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Abstract

As machine learning being used increasingly in

making high-stakes decisions, an arising chal-

lenge is to avoid unfair AI systems that lead

to discriminatory decisions for protected popula-

tion. A direct approach for obtaining a fair pre-

dictive model is to train the model through opti-

mizing its prediction performance subject to fair-

ness constraints. Among various fairness con-

straints, the ones based on the area under the

ROC curve (AUC) are emerging recently because

they are threshold-agnostic and effective for un-

balanced data. In this work, we formulate the

problem of training a fairness-aware predictive

model as an AUC optimization problem sub-

ject to a class of AUC-based fairness constraints.

This problem can be reformulated as a min-max

optimization problem with min-max constraints,

which we solve by stochastic first-order methods

based on a new Bregman divergence designed

for the special structure of the problem. We nu-

merically demonstrate the effectiveness of our ap-

proach on real-world data under different fairness

metrics.

1 INTRODUCTION

AI systems have been increasingly used to assist in making

high-stakes decisions such as lending decision (Addo et al.,

2018), bail and parole decision (Dressel and Farid, 2018),

resource allocation (Davahli et al., 2021) and so on. Along

with this trend, a question arising is how to ensure AI sys-

tems are fair and do not produce discriminatory decisions

for protected groups defined by some sensitive variables

(e.g., age, race, gender, etc.). To answer this question, the

first step is to define and quantitatively measure fairness of

AI systems, which is itself an active research area.
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For a classification task, a variety of fairness metrics have

been studied including demographic parity (Beutel et al.,

2019b; Calders et al., 2009; Gajane and Pechenizkiy,

2017), equality of opportunity (Hardt et al., 2016),

equality of odds (Hardt et al., 2016), predictive quality

parity (Chouldechova, 2017) and counter factual fair-

ness (Kusner et al., 2017). All of these fairness metrics

are formulated based on statistical relationships between

predicted class labels and sensitive variables. However,

many predictive models only generate a predicted risk

score and a predicted class label is obtained afterwards by

comparing the score with a threshold. A good threshold

is not always easy to choose in practice and may vary

with datasets and applications. In fact, it is likely that a

model satisfies a fairness criterion with one threshold but

violates the same fairness criterion with another threshold.

Moreover, the threshold is often chosen to achieve a

targeted predicted positive rate. When doing so, it is not

easy to ensure a targeted fairness criterion is satisfied at

the same threshold.

With these drawbacks in the threshold-dependent fairness

metrics, there have been growing efforts on developing

threshold independent fairness metrics, among which

the fairness metrics based on AUC, or equivalently,

pairwise comparison, are prevalent (Beutel et al., 2019a;

Borkan et al., 2019; Dixon et al., 2018; Kallus and Zhou,

2019; Narasimhan et al., 2020; Vogel et al., 2021;

Yang et al., 2022c). These metrics are directly de-

fined based on statistical relationships between predicted

risk scores and sensitive variables and thus do not require

a predetermined threshold.

Regardless of the fairness metric applied, training a fair

predictive model requires balancing the model’s prediction

performance and fairness, two potentially conflicting tar-

gets. Hence, it is naturally to formulate this problem as

constrained optimization where the model’s prediction per-

formance is optimized subject to some fairness constraints.

This approach has been studied with constraints based on

threshold-dependent fairness metrics (Agarwal et al., 2018;

Cotter et al., 2018, 2019; Cruz et al., 2022; Diana et al.,

2021; Dwork et al., 2012; Goh et al., 2016; Kearns et al.,

2018; Woodworth et al., 2017) and threshold-agnostic fair-
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ness metrics (Narasimhan et al., 2020; Vogel et al., 2021;

Zafar et al., 2017) with different optimization algorithms

applied during training. In Narasimhan et al. (2020), a

proxy-Lagrangian method from Cotter et al. (2018, 2019)

is applied to optimization with fairness constraints while

regularization methods are applied by Beutel et al. (2017);

Vogel et al. (2021) to optimize a weighted sum of predic-

tion performance and fairness metrics.

Online learning is a common setting in machine learning

where data becomes available sequentially and the model

needs to be updated by the latest data. When learning a

fair model online, the methods in Narasimhan et al. (2020);

Vogel et al. (2021) need to compute stochastic gradients

of the constraint functions. However, due to the pairwise

comparison involved in their optimization models, com-

puting one online stochastic gradient requires processing

a pair of data points, one from the protected group and

the other from the unprotected group. This requires that

data points always arrive in pairs, which is not always

guaranteed in practice. For the similar reason, when train-

ing models off-line using an existing dataset, the methods

by Narasimhan et al. (2020); Vogel et al. (2021) require

processing all pairs of data points and thus need a compu-

tational cost quadratic in data size, which is prohibited for

large datasets.

In this paper, we focus on developing efficient numerical

methods for training a classification model under AUC-

based threshold-agnostic fairness constraints by addressing

the computational issues mentioned above. The main con-

tribution of this paper is formulating the aforementioned

problem into a stochastic optimization problem subject to

min-max constraints. Although the min-max constraints

are new and challenging structures, we propose a special

Bregman divergence after changing variables such that the

problem can be solved efficiently by the existing stochas-

tic first-order methods for constrained stochastic optimiza-

tion such as Boob et al. (2022); Lin et al. (2020); Ma et al.

(2020). Compared to Narasimhan et al. (2020); Vogel et al.

(2021), the main advantage of our approach is that it sup-

ports model training in an online setting with one data

point, instead of a data pair, arriving each time in any se-

quence. Moreover, when applied under the off-line setting,

our approach only has a computational cost linear in data

size. One limitation of our approach is that we must use a

quadratic surrogate loss to approximate the AUCs in the ob-

jective and constraint functions. However, the numerical re-

sults on real-world datasets show that the models found by

our methods trade off classification performance and fair-

ness more effectively than existing techniques.

2 RELATED WORKS

A survey of prevalent fairness metrics, including

some discussed in the previous section, is provided

by Verma and Rubin (2018). However, most metrics dis-

cussed in Verma and Rubin (2018) are based on predicted

class labels and thus threshold dependent. The threshold-

agnostic fairness metrics based on AUC (see examples

in Section 3) have been proposed in Borkan et al. (2019);

Dixon et al. (2018); Kallus and Zhou (2019); Vogel et al.

(2021). They have been extended to a broader class of

metrics based on pairwise comparison, so the target vari-

able can be continuous or ordinal (e.g., in a regression or

ranking problem) (Beutel et al., 2019a; Narasimhan et al.,

2020). The class of fairness metrics we consider in this pa-

per is more general than Borkan et al. (2019); Dixon et al.

(2018); Kallus and Zhou (2019) and has similar generality

to Beutel et al. (2019a); Narasimhan et al. (2020). A

ROC-based fairness metric is proposed by Vogel et al.

(2021) which is threshold-agnostic and stronger than the

AUC-based ones in this paper. However, their optimization

algorithms do not have theoretical convergence guarantees

and require processing data points in pairs per iteration,

which leads to a quadratic computational cost and is not

ideal for training online.

The three main approaches for building a fairness-

aware machine learning model include the pre-processing,

post-processing, and in-processing methods. The pre-

processing method reduce machine bias by re-sampling

and balancing training data (Dwork et al., 2012). The post-

processing method adjusts the prediction results after to en-

sure fairness (Hardt et al., 2016). The methods in this pa-

per are the in-processing methods, which enforce fairness

of a model during training by adding constraints or regular-

ization to the optimization problem (Agarwal et al., 2018;

Goh et al., 2016; Yang et al., 2022c).

Most in-processing methods are based on threshold-

dependent fairness metrics (Agarwal et al., 2018;

Cotter et al., 2018, 2019; Cruz et al., 2022; Diana et al.,

2021; Dwork et al., 2012; Goh et al., 2016; Kearns et al.,

2018; Woodworth et al., 2017) while this work consid-

ers threshold-independent metrics. The unconstrained

optimization approach by Yang et al. (2022c) minimizes

the maximum of four different AUC scores to achieve a

balance between classification performance and fairness,

while we ensure fairness by constraints. Although a

constrained optimization approach is also presented in the

appendix of Yang et al. (2022c), no convergence analysis

is provided. Fairness constrained optimization is an impor-

tant application of stochastic constrained optimization for

which many effective algorithms have been developed un-

der the convex setting (Boob et al., 2022; Lin et al., 2020;

Yan and Xu, 2022; Yang et al., 2022a) and the non-convex

setting (Boob et al., 2022; Ma et al., 2020). A proxy

Lagrangian method has been developed for optimization

subject to a class of rate constraints (Cotter et al., 2018,

2019; Narasimhan et al., 2020), which include almost all

fairness constraints we discussed above. The theoretical
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complexity of the proxy Lagrangian method has been

analyzed (Cotter et al., 2019) when the objective function

is convex or non-convex (Cotter et al., 2019) although a

strong Bayesian optimization oracle is assumed in the

non-convex case. Unconstrained optimization has also

been considered for building fairness-aware models where

fairness is enforced through a penalty term (Beutel et al.,

2017, 2019a; Vogel et al., 2021).

When directly applied to the AUC-based fairness con-

straints, the optimization algorithms mentioned above all

need to request a pair of data points, one from the protected

group and one from the opposite group, to construct the

stochastic gradients. This is not ideal for online learning

because data may not always arrive in pairs. On the con-

trary, our method is developed by first reformulating the

AUC-based fairness constraints into min-max constraints

using a quadratic loss (Ying et al., 2016). The stochastic

gradient of this formulation can be computed using only

one data point each time with any order of arrivals. Min-

max stochastic constraints are new in optimization litera-

ture, so we develop a new Bregmen divergence by chang-

ing variables so that the existing algorithms like Boob et al.

(2022); Lin et al. (2020) and their convergence analysis can

be applied. Yang et al. (2022b) develop an algorithm for

stochastic compositional optimization subject to composi-

tional constraints which can be applied to our problem with

the same computational complexity. This is because our

min-max constraints can be also viewed as compositional

constraints. They focus on the convex case but we also con-

sider the non-convex case under some additional assump-

tion (see Assumption 4).

3 PRELIMINARIES

Consider a binary classification problem, where the goal is

to build a model that predicts a binary label ζ ∈ {1,−1}
based on a feature vector ξ ∈ R

p. The sensitive fea-

ture of a data point is denoted by γ ∈ {1,−1}, which

may or may not be a coordinate of ξ. This feature di-

vides the data into a protected group (γ = 1) and an un-

protected group (γ = −1). We denote a data point by

a triplet z = (ξ, ζ, γ) ∈ R
p+2 which is a random vec-

tor. We say G ⊂ R
p+2 has a positive measure w.r.t. z if

Pr(z ∈ G) > 0. Let hw : Rp → R be the predictive model

that produces a score hw(ξ) for ξ. Function hw is parame-

terized by a vector w from a convex compact set W ⊂ R
d.

We assume hw(·) is differentiable and consider threshold-

agnostic fairness metrics defined based on the join distribu-

tion of hw(ξ), ζ and γ.

Definition 1 (AUC defined by subsets) Let z = (ξ, ζ, γ)
and z′ = (ξ′, ζ′, γ′) be i.i.d random data points. Given

two sets G and G′ in R
p+2 with positive measures w.r.t. z,

the AUC w.r.t. G and G′ is

AUCw(G,G′) := Pr(hw(ξ) > hw(ξ′)|z ∈ G, z′ ∈ G′).

When G = D+ := {z|ζ = 1} and G′ = D− := {z|ζ =
−1}, AUCw(G,G′) is reduced to the standard AUC for a

binary classification problem.

Definition 2 (AUC-based fairness metric) Given sets G1,

G2, G′
1 and G′

2 in R
p+2 with positive measures w.r.t. z, the

AUC-based fairness metric w.r.t. G1, G2, G′
1 and G′

2 is

|AUCw(G1,G′
1)− AUCw(G2,G′

2)| ∈ [0, 1], (1)

where AUCw(·, ·) follows Definition 1.

We say model hw is unfair if the value of (1) is close

to one and is fair if close to zero. This class of fair-

ness metrics contains several existing threshold-agnostic

metrics in literature, including the inter-group pairwise

fairness (Beutel et al., 2019a; Kallus and Zhou, 2019), the

intra-group pairwise fairness (Beutel et al., 2019a), the pos-

itive/negative average equality gap (Borkan et al., 2019)

and the fairness metric based on background-subgroup

AUCs (Borkan et al., 2019). In Appendix A, we discuss

how Definition 2 is reduced to these metrics by setting G1,

G2, G′
1 and G′

2 to be different sets.

Besides fairness, we are also interested in the performance

of the model as a classifier. In this paper, we also use the

AUC, namely, AUCw(D+,D−), as the performance metric

and optimize it subject to fairness constraints. This choice

is made only to obtain a uniform structure in the objective

and constraint functions. The numerical methods we pre-

sented in this paper can be also applied when the classifica-

tion performance is optimized by a traditional method, e.g.,

minimizing the empirical logistic loss.

The general formulation of our problem can be written as

max
w∈W

AUCw(D+,D−),

s.t. |AUCw(G1,G′
1)− AUCw(G2,G′

2)| = 0.

The equality constraint used here may be too restrict be-

cause an absolutely fair model may have a poor prediction

performance and may be unnecessarily overly fair for users.

To provide some flexibility to users, we replace the equality

constraint to two inequalities after introducing a targeted

level of fairness, denoted by κ ≥ 0, on the right-hand sides:

max
w∈W

AUCw(D+,D−),

s.t. AUCw(G1,G′
1)− AUCw(G2,G′

2) ≤ κ,

AUCw(G2,G′
2)− AUCw(G1,G′

1) ≤ κ.

(2)

Solving (2) directly is challenging because the objective

and constraint functions involve indicator functions which



Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints

are discontinuous. A common solution is to introduce a sur-

rogate loss to approximate the indicator function. In partic-

ular, focusing on the objective function first, we have

max
w∈W

AUCw(D+,D−)

= max
w∈W

Pr(hw(ξ) > hw(ξ
′)|ζ = 1, ζ′ = −1)

⇔ min
w∈W

Pr(hw(ξ) ≤ hw(ξ
′)|ζ = 1, ζ′ = −1)

= min
w∈W

E
[
I(hw(ξ)−hw(ξ′)≤0)|ζ = 1, ζ′ = −1

]

≈ min
w

E
[
ℓ(hw(ξ)− hw(ξ

′))|ζ = 1, ζ′ = −1
]
,(3)

where ℓ(·) is a continuous surrogate loss function that ap-

proximates the indicator functions I(·≤0) and I(·<0). Sim-

ilar to (3), we approximate the left-hand side of the first

constraint in (2) as follows

AUCw(G1,G′
1)− AUCw(G2,G′

2)

=Pr(hw(ξ) > hw(ξ
′)|z ∈ G1, z

′ ∈ G′
1)

− Pr(hw(ξ) > hw(ξ
′)|z ∈ G2, z

′ ∈ G′
2)

=Pr(hw(ξ) > hw(ξ
′)|z ∈ G1, z

′ ∈ G′
1)

+ Pr(hw(ξ) ≤ hw(ξ
′)|z ∈ G2, z

′ ∈ G′
2)− 1

≈E
[
ℓ(hw(ξ

′)− hw(ξ))|z ∈ G1, z
′ ∈ G′

1

]

+ E
[
ℓ(hw(ξ)− hw(ξ′))|z ∈ G2, z

′ ∈ G′
2

]
− 1. (4)

Similarly, we approximate the left-hand side of the second

constraint in (2) as

AUCw(G2,G′
2)− AUCw(G1,G′

1)

≈E
[
ℓ(hw(ξ

′)− hw(ξ))|z ∈ G2, z
′ ∈ G′

2

]

+ E
[
ℓ(hw(ξ)− hw(ξ′))|z ∈ G1, z

′ ∈ G′
1

]
− 1. (5)

Using (3) as the objective function and (4) and (5) as the

left-hand sides of the inequality constraints. We obtain the

following approximation to (2).

min
w∈W

E
[
ℓ(hw(ξ)− hw(ξ

′))|ζ = 1, ζ′ = −1
]

(6)

s.t. E
[
ℓ(hw(ξ

′)− hw(ξ))|z ∈ G1, z
′ ∈ G′

1

]
,

+ E
[
ℓ(hw(ξ)− hw(ξ

′))|z ∈ G2, z
′ ∈ G′

2

]
≤ 1 + κ,

E
[
ℓ(hw(ξ

′)− hw(ξ))|z ∈ G2, z
′ ∈ G′

2

]

+ E
[
ℓ(hw(ξ)− hw(ξ

′))|z ∈ G1, z ∈ G′
1

]
≤ 1 + κ.

Although (6) have continuous objective and constraint func-

tions, it is still computationally challenging in general be-

cause each expectation in (6) is taken over a pair of random

data points from two different subsets. When formulated

using the empirical distribution over n data points, each ex-

pectation becomes double summations which have O(n2)
computational cost. Moreover, (6) is not suitable for online

learning as computing its stochastic gradient requires data

arriving in pairs (one from Gi and one from G′
i), which is

not always the case. Fortunately, when the loss function is

quadratic, more specifically, when ℓ(·) = c1(· − c2)
2 with

c1, c2 > 0, it is shown by Ying et al. (2016) that each ex-

pected loss in (6) can be reformulated as the optimal value

of a min-max optimization problem whose objective func-

tion can be computed in O(n) cost under the empirical dis-

tribution. The new formulation also supports online learn-

ing since its stochastic gradient can be computed even with

one data point (see Lemma 1 below). To derive the refor-

mulation of (6) with quadratic loss functions, we need the

following lemma by (Ying et al., 2016) whose proof is pro-

vided in Appendix B just for completeness.

Lemma 1 Let z = (ξ, ζ, γ) and z′ = (ξ′, ζ′, γ′) be i.i.d

random data points. Given any two sets G and G′ in R
p+2

with positive measures w.r.t. z,

E
[

c1(hw(ξ)− hw(ξ′)− c2)
2|z ∈ G, z′ ∈ G′

]

=

min
a,b∈IG,G′

max
α∈IG,G′

E
{

FG,G′(w, a, b; z) + αGG,G′(w; z) − α2
}

,

(7)

where

FG,G′(w, a, b; z) :=

c1c
2
2 −

2c1c2hw(ξ)IG(z)

Pr(z ∈ G) +
2c1c2hw(ξ)IG′(z)

Pr(z ∈ G′)

+
c1(hw(ξ)− a)2IG(z)

Pr(z ∈ G) +
c1(hw(ξ)− b)2IG′(z)

Pr(z ∈ G′)
,

GG,G′(w; z) :=
2c1hw(ξ)IG(z)

Pr(z ∈ G) − 2c1hw(ξ)IG′(z)

Pr(z ∈ G′)
,

(8)

and IG,G′ ⊂ R is the smallest interval such that

0,±E
[

hw(ξ)|z ∈ G
]

,±E
[

hw(ξ′)|z′ ∈ G′
]

,
±
(

E
[

hw(ξ)|z ∈ G
]

− E
[

hw(ξ′)|z′ ∈ G′
]) ∈ IG,G′

for any w ∈ W .

According to Lemma 1, the new formulation (7) needs

three auxiliary variables, a, b and α in a large enough in-

terval IG,G′ . We then apply Lemma 1 to each conditional

expected loss in (6) with ℓ(·) = c1(· − c2)
2. To do so, we

first define I as any bounded interval such that

ID+,D−
, IG1,G′

1
, IG2,G′

2
⊂ I, (9)

where IG,G′ is defined as in Lemma 1. We then introduce

fifteen auxiliary variables ai, bi and αi in I for i = 0, . . . , 4.

Here, (ai, bi, αi) for each i corresponds to one conditional

expected loss in (6) (there are five of them). In additional,

we define the primal variable x = (w, (ai, bi)
4
i=0) ∈ X :=

W × I10 and the dual variable α = (αi)
4
i=0 ∈ I5. With

these notations, we apply Lemma 1 and reformulate (6) as

f∗ := minf0(x) s.t. f1(x) ≤ 1 + κ, f2(x) ≤ 1 + κ, (10)
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where

f0(x) :=max
α0∈I

E
[

FD+,D−(x;z) + α0GD+,D−(w; z)− α2
0

]

(11)

f1(x) := max
α1,α2∈I

E

[

FG′
1,G1

(x; z) + α1GG′
1,G1

(w; z)− α2
1

+FG2,G
′
2
(x; z) + α2GG2,G

′
2
(w; z)− α2

2

]

(12)

f2(x) := max
α3,α4∈I

E

[

FG′
2,G2

(x; z) + α3GG′
2,G2

(w; z)− α2
3

+FG1,G
′
1
(x; z) + α4GG1,G

′
1
(w; z)− α2

4

]

(13)

and

FD+,D− (x;z) = FD+,D−(w, a0, b0; z)

FG′
1,G1

(x;z) = FG′
1,G1

(w, a1, b1; z)

FG2,G
′
2
(x;z) = FG2,G

′
2
(w, a2, b2; z)

FG′
2,G2

(x;z) = FG′
2,G2

(w, a3, b3; z)

FG1,G
′
1
(x;z) = FG1,G

′
1
(w, a4, b4; z)

with FG,G′(w, a, b; z) and GG,G′ (w; z) defined in (8).

4 CONVEX CASE

In this section, we introduce the stochastic feasible level-set

(SFLS) method by Lin et al. (2020) for solving (10) when

the problem is convex. We make the following assumptions

in this section.

Assumption 1 E[FG,G′ (x; z)] + αE[GG,G′ (w; z)] is con-

vex in x for any sets G and G′ and any α ∈ R.

This assumption holds when hw(ξ) = w⊤ξ.

Assumption 2 There exists σ > 0 such that

E
[

exp(|FG,G′(x; z)|2/σ2)
]

≤ exp(1), (14)

E
[

exp(|GG,G′(w; z)|2/σ2)
]

≤ exp(1), (15)

E
[

exp(‖∇FG,G′(x; z)‖22/σ2)
]

≤ exp(1), (16)

E
[

exp(‖∇GG,G′(w; z)‖22/σ2)
]

≤ exp(1) (17)

for any sets G and G′ and any x ∈ X , where ∇FG,G′(x; z)
and ∇GG,G′ (w; z) are the gradients of FG,G′ and FG,G′

with respect to x and w, respectively.

Assumption 3 (Strict Feasibility) There exists x̃ ∈ X
such that max{f1(x̃), f2(x̃)} < 1 + κ.

As the following lemma shows, this assumption holds if

hw(·) becomes a constant mapping for some w ∈ W . The

proof is provided in Appendix B.

Lemma 2 Assumption 3 holds if c1c
2
2 ≤ 0.5 and there ex-

ists w ∈ W such that hw(·) is a constant mapping.

The SFLS method relies on the following level-set function

H(r) := min
x∈X

P(r,x), (18)

Algorithm 1 Stochastic Feasible Level-Set Method (SFLS)

1: Inputs: A stochastic oracle A, a level parameter

r(0) > f∗, an optimality tolerance ǫopt > 0, an ora-

cle error ǫA > 0, a probability δ ∈ (0, 1), and a step

length parameter θ > 1.

2: for k = 0, 1 · · · , do

3: δ(k) = δ
2k

4: (U(r(k)),x(k)) = A(r(k), ǫA, δ(k))
5: if U(r(k)) ≥ −ǫopt then

6: Halt and return x(k)

7: r(k+1) ← r(k) + U(r(k))/(2θ) and k ← k + 1

8: end for

where r ∈ R is a level parameter and

P(r,x)=max{f0(x) − r, f1(x)− 1− κ, f2(x)− 1− κ}.

By lemmas 2.3.4 and 2.3.6 in Nesterov (2003) and Lemma

1 in Lin et al. (2018b), H(r) is non-increasing and convex

and has an unique root at r = f∗. The SFLS method is es-

sentially a root-finding procedure that generates a sequence

of r(k), k = 0, 1, . . . , approaching f∗ from the right. The

update of r(k) requires the knowledge of H(r) which is un-

known. Typically, another algorithm is applied to (18) to

obtain an upper bound estimation of H(r). This algorithm

is called a stochastic oracle of H(r) defined below.

Definition 3 Given r > f∗, ǫA > 0, and δ ∈ (0, 1), a

stochastic oracle A(r, ǫA, δ) returns U(r) ∈ R and x̄ ∈ X
that satisfy the inequalities P(r, x̄) − H(r) ≤ ǫA and

|U(r) −H(r)| ≤ ǫA with a probability of at least 1− δ.

Suppose a stochastic oracle A exists, the SFLS method

by Lin et al. (2020) is presented in Algorithm 1 with its

convergence property given in Proposition 1.

Proposition 1 (Theorem 5 in Lin et al. (2020)) Suppose

ǫopt = − 1
θH(r(0))ǫ and ǫA = − θ−1

2θ2(θ+1)H(r(0))ǫ for

ǫ ∈ (0, 1). Algorithm 1 generates a feasible solution at

each iteration with a probability of at least 1−δ. Moreover,

it returns an x(k) that is feasible and relative ǫ-optimal, i.e.,

(f0(x
(k))− f∗)/(f0(x(0)) − f∗) ≤ ǫ with this probability

in at most Õ( 1
ǫ2 ) iterations. 1

The remaining question is how to design an stochastic ora-

cle A(r, ǫ, δ) satisfying Defintion 3. Let ỹ = (ỹ0, ỹ1, ỹ2) ∈
∆3 := {ỹ ∈ R

3
+|

∑2
i=0 ỹi = 1}. With (11), (12) and (13),

we can reformulate (18) into

H(r) := min
x∈X

max
ỹ∈∆3,α∈I5

φ̃(x, ỹ,α) (19)

where the definition of φ̃(x, ỹ,α) is in Appendix D. This

min-max optimization problem is not jointly concave in ỹ

1Here and in the rest of the paper, Õ suppresses the logarith-
mic factors in the order of magnitude.
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and α due to their product terms. As a result, the standard

stochastic mirror descent method, e.g., Nemirovski et al.

(2009), does not necessarily converge in theory if applied

directly to (19). Motivated by Lin et al. (2018a), we equiv-

alently convert this min-max problem above into a convex-

concave min-max problem by changing variables. In par-

ticular, we define variables α̃ = (α̃i)
4
i=0 where α̃0 =

ỹ0α0, α̃1 = ỹ1α1, α̃2 = ỹ1α2, α̃3 = ỹ2α3, α̃4 = ỹ2α4

and define y = (ỹ, α̃) and

Y :=

{
y = (ỹ, α̃)

∣∣∣∣∣
ỹ ∈ ∆3, α̃0 ∈ ỹ0 · I,

α̃1, α̃2 ∈ ỹ1 · I, α̃3, α̃4 ∈ ỹ2 · I

}
.

Eliminating α by α̃ in (19) gives

min
x∈X

max
y∈Y

{φ(x,y) − dy(y)} , (20)

where φ(x,y) := E[Φ(x,y, z)],

dy(y) :=
α̃2
0

ỹ0
+

α̃2
1

ỹ1
+

α̃2
2

ỹ1
+

α̃2
3

ỹ2
+

α̃2
4

ỹ2
, (21)

Φ(x,y, z) :=ỹ⊤F(x, z) + α̃⊤G(w, z), (22)

F(x,z) =





FD+,D− (x;z)− r
FG′

1,G1
(x; z) + FG2,G

′
2
(x; z)− 1− κ

FG′
2,G2

(x; z) + FG1,G
′
1
(x; z)− 1− κ





and

G(w, z) =













GD+,D−(w; z)
GG1,G

′
1
(w; z)

GG′
2,G2

(w; z)
GG2,G

′
2
(w; z)

GG′
1,G1

(w; z)













.

We also slightly generalize (23) to the following problem

min
x∈X

max
y∈Y

{φ(x,y) − dy(y) + dx(x)} , (23)

where dx(x) = ρ̂
2‖x − x̃‖22 for some ρ̂ ≥ 0 and some

x̃ ∈ X . In this section, we focus on the convex case and

only need to solve (23) with ρ̂ = 0. When we solve the

weakly convex case later, we will set ρ̂ > 0 and choose

some x̃.

Note that (23) is a convex-concave min-max problem. In

fact, except the term dy(y), the objective function is linear

in y, which allows us to apply stochastic mirror descent

(SMD) method. The SMD method requires some distance

generating function on X and Y and their corresponding

Bregman divergences. In our problem, the distance gener-

ating functions on X and Y are chosen as ωx(x) :=
1
2‖x‖22

and ωy(y) := 2(1 +
√
2I)2

(
2∑

i=0

ỹi ln ỹi + ln 3

)
+ dy(y)

respectively, where I := maxα∈I |α|. Function ωy(y) is

specially designed for the set Y so, as we will show be-

low, the iterates in the SMD method can be updated in

Algorithm 2 Stochastic Mirror Descent for (23)

1: Input: Level parameter r ∈ R, number of iterations T ,

step size ηt and τt, ρ̂ ≥ 0 and x̃.

2: Set x(0) = 0, ỹ(0) = (13 ,
1
3 ,

1
3 )

⊤, α̃(0) = 0 and y(0) =

(ỹ(0), α̃(0))
3: for t = 0 to T − 1 do

4: Sample z(t).
5: Compute stochastic gradients:

g
(t)
x = ∇xΦ(x

(t),y(t), z(t)), g(t)
y = ∇yΦ(x

(t),y(t), z(t))

6: Primal-dual stochastic mirror descent:

x
(t+1) =argmin

x∈X

〈

g
(t)
x ,x

〉

+
‖x − x(t)‖22

2ηt
+ dx(x)

y
(t+1) =argmin

y∈Y

−
〈

g
(t)
y ,y

〉

+
Vy(y,y

(t))

τt
+ dy(y)

(25)

7: Compute a stochastic upper bound

U(r) := max
y∈Y







∑T−1
t=0 τt

[

Φ(x(t),y, z(t))− dy(y) + dx(x
(t))

]

∑T−1
t=0 τt







.

(26)

8: Output: U(r) and (x̄, ȳ) = 1
T

∑T−1
t=0 (x(t),y(t)).

closed-forms. Note that we can always choose I such that

it satisfies (9) and is bounded. In fact, since W is compact

and E[hw(ξ)|G] is continuous in w, the intervals ID+,D−
,

IG1,G′
1

and IG2,G′
2

are all bounded, so we can also set I to

be bounded. This ensures I < +∞.

Let ‖x‖x := ‖x‖2 and ‖y‖y := ‖y‖1,2 :=√
‖ỹ‖21 + ‖α̃‖22. It is clear that ωx(x) is 1-strongly con-

vex on X with respect to ‖x‖x. It is shown by Lemma

2 in Lin et al. (2018a) that ωy(y) is 1-strongly convex on

Y with respect to ‖y‖y . Hence, we can use them to de-

fine Bregman divergence Vx(x,x
′) = ωx(x) − [ωx(x

′) +
∇ωx(x

′)⊤(x− x′)] = 1
2‖x− x′‖22 and

Vy(y,y
′) := ωy(y) − [ωy(y

′) +∇ωy(y
′)⊤(y − y′)]

=2(1 +
√
2I)2

2∑

i=0

ỹi ln

(
ỹi
ỹ′i

)
+ ỹ0

(
α̃0

ỹ0
− α̃′

0

ỹ′0

)2

(24)

+ ỹ1

2∑

i=1

(
α̃i

ỹ1
− α̃′

i

ỹ′1

)2

+ ỹ2

4∑

j=3

(
α̃j

ỹ2
−

α̃′
j

ỹ′2

)2

.

With these Bregman divergences, we describe the SMD

method in Algorithm 2. The subproblems (25) and (26)

have closed-form solutions, which are characterized in

Lemma 3 in Appendix B.2.
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The convergence property of Algorithm 2 is well known

(see, e.g., Lin et al. (2020); Nemirovski et al. (2009)) and,

in combination with Proposition 1, it implies the total com-

plexity of Algorithm 1 as stated in the following theorem.

Theorem 1

Let Dx :=
√
maxx∈X ωx(x)−minx∈X ωx(x) and

Dy :=
√
maxy∈Y ωy(y) −miny∈Y ωy(y). There exists

a constant M depending on σ, ρ̂, I , Dx and Dy such that:

• Algorithm 2 is a stochastic oracle by Definition 3 if

T ≥ Õ
(

1
ǫ2
A

ln(1δ )
)

and

ηt = 2D2
x/(M

√
t+ 1), τt = 2D2

y/(M
√
t+ 1). (27)

• Suppose ǫopt and ǫA are defined the same as in Propo-

sition 1. If Algorithm 2 is used as the stochastic or-

acle A with ηt and τt defined as in (27) and T ≥
Õ
(

1
ǫ2A

ln( 1
δ(k) )

)
with δ(k) defined in Algorithm 1. Al-

gorithm 1 returns a relative ǫ-optimal and feasible so-

lution with probability of at least 1 − δ after running

at most Õ
(

1
ǫ2 ln(

1
δ )
)

stochastic mirror descent steps

across all calls of A.

In Appendix C, we provide the definition of M and the

exact value of T and we also give a brief discussion on

how this theorem is obtained by applying the convergence

results in Lin et al. (2020); Nemirovski et al. (2009) to Al-

gorithm 2.

5 WEAKLY-CONVEX CASE

In this section, we apply the proximal point techniques

by Boob et al. (2022); Jia and Grimmer (2022); Ma et al.

(2020) to extend the approach to the case where the objec-

tive and constraint functions in (10) are weakly convex.

Definition 4 Given h : R → R ∪ {∞}, we say h is µ-
strongly convex for µ ≥ 0 if

h(x) ≥ h(x′) + g
⊤(x− x

′) +
µ

2
‖x− x

′‖22

for any x,x′ ∈ X and any g ∈ ∂h(x), and we say h is
ρ-weakly convex for ρ ≥ 0 if

h(x) ≥ h(x′) + g
⊤(x− x

′)− ρ

2
‖x− x

′‖22

for any x,x′ ∈ X and any g ∈ ∂h(x). Here, ∂h(x) is the

subdifferential of h at x.

In this section, we do not assume Assumption 1 but assume

Assumptions 2 and 3 and the following assumption.

Assumption 4 The following statements hold:

1. E[FG,G′ (x; z)] +αE[GG,G′ (w; z)] is ρ-weakly convex

in x for any sets G and G′ and any α ∈ R.

2. There exist σǫ > 0 and ρǫ > 0 such that

min
x′∈X

{

max
i=1,2

fi(x
′)− 1− κ+

ρ+ ρǫ
2

‖x′ − x‖2
}

< −σǫ

for any x ∈ X with maxi=1,2 fi(x) − 1− κ ≤ ǫ2.

3. ‖g‖ ≤ G for a constant G for any g ∈ ∂fi(x) for

i = 0, 1, 2 and x ∈ X .

In Appendix B.3, we will provide a sufficient condition for

Assumption 4.2 to hold. In this case, the objective or the

constraint functions can be non-convex, so finding an ǫ-
optimal solution is challenging in general. Hence, we target

at finding a nearly ǫ-stationary point defined below.

Definition 5 A point x ∈ X is called a ǫ-Karush-Kuhn-

Tucker (KKT) point of (10) if there exist Lagrangian mul-

tiplies λi ≥ 0 and gi ∈ ∂fi(x) for i = 1 and 2 such that

Dist(g0 + λ1g1 + λ2g2,−NX (x)) ≤ ǫ,

|λi(fi(x)− 1− κ)| ≤ ǫ2, fi(x) ≤ 1 + κ+ ǫ, i = 1, 2,

where NX (x) is the normal cone of X at x. Let ρ̂ > ρ. A

point x̃ ∈ X is called a nearly ǫ-stationary point of (10) if

‖x̂− x̃‖ ≤ ǫ where

x̂ ≡ argmin
x′∈X

f0(x
′) +

ρ̂

2
‖x′ − x̃‖22, (28)

s.t. fi(x
′) +

ρ̂

2
‖x′ − x̃‖22 ≤ 1 + κ, i = 1, 2.

Remark 1 Since x̂ is optimal for (28), there exist La-

grangian multiplies λ̂i ≥ 0 and ĝi ∈ ∂fi(x̂) for i = 1
and 2 such that

Dist(ĝ0 + λ̂1ĝ1 + λ̂2ĝ2,−NX (x̂))

≤ρ̂(1 + λ̂1 + λ̂2)‖x̂− x̃‖2,

|λ̂i(fi(x̂)− 1− κ)| ≤ λ̂iρ̂

2
‖x̂− x̃‖22,

fi(x̂) ≤ 1 + κ, i = 1, 2.

As discussed in Boob et al. (2022); Jia and Grimmer

(2022); Ma et al. (2020), when λ̂i for i = 1 and 2 are

bounded, a nearly ǫ-stationary point x̃ is no more than ǫ
away from x̂, which is an O(ǫ)-KKT point of (10). This

justifies why a nearly ǫ-stationary point is a reasonable tar-

get for solving (10) when the problem is non-convex. Dif-

ferent assumptions are considered in Boob et al. (2022);

Jia and Grimmer (2022); Ma et al. (2020) to ensure the

boundness of λ̂i. This paper follows Ma et al. (2020) by

assuming Assumption 4.2 and the boundness of λ̂i under

this assumption follows Lemma 1 in Ma et al. (2020).

Next we apply the inexact quadratically regularized con-

strained (IQRC) method by Ma et al. (2020) to (10), which

is given in Algorithm 3. This algorithm requires an oracle

define below.



Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints

Algorithm 3 Inexact Quadratically Regularized Con-

strained Method

1: Input: An ǫ2-feasible solution x̃(0), ρ + ρǫ ≥ ρ̂ > ρ,

δ ∈ (0, 1), ǫ̂ = min
{
1,
√

ρ̂−ρ
4

(
G+2ρ̂Dx√
2σǫ(ρ̂−ρ)

+1
)− 1

2
}
ǫ,

and the number of iterations S.

2: for s = 0, . . . , S − 1 do

3: Compute x̃(s+1) = B(x̃(s), ρ̂, ǫ̂, δ
S )

4: Output: x̃(R) where R is a random index uniformly

sampled from {0, . . . , S}.

Definition 6 Given x̃ ∈ X , ρ̂ > 0, ǫ̂ > 0, δ ∈ (0, 1),
a stochastic oracle B(x̃, ρ̂, ǫ̂, δ) returns x′ ∈ X such that,

with a probability of at least 1− δ, x′ is an ǫ̂2-feasible and

ǫ̂2-optimal solution of (28).

According to the definition of this oracle, in its iteration

t, Algorithm 3 needs to find ǫ̂2-feasible and ǫ̂2-optimal so-

lution of subproblem (28) with x̃ = x̃(s). Since (28) is

convex when ρ̂ > ρ, Algorithm 1 can be used as an ora-

cle B. To do so, we need to derive and solve the level-set

subproblem (18) corresponding to (28), which is

Ĥ(r) := min
x∈X

{
P(r,x) +

ρ̂

2
‖x− x̃‖22

}
. (29)

Following the same step as in Section 4, (29) can be refor-

mulated as (23). Recall that we set ρ̂ = 0 in Section 4

when the problem is convex, but here we set ρ̂ > ρ because

of non-convexity.

According to Theorem 1, when Algorithm 2 is used as

the oracle A in Algorithm 1, Algorithm 1 becomes an

oracle B for Algorithm 3 with an iteration complexity

of Õ( 1
ǫ̂4 )=Õ( 1

ǫ4 ). According to Theorem 1 in Ma et al.

(2020), Algorithm 3 finds a nearly ǫ-stationary point of

(10) in O( 1
ǫ2 ) iterations with B called once in each iteration.

Combining these two results, we know that the total itera-

tion complexity of Algorithm 3 is Õ( 1
ǫ4 )×O( 1

ǫ2 ) = Õ( 1
ǫ6 ).

This is formally stated in the following theorem. The proof

is omitted since this theorem can be easily obtained from

the existing results according to the discussion above.

Theorem 2 Suppose Algorithm 3 uses Algorithm 1 as ora-

cle B and ǫopt and ǫA in Algorithm 1 are set as in Proposi-

tion 1 except that H is replaced by Ĥ in (29). Also, suppose

Algorithm 1 uses Algorithm 2 as oracle A and ηt, τt and T
are set as in Theorem 1. Algorithm 3 returns x̃(R) as a

nearly ǫ-stationary point of (10) within Õ( 1
ǫ6 ) stochastic

mirror descent steps across all calls of B.

6 NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of the

proposed approaches for AUC optimization subject to the

AUC-based fairness constraints given in Examples 1, 2 and

3 in Section 3. All experiments are conducted on a com-

puter with the CPU 2GHz Quad-Core Intel Core i5 and the

GPU NVIDIA GeForce RTX 2080 Ti.

Datasets Information. The experiments are conducted

using three public datasets: a9a (Chang and Lin, 2011;

Dua and Graff, 2017; Kohavi, 1996), bank (Chang and Lin,

2011; Dua and Graff, 2017; Moro et al., 2004) and COM-

PAS (Fabris et al., 2022; J. Angwin and Kirchner, 2016).

Details about these datasets can be found in Appendix E.1.

Baselines. We compare our methods with three base-

lines, the proxy-Lagrangian method (Cotter et al., 2019),

the correlation-penalty method (Beutel et al., 2019a) and

the post-processing method (Kallus and Zhou, 2019). The

description of each baseline is provided in Appendix E.2.

Convex case. For convex case, we consider a linear model,

i.e., hw(ξ) = ξ⊤w. A smaller κ in (2) makes the model

more fair in terms of the corresponding fairness metric but

may compromise the classification performance in terms of

AUC. Hence, we varies κ in (2) so each method in compar-

ison will generate a Pareto frontier, showing the trade-off

between performance and fairness.

For the three baselines and our algorithm, the process to

tune the hyper-parameters is explained in Appendix E.3.

We then evaluate AUC and the fairness metric of the out-

put model on testing set and report the Pareto frontiers by

each method in Figure 1. We repeat each experiment five

times with different random seeds and report the standard

errors of the AUC scores and the fairness metrics through

the error bars on each curve. Due to the page limit, we

postpone the plots of COMPAS dataset to Appendix E.4.

Weakly-convex case. For weakly-convex case, we choose

hw to be a two-layer neural network with 10 hidden neu-

rons and the sigmoid activation functions. The process

of tuning hyperparameters is in Appendix E.3. In the

non-convex case, the original proxy-Lagrangian method

in Cotter et al. (2019) updates w through an approximate

Bayesian optimization oracle, which can solve a non-

convex problem with a reasonably small optimality gap.

Here, we directly perform one stochastic gradient descent

step to update w just as in the convex case because it is un-

clear how to design such an oracle due to non-convexity.

The Pareto frontiers in weakly-convex case are reported

with error bars in Figure 2.

It can be observed from Figures 1 and 2 that the level-set

method performs better than the other three baselines when

κ is not too small. When κ is small, the level-set method

is less efficient in trading performance for fairness on the

bank dataset. This is likely because the approximation gap

between (10) and (2) is large on this dataset. As a result,

we have to use a very small κ in (10) in order to achieve the

targeted fairness level in the original problem (2), which
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Figure 1: Pareto frontiers by each method on testing set in convex case (see Appendix E.4 for COMPAS dataset).
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Figure 2: Pareto frontiers by each method on testing set in weakly-convex case (see Appendix E.4 for COMPAS dataset).
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leads to very restrictive constraints in (10) and harms the

classification performance in terms of AUC.

7 CONCLUSION and LIMITATION

We consider AUC optimization subject to a class of AUC-

based fairness constraints, which includes most of the exist-

ing threshold-agnostic and comparison-based fairness met-

rics in literature. When solving this problem in an online

setting where the data arrives sequentially, the existing op-

timization methods need to receive at least a pair of data

points to update the model, which may not be allowed by

the order of data’s arrivals. In addition, when the original

problem is formulated using an empirical distribution in an

off-line setting, the computational cost becomes quadratic

in data size due to the definition of AUC. This computa-

tional cost is too high when the data is large.

To address these computational challenges, we reformu-

lated this problem into a min-max optimization problem

subject to min-max constraints using a quadratic loss func-

tion to approximate the AUCs in the objective and con-

straint functions. The new optimization formulation allows

the model to be updated in an online fashion with one data

point arriving each time. In the off-line setting, the new for-

mulation also reduces the computational cost to only linear

in data size. By introducing a novel Bregman divergence

after changing variables, we show that existing stochastic

optimization algorithms can be applied to the new formula-

tion in the convex and weakly convex cases. In the numer-

ical experiments, we observe an efficient trade off between

classification performance and fairness by the models cre-

ated by our approaches.

However, we acknowledge that our formulation only works

for the quadratic loss function. It is our future work to fur-

ther extend our methods for a general loss function.
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A EXAMPLES of FAIRNESS METRICS SATISFYING DEFINITION 2

In this section, we present five examples of fairness metrics that satisfy Definition 2 and thus can be applied as fairness

constraints in (2) and solved by the optimization algorithms in this paper. In the discussion below, we assume all data

points are ranked decreasingly in hw(ξ) so hw(ξ) > hw(ξ
′) means z is ranked higher than z′.

Example 1 (Group AUC Fairness) Let G1 = {z|γ = 1}, G′
1 = {z|γ = −1} and G2 = G′

2 = R
p+2 (so AUCw(G2,G′

2) =
0.5). The AUC-based fairness metric becomes |Pr(hw(ξ) > hw(ξ

′)|γ = 1, γ′ = −1)− 0.5|. When it is small, a random

data point from the protected group is ranked above a random data point from the unprotected group with nearly 50%
probability. In other words, if we use hw(ξ) to predict sensitive variable γ, it must has a poor prediction performance in

terms of AUC w.r.t. γ (instead of ζ).

Example 2 (Inter-Group Pairwise Fairness) Let G1 = {z|ζ = 1, γ = 1}, G′
1 = {z|ζ = −1, γ = −1}, G2 = {z|ζ =

1, γ = −1} and G′
2 = {z|ζ = −1, γ = 1}. In this case, the AUC-based fairness metric becomes the cross-AUC in

Kallus and Zhou (2019), which is also called inter-group pairwise fairness (Beutel et al., 2019a). When it is small, the

probability of a random positive data point being ranked above a random negative data point from the opposite group is

nearly independent of the group.

Example 3 (Intra-Group Pairwise Fairness) Let G1 = {z|ζ = 1, γ = 1}, G′
1 = {z|ζ = −1, γ = 1}, G2 = {z|ζ =

1, γ = −1} and G′
2 = {z|ζ = −1, γ = −1}. In this case, the AUC-based fairness metric becomes the intra-group pairwise

fairness introduced by Beutel et al. (2019a). When it is small, the probability of a random positive data point being ranked

above a random negative data point from the same group is nearly independent of the group. In other words, the classical

AUCs (w.r.t. class labels) evaluated separately on each group are similar.

Example 4 (Average Equality Gaps) Let G1 = {z|ζ = 1, γ = 1}, G′
1 = {z|ζ = 1} and G2 = G′

2 = R
p+2. The AUC-

based fairness metric becomes the positive average equality gap introduced by Borkan et al. (2019), i.e., |Pr(hw(ξ) >
hw(ξ

′)|γ = 1, ζ = 1, ζ′ = 1) − 0.5|. Similar to Example 1, when this value is small, a random positive data point from

the protected group is ranked above a random positive data from the whole dataset with nearly 50% probability. Similarly,

the negative average equality gap by Borkan et al. (2019) is obtained when G1 = {z|ζ = −1, γ = 1}, G′
1 = {z|ζ = −1}

and G2 = G′
2 = R

p+2. In this case, the AUC-based fairness metric becomes |Pr(hw(ξ) > hw(ξ
′)|γ = 1, ζ = −1, ζ′ =

−1)− 0.5|. It has the similar interpretation as the positive average equality gap.

Example 5 (BPSN AUC and BNSP AUC) When G1 = {z|ζ = 1} and G′
1 = {z|ζ = −1, γ = 1}, AUCw(G1,G′

1)
becomes the background positive subgroup negative (BPSN) AUC in Borkan et al. (2019). When G2 = {z|ζ = 1, γ = 1}
and G′

2 = {z|ζ = −1}, AUCw(G2,G′
2) becomes the background negative subgroup positive (BNSP) AUC in Borkan et al.

(2019). One fairness metric introduced by Borkan et al. (2019) is the absolute difference between the BPSN AUC and the

BNSP AUC, which is exactly (1) w.r.t G1, G′
1, G2 and G′

2 chosen above. When this metric is small, the probability of a

random positive data point from the whole dataset being ranked above a random negative data point from the protected

group is close to the probability of a random positive data point from the protected group being ranked above a random

negative data point from the whole dataset.

B TECHNICAL LEMMAS AND THEIR PROOFS

In this section, we provide some technical lemmas and their proofs.

B.1 Proofs of Lemma 1 and 2

Proof.[of Lemma 1] For simplicity of notation, we directly use G and G′ to represent the events z ∈ G and z′ ∈ G′,
respectively, when no confusion can be caused. Because z = (ξ, ζ, γ) and z′ = (ξ′, ζ, γ) are i.i.d. data samples, we have

E
[
G1(z)+G2(z

′)|G,G′] = E
[
G1(z)|G

]
+E

[
G2(z

′)|G′] and E
[
G1(z)G2(z

′)|G,G′] = E
[
G1(z)|G

]
E
[
G2(z

′)|G′] for any



Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints

measurable functions G1 and G2. Based on this fact, we have

E
[

(hw(ξ)− hw(ξ′)− c2)
2|G, G′

]

= c22 − 2c2E
[

hw(ξ)|G
]

+ 2c2E
[

hw(ξ′)|G′
]

+ E
[

(hw(ξ))2|G
]

+ E
[

(hw(ξ′))2|G′
]

− 2E
[

hw(ξ)|G
]

E
[

hw(ξ′)|G′
]

= c22 − 2c2E
[

hw(ξ)|G
]

+ 2c2E
[

hw(ξ′)|G′
]

+ E
[

(hw(ξ))2|G
]

− (E
[

hw(ξ)|G
]

)2 + E
[

(hw(ξ′))2|G′
]

− (E
[

hw(ξ′)|G′
]

)2

+(E
[

hw(ξ)|G
]

)2 + (E
[

hw(ξ′)|G′
]

)2 − 2E
[

hw(ξ)|G
]

E
[

hw(ξ′)|G′
]

= c22 − 2c2E
[

hw(ξ)|G
]

+ 2c2E
[

hw(ξ′)|G′
]

+min
a

E
[

(hw(ξ)− a)2|G
]

+min
b

E
[

(hw(ξ′)− b)2|G′
]

+max
α

{

2αE
[

hw(ξ)|G
]

− 2αE
[

hw(ξ′)|G′
]

− α2}

= c22 −
2c2E

[

hw(ξ)IG(z)
]

Pr(z ∈ G) +
2c2E

[

hw(ξ′)IG′(z′)
]

Pr(z′ ∈ G′)
+ min

a

E
[

(hw(ξ)− a)2IG(z)
]

Pr(z ∈ G) + min
b

E
[

(hw(ξ′)− b)2IG′(z′)
]

Pr(z′ ∈ G′)

+max
α

{

2α

(

E
[

hw(ξ)IG(z)
]

Pr(z ∈ G) − E
[

hw(ξ′)IG′(z′)
]

Pr(z′ ∈ G′)

)

− α2

}

. (30)

Additionally, given any w ∈ W , the optimal value of a, b and α are E
[
hw(ξ)|G

]
, E

[
hw(ξ′)|G′] and E

[
hw(ξ)|G

]
−

E
[
hw(ξ

′)|G′], respectively. By the definition of IG,G′ , we can restrict the decision variables a, b and α in IG,G′ without

changing the optimal objective values within (30). The proof is thus completed by multiplying both sides of (30) by c1 and

observing that ξ′ and z′ in (30) can be replaced by ξ and z because they are i.i.d. random variables.

�

Proof.[of Lemma 2] By the assumptions of this lemma, there exists w† ∈ W such that hw†(ξ) = c for any ξ. Let x† be a

solution in X whose w-component equals w† and its remaining components are a†1 = a†2 = b†1 = b†2 = a†3 = a†4 = b†3 =

b†4 = c.

By the definitions of FG,G′(w, a, b; z) and GG,G′ (w; z) in (8), we have

E[FG′
1,G1

(x†; z)] = E

[

c1c
2
2 −

2c1c2cIG′
1
(z)

Pr(z ∈ G′
1)

+
2c1c2cIG1(z)

Pr(z ∈ G1)
+

c1(c− a†
1)

2
IG′

1
(z)

Pr(z ∈ G′
1)

+
c1(c− b†1)

2
IG1(z)

Pr(z ∈ G1)

]

= c1c
2
2,

E[GG′
1,G1

(w†; z)] = E

[

c1cIG′
1
(z)

Pr(z ∈ G′
1)

−
c1cIG′

1
(z)

Pr(z ∈ G1)

]

= 0,

E[FG2,G
′
2
(x†; z)] = E

[

c1c
2
2 −

2c1c2cIG2(z)

Pr(z ∈ G2)
+

2c1c2cIG′
2
(z)

Pr(z ∈ G′
2)

+
c1(c− a†

2)
2
IG2(z)

Pr(z ∈ G2)
+

c1(c− b†2)
2
IG′

2
(z)

Pr(z ∈ G′
2)

]

= c1c
2
2,

E[GG2,G
′
2
(w†; z)] = E

[

c1cIG2(z)

Pr(z ∈ G2)
−

c1cIG′
2
(z)

Pr(z ∈ G′
2)

]

= 0.

Since c1c
2
2 ≤ 0.5, applying the equations above to the definitions of f1(x) in (12) and (13) leads to f1(x

†) = 2c1c
2
2 ≤ 1 <

1 + κ. Similarly, it holds that f2(x
†) < 1 + κ. This means x† is a strictly feasible solution and Assumption 3 holds. �

B.2 Closed-Form Solutions for (25) and (26)

The closed form of x(t+1) is obvious so we only show the closed form of y(t+1) in (25). Given any τ > 0, v =
(v0, v1, v2, v3, v4) ∈ R

5, u = (u0, u1, u2) ∈ R
3 and y′ = (ỹ′, α̃′) ∈ Y , we consider the following problem

y
# = (ỹ#, α̃#) = argmin

y=(ỹ,α̃)∈Y

−(u)⊤ỹ− (v)⊤α̃+
Vy(y,y

′)

τ
+ dy(y), (31)

which becomes (25) after setting (u,v) = g
(t)
y , τ = τt and y′ = y(t). The following lemma characterizes the closed form

of y#.

Lemma 3 Let α′
0 :=

α̃′
0

ỹ′
0

, α′
1 :=

α̃′
1

ỹ′
1

, α′
2 :=

α̃′
2

ỹ′
1

, α′
3 :=

α̃′
3

ỹ′
2

, α′
4 :=

α̃′
4

ỹ′
2

and let

µi := min
αi∈I

{
−αivi + α2

i +
1
τ (αi − α′

i)
2 }

and α#
i := argmin

αi∈I

{
−αivi + α2

i +
1
τ (αi − α′

i)
2 }

. (32)
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for i = 0, 1, . . . , 4. Let π0 := (ỹ′0) exp
(
− µ0−u0

2(1+
√
2I)2(1/τ)

)
, π1 := (ỹ′1) exp

(
− µ1+µ2−u1

2(1+
√
2I)2(1/τ)

)
and π2 :=

(ỹ′2) exp
(
− µ3+µ4−u2

2(1+
√
2I)2(1/τ)

)
. Then, y# = (ỹ#, α̃#) ∈ Y defined as follows is an optimal solution to (31):

ỹ#i :=
πi

π0 + π1 + π2
for i = 0, 1, 2.

α̃#
0 := ỹ#0 α#

0 , α̃#
1 := ỹ#1 α#

1 , α̃#
2 := ỹ#1 α#

2 , α̃#
3 := ỹ#2 α#

3 , α̃#
4 := ỹ#2 α#

4 .

Proof. Recall the definitions of Vy(y,y
′) in (24) and dy(y) in (21). (31) can be formulated as

min
y∈Y





−(u)⊤ỹ − (v)⊤α̃+ 2(1+
√
2I)2

τ

∑2
i=0 ỹi ln(

ỹi

ỹ′
i

)

+ ỹ0

τ ( α̃0

ỹ0
− α̃′

0

ỹ′
0
)2 + ỹ1

τ ( α̃1

ỹ1
− α̃′

1

ỹ′
1
)2 + ỹ1

τ ( α̃2

ỹ1
− α̃′

2

ỹ′
1
)2 + ỹ2

τ ( α̃3

ỹ2
− α̃′

3

ỹ′
2
)2 + ỹ2

τ ( α̃4

ỹ2
− α̃′

4

ỹ′
2
)2

+
α̃2

0

ỹ0
+

α̃2
1

ỹ1
+

α̃2
2

ỹ1
+

α̃2
3

ỹ2
+

α̃2
4

ỹ2





. (33)

We first fix ỹ ∈ △3 and only optimize α̃ in (33) subject to constraints α̃0 ∈ ỹ0 · I, α̃1 ∈ ỹ1 · I, α̃2 ∈ ỹ1 · I, α̃3 ∈ ỹ2 · I and

α̃4 ∈ ỹ2 · I. By changing variables using α0 := α̃0

ỹ0
, α1 := α̃1

ỹ1
, α2 := α̃2

ỹ1
, α3 := α̃3

ỹ2
, α4 := α̃4

ỹ2
and α′

0 :=
α̃′

0

ỹ′
0

, α′
1 :=

α̃′
1

ỹ′
1

,

α′
2 :=

α̃′
2

ỹ′
1

, α′
3 :=

α̃′
3

ỹ′
2

, α′
4 :=

α̃′
4

ỹ′
2

, (33) becomes

min
ỹ∈△3





−(u)⊤ỹ + 2(1+
√
2I)2

τ

∑2
i=0 ỹi ln(

ỹi

ỹ′
i

) + ỹ0 min
α0∈I

[
−α0v0 +

1
τ (α0 − α′

0) + α2
0

]

+ỹ1 min
α1,α2∈I

[
2∑

i=1

−αivi +
1
τ (αi − α′

i) + α2
i

]
+ ỹ2 min

α3,α4∈I

[
4∑

i=3

−αivi +
1
τ (αi − α′

i) + α2
i

]





(34)

= min
ỹ∈△3

{
−(u)⊤ỹ + 2(1+

√
2I)2

τ

∑2
i=0 ỹi ln(

ỹi

ỹ′
i

) + ỹ0µ0 + ỹ1(µ1 + µ2) + ỹ2(µ3 + µ4)
}
, (35)

according to the definition of µi in (32).

Equality (34) above indicates that the minimization over α̃ in (33) for a given ỹ is equivalent to the inner minimization

over α in (34), which is independent of ỹ and can be solved for each i separately. Note that the optimal objective value and

the solution of the ith inner minimization are µi and α#
i in (32), where α#

i has a closed form. Equality (35) indicates that,

after obtaining the optimal αi, we can solve the optimal ỹ by solving the outer minimization problem (35) whose solution

is exactly ỹ# defined in Lemma 3 which can be verified from the optimality conditions. According to the relationship

between αi and α̃i, the optimal value of the original variable α̃i is exactly α̃#
i defined in Lemma 3.

�

Next, we consider the optimal value U(r) in (26). According to the definition of Φ in (22), (26) can be written as

U(r) = max
y=(ỹ,α̃)∈Y

(u)⊤ỹ + (v)⊤α̃− dy(y) +
ρ̂

2

∑T−1
t=0 ‖x(t) − x̃‖22

∑T−1
t=0 τt

, (36)

where

u =

∑T−1
t=0 F(x(t), z(t))

∑T−1
t=0 τt

and v =

∑T−1
t=0 G(w(t), z(t))

∑T−1
t=0 τt

.

We denote each component of u and v as v = (v0, v1, v2, v3, v4) ∈ R
5 and u = (u0, u1, u2) ∈ R

3. The following lemma

provides a closed form to U(r).

Lemma 4 Let U(r) defined in (26), or equivalently, in (36). We have

U(r) := max{u0 + µ0, u1 + µ1 + µ2, u2 + µ3 + µ4}+
ρ̂

2

∑T−1
t=0 ‖x(t) − x̃‖22∑T−1

t=0 τt
,

where µi := max
αi∈I

{
αivi − α2

i

}
for i = 0, 1, . . . , 4.
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Proof. Recall the definitions of dy(y) in (21) and dx(x) =
ρ̂
2‖x− x̃‖22. (36) can be formulated as

U(r) = max
y∈Y

{

(u)⊤ỹ + (v)⊤α̃− α̃2
0

ỹ0
− α̃2

1
ỹ1

− α̃2
2

ỹ1
− α̃2

3
ỹ2

− α̃2
4

ỹ2

}

+
ρ̂

2

∑T−1
t=0 ‖x(t) − x̃‖22

∑T−1
t=0 τt

. (37)

Similar to the proof of Lemma 3, we first fix ỹ ∈ △3 and only optimize α̃ in (37) subject to constraints α̃0 ∈ ỹ0 · I,

α̃1 ∈ ỹ1 · I, α̃2 ∈ ỹ1 · I, α̃3 ∈ ỹ2 · I and α̃4 ∈ ỹ2 · I. By changing variables using α0 := α̃0

ỹ0
, α1 := α̃1

ỹ1
, α2 := α̃2

ỹ1
,

α3 := α̃3

ỹ2
and α4 := α̃4

ỹ2
, (37) becomes

U(r) = max
ỹ∈△3

{

(u)⊤ỹ + ỹ0 max
α0∈I

[

α0v0 − α2
0

]

+ ỹ1 max
α1,α2∈I2

[

2
∑

i=1

αivi − α2
i

]

+ ỹ2 min
α3,α4∈I2

[

4
∑

i=3

αivi − α2
i

]}

+
ρ̂

2

∑T−1
t=0 ‖x(t) − x̃‖22

∑T−1
t=0 τt

= max
ỹ∈△3

{

(u)⊤ỹ + ỹ0µ0 + ỹ1(µ1 + µ2) + ỹ2(µ3 + µ4)
}

+
ρ̂

2

∑T−1
t=0 ‖x(t) − x̃‖22

∑T−1
t=0 τt

=max{u0 + µ0, u1 + µ1 + µ2, u2 + µ3 + µ4}+ ρ̂

2

∑T−1
t=0 ‖x(t) − x̃‖22

∑T−1
t=0 τt

,

where the second equality is because of the definition of µi for i = 0, . . . , 4 and the last equality is because ỹ ∈ △3. �

B.3 A Sufficient Condition for Assumption 4.2

In this subsection, we present the following sufficient condition for Assumption 4.2 to hold.

Lemma 5 Assumption 4.2 holds if 2c1c
2
2 − 1 < κ, ρ <

2(κ+1−2c1c
2
2)

max
x,x′∈X ‖x−x′‖2

2
and there exists w ∈ W such that hw(·) is a

constant mapping.

Proof. Because 2c1c
2
2 − 1 < κ and ρ <

2(κ+1−2c1c
2
2)

max
x,x′∈X ‖x−x′‖2

2
, there exists ρǫ such that

0 < ρǫ <
2(κ+ 1− 2c1c

2
2)

maxx,x′∈X ‖x− x′‖22
− ρ. (38)

Let x ∈ X be any solution that satisfies maxi=1,2 fi(x)− 1− κ ≤ ǫ2. By the assumptions, there exists w† ∈ W such that

hw†(ξ) is a constant over ξ, denoted by c. Let x† be a solution in X whose w-component equals w† and its remaining

components are a†1 = a†2 = b†1 = b†2 = a†3 = a†4 = b†3 = b†4 = c.

According to the proof of Lemma 2 in Section B.1, we have fi(x
†) = 2c1c

2
2 for i = 1 and 2 and, according to the

assumption of this lemma, we have fi(x
†) < 1 + κ for i = 1 and 2. This implies

min
x′∈X

{

max
i=1,2

fi(x
′)− 1− κ+

ρ+ ρǫ
2

‖x′ − x‖22
}

≤ max
i=1,2

fi(x
†)− 1− κ+

ρ+ ρǫ
2

‖x† − x‖22

≤ 2c1c
2
2 − 1− κ+

ρ+ ρǫ
2

max
x,x′∈X

‖x− x
′‖22 = −σǫ,

where σǫ := κ+ 1 − 2c1c
2
2 − ρ+ρǫ

2 maxx,x′∈X ‖x− x′‖22 is a positive number because of (38). This completes the proof.

�

Remark 2 Condition 2c1c
2
2− 1 < κ means the targeted fairness level should not be too small, so there exists a sufficiently

feasible solution (see Lemma 2). Condition ρ <
2(κ+1−2c1c

2
2)

max
x,x′∈X ‖x−x′‖2

2
means the original non-convex problem should not

have a high level of non-convexity.



Yao Yao, Qihang Lin, Tianbao Yang

C DISCUSSION ON THEOREM 1

In this section, we briefly discuss how to directly apply the results from Lin et al. (2020); Nemirovski et al. (2009) to

obtain Theorem 1. First, we match our notation to those used in Lin et al. (2020) and instantize the convergence results in

Lin et al. (2020) on (23). Recall that ‖x‖x = ‖x‖2 and ‖y‖y =
√
‖ỹ‖21 + ‖α̃‖22. Their dual norms are ‖x‖∗,x = ‖x‖2

and ‖y‖∗,y =
√
‖ỹ‖2∞ + ‖α̃‖22, respectively. The complexity of SMD is known to depend on the diameters of X and Y

measured by the corresponding distance generating functions, namely,

Dx :=
√
max
x∈X

ωx(x)−min
x∈X

ωx(x) and Dy :=
√
max
y∈Y

ωy(y)−min
y∈Y

ωy(y)

defined in Theorem 1. Moreover, thanks to Assumption 2, it is not hard to show that there exist constants Mx, My and Q,

which only depend on σ, I , ρ and Dx, such that

E
[
exp(‖∇xΦ(x,y, z)‖2∗,x/M2

x)
]
≤ exp(1), (39)

E
[
exp(‖∇yΦ(x,y, z)‖2∗,y/M2

y )
]
≤ exp(1), (40)

E

[
exp(|Φ(x,y, z) − φ(x,y)|2 /Q2)

]
≤ exp(1), (41)

Additionally, given δ ∈ (0, 1), we define

M :=
√
2D2

xM
2
x + 2D2

yM
2
y ; (42)

Ω(δ) := max

{√
12 ln

(
24

δ

)
,
4

3
ln

(
24

δ

)}
. (43)

With those notations, a brief proof of Theorem 1 is given below.

Compared with problem (5) in Lin et al. (2020), our problem (23) has the additional terms dx(x) and dy(y). However,

since we choose the initial solution as x(0) = 0 and y(0) = (1/3, 1/3, 1/3,0), these additional terms can be eliminated
from the proof of any theorems and propositions in Lin et al. (2020), so the convergence results in Lin et al. (2020) also
hold for problem (23) and Algorithm 2. Moreover, the algorithm in Lin et al. (2020) is presented using a unified updating
scheme for x and y with only one step size γt while our Algorithm 2 is presented with x and y updated separately. However,
it is easy to verify that, by choosing ηt = 2D2

xγt and τt = 2D2
xγt with γt = 1/(M

√
t+ 1) where M is defined in (42),

Algorithm 2 is equivalent to the algorithm in Lin et al. (2020). Hence, according to Theorem 8 in Lin et al. (2020), if

T ≥ T (δ, ǫA) := max

{

6,

(

16 (QΩ(δ) + 10MΩ(δ) + 4.5M)

ǫA
ln

(

8 (QΩ(δ) + 10MΩ(δ) + 4.5M)

ǫA

))2

− 2

}

, (44)

the outputsU(r) and x̄ by Algorithm 2 satisfy the inequalitiesP(r, x̄)−H(r) ≤ ǫ and |U(r)−H(r)| ≤ ǫ with a probability

of at least 1− δ for any r > f∗. Hence, SMD with T ≥ T (δ, ǫA) is a valid stochastic oracle defined in Definition 3. Hence,

according to Corollary 9 in Lin et al. (2020), SFLS returns a relative ǫ-optimal and feasible solution with probability of at

least 1− δ using at most Õ
(

1
ǫ2 ln(

1
δ )
)

stochastic mirror descent steps across all calls of SMD. Theorem 1 is thus proved.

D DEFINITION of φ̃ IN (19) AND TABLE OF NOTATIONS

In Section 4, we can write (18) as

H(r) := min
x∈X

P(r,x) = min
x∈X

max
ỹ∈∆3

{ỹ0(f0(x)− r) + ỹ1(f1(x)− 1− κ) + ỹ2(f2(x)− 1− κ)} ,

where ∆3 := {ỹ ∈ R
3
+|

∑2
i=0 ỹi = 1}. With (11), (12) and (13), we can reformulate the problem above into (19), i.e.,

H(r) := min
x∈X

max
ỹ∈∆3,α∈I5

φ̃(x, ỹ,α),

where

φ̃(x, ỹ,α) := E















−rỹ0 − (1 + κ)ỹ1 − (1 + κ)ỹ2
+ỹ0FD+,D−(x; z) + ỹ1FG′

1,G1
(x;z) + ỹ1FG2,G

′
2
(x; z) + ỹ2FG′

2,G2
(x; z) + ỹ2FG1,G

′
1
(x;z)

+ỹ0α0GD+,D−(w; z) + ỹ1α1GG′
1,G1

(w; z) + ỹ1α2GG2,G
′
2
(w; z) + ỹ2α3GG′

2,G2
(w; z) + ỹ2α4GG1,G

′
1
(w; z)

−ỹ0α
2
0 − ỹ1α

2
1 − ỹ1α

2
2 − ỹ2α

2
3 − ỹ2α

2
4















.

Since many notations are introduced this paper, we summarize them in Table 1 so readers can find their meanings more

easily.
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Table 1: Notation used throughout the paper.

Symbol Definition

ξ Feature vector of a data point.

ζ Binary label of a data point.

γ Binary sensitive feature of a data point.

z = (ξ, ζ, γ) A data point.

w and W Parameters of a classification model. It belongs to a convex compact set ∈ W .

hw(ξ) Predicted score for a data point based its feature ξ.

G, G1, G′
1, G2, G′

2 Set in R
p+2 with positive measures w.r.t. z.

D+ Positive dataset.

D− Negative dataset.

ℓ(·) Surrogate loss function that approximates I(·≤0) and I(·<0).

c1(· − c2)
2 Quadratic loss function that approximates I(·≤0) and I(·<0).

a, b, α Auxiliary variables introduced to formulate the quadratic loss into a min-max problem (7).

IG,G′ The smallest interval that contains

{
0,±E

[
hw(ξ)|z ∈ G

]
,±E

[
hw(ξ

′)|z′ ∈ G′],
±
(
E
[
hw(ξ)|z ∈ G

]
− E

[
hw(ξ

′)|z′ ∈ G′])
}

.

I and I A bounded interval containing ID+,D−
, IG1,G′

1
, IG2,G′

2
and I := maxα∈I |α|.

X The domain of primal variables.

Y The domain of dual variables.

∆3 The simplex in R
3.

ωx(x) and ωy(x) Distance generating functions on X and Y , respectively.

Vx(x,x
′) and Vy(y,y

′) Bregman divergences on X and Y , respectively.

H(r) and Ĥ(r) Level-set functions of (10) and (28), respectively.

r and r(k) Level parameters in the stochastic level-set method.

ρ and ρ̂ Weak convexity parameter of (10) and ρ̂ > ρ.

E ADDITIONAL MATERIALS FOR NUMERICAL EXPERIMENTS

In this section, we present some additional details of our numerical experiments in Section 6.

E.1 Details of Datasets

We provide below some details about the three datasets we used in our numerical experiments.

• The a9a dataset is used to predict if the annual income of an individual exceeds $50K. Gender is the sensitive attribute,

i.e., female (γ = 1) or male (γ = −1).

• The bank dataset is used to predict if a client will subscribe a term deposit. Age is the sensitive attribute, i.e., age

between 25 and 60 (γ = 1) or otherwise (γ = −1).

• The COMPAS dataset is used to predict if a criminal defendant will reoffend. Race is the sensitive attribute, i.e.,

caucasian (γ = 1) or non-caucasian (γ = −1).

Some statistics of these datasets are given in Table 2. Data a9a originally has a training set and a testing set, and we further

split the training data into a training set (%90) and a validation set (%90). For bank and COMPAS datasets, we split them

into training (%60), validation (%20) and testing (%20) sets. The validation sets are used for tuning hyper-parameters

while the testing sets are for performance evaluation.

E.2 Details of Baselines

In this section, we provide the details of three baselines used in our experiments.

• Proxy-Lagrangian is a Lagrangian method for solving (2), where only the indicator function I(hw(ξ)−hw(ξ′)≤0) in the

objective function is approximated by a surrogate loss while the indicator functions in the constraints are unchanged.
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Table 2: Statistics of the datasets.

Datasets #Instances #Attributes Class Label Sensitive Attribute

a9a 48,842 123 Income Gender

bank 41,188 54 Subscription Age

COMPAS 11,757 14 Recidivism Race
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Figure 3: Pareto frontiers by each method for COMPAS dataset in convex case.

• Correlation-penalty is a method that adds the absolute value of the correlation between hw(ξ) and γ in the objective

function as a penalty term while optimizing the AUC of hw for predicting ζ. We are only able to apply this method

when the fairness constraints are based on Example 1 because the constraints based on Examples 2 and 3 cannot be

equivalently represented as penalty terms of statistical correlations.

• In the post-processing method, we first train a model by optimizing the AUC of hw for predicting ζ without any

constraints. Then we modify the predicted scores on data with γ = 1 to ω1hw(ξ) + ω2 but leave the scores on data

with γ = −1 unchanged. We then tune ω1 and ω2 to satisfy the constraints in (2). We are unable to apply post-

processing to Example 3 since tuning ω1 and ω2 requires knowing the true labels (ζ) of the data, which is impractical.

E.3 Process of Tuning Hyperparameters

In this section, we explain the process to tune the hyper-parameters.

Convex case. For the level-set method and the proxy-Lagrangian method, we solve their constrained optimization problems

with different values of κ. For each value of κ, we track the models from all iterations and return the one that is feasible to

(2) and reaches the best AUC on the validation set. In the correlation-penalty method, we select λ from a set of candidates,

solve the penalized optimization problem by the stochastic gradient descent method, and select the model to return in the

same way as the previous two methods. We set c2 = 1 and choose c1 from 0.5 and 1 for all methods. For the level-set

method, we set θ = 1 in Algorithm 1 and ηt =
c√
t+1

in Algorithm 2 with c tuned from {10−2, 10−1, 1} based on the AUC

of the returned model on the validation set. The learning rates of proxy-Lagrangian and correlation-penalty are tuned in the

same way. For post-processing, ω1 is tuned from a grid in [0, 5] with a gap of 0.05 and ω2 is tuned from a grid in [−3, 3]
with step size 0.1. We use a mini-batch of size 100 in each method when computing stochastic gradients.

Weakly-convex case. The implementation of each method and the process of tuning hyperparameters is the same as the

convex case except that we choose ρ̂ = 10−5 in Algorithm 3.

E.4 Plots of COMPAS Dataset

In this section, we present the Pareto frontier obtained by each method on the COMPAS dataset in Figures 3 and 4 for the

convex case and the weakly-convex case, respectively.
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Figure 4: Pareto frontiers by each method for COMPAS dataset in weakly-convex case.
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