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Abstract

Solving Partially Observable Markov Deci-
sion Processes (POMDPs) is hard. Learn-
ing optimal controllers for POMDPs when
the model is unknown is harder. Online
learning of optimal controllers for unknown
POMDPs, which requires efficient learning
using regret-minimizing algorithms that effec-
tively tradeoff exploration and exploitation,
is even harder, and no solution exists cur-
rently. In this paper, we consider infinite-
horizon average-cost POMDPs with unknown
transition model, though a known observa-
tion model. We propose a natural posterior
sampling-based reinforcement learning algo-
rithm (PSRL-POMDP) and show that it achieves
a regret bound of O(log T ), where T is the
time horizon, when the parameter set is finite.
In the general case (continuous parameter set),
we show that the algorithm achieves O(T 2=3)
regret under two technical assumptions. To
the best of our knowledge, this is the first
online R L  algorithm for POMDPs and has
sub-linear regret.

1 Introduction

Reinforcement learning ( R L )  considers the sequential
decision-making problem of an agent in an unknown
environment with the goal of minimizing the total cost.
The agent faces a fundamental exploration-exploitation
trade-off: should it exploit the available information
to minimize the cost or should it explore the environ-
ment to gather more information for future decisions?
Maintaining a proper balance between exploration and
exploitation is a fundamental challenge in R L  and is

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics ( A I S TAT S )  2022, Valencia,
Spain. P M L R :  Volume 151. Copyright 2022 by the au-
thor(s).

measured with the notion of cumulative regret: the
difference between the cumulative cost of the learning
algorithm and that of the best policy.

The problem of balancing exploration and exploitation
in R L  has been successfully addressed for MDPs and
algorithms with near optimal regret bounds known
[Bartlett and Tewari, 2009, Jaksch et al., 2010, Ouyang
et al., 2017b, Azar et al., 2017, Fruit et al., 2018, J in
et al., 2018, Abbasi-Yadkori et al., 2019b, Zhang and Ji,
2019, Zanette and Brunskill, 2019, Hao et al., 2020, Wei
et al., 2020, 2021]. MDPs assume that the state is per-
fectly observable by the agent and the only uncertainty
is about the underlying dynamics of the environment.
However, in many real-world scenarios such as robotics,
healthcare and finance, the state is not fully observed
by the agent, and only a partial observation is available.
These scenarios are modeled by Partially Observable
Markov Decision Processes (POMDPs). In addition to
the uncertainty in the environment dynamics, the agent
has to deal with the uncertainty about the underlying
state. It is well known [Kumar and Varaiya, 2015] that
introducing an information or belief state (a posterior
distribution over the states given the history of obser-
vations and actions) allows the POMDP to be recast
as an MDP over the belief state space. The resulting
algorithm requires a posterior update of the belief state
which needs the transition and observation model to be
fully known. This presents a significant difficulty when
the model parameters are unknown. Thus, managing
the exploration-exploitation trade-off for POMDPs is a
significant challenge and to the best of our knowledge,
no online R L  algorithm with sub-linear regret is known.

In this paper, we consider infinite-horizon average-cost
POMDPs with finite states, actions and observations.
The underlying state transition dynamics is unknown,
though we assume the observation kernel to be known.
We propose a Posterior Sampling Reinforcement Learn-
ing algorithm (PSRL-POMDP) and prove that it achieves
a Bayesian expected regret bound of O(log T ) in the
finite (transition kernel) parameter set case where T
is the time horizon. We then show that in the general
(continuous parameter set) case, it achieves O(T 2=3)
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under some technical assumptions. The PSRL-POMDP
algorithm is a natural extension of the TSDE algorithm
for MDPs [Ouyang et al., 2017b] with two main differ-
ences. First, in addition to the posterior distribution on
the environment dynamics, the algorithm maintains a
posterior distribution on the underlying state. Second,
since the state is not fully observable, the agent cannot
keep track of the number of visits to state-action pairs,
a quantity that is crucial in the design of algorithms
for tabular MDPs. Instead, we introduce a notion of
pseudo count and carefully handle its relation with the
true counts to obtain sub-linear regret. To  the best
of our knowledge, PSRL-POMDP is the first online R L
algorithm for POMDPs with sub-linear regret.

1.1 Related Literature

We review the related literature in two domains: effi-
cient exploration for MDPs, and learning in POMDPs.

Efficient exploration in  M D P s .  To  balance the ex-
ploration and exploitation, two general techniques are
used in the basic tabular MDPs: optimism in the face
of uncertainty (OFU), and posterior sampling.
Under the OFU technique, the agent constructs a
confidence set around the system parameters, selects an
optimistic parameter associated with the minimum cost
from the confidence set, and takes actions with respect
to the op-timistic parameter. This principle is widely
used in the literature to achieve optimal regret
bounds [Bartlett and Tewari, 2009, Jaksch et al., 2010,
Azar et al., 2017, Fruit et al., 2018, Jin et al., 2018,
Zhang and Ji, 2019, Zanette and Brunskill, 2019, Wei
et al., 2020, Chen et al., 2021]. An alternative
technique to encourage exploration is posterior
sampling [Thompson, 1933]. In this approach, the agent
maintains a posterior distribu-tion over the system
parameters, samples a parameter from the posterior
distribution, and takes action with respect to the
sampled parameter [Strens, 2000, Os-band et al.,
2013, Fonteneau et al., 2013, Gopalan and Mannor,
2015, Ouyang et al., 2017b, Jafarnia-Jahromi et al.,
2021a,b]. In particular, [Ouyang et al., 2017b]
proposes TSDE, a posterior sampling-based algorithm
for the infinite-horizon average-cost MDPs.

Extending these results to the continuous state MDPs
has been recently addressed with general function ap-
proximation [Osband and Van Roy, 2014, Dong et al.,
2020, Ayoub et al., 2020, Wang et al., 2020], or in the
special cases of linear function approximation [Abbasi-
Yadkori et al., 2019a,b, J in et al., 2020, Hao et al.,
2020, Wei et al., 2021, Wang et al., 2021], and Lin-
ear Quadratic Regulators [Ouyang et al., 2017a, Dean
et al., 2018, Cohen et al., 2019, Mania et al., 2019, Sim-
chowitz and Foster, 2020, Lale et al., 2020a]. In general,
POMDPs can be formulated as continuous state MDPs
by considering the belief as the state. However, com-

puting the belief requires the knowledge of the model
parameters and thus unobserved in the R L  setting.
Hence, learning algorithms for continuous state MDPs
cannot be directly applied to POMDPs.

Learning in  P O M D P s .  To  the best of our knowl-
edge, the only existing work with regret analysis in
POMDPs is Azizzadenesheli et al. [2017]. However,
their definition of regret is not with respect to the
optimal policy, but with respect to the best memory-
less policy (a policy that maps the current observation
to an action). With our natural definition of regret,
their algorithm suffers linear regret. Other learning
algorithms for POMDPs either consider linear dynam-
ics [Lale et al., 2020b, Tsiamis and Pappas, 2020] or
do not consider regret [Shani et al., 2005, Ross et al.,
2007, Poupart and Vlassis, 2008, Cai et al., 2009, Liu
et al., 2011, 2013, Doshi-Velez et al., 2013, Katt et al.,
2018, Azizzadenesheli et al., 2018] and are not directly
comparable to our setting.

Subsequent to our work, Xiong et al. [2021] also
proved a regret bound of O(T 2=3) in the infinite-horizon
average-cost POMDPs with an OFU-type algorithm.
Their approach is based on spectral method of mo-
ments estimations for hidden Markov models and uses
a different set of assumptions.

