need to introduce a
auxiliary lemma as follows.

Lemma 43 (Corallary 5.1 of (Li and Pong, 2018)) Suppose h(x) = g(Ax), where A
is a matrix and g(·) is strongly convex, then h(x) satisfies a µ-PL condition.

K.1 Proof of Lemma 9

Here we prove the Lemma 9 which justifies the PL condition for the non-convex AUC
maximization problem.
Proof [Proof of Lemma 9] Before diving into analyzing the min-max formulation of the
AUC maximization problem, we investigate the property of the optimal solution to a AUC
maximization problem. Reconstruct a data set {(a1, c1), ..., (ai, ci), ..., (an, cn)} where ci = i
if bi = 1 and ci = 0 if bi = −1. Consider the problem

min
w

F1(w) :=

n∑

i=1

(h(w;ai)− bi)
2. (116)

By Theorem 1 and Theorem 3 of Allen-Zhu et al. (2019), we know that forw∗ = argminF1(w),
‖w∗ − w0‖2 ≤ ω and F1(w∗) = 0 where ω = O( logm√

m
) and w0 is a random initialization.

Then we know thatw∗ is a optimal solution to problem (4) as well with the optimal objective
to be 0. Therefore, w∗ is also a optimal solution of the Problem (5).
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Then let us consider the min-max formulation of the AUC maximization problem. For
the n input data points, the problem (5) can be written as

min
(w,s,r)

max
α∈R

f(w, s, r, y) =
1

n

n∑

i=1

F (w, s, r, y, zi). (117)

From Section 12 and Section 13 of (Allen-Zhu et al., 2019), we know that h(w;a) ≤
O(logm). Then by a similar analysis of Lemma 7 and Lemma 8 of (Guo et al., 2020), it
holds that max{|s|, |r|, |y|} ≤ O(logm).

By Theorem 5 of (Allen-Zhu et al., 2019), for ‖w −w0‖ ≤ ω, with probability at least

1− e−Ω̃(mω2/3L̃),

h(w;a) = h(w0;a) + 〈∇h(w0;a),w −w0〉 ± Õ(L̃3ω4/3√m). (118)

Then for any fixed y and for ‖w −w0‖ ≤ ω, with probability at least 1− e−Ω̃(mω2/3L̃),

f(x, y) = f(w, s, r, y)

=
1

n

n∑

i=1

[
(1− p)(h(w;ai)− s)2I[bi=1] + p(h(w;ai)− r)2I[bi=−1]

+ 2(1 + y)(ph(w;ai)I[bi=−1] − (1− p)h(w;ai)I[bi=1])− p(1− p)y2
]

=
1

n

n∑

i=1

[
(1− p)(h(w0;ai) + 〈∇h(w0;ai),w −w0〉+ Õ(L̃3ω4/3√m)− s)2I[bi=1]

+ p(h(w0;ai) + 〈∇h(w0;ai),w −w0〉+ Õ(L̃3ω4/3√m)− r)2I[bi=−1]

+ 2(1 + y)p(h(w0;ai) + 〈∇h(w0;ai),w −w0〉+ Õ(L̃3ω4/3√m))I[bi=−1]

− 2(1 + y)(1− p)(h(w0;ai) + 〈∇h(w0;ai),w −w0〉+ Õ(L̃3ω4/3√m))I[bi=1]

− p(1− p)y2
]
.

(119)

Then,

ŷ(x) =
1

(1− p)n

n∑

i=1

(h(w0;ai) + 〈∇h(w0;ai),w −w0〉)I[bi=−1]

− 1

pn

n∑

i=1

(h(w0;ai) + 〈∇h(w0;ai),w −w0〉)I[bi=1] + Õ(L̃3ω4/3√m).

(120)
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Thus,

P (x) = max
y

f(x, y) =
1

n

n∑

i=1

[
(1− p)(〈∇h(w0;ai),w −w0〉 − s)2I[bi=1]

+ p(〈∇h(w0;ai),w −w0〉 − r)2I[bi=−1]

+
1

p(1− p)

(
p〈 1

n

n∑

j=1

∇h(w0;aj),w −w0〉I[bj=−1] − (1− p)〈∇ 1

n

n∑

j=1

h(w0;aj),w −w0〉I[bj=1]

)2
]

+ Õ(L̃3ω4/3√m)

= ‖Hx− c‖2 + Õ(L̃3ω4/3√m)

(121)

whereH ∈ R
(n+1)×3 and c ∈ R

n+1. For 0 ≤ i ≤ n, the i-th row isHi = (
√
1− p∇h(w0;ai),−1, 0)

if bi = 1 and Hi = (
√
p∇h(w0;ai), 0,−1) if bi = −1; and the i-th element of c is

ci =
√
1− p〈∇h(w0;ai),w0〉. The last row of H is ( 1√

p(1−p)
(p 1

n

n∑
i=1

∇h(w0;ai)I[bi=−1]−(1−

p) 1n

n∑
i=1

∇h(w0;ai)I[bi=1]), 0, 0) and the last element of c is 1√
p(1−p)

〈(p 1
n

n∑
i=1

∇h(w0;ai)I[bi=−1]−

(1− p) 1n

n∑
i=1

∇h(w0;ai)I[bi=1]),w0〉.
With (119) and Lemma 43, we know that for some µ > 0 and any y, i.e.,

2µ(P (x) − P (x∗)) ≤ ‖∇P (x)‖2 + Õ(L̃3ω4/3√m). (122)

Since ω = O( logm√
m

), by the choice of m, we know that

‖∇P (x)‖2 ≥ 2µ(P (x) − P (x∗)− ǫ). (123)

K.2 An Example of x-side-PL-Strongly-Concave Problem

Lemma 44 Let x, y ∈ R, f(x, y) = 1
2x

2 + sin2 x sin2 y− 2y2. We have that f(x, y) satisfies
a x-side 1

12 PL condition, is 2-strongly concave in y and has a saddle point (0, 0).

Proof For any x,

∇2
yf(x, y) = 2 sin2 x cos(2y)− 4 ∈ [−6,−2]. (124)

Thus, f(x, y) is 2-strongly concave in y.

For any y, we know that x̂(y) = 0, and

|∇2
xf(x, y)| = |1 + 2 cos(2x) sin2 y|2 ≤ 3, (125)

which together with (124) implies that f(x, y) is 6-smooth.
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We also get
|∇xf(x, y)|
|x− x̂(y)| =

|x+ sin(2x) sin2 y|
|x| ≥ 1

2
, (126)

which together with the 6-smoothness we know that f(x, y) satisfies a x-side 1
12 -PL condition

by Appendix A of (Karimi et al., 2016).

Also it is easy to verify that

f(0, y) ≤ f(0, 0) ≤ f(x, 0), (127)

therefore (0, 0) is a saddle point.

K.3 Existence of a saddle point

Proof [Proof of Lemma 8] Since x∗ = argminx′ P (x′), ∇P (x∗) = ∇xf(x∗, ŷ(x∗)) = 0,
where the first equality holds by the Lemma 16. Then noting the x-side PL condition
2µx(f(x∗, ŷ(x∗))−minx′ f(x′, ŷ(x∗))) ≤ ‖∇xf(x∗, ŷ(x∗))‖2 = 0, we have

x∗ ∈ x̂(ŷ(x∗)), (128)

which is one of the optimal x corresponding to the ŷ(x∗).
Then we can conclude that (x∗, ŷ(x∗)) is a saddle point of f(x, y), i.e., for any x and

y ∈ Y,
f(x∗, y) ≤ f(x∗, ŷ(x∗)) ≤ f(x, ŷ(x∗)). (129)

Appendix L. Using Different Step Sizes for Primal and Dual Variables

In previous sections, we used the same step size for for primal and dual Variables in order to
simplify the analysis. Actually, step sizes for primal and dual variables can be set different.
In this section, we provide an analysis and rewrite the algorithm in Algorithm 3, 4. Similar
as before, we first provide a unified theorem.

Algorithm 3 Proximal Stage Stochastic Method: PES-A
1: Initialization: x̄0 ∈ R

d, ȳ0 ∈ Y, γ, T1, η
x
1 , η

y
1 , a.

2: for k = 1, 2, ...,K do
3: xk0 = x̄k−1, y

k
0 = ȳk−1;

4: (x̄k, ȳk) = A(f, xk0, y
k
0 , η

x
k , η

y
k , Tk, γ);

5: ηxk+1 = ηxk/a,η
y
k+1 = ηyk/a, Tk+1 = aTk;

6: end for
7: return (x̄K , ȳK).
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Algorithm 4 Stochastic Algorithm A(f, x0, y0, η
x, ηy, T, γ, u0, v0)

Initialization: (x0, y0)
Let {ξ0, ξ1, . . . , ξT } be independent random variables.
for t = 1, ..., T do

xt = Πγ
xt−1,x0(η

xG(xt−1; ξt−1));
yt = Πyt−1(η

yG(yt−1; ξt−1));

end for

return x̄ = 1
T

T∑
t=1

xt, ȳ = 1
T

T∑
t=1

yt.

Theorem 45 Suppose Assumption 1 and Assumption 4 hold. Assume we have a subroutine
in the k-th stage of Algorithm 3 that can return x̄k, ȳk such that

E[Gapk(x̄k, ȳk)] ≤ E[
C1

ηxkTk
‖x̂k(ȳk)− xk0‖2 +

C1

ηykTk
‖ŷk(x̄k)− yk0‖2] + (ηxk + ηxk)C2, (130)

where C1 and C2 are constants corresponding to the specific subroutine. Take γ = 2ρ and de-

note L̂ = L+2ρ and c = 4ρ+ 248
53 L̂ ∈ O(L+ρ). Define ∆k = P (xk0)−P (x∗)+

8L̂
53cGapk(x

k
0 , y

k
0 )

and ǫ0 = Gap(x̄0, ȳ0). Then we can set ηxk = ηx0 exp(−(k − 1) 2µ
c+2µ), ηyk = ηy0 exp(−(k −

1) 2µ
c+2µ), Tk =

⌈
212C1

min{ηx0 ρ,η
y
0µy} exp

(
(k − 1) 2µ

c+2µ

)⌉
. After K =

⌈
max

{
c+2µ
2µ log 4ǫ0

ǫ , c+2µ
2µ log

16(ηx0+ηy0 )L̂KC2

(c+2µ)ǫ

}⌉

stages, we can have ∆K+1 ≤ ǫ. The total stochastic first-order oracle call complexity is

Õ
(
max

{
(L+ρ)C1ǫ0

min{ηx0 ρ,η
y
0µy}µǫ , (

1
ρ +

ηx0
ηy0µy

+
ηy0
ηx0 ρ

+ 1
µy
) (L+ρ)2C2

µ2ǫ

})
.

Remark. As long as O(ηx0 ) ≤ ηy0 ≤ O(
ηx0
µy
), ηx0 ≥ O(µµy), and ηy0 ≥ O(µ), then ηx0 , η

y
0 can

be separately tuned without harming the complexity bound.

Proof [Proof of Theorem 45] Since f(x, y) is ρ-weakly convex in x for any y, P (x) =
max
y′∈Y

f(x, y′) is also ρ-weakly convex. Taking γ = 2ρ, we have

P (x̄k−1) ≥ P (x̄k) + 〈∇P (x̄k), x̄k−1 − x̄k〉 −
ρ

2
‖x̄k−1 − x̄k‖2

= P (x̄k) + 〈∇P (x̄k) + 2ρ(x̄k − x̄k−1), x̄k−1 − x̄k〉+
3ρ

2
‖x̄k−1 − x̄k‖2

(a)
= P (x̄k) + 〈∇Pk(x̄k), x̄k−1 − x̄k〉+

3ρ

2
‖x̄k−1 − x̄k‖2

(b)
= P (x̄k)−

1

2ρ
〈∇Pk(x̄k),∇Pk(x̄k)−∇P (x̄k)〉+

3

8ρ
‖∇Pk(x̄k)−∇P (x̄k)‖2

= P (x̄k)−
1

8ρ
‖∇Pk(x̄k)‖2 −

1

4ρ
〈∇Pk(x̄k),∇P (x̄k)〉+

3

8ρ
‖∇P (x̄k)‖2,

(131)

where (a) and (b) hold by the definition of Pk(x).
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Rearranging the terms in (131) yields

P (x̄k)− P (x̄k−1) ≤
1

8ρ
‖∇Pk(x̄k)‖2 +

1

4ρ
〈∇Pk(x̄k),∇P (x̄k)〉 −

3

8ρ
‖∇P (x̄k)‖2

(a)

≤ 1

8ρ
‖∇Pk(x̄k)‖2 +

1

8ρ
(‖∇Pk(x̄k)‖2 + ‖∇P (x̄k)‖2)−

3

8ρ
‖P (x̄k)‖2

=
1

4ρ
‖∇Pk(x̄k)‖2 −

1

4ρ
‖∇P (x̄k)‖2

(b)

≤ 1

4ρ
‖∇Pk(x̄k)‖2 −

µ

2ρ
(P (x̄k)− P (x∗)),

(132)

where (a) holds by using 〈a,b〉 ≤ 1
2(‖a‖2 + ‖b‖2), and (b) holds by the µ-PL property of

P (x).

Thus, we have

(4ρ+ 2µ) (P (x̄k)− P (x∗))− 4ρ(P (x̄k−1)− P (x∗)) ≤ ‖∇Pk(x̄k)‖2. (133)

Since γ = 2ρ, fk(x, y) is ρ-strongly convex in x and µy strong concave in y. Apply
Lemma 25 to fk, we know that

ρ

4
‖x̂k(ȳk)− xk0‖2 +

µy

4
‖ŷk(x̄k)− yk0‖2 ≤ Gapk(x

k
0 , y

k
0 ) + Gapk(x̄k, ȳk). (134)

By the setting of ηxk = ηx0 exp
(
−(k − 1) 2µ

c+2µ

)
, ηyk = ηy0 exp

(
−(k − 1) 2µ

c+2µ

)
, and Tk =

⌈
212C1

min{ηx0 ρ,η
y
0µy} exp

(
(k − 1) 2µ

c+2µ

)⌉
, we note that C1

ηxkTk
≤ ρ

212 and C1

ηykTk
≤ µy

212 . Applying (130),

we have

E[Gapk(x̄k, ȳk)] ≤ (ηxk + ηyk)C2 +
1

53
E

[ρ
4
‖x̂k(ȳk)− xk0‖2 +

µy

4
‖ŷk(x̄k)− yk0‖2

]

≤ (ηxk + ηyk)C2 +
1

53
E

[
Gapk(x

k
0 , y

k
0 ) + Gapk(x̄k, ȳk)

]
.

(135)

Since P (x) is L-smooth and γ = 2ρ, then Pk(x) is L̂ = (L+ 2ρ)-smooth. According to
Theorem 2.1.5 of (Nesterov, 2004), we have

E[‖∇Pk(x̄k)‖2] ≤ 2L̂E(Pk(x̄k)− min
x∈Rd

Pk(x)) ≤ 2L̂E[Gapk(x̄k, ȳk)]

= 2L̂E[4Gapk(x̄k, ȳk)− 3Gapk(x̄k, ȳk)]

≤ 2L̂E

[
4

(
(ηxk + ηyk)C2 +

1

53

(
Gapk(x

k
0 , y

k
0 ) + Gapk(x̄k, ȳk)

))
− 3Gapk(x̄k, ȳk)

]

= 2L̂E

[
4(ηxk + ηyk)C2 +

4

53
Gapk(x

k
0 , y

k
0 )−

155

53
Gapk(x̄k, ȳk)

]
.

(136)
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Applying Lemma 26 to (136), we have

E[‖∇Pk(x̄k)‖2] ≤ 2L̂E

[
4(ηxk + ηyk)Ck +

4

53
Gapk(x

k
0 , y

k
0)

− 155

53

(
3

50
Gapk+1(x

k+1
0 , yk+1

0 ) +
4

5
(P (xk+1

0 )− P (xk0))

)]

= 2L̂E

[
4(ηxk + ηyk)C2+

4

53
Gapk(x

k
0, y

k
0 )−

93

530
Gapk+1(x

k+1
0 , yk+1

0 )− 124

53
(P (xk+1

0 )− P (xk0))

]
.

Combining this with (133), rearranging the terms, and defining a constant c = 4ρ +
248
53 L̂ ∈ O(L+ ρ), we get

(c+ 2µ)E[P (xk+1
0 )− P (x∗)] +

93

265
L̂E[Gapk+1(x

k+1
0 , yk+1

0 )]

≤
(
4ρ+

248

53
L̂

)
E[P (xk0)− P (x∗)] +

8L̂

53
E[Gapk(x

k
0 , y

k
0 )] + 8(ηxk + ηyk)L̂C2

≤ cE

[
P (xk0)− P (x∗) +

8L̂

53c
Gapk(x

k
0 , y

k
0)

]
+ 8(ηxk + ηyk)L̂C2.

(137)

Using the fact that L̂ ≥ µ,

(c+ 2µ)
8L̂

53c
=

(
4ρ+

248

53
L̂+ 2µ

)
8L̂

53(4ρ + 248
53 L̂)

≤ 8L̂

53
+

16µL̂

248L̂
≤ 93

265
L̂. (138)

Then, we have

(c+ 2µ)E

[
P (xk+1

0 )− P (x∗) +
8L̂

53c
Gapk+1(x

k+1
0 , yk+1

0 )

]

≤ cE

[
P (xk0)− P (x∗) +

8L̂

53c
Gapk(x

k
0 , y

k
0 )

]
+ 8(ηxk + ηyk)L̂C2.

(139)

Defining ∆k = P (xk0)− P (x∗) +
8L̂
53cGapk(x

k
0 , y

k
0 ), then

E[∆k+1] ≤
c

c+ 2µ
E[∆k] +

8(ηxk + ηyk)L̂C2

c+ 2µ
. (140)

Using this inequality recursively, it yields

E[∆K+1] ≤
(

c

c+ 2µ

)K

E[∆1] +
8L̂C2

c+ 2µ

K∑

k=1

(
(ηxk + ηyk)

(
c

c+ 2µ

)K+1−k
)
. (141)

By definition,

∆1 = P (x10)− P (x∗) +
8L̂

53c
Gap1(x

1
0, y

1
0)

= P (x̄0)− P (x∗) +
(
f(x̄0, ŷ1(x̄0)) +

γ

2
‖x̄0 − x̄0‖2 − f(x̂1(ȳ0), ȳ0)−

γ

2
‖x̂1(ȳ0)− x̄0‖2

)

≤ ǫ0 + f(x̄0, ŷ1(x̄0))− f(x̂(ȳ0), ȳ0) ≤ 2ǫ0.
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Using inequality 1− x ≤ exp(−x), we have

E[∆K+1] ≤ exp

(−2µK

c+ 2µ

)
E[∆1] +

8(ηx0 + ηy0)L̂C2

c+ 2µ

K∑

k=1

exp

(
− 2µK

c+ 2µ

)

≤ 2ǫ0 exp

(−2µK

c+ 2µ

)
+

8(ηx0 + ηy0)L̂C2

c+ 2µ
K exp

(
− 2µK

c+ 2µ

)
.

To make this less than ǫ, it suffices to make

2ǫ0 exp

(−2µK

c+ 2µ

)
≤ ǫ

2
,

8(ηx0 + ηy0)L̂C2

c+ 2µ
K exp

(
− 2µK

c+ 2µ

)
≤ ǫ

2
.

Let K be the smallest value such that exp
(
−2µK
c+2µ

)
≤ min{ ǫ

4ǫ0
, (c+2µ)ǫ

16(ηx0+ηy0 )L̂KC2
}. We

can set K =

⌈
max

{
c+2µ
2µ log 4ǫ0

ǫ , c+2µ
2µ log

16(ηx0+ηy0 )L̂KC2

(c+2µ)ǫ

}⌉
. Then, the total stochastic first-

order oracle call complexity is

K∑

k=1

Tk ≤ O

(
212C1

min{ηx0 , η
y
0}min{ρ, µy}

K∑

k=1

exp

(
(k − 1)

2µ

c+ 2µ

))

≤ O

(
212C1

min{ηx0 , η
y
0}min{ρ, µy}

exp(K 2µ
c+2µ)− 1

exp( 2µ
c+2µ)− 1

)

(a)

≤ Õ

(
cC1

min{ηx0ρ, η
y
0µy}µ

max

{
ǫ0
ǫ
,
(ηx0 + ηy0)L̂KC2

(c+ 2µ)ǫ

})

≤ Õ

(
max

{
(L+ ρ)C1ǫ0

min{ηx0ρ, η
y
0µy}µǫ

,
(ηx0 + ηy0)(L+ ρ)2C2

min{ηx0ρ, η
y
0µy}µ2ǫ

})

≤ Õ

(
max

{
(L+ ρ)C1ǫ0

min{ηx0ρ, η
y
0µy}µǫ

, (
1

ρ
+

ηx0
ηy0µy

+
ηy0
ηx0ρ

+
1

µy
)
(L+ ρ)2C2

µ2ǫ

})
,

where (a) uses the setting of K and exp(x)−1 ≥ x, and Õ suppresses logarithmic factors.

Theorem 46 Consider Algorithm 3 that uses Algorithm 4 as a subroutine. Suppose As-
sumption 1, 3, 4 hold. Assume E‖∇xf(x, y; ξ)‖2 ≤ B2 and E‖∇yf(x, y; ξ)‖2 ≤ B2. Take
γ = 2ρ and denote L̂ = L + 2ρ and c = 4ρ + 248

53 L̂ ∈ O(L + ρ). Define ∆k = P (xk0) −
P (x∗) +

8L̂
53cGapk(x

k
0 , y

k
0 ) and ǫ0 = Gap(x̄0, ȳ0). Then we can set ηxk = ηx0 exp(−(k −

1) 2µ
c+2µ) ≤ 1

ρ ,η
y
k = ηy0 exp(−(k − 1) 2µ

c+2µ), Tk =
⌈

212C1

min{ηx0 ρ,η
y
0µy} exp

(
(k − 1) 2µ

c+2µ

)⌉
. After

K =
⌈
max

{
c+2µ
2µ log 4ǫ0

ǫ , c+2µ
2µ log 80η0L̂KB2

(c+2µ)ǫ

}⌉
stages, we can have ∆K+1 ≤ ǫ. The total

stochastic first-order oracle call complexity is Õ
(

(L+ρ)2B2

µ2 min{ρ,µy}ǫ

)
.
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Proof [Proof of Theorem 46] Using Lemma 28, we can set γ = 2ρ and η0 = 1
ρ . Then it

follows that

E[Gapk(x̄k, ȳk)] ≤
2

ηxkTk
E[‖x̂k(ȳk)− xk0‖2 +

2

ηykTk
E[‖ŷk(x̄k)− yk0‖2 +

5(ηxk + ηyk)B
2

2
.

We plug in C1 = 2 and C2 = 5B2/2 to Theorem 45 and the conclusion follows.
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