2 Preliminaries

An infinite-horizon average-cost Partially Observable
Markov Decision Process (POMDP) can be specified
by (S ; A; ; C; O; ) where S  is the state space, A  is the
action space, C  : S   A  !  [0; 1] is the cost function, and
O is the set of observations. Here  : S  !  O  is the
observation kernel, and  : S   A  !  S  is the transition
kernel such that (ojs) =  P(ot =  ojst =  s) and (s0js; a)
=  P(st+1 =  s0jst =  s; at =  a) where ot 2  O, st 2  S
and at 2  A  are the observation, state and action at
time t =  1; 2; 3; . Here, for a finite set X ,  X  is the set of
all probability distributions on X .  We assume that the
state space, the action space and the observations are
finite with size jS j; jAj; jOj, respectively.

Let F t       be the information available at time t
(prior to action at), i.e., the sigma algebra gen-
erated by the history of actions and observations

a1; o1;  ; at 1; ot 1; ot and let F t +  be the informa-
tion after choosing action at.      Unlike MDPs, the
state is not observable by the agent and the opti-
mal policy cannot be a function of the state. Instead,

the agent maintains a belief ht (; ) 2  S  given by
ht(s; ) : =  P(st =  sjFt ; ), as a sufficient statistic for

the history of observations and actions. Here we use
the notation ht(; ) to explicitly show the dependency of

the belief on . After taking action at and observing
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ot+1 , the belief ht can be updated as ht+1(s0; ) =
P

s  (ot+1js0)(s0js; at)ht(s; )

s0 s  (ot+1js0)(s0js; at)ht(s; )

This update rule is compactly denoted by ht+1 (; ) =
(ht (; ); at ; ot+1 ; ), with the initial condition

(o1js)h(s)
1

s  (o1js)h(s)

where h() is the distribution of the initial state s1
(denoted by s1  h). A  deterministic stationary policy  : S
!  A  maps a belief to an action. The long-term average
cost of a policy  can be defined as

T h i  J(h; )
: =  lim sup             E  C  st;  ht (; )       : (2)

T ! 1 t = 1

Let J (h; )  : =  inf  J(h; )  be the optimal long-term
average cost that in general may depend on the initial
state distribution h, though we will assume it is inde-
pendent of the initial distribution h (and thus denoted
by J ( ) ) ,  and the following Bellman equation holds:
Assumption 1 (Bellman optimality equation). There
exist J ( )  2  R  and a bounded function v(; ) : S  !  R  such
that for all b 2  S ,  J ( )  +  v(b; ) =

minfc(b; a) +  
X  

P (ojb; a; )v(b0; )g; (3)
o 2 O

where     v     is     called     the     relative     value     function,
b0     =  (b; a; o; ) is the updated belief, c(b; a) : =

C (s; a)b(s) is the expected cost, and P (ojb; a; )
is the probability of observing o in the next step, con-
ditioned on the current belief b and action a, i.e.,

P (ojb; a; ) =  
X  X

(ojs0 )(s0 js; a)b(s): (4)
s 0 2 S  s 2 S

Various conditions are known under which Assumption 1
holds, e.g., when all the entries of the transition and
observation kernels are positive [Xiong et al., 2021], or
when the MD P  is weakly communicating [Bertsekas,
2017]. Note that if Assumption 1 holds, the policy  that
minimizes the right hand side of (3) is the optimal policy.
More precisely,
Lemma 1. Suppose Assumption 1 holds. Then, the
policy (; ) : S  !  A  given by (b; ) : =

argminfc(b; a) +  
X  

P (ojb; a; )v(b0; )g (5)
a 2 A o 2 O

is the optimal policy with J  (h; ) =  J (); 8h 2  S .

Note that if v satisfies the Bellman equation, so does
v plus any constant. Therefore, without loss of gen-
erality, and since v is bounded, we can assume that

inf b2     v(b; ) =  0 and define the span of a POMDP as
sp() : =  sup v(b; ). Let H      be the class of
POMDPs that satisfy Assumption 1 and have
sp()  H  for all  2  H .  In Section 4, we con-sider a
finite subset   H  of POMDPs. In Section 5, the general
class  =  H  is considered.

T h e  learning protocol.     We consider the problem
of an agent interacting with an unknown randomly
generated POMDP , where  2   is randomly
generated according to the probability distribution
f ().1      After the initial generation of , it remains
fixed, but unknown to the agent. The agent interacts
with the POMDP  in T steps. Initially, the agent
starts from state s1 that is randomly generated ac-
cording to the conditional probability mass function
h(; ). At time t =  1; 2; 3;  ; T , the agent observes ot
(jst), takes action at and suffers cost of C (st ; at ). The
environment, then determines the next state st + 1
which is randomly drawn from the probability distribu-
tion (jst; at). Note that although the cost function C
is assumed to be known, the agent cannot observe the
value of C (st ; at ) since the state st is unknown to the
agent. The goal of the agent is to minimize the
expected cumulative regret defined as

h T      h i i
R T  : =  E C (st ; at )      J ( )      ; (6)

t = 1

where the expectation is with respect to the prior dis-
tribution h(; ) for s1, the randomness in the state
transitions, and the randomness in the algorithm. Here,
E  [] is a shorthand for E[j]. In Section 4, a regret
bound is provided on R T  , however, Section 5 considers
E [ R T  ] (also called Bayesian regret) as the performance
measure for the learning algorithm. We note that the
Bayesian regret is widely considered in the MDP liter-
ature [Osband et al., 2013, Gopalan and Mannor, 2015,
Ouyang et al., 2017b,a].

3 The PSRL-POMDP Algorithm

We propose a general Posterior Sampling Reinforce-
ment Learning for POMDPs (PSRL-POMDP) algorithm
(Algorithm 1) for both the finite-parameter and the
general case. The algorithm maintains a joint distribu-
tion on the unknown parameter  as well as the state st.

PSRL-POMDP takes the prior distributions h and f  as
input. At time t, the agent computes the posterior

distribution f t ( )  on the unknown parameter  as well as
the posterior conditional probability mass function
(pmf) ht (; ) on the state st for  2  . Upon taking

1 In Section 4, f ( )  should be viewed as a probability
mass function.
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action at and observing ot+1 , the posterior distribution
is updated by applying the Bayes’ rule as2

P
s ; s 0  (ot+1js0)(s0js; at)ht(s; )ft () t + 1

s;s0  (ot+1js0)(s0js; at)ht(s; )ft ()d

ht+1 (; ) =  (ht (; ); at ; ot+1 ; ); (7)

with the initial condition
(o1js)h(s; )f ()

1
s  (o1js)h(s; )f ()d

(o1js)h(s; )
1

s  (o1js)h(s; )

Recall that (ht (; ); at ; ot+1 ; ) is a compact notation for
(1). In the special case of perfect observation at
time t, ht (s; ) =  1(st =  s) for all  2   and s 2  S .
Moreover, the update rule of f t + 1  reduces to that of
fully observable MDPs (see Eq. (4) of Ouyang et al.
[2017b]) in the special case of perfect observation at
time t and t +  1.

Let nt(s; a) =  
P t  1 1(s =  s; a =  a) be the number of

visits to state-action (s; a) by time t. The num-ber
of visits nt plays an important role in learning for
MDPs [Jaksch et al., 2010, Ouyang et al., 2017b] and is
one of the two criteria to determine the length of the
episodes in the TSDE algorithm for MDPs [Ouyang et al.,
2017b]. However, in POMDPs, nt is not F ( t  1)+-
measurable since the states are not observable. In-
stead, let n~t(s; a) : =  E[nt (s; a)jF(t  1)+ ], and define the
pseudo-count m~ t as follows:
Definit ion 1. (m~ t )T is a pseudo-count if it is a
non-decreasing, integer-valued sequence of random vari-
ables such that m~ t is F ( t      1)+-measurable, m~ t(s; a)
dn~t(s; a)e, and m~ t(s; a)  t for all t  T +  1.

An example of such a sequence is simply m~ t(s; a) =  t for
all (s; a) 2  S A .  This is used in Section 4. Another ex-
ample is m~ t(s; a) : =  maxfm~ t 1(s; a); dn~t(s; a)eg with m~
0(s; a) =  0 for all (s; a) 2  S   A  which is used in
Section 5. Here dn~t(s; a)e is the smallest integer that is
greater than or equal to n~t(s; a). By definition, m~ t is
integer-valued and non-decreasing which is essential to
bound the number of episodes in the algorithm for the
general case (see Lemma B.5).

Similar to the TSDE algorithm for fully observable
MDPs, PSRL-POMDP algorithm proceeds in episodes.
In the beginning of episode k, POMDP k  is sampled

from the posterior distribution f t       where tk denotes
the start time of episode k. The optimal policy (; k ) is
then computed and used during the episode. Note
that the input of the policy is ht (; k ).     The intu-

ition behind such a choice (as opposed to the belief

2When the parameter set is finite, 
R 

should be replaced
with .

Algor i thm 1: PSRL-POMDP
Require: prior distributions f (); h()

Initialization: t 1; t1 0
Observe o1 and compute f1; h1 according to (8)

1: for episodes k =  1; 2;  do
2: Tk 1 t      tk
3: tk           t
4: Generate k   f t  ( )  and compute k ()

=  (; k ) from (5)
5: while t  SCHED(tk; Tk 1) and

m~ t(s; a)  2m~ t (s; a) for all (s; a) 2  S   A  do 6:
Choose action at =  k (ht (; k )) and observe
ot +1

7: Update f t + 1 ; ht + 1  according to (7)
8: t t +  1
9: end while

10: end for

bt () : =  
R 

ht (; )ft ()d) is that during episode k, the agent
treats k  to be the true POMDP and adopts the optimal
policy with respect to it. Consequently, the input to
the policy should also be the conditional belief with
respect to the sampled k .

A  key factor in designing posterior sampling based
algorithms is the design of episodes. Let Tk     de-
note the length of episode k. In PSRL-POMDP, a
new episode starts if either t >  SCHED(tk ; Tk 1) or
m~ t(s; a) >  2m~ t (s; a). In the finite parameter case
(Section 4), we consider SCHED(tk ; Tk     1 ) =  2tk
and m~ t(s; a) =  t. With these
choices, the two crite-ria coincide and ensure that
the start time and the length of the episodes are
deterministic. In Sec-tion 5, we use SCHED(tk ; Tk

1) =  tk +  Tk 1     and m~ t(s; a) : =  maxfm~ t
1(s; a); dn~t(s; a)eg. This guaran-tees that Tk  Tk 1 +
1 and m~ t(s; a)  2m~ t (s; a). These criteria are
previously introduced in the TSDE algorithm [Ouyang
et al., 2017b] except that TSDE uses the true count nt
rather than m~ t.

4 Finite-Parameter Case (jj <  1 )

In this section, we consider   H  such that jj <  1 .  When
is finite, the posterior distribution concentrates on the
true parameter exponentially fast if the tran-sition
kernels are separated enough (see Lemma 2). This
allows us to achieve a regret bound of O(H log T ). Let
o1:t; a1:t be a shorthand for the history of obser-
vations o1;  ; ot and actions a1;  ; at, respectively. Let
1 : t       1 : t  (o) be the probability of observing o at time t +
1 if the action history is a1:t, the observation history is
o1:t, and the transition kernel is , i.e.,

o 1 : t ;a 1 : t  (o) : =  P(ot+1 =  ojo1:t; a1:t;  =  ):
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The distance between o 1 : t ;a 1 : t  and o 1 : t ;a 1 : t  is defined by
Kullback Leibler ( K L - )  divergence as follows. For a

fixed state-action pair (s; a) and any ;  2  , denote
by K(o 1 : t ; a 1 : t  ko1 : t ;a1 : t  ), the Kullback Leibler ( K L - )  di-
vergence between the probability distributions o 1 : t ;a 1 : t

and o 1 : t ;a 1 : t  is given by
o 1 : t ;a 1 : t

K ( 1 : t        1 : t  k1 : t        1 : t  )  : =  
o     

1 : t        1 : t  (o) log o 1 : t ;a 1 : t  (o)
:

It can be shown that K(o 1 : t ; a 1 : t  ko1 : t ;a1 : t  )   0 and
that equality holds if and only if o 1 : t ;a 1 : t  =  o 1 : t ;a 1 : t  .
Thus, KL-divergence can be thought of as a measure
of divergence of o 1 : t ;a 1 : t  from o1 : t ;a 1 : t  . In this section, we
need to assume that the transition kernels in  are distant
enough in the following sense.
Assumption 2. There exist positive constants  >  0
and B  >  0 such that for any time step t, any his-
tory of possible observations o1:t     and actions a1:t ,
and any two transition kernels ;  2   such that
o1 : t      1 ; a 1 : t      1  (o )  >  0, we have K(o 1 : t ; a 1 : t  ko1 : t ;a1 : t  )    and
o1 : t      1 ; a 1 : t      1  (ot )=o1:t      1 ; a 1 : t      1  (ot )  B .

This assumption is similar to that of K im [2017].
Theorem 1. Suppose Assumptions 1 and 2 hold.
Then,      the     regret     bound     of     Algorithm     1     with
SCHED(tk; Tk 1) =  2tk and m~ t(s; a) =  t for all state-
action pairs (s; a) is bounded as

R T   H  log T +  
(
4(H +  1) 

;

where  >  0 is a universal constant defined in Lemma 2.

Observe that with SCHED(tk ; Tk 1) = 2tk      and
m~ t(s; a) =  t, the two stopping criteria in Algorithm 1
coincide and ensure that Tk =  2Tk 1 with T0 =  1. In
other words, the length of episodes grows as Tk =  2k .

4.1 Proof of Theorem 1

In this section, proof of Theorem 1 is provided. A  key
factor in achieving O(H log T ) regret bound in the case
of finite parameters is that the posterior distribution
f t ( )  concentrates on the true  exponentially fast.
Lemma 2. Suppose Assumption 2 holds. Then, there
exist constants  >  1 and  >  0 such that E[1
ft ()j]  exp( t).

Proof. Let t =  fa1; o1;  ; at 1; ot 1; otg be the tra-
jectory of actions and observations and define the like-
lihood function

t

L( t j )  : =  P(t j) =  P(o1j) P(o jo1: 1; a1: 1; )

Note that P(o1j) =  
P  

h(s)(o1js) is independent of ,
thus for any ;  2   such that L( t j )  =  0 and L( t j )  =  0,
we can write

L( t j )           t       o1:      1 ;a 1 :      1  (o )  L ( t j )

= 2  
o1:      1 ;a 1 :      1  (o )

Recall that f t ( )  is the posterior associated with the
likelihood given by

L( t j ) f ( )
t

2  L ( t j ) f ( )

In the denominator, we exclude those  such that
L( t j )  =  0 without loss of generality. We now proceed to
lower bound f t ( )  for those  such that L( t j )  >  0. We
can write

L( t j ) f ( ) 1
t

 L ( t j ) f ( ) 1 +
=  

f

( )  L ( t j )

=  
1 +  

P
=  f ( )  exp(     

P
= 1  log ;)

;

where we define ; : =  1 and for   2,

;            
o1:      1 ;a 1 :      1  (o )  1 :      1

1 :      1  (o )

Denote by Z ;  : =  
P t log ; and decompose it as Z ;

=  M ; +  A ;  where

M ; : =  
X

l o g  ;      E
h

log ; F  1;  =  
i
;  = 1

t

A ;  : = E  log ; F  1;  =   : = 1

Note that the terms inside the first summation con-
stitute a martingale difference sequence with respect
to the filtration ( F  )1 and conditional probability
P(j =  ).     Each term is bounded as j log ;

E[log ; jF  1;  =  ]j  d for some d >  0 by As-sumption
2.     The second term, A ;  can be lower bounded using
Assumption 2 as follows

h i

E  log ; F  1;  =  
i=  E  E  log ; F  1; a 1;  =   F  1;  =

=  E
h

K(o 1 :      1 ;a 1 :      1  ko1:     1 ; a 1 :      1  ) F  1;  =  
i

= 2

=  P(o1j) 
Y  o1:      1 ;a 1 :      1  (o )

= 2

Summing over  implies that

A ;   t: (9)
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To  bound M ;, let 0 <   <  , and apply Azuma’s
inequality to obtain P jM ;j  t      =

2 exp(     d
t ).

F i x  . Union bound over all  =   implies that the
event B ;  : =  \ = f jM ; j   tg happens with proba-bility at
least 1      2(jj      1) exp(     

2 t  ). If B ;  holds, then  M ;  t
for all  =  . Combining this with (9) implies that
exp( M ;   A ; )   exp(t   t). Therefore, E[f t () j  =  ]
=

#
E  

1 +  
P

=  f ( )  exp( M ;      A ; )
 =

1(B t )
1 + =  f ( )  exp(t      t)

P(B t j)           1      2(jj      1) exp( 2d
t )  1

+  1 f ( )  exp(t      t)          1 +  1 f ( )  exp(t      t)

Now, by choosing  =  =2, and constants  =
2 maxfmax2 

1
f ( )  

) ; 2(jj 1)g;  =  minf 2 ; 8d2 g, we have

E[1      f t ()j  =  ]  1   
1      2(jj      1) exp(     

t)

)

1
f () 

)  exp(t      t) +  2(jj      1) exp( 2d
t )  1 +  1

f ( )  exp(t      t)

 
1 

f ( )
)  

exp(t      t) +  2(jj      1) exp( 
2d

t 
) =  

1

f ( )  
exp( 

t
) +  2(jj      1) exp(  

dt 
)

 exp( t):

Equipped with this lemma, we are now ready to prove
Theorem 1.

Proof. Let K T  be the number of episodes by time T .
Note that the regret R T  can be decomposed as R T  =
H E  [ K T  ] +  R 1  +  R 2  +  R 3  by Lemma A.1, where

K T h i
R 1  : =  E                       Tk J ( k )       J ( )       ;

k = 1
K T  t k + 1  1

R 2  : =  H E j(s0jst; at)      k(s0jst; at)j
k = 1     

 

t = t k                  s0                            
##

+ jht(s; )      ht(s; k )j ;

" K T  t k + 1  1 h i#

R 3  : =  E                                                    c(ht(; ); at )      c(ht (; k ); at )      :
k = 1      t = t k

Note that the start time and length of episodes in
Algorithm 1 are deterministic with the choice of SCHED
and m~ t in the statement of the theorem, i.e., tk , Tk and
hence K T  are deterministic. Note that if k  =  , then R 1
=  R 2  =  R 3  =  0. Moreover, we have that J ( k )    J ( )
1, 0 j(s0jst; at)      k(s0jst; at)j
2, jht(s; )      ht(s; k )j  2, and c(ht(; ); at )
c(ht (; k ); at )  1. Therefore,

" K T
# K T

R 1  : =  E Tk 1(k  =  )  = TkP (k  =  ); k = 1

k = 1

K T  t k + 1  1

R 2  : =  4 H E 1(k  =  )
k = 1      t = t k

=  4H 
X

T k P  (k  =  ); k = 1

K T  t k + 1  1 K T

R 3  : =  E 1(k  =  )  = TkP (k  =  ): k = 1

t = t k                                                                 k = 1

Note that P ( k       =  )  =  E  [1   f t  ()]  exp( tk ) by
Lemma 2. Combining all these bounds, we can write

K T

R T   H K T  +  (4H +  2) Tk exp( tk ):
k = 1

With the episode schedule provided in the statement
of the theorem, it is easy to check that K T  =  O(log T ).
Let n =  2 K T      and write

X
T k  exp( tk ) =  

X
2 k e  (2 k  1)

k = 1 k = 1
n

 ( j  1) d x n + 1       1

j = 2
dx x       1 x = e

The last equality is by geometric series. Simplifying
the derivative yields

d x n + 1       1 nx n + 1       (n +  1)xn  +  1
dx x       1 x = e      ( x       1)2 x = e

 x n  +  1 2
(x       1)2 x = e      (e       1)2

Substituting these values implies R T        H  log T +
4 ( H + 1 )

(e      1)2

5 General Case (jj =  1 )

We now consider the general case, where the param-
eter set is infinite, and in particular,  =  H ,  an
uncountable set. We make the following two technical
assumptions on the belief and the transition kernel.
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p
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^

^ p
maxf1; m~ (s; a)g

^ 0
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k

 

h i

M e h d i  Jafarnia-Jahromi,  R a hu l  Ja i n ,  Ashutosh Nay yar

Assumption 3. Denote by k(t) the episode at time t.
The true conditional belief ht (; ) and the approximate
conditional belief ht (; k (t ) ) satisfy

E
h X

h t ( s ; )      
 
ht (s; k (t ) )

i  
 
K1(jS j; jAj; jOj; )

; 
k ( t )

(10)
with probability at least 1      , for any  2  (0; 1). Here
K1 (jS j; jAj; jOj; ) is a constant that is polynomial in its
input parameters and  hides the logarithmic depen-
dency on jS j; jAj; jOj; T; .

Assumption 3 states that the gap between conditional
posterior function for the sampled POMDP k  and
the true POMDP  decreases with episodes as better
approximation of the true POMDP is available. There
has been recent work on computation of approximate
information states as required in Assumption 3 [Subra-
manian et al., 2020].
Assumption 4. There exists an Ft-measurable esti-
mator t : S   A  !  S  such that

X
j(s0 js; a)       t(s0js; a)j  

K2 (jS j; jAj; jOj; ) 
s0 t

(11)

with probability at least 1   ,     for any 2
(0; 1), uniformly for all t =  1; 2; 3;  ; T , where
K2 (jS j; jAj; jOj; ) is a constant that is polynomial in its
input parameters and  hides the logarithmic depen-dency
on jS j; jAj; jOj; T; .

There has been extensive work on estimation of tran-
sition dynamics of MDPs, e.g., [Grunewalder et al.,
2012]. Two examples where Assumptions 3, 4 hold are:

 Perfect observation. In the case of perfect ob-
servation, where ht(s; ) =  1(st =  s), Assump-
tion 3 is clearly satisfied. Moreover, with perfect
observation, one can choose m~ t(s; a) =  nt(s; a)
and select k(s0js; a) =  n t ( s ; a ; s  )  to satisfy Assump-
tion 4 [Jaksch et al., 2010, Ouyang et al., 2017b].
Here nt(s; a; s0) denotes the number of visits to
s; a such that the next state is s0 before time t.

 Finite-parameter case. In the finite-parameter
case with the choice of m~ t(s; a) =  t for all state-
action pairs (s; a) and SCHED(tk ; Tk 1) =  tk + T k  1 or
SCHED(tk ; Tk=1) =  2tk , both of the assumptions are
satisfied (see Lemma B.1 for details). Note that in
this case a more refined analysis is performed in
Section 4 to achieve O(H log T ) regret bound.

Now, we state the main result of this section.
Theorem 2. Under Assumptions 1, 3 and 4, run-
ning PSRL-POMDP algorithm with SCHED(tk ; Tk 1) =

tk +  Tk 1 yields E [ R T  ]  O(H K2 (jS jjAjT )2=3 ), where
K 2  : =  K2 (jS j; jAj; jOj; ) in Assumption 4.

The exact constants are known (see proof and Ap-
pendix B.1) though we have hidden them above.

5.1 Proof Sketch of Theorem 2

We provide the proof sketch of Theorem 2 here. A
key property of posterior sampling is that conditioned
on the information at time t, the sampled t and the
true  have the same distribution [Osband et al., 2013,
Russo and Van Roy, 2014]. Since the episode start
time tk is a stopping time with respect to the filtration
(Ft )t1 , we use a stopping time version of this property:
Lemma 3 (Lemma 2 in Ouyang et al. [2017b]). For
any measurable function g and any F t  -measurable
random variable X ,  we have E[g (k ; X )] =  E[g(; X )].

Introducing the pseudo count m~ t(s; a) in the algorithm
requires a novel analysis to achieve a low regret bound.
The following key lemma states that the pseudo count
m~ t cannot be too smaller than the true count nt.
Lemma 4. Fix a state-action pair (s; a) 2  S  A .  For
any pseudo count m~ t and any  2  [0; 1],

P
 
m~ t(s; a) <  nt(s; a)

 
 : (12)

Proof. We show that P
 
n~t(s; a) <  nt(s; a)

 
 . Since

by definition m~ t(s; a)  n~t(s; a), the claim of the
lemma follows. For any  2  [0; 1],

n~t(s; a)1
 
nt(s; a) >  n~t(s; a)

 
 nt(s; a): (13)

By taking conditional expectation with respect
to F ( t  1 ) +       from both sides and the fact that
E[nt (s; a)jF(t  1 ) + ]  =  n~t(s; a), we have

h i
n~t(s; a)E 1  nt(s; a) >  n~t(s; a) F ( t  1 ) +        n~t(s; a):

(14)
We claim that

E  1
 
nt(s; a) >  n~ t (s; a)F(t 1 ) +        ; a.s. (15)

If this claim is true, taking another expectation from
both sides completes the proof.

To  prove the claim, let
0;
+  be the subsets of the sample space where
n~t(s; a) =  0 and n~t(s; a) >  0, respectively.     We
consider these two cases sepa-rately: (a) on
+  one can divide both sides of (14) by n~t(s; a) and
reach (15); (b) note that by defini-tion n~t(s; a) =
0 on
0.     Thus, nt (s; a)1(
0) =  0 almost surely (this is because E[nt (s; a)1(
0)] =  E[E[nt (s; a)1(
0 )jF( t  1)+ ]] =  E[n~t (s; a)1(
0)] =  0). Therefore,

1(
0 )1

 
nt(s; a) >  n~t(s; a)

 
=  0; a.s.,
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which implies
h i

1(
0 )E 1  nt(s; a) >  n~t(s; a) F ( t  1 ) +       =  0; a.s.,

which means on
0, the left hand side of (15) is indeed zero, almost
surely, proving the claim.

The parameter  will be tuned later to balance two
terms and achieve O(T 2=3) regret bound (see
Lemma B.4). We are now ready to provide the proof
sketch of Theorem 2.

By Lemma A.1, R T      can be decomposed as R T      =
H E  [ K T  ] +  R 1  +  R 2  +  R3 , where

" K T h i#

R 1  : =  E                       Tk J ( k )       J ( )       ;
k = 1

K T  tk + 1  1

R 2  : =  H E j(s0jst; at)      k(s0jst; at)j
k = 1     

 

t = t k                  s0                                             
##

+ jht(s; )      ht(s; k )j ;

" K T  t k + 1  1 h i#

R 3  : =  E                                                    c(ht(; ); at )      c(ht (; k ); at )      :
k = 1      t = t k

It follows from the first stopping criterion that Tk  Tk

1 +  1. Using this along with the property of poste-rior
sampling (Lemma 3) proves that E[R1 ]  E [ K T  ] (see
Lemma B.2 for details). E[R3 ] is bounded by
K 1 E k = 1  p

t
         + 1  where K 1  : =  K1(jS j; jAj; jOj; ) is

the constant in Assumption 3 (see Lemma B.3). To
bound E[R2 ], we use Assumption 3 and follow the proof
steps of Lemma B.3 to conclude that

h K T i
E[R2 ]  R 2  +  H K 1 E            p         +  1;

k = 1 k

where

R 2  : =  H E
h X t  X  1 X

(s0 js t ; a t )       k (s0jst; at)
i
: k = 1

t = t k s0

R 2  is the dominating term in the final O(T 2=3) regret
bound and can be bounded by H  + 12H K2 (jS jjAjT )2=3

where K 2  : =  K2 (jS j; jAj; jOj; ) is the constant in As-
sumption 4. The detailed proof can be found in Lemma
B.4. However, we sketch the main steps of the proof
here. By Assumption 4, one can show that

 h T i
R 2   O E  

t = 1  

p
maxf1; m~ t(st ; at)g      

:

Now, let E 2  be the event that m~ t(s; a)  nt(s; a) for
all s; a. Note that by Lemma 4 and union bound,

P(E2 )  jS jjAj. Thus,

 h T i
R 2   O E  

t = 1  

p
maxf1; m~ t(st ; at)g 

1(E2 )  +  1 ( E c )

h T i
O H E  

t = 1  

p
maxf1; nt (st ; at )g 

+  H K2 jS jjAjT

Algebraic manipulation of the inner summation yields

R 2   O H K 2
j S j j A j T  +  H K2 jS jjAjT  .

Optimizing over  implies R 2  =  O(H K2 (jS jjAjT )2=3 ).
Substituting upper bounds for E[R1 ]; E[R2 ] and E[R3 ],
we get

E [ R T  ] =  H E [ K T  ] +  E[R1 ] +  E[R2 ] +  E[R3 ]

 (1 +  H ) E [ K T  ] +  12H K2 (jS jjAjT )2=3

h K T i
+  ( H  +  1 ) K 1 E p +  2 +  H :

k = 1           k

From Lemma B.5, we know that E [ K T  ] =  O(
p

jS jjAjT )
and k = 1  p

t k       
=  O(jS jjAj T ). Therefore, E [ R T  ]

O(H K2 (jS jjAjT )2=3 ):
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Conclusions

In this paper, we have presented one of the first online
reinforcement learning algorithms for POMDPs. Solv-
ing POMDPs is a hard problem. Designing an efficient
learning algorithm that achieves sublinear regret is
even harder. We show that the proposed PSRL-POMDP
algorithm achieves a Bayesian regret bound of O(log T )
when the parameter is finite. When the parameter
set may be uncountable, we showed a O(T 2=3) regret
bound under two technical assumptions on the belief
state approximation and transition kernel estimation.
There has been recent work that does approximate be-
lief state computation, as well as estimates transition
dynamics of continuous MDPs, and in future work,
we will try to incorporate such estimators. We also
assume that the observation kernel is known. Note
that without it, it is very challenging to design online
learning algorithms for POMDPs. Posterior sampling-
based algorithms in general are known to have superior
numerical performance as compared to OFU-based al-
gorithms for bandits and MDPs. In future work, we will
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also do an experimental investigation of the proposed
algorithm. An impediment is that available POMDP
solvers mostly provide approximate solutions which
would lead to linear regret. In the future, we will also
try to improve the regret for the general case to O( T ).
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A Regret Decomposition

Lemma A.1.  R T  can be decomposed as R T  =  H E  [ K T  ] +  R 1  +  R 2  +  R3 ,  where
" K T h i#

R 1  : =  E Tk J ( k )       J ( ) ;
k = 1

R 2  : =  H E          

K T  t  X  1     X
j(s0 js t ; at )       k(s0jst; at)j +  

X
j h t ( s ; )       ht(s; k )j ;

k = 1      t = t k s0 s

K T  t k + 1  1 h i
R 3  : =  E                                                    c(ht(; ); at )      c(ht (; k ); at )      :

k = 1      t = t k

Proof. First, note that E  [C (st ; at )jFt+ ] =  c(ht(; ); at) for any t  1. Thus, we can write:

h T      h i i h T      h i i
R T  =  E                          C (st ; at )      J ( )       =  E                          c(ht(; ); at)      J ( )      :

t = 1 t = 1

During episode k, by the Bellman equation for the sampled POMDP k  and that at =  (ht (; k ); k ), we can
write:

c(ht (; k ); at )      J ( k )  =  v(ht (; k ); k )      
X

P (ojht (; k ); at ; k )v (h0 ; k );  o

where h0 =  (ht(; k ); at ; o; k ). Using this equation, we proceed by decomposing the regret as

h T      h i i
R T  =  E                          c(ht(; ); at)      J ( )

t = 1

h K T  t k + 1  1 h i i
=  E                                                   c(ht(; ); at )      J ( )

k = 1      t = t k

h K T  t k + 1  1 h i i K T h i
=  E                                                   v(ht (; k ); k )      v(ht+1 (; k ); k )      +  E                       Tk J ( k )       J ( )

k = 1  | t = t k {z } | k = 1 {z }
telescopic sum                                                                                       = : R 1

h K T  t k + 1  1 h i i
+  E v(ht+1 (; k ); k )  P (ojht(; k ); at ; k )v(h0; k )

| k = 1     

 

t = t k      {z 2 O }
= : R 0

h K T  t k + 1  1 h i i
+  E                                                   c(ht(; ); at )      c(ht (; k ); at )

| k = 1     

 

t = t k      {z }
= : R 3

where K T  is the number of episodes upto time T , tk is the start time of episode k (we let tk =  T +  1 for all k >
K T  ). The telescopic sum is equal to v(ht (; k ); k )   v(ht (; k ); k )  H .  Thus, the first term on the right
hand side is upper bounded by H E  [ K T  ]. Suffices to show that R0  R2 . Throughout the proof, we change the order of
expectation and summation at several points. A  rigorous proof for why this is allowed in the case that K T  and
tk are random variables is presented in the proof of Lemma B.3.

We proceed by bounding the term R0 . Recall that h0 =      (ht (; k ); at ; o; k ) and ht +1 (; k )     =
(ht (; k ); at ; ot+1 ; k ). Conditioned on Ft ; ; k , the only random variable in ht +1 (; k ) is ot +1  (at     =
(ht (; k ); k ) is measurable with respect to the sigma algebra generated by Ft ; k ).  Therefore,

h i
E       v (ht+1 (; k ); k )jFt ; k       = v(h0; k)P (ot +1  =  ojFt ; k ): (16)

o 2 O
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We claim that P (ot + 1  =  ojFt ; k ) =  P (ojht(; ); at ; ): by the total law of probability and that P (ot + 1  =  ojst+1

=  s0 ; Ft ; k ) =  (ojs0), we can write

P (ot +1  =  ojFt ; k ) =  
X

( o js 0 )P  (st +1  =  s0jFt ; k ):

Note that

Thus,

s0

P (st + 1  =  s0 jFt ; k ) =  
X

P  (st + 1  =  s0jst =  s; Ft ; at ; k )P (st =  sjFt ; k )

=  
X

(s0 js; at )P  (st =  sjFt ): s

P (ot +1  =  ojFt ; k ) =  
X

(ojs0 )(s0 js; at )ht (s; ) =  P (ojht(; ); at ; ): (17)
s;s0

Combining (17) with (16) and substituting into R2 , we get

h K T  t k + 1  1 h i i
R0 =  E P (ojht(; ); at ; )      P (ojht (; k ); at ; k ) v(h0; k)     :

k = 1      t = t k o 2 O

Recall that for any  2  , P (ojht(; ); at ; ) =  
P

s 0  (ojs0 )
P

s  (s0js; at)ht(s; ). Thus,

h K T  t k + 1  1 i
R0 =  E v(h0; k)(ojs0) (s0js; at)ht(s; ) k = 1

t = t k        o;s0

s

     E  

h X t  X  1 X
v (h0 ; k )(ojs0 )

X
k (s0 js; at )ht (s; )

i  
k = 1

t = t k        o;s0 s

+  E  

h X t  X  1 X
v (h0 ; k )(ojs0 )

X
k (s0 js; at )

 
ht(s; )      ht (s; k )

i
: (18)

k = 1      t = t k        o;s0 s

For the first term, note that conditioned on Ft ; ,  the distribution of st is ht (; ) by the definition of ht.
Furthermore, at is measurable with respect to the sigma algebra generated by F t ; k  since at =  (ht (; k ); k ). Thus,
we have

h i h i
E       v(h0; k) (s0js; at)ht(s; )Ft; k      =  v(h0; k )E      (s0 jst ; at )Ft ; k : (19)

s

Similarly, for the second term on the right hand side of (18), we have
h i h i

E       v(h0; k) k (s0js; at)ht(s; )Ft ; k      =  v(h0; k )E      k (s0 jst ; at )Ft ; k : (20)
s

Replacing (19), (20) into (18) and using the tower property of conditional expectation, we get

h K T  t k + 1  1 h i i
R0 =  E v(h0; k)(ojs0) (s0jst; at)      k(s0jst; at) k = 1

t = t k                 s0           o

+  E  

h X t k + 1  1 h X X
v (h 0 ; k ) ( o js 0 )

X
k (s 0 j s ; a t )

 
ht (s; )      ht (s; k )

i i
: (21)

k = 1      t = t k s0 o s

Since sup v(b; k )  H  and 
P  

(ojs0) =  1, the inner summation for the first term on the right hand side of (21)
can be bounded as

v(h0; k)(ojs0) (s0jst; at)      k(s0jst; at)  H (s0jst; at)      k(s0jst; at): (22)
o 2 O
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Using sup v(b; k )  H ,  
P  

(ojs0) =  1 and 
P  

0 k (s0js; at) =  1, the second term on the right hand side of (21)
can be bounded as

X  X  
v(h0 ; k )(ojs0 )

X
k (s0 js; at)ht (s; )      ht (s; k )  H  

X
h t ( s ; )       ht (s; k ) s0      o 2 O s

s

(23)

Substituting (22) and (23) into (21) proves that R 2   R2 .

B Proofs of Section 5

B.1 Fu l l  U p p e r  B o u n d  on the Exp ected  Regret  of Theorem 2

The exact expression for the upper bound of the expected regret in Theorem 2 is

E [ R T  ] =  H E [ K T  ] +  E[R1 ] +  E[R2 ] +  E[R3 ]

(1 +  H ) E [ K T  ] +  12H K2 (jS jjAjT )2=3

h K T i
+  ( H  +  1 ) K 1 E p +  2 +  H

k = 1           k

 (1 +  H )      2T (1 +  jS jjAj log(T +  1)) +  12H K2 (jS jjAjT )2=3 +

7(H +  1)K1       2T (1 +  jS jjAj log(T +  1)) log 2T +  2 +  H :

B .2 Finite-parameter Case Satisfies Assumptions 3 and 4

In this section, we show that Assumptions 3 and 4 are satisfied for the finite-parameter case i.e., jj <  1  as long as the
PSRL-POMDP generates a deterministic schedule. As an instance, a deterministic schedule can be generated by
choosing m~ t(s; a) =  t for all state-action pairs (s; a) and running Algorithm 1 with either SCHED(tk ; Tk 1) =  2tk or
SCHED(tk; Tk 1) =  tk +  Tk 1.

Lemma B.1.  Assume jj <  1 .  If Algorithm 1 generates a deterministic schedule, then Assumptions 3 and 4
are satisfied.

Proof. Observe that the left hand side of (10) is zero if k ( t )  =  , and is upper bounded by 2 if k ( t )  =  . Thus, we
can write

h      i
E ht(s; )      ht (s; k(t) )        2P(k (t)  =  j) =  2E 1      f t k ( t )  ()j      exp( tk (t) );

s

which obviously satisfies Assumption 3 by choosing a large enough constant K 1 .  Here, the last equality is by
Lemma 2 and that the start time of episode k(t) is deterministic.

To  see why Assumption 4 is satisfied, let t  be the Maximum a Posteriori (MAP)  estimator, i.e., t      =  argmax
ft ().  Then, the left hand side of (11) is equal to zero if t  =  . Note that this happens with high

probability with the following argument:

P(t =  j)  P (ft ()   0:5j) =  P(1      f t ( )   0:5j)  2E[1      ft ()j]  2exp( t):

Here the first inequality is by the fact that if f t ( )  >  0:5, then the MA P  estimator would choose t =  . The second
inequality is by applying Markov inequality and the last inequality is by Lemma 2. Note that m~ t(s; a)  t by
definition. We claim that Assumption 4 is satisfied by choosing K 2  =  2     (  1=) log(=2). To  see this, note that 2exp(
t)   for t  (  1=) log(=2). In this case, (11) automatically holds since with probability at least 1    the left hand
side is zero. For t <  (  1=) log(=2), note that the left hand side of (11) can be at most 2. Therefore, K 2  can be
found by solving 2  K 2 =      (  1=) log(=2).
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B .3 A u x i l ia r y  Lemmas for Section 5

Lemma B.2.  [Lemma 3 in Ouyang et al. [2017b]] The term E[R1 ] can be bounded as E[R1 ]  E [ K T  ].

Proof.

h K T h i i h 1 i
E[R1 ] =  E Tk J ( k )       J ( ) =  E 1(tk  T )Tk J (k )       T E[J ()]:

k = 1 k = 1

By monotone convergence theorem and the fact that J ( k )   0 and Tk  Tk 1 + 1 (the first criterion in determining the
episode length in Algorithm 1), the first term can be bounded as

h 1 i 1 h i
E           1(tk  T )Tk J (k )  =          E  1(tk   T )Tk J (k )

k = 1 k = 1
1 h i

E  1(tk   T )(Tk 1 +  1)J ( k )  :
k = 1

Note that 1(tk   T )(Tk 1 +  1) is F t  -measurable. Thus, by the property of posterior sampling (Lemma 3),
E[1(tk   T )(Tk 1 +  1)J (k )]  =  E[1(tk   T )(Tk 1 +  1)J ()]. Therefore,

h 1 i
E[R1 ]  E 1(tk  T )(Tk 1 +  1)J ( )       T E[J ()]

k = 1

h K T i
=  E  J ( ) ( K T  + Tk 1)      T E[J ()]

k = 1

h K T i
=  E [ J ( ) K T  ] +  E  J ( ) ( Tk 1      T )  E [ K T  ];

k = 1

where the last inequality is by the fact that 
P

k = 1  Tk 1      T  0 and 0  J ( )   1.

Lemma B.3.  The term E[R3 ] can be bounded as

E[R3 ]  K 1 E
h X  

p k  
i  

+  1;
k = 1 k

where K 1  : =  K1 (jS j; jAj; jOj; ) is the constant in Assumption 3.

Proof. Recall that

h K T  t k + 1  1 h i i
E[R3 ] =  E                          c(ht(; ); at )      c(ht (; k ); at )     :

k = 1      t = t k

Let k(t) be a random variable denoting the episode number at time t, i.e., tk ( t )   t <  tk ( t ) + 1  for all t  T . By the
definition of c, we can write

E[R3 ] =  E
h X t  X  1 X

C (s ; a t )
h

h t (s ; )       ht (s; k )
i i

k = 1      t = t k s

h T h i i
=  E                   C (s; at ) ht (s; )      ht (s; k(t) )

t = 1      s

 
X

E
h X

h t ( s ; )       ht (s; k (t ) )
i  

t = 1

s

=  E
h X t  X  1 

E
h X

h t ( s ; )       ht (s; k )
i i

;  k = 1

t = t k s
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where the inequality is by 0  C (s; at )  1. Let K 1  : =  K1 (jS j; jAj; jOj; ) be the constant in Assumption 3 and
define event E 1  as the successful event of Assumption 3 where E s  ht(s; )      ht (s; k )  K 1   happens. We
can write

E
h X

h t ( s ; )       ht (s; k )
i

=  E
h X

h t ( s ; )       ht (s; k )
i
(1(E1 ) +  1 (E c ) )  s

 p  1 +  21(E c ):  k

Recall that by Assumption 3, P(E1 )  . Therefore,

h K T i
E[R3 ]  K 1 E p +  2T :

k = 1           k

Choosing  =  min(1=(2T ); 1=(2HT )) completes the proof.

Lemma B.4.  The term R 2  can be bounded as

R 2   H  +  12H K2 (jS jjAjT )2=3 ;

where K 2  : =  K2 (jS j; jAj; jOj; ) in Assumption 4.

Proof. Recall that

R 2  =  H E
h X t  X  1 X

(s0 js t ; a t )       k (s0jst ; at)
i
: (24)

k = 1      t = t k s0

We proceed by bounding the inner term of the above equation. For notational simplicity, define z : =  (s; a) and
zt : =  (st; at). Let t k  be the estimator in Assumption 4 and define the confidence set B k  as

B k  : =  
n

 2  H  : 
s 0 2 S  

(s0jz)      k(s0jz)  p
maxf1; m~ t k  (z)g

; 8z 2  S   A
o

;

where K 2  : =  K2(jS j; jAj; jOj; ) is the constant in Assumption 4. Note that B k  reduces to the confidence set used
in Jaksch et al. [2010], Ouyang et al. [2017b] in the case of perfect observation by choosing m~ t(s; a) =  nt(s; a).
By triangle inequality, the inner term in (24) can be bounded by

(s0jzt)      k(s0jzt)
s0

(s0jzt)      t k  (s
0jzt) + k(s0jzt)      t k  (s

0jzt)
s0 s0

 2
 

1(  2= B k )  +  1(k  2= B k )
 
+  p

maxf1; m~ t k  (zt )g
:

Substituting this into (24) implies

h K T  t k + 1  1 i h K T  t k + 1  1 i
R 2   2 H E  

k = 1      t = t k

1(  2= B k )  +  1(k  2= B k ) +  2 H E  
k = 1      t = t k         

p
maxf1; m~ t k  (zt )g 

: (25)

We need to bound these two terms separately.
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Bounding  the first term.     For the first term we can write:

h K T  t k + 1  1 i h K T i
E                          1(  2= B k )  +  1(k  2= B k )       =  E           Tk 1(  2= B k )  +  1(k  2= B k )

k = 1      t = t k k = 1

 T E
h X  

1(  2= B k )  +  1(k  2= B k )
i  

k = 1

 T 
X

E
h  

1(  2= B k )  +  1(k  2= B k )
i
;  k = 1

where the last inequality is by the fact that K T   T . Now, observe that since B k  is F t  -measurable, Lemma 3
implies that E[1(k  2= B k ) ]  =  E[1(  2= Bk )].  Moreover, by Assumption 4, E[1(  2= B k ) ]  =  P( 2= B k )   . By choosing
=  4T 2  , we get

h K T  t k + 1  1 i
E 1(  2= B k )  +  1(k  2= B k ) : (26)

k = 1      t = t k

Bounding  the second term.     To  bound the second term of (25), observe that by the second criterion of the
algorithm in choosing the episode length, we have 2m~ t k  (zt )  m~ t (zt ). Thus,

h K T  t k + 1  1 i h T p  i
E  

k = 1      t = t k        

 
p

maxf1; m~ t k  (zt )g 
 E  

t = 1  

p
maxf1; m~ t (zt )g

X X  h 2K2 1(zt  =  z) i

t = 1      z                   maxf1; m~ t(z)g

=  
t = 1  

X
E

h
p

m a x f 1 ; m~  t (z )g
1

 
m~ t (z)  nt (z )

i

+  
t = 1  

X
E

h
p

m a x f 1 ; m~  t (z )g
1

 
m~ t (z) <  nt (z )

i

T h i T h i
 

t = 1      z      

E  p
maxf1; nt (z )g 

+  
t = 1      z      

E 2K 2 1  m~ t (z ) <  nt(z)     : (27)

Lemma 4 implies that E  1
 
m~ t (z ) <  nt (z)

 
=  P(m~ t (z ) <  nt (z))  . Thus, the second term in (27) can be

bounded by 2K2 jS jjAjT . To  bound the first term of (27), we can write:

X X  h p
2K 2 1(z t  =  z) i

t = 1      z maxf1; nt(z)g

2 h X X 1(zt =  z) i
2            

z      t = 1          maxf1; nt(z)g

Observe that whenever zt =  z, nt(z) increases by 1. Since, nt (z) is the number of visits to z by time t   1
(including t      1 and excluding t), the denominator will be 1 for the first two times that zt =  z. Therefore, the term
inside the expectation can be bounded by

X X  
p

maxf1; n (z)g 
=  

X
E

h
1 ( n T + 1 ( z )  >  0) +  

n T + 1 ( z )  1     
1

 
i

h i
E  1(nT +1 (z ) >  0) +  2     nT +1 (z )

 3
X p

n T + 1 ( z ) :  z



      

T

pE  3 K :

K T k + 1X  X K 2

X  X K 2

~

K T kp ~

P K T p
tk

p p

T

~ ~
k = m i

~
X X

X

2
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Since 
P

z  nT +1 (z ) =  T , Cauchy Schwartz inequality implies

3
X p

n T + 1 ( z )   3
s

j S j j A j
X

n T + 1 ( z )  =  3
p

jS jjAjT : z
z

Therefore, the first term of (27) can be bounded by

X X  h p
2K 2 1(z t  =  z) i r

2 jS j jA jT

t = 1      z maxf1; nt(z)g               
2

Substituting this bound in (27) along with the bound on the second term of (27), we obtain

E
h

k = 1  

t  

t = t k  

1 

p
maxf1; m~ t k  (zt )g

i 
 3K 2

r
2 jS j jA jT  

+  
p

2K2 jS jjAjT :

 =  (3=2)2=3(jS jjAjT ) 1=3 minimizes the upper bound, and thus

h K T  t k + 1  1 i
E  

k = 1      t = t k       

p
maxf1; m~ t k  (zt )g 

 6K2 (jS jjAjT )2=3 : (28)

By substituting (26) and (28) into (25), we get

R 2   H  +  12H K2 (jS jjAjT )2=3 :

Lemma B.5.  The following inequalities hold:

1. The number of episodes K T  can be bounded as K T   
p

2 T
 
(1

 
+  jS jjAj log(T

 
+  1)) =  O(

p
jS jjAjT ).  2.

The following inequality holds: 
P

k = 1  
T

t k      
 7

p
2T (1 +  jS jjAj log(T +  1)) log 

p
2T =  O(jS jjAj

p
T ).

Proof. We first provide an intuition why these results should be true. Note that the length of the episodes is
determined by two criteria. The first criterion triggers when Tk =  Tk 1 + 1  and the second criterion triggers when the
pseudo counts doubles for a state-action pair compared to the beginning of the episode. Intuitively speaking, the
second criterion should only happen logarithmically, while the first criterion occurs more frequently. This means
that one could just consider the first criterion for an intuitive argument. Thus, if we ignore the second criterion,
we get Tk =  O(k), K T  =  O( T ), and tk =  O(k2) which implies k = 1  

T k   =  O ( K T  )  =  O( T ). The
rigorous proof is stated in the following.

1. Define macro episodes with start times tm i
 given by tm 1  =  t1 and tm i

 : =

minftk >  tm i
     1  : m~ t k  (s; a) >  2m~ t k

     1  (s; a) for some (s; a)g:

Note that a new macro episode starts when the second criterion of episode length in Algorithm 1 triggers. Let
MT be the random variable denoting the number of macro episodes by time T and define mM  + 1  =  K T  +  1.

Let Ti denote the length of macro episode i. Note that Ti =  
P m i + 1  1 Tk . Moreover, from the definition of macro

episodes, we know that all the episodes in a macro episode except the last one are triggered by the first criterion,
i.e., Tk =  Tk 1 +  1 for all mi  k  mi + 1       2. This implies that

m i + 1  1 m i + 1  m i  1

Ti = Tk =  T m i + 1  1 + (Tm i  1 +  j )
k = m i                                                                                    j = 1

 1 +  
m i + 1  m i  1

(1 +  j
)
 =  

(mi + 1       mi )(mi + 1       mi +  1)
:

j = 1



~

M T

M T s
~ ~

K T m~ (s; a)

Y

X

p p
p p

p

P k

p
p p

Tk pX X  X 1
t t

p X  X
                          

1
tm i
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p
This implies that mi + 1       mi 2Ti. Now, we can write:

K T  =  m M T  + 1       1 =  
X

( m i + 1       mi )
i = 1

 
X q

2 T i  2MT 
X

T i  =  
p

2 M T
 
T ; (29)

i = 1                                                   i

where the last inequality is by Cauchy-Schwartz.

Now, it suffices to show that MT  1 + jS jjAj log(T + 1).  Let Ts;a be the start times at which the second criterion is
triggered at state-action pair (s; a), i.e.,

Ts;a : =  ft k   T : m~ t k  (s; a) >  2m~ t k
     1  (s; a)g:

We claim that jTs;a j  log(m~ T +1 (s; a)). To  prove this claim, assume by contradiction that jTs;a j
log(m~ T +1 (s; a)) +  1, then

m~ t (s; a) 
Y m~

 
t k  (s; a)

t k T ; m~  t k
     1  ( s ;a)1         t k

     1

Y m~ t k  (s; a)

t k 2 T s ; a ; m~  t k      1  ( s ;a)1  
m~ t k

     1  (s; a)

> 2 =  2 j T s ; a j  1  m~ T +1 (s; a);
t k 2 T s ; a ; m~  t k

     1  ( s ;a)1

which is a contradiction. The second inequality is by the fact that m~ t(s; a) is non-decreasing, and the third
inequality is by the definition of Ts;a . Therefore,

MT  1 +  
X

j T s ; a j   1 +  
X

l o g ( m~  T +1 (s; a))
s ; a s ; a

 1 +  jS jjAj log( m~ T +1 (s; a)=jS jjAj)
s ; a

=  1 +  jS jjAj log(T +  1); (30)

where the third inequality is due to the concavity of log and the last inequality is by the fact that m~ T +1 (s; a)  T +1.

2. First, we claim that Tk 2T for all k  K T  . To  see this, assume by contradiction that Tk  > 2T for some
k  K T  . By the first stopping criterion, we can conclude that Tk 1 > 2T      1, Tk 2 > 2T      2, . . . ,
T1 >  maxf 2T   k +  1; 0g since the episode length can increase at most by one compared to the previous one.
Note that k 2T   1, because otherwise T1 >  2 which is not feasible since T1  T0 +  1 =  2. Thus,

k = 1  Tk >  0:5 2T ( 2T +  1) >  T which is a contradiction.

We now proceed to lower bound tk . By the definition of macro episodes in part (1), during a macro episode
length of the episodes except the last one are determined by the first criterion, i.e., for macro episode i, one can
write Tk =  Tk     1 +  1 for mi  k  mi + 1  2. Hence, for mi  k  mi + 1  2,

tk + 1  =  tk +  Tk =  tk +  Tm i  1 +  k      (mi      1)
tk +  k      mi +  1:

Recursive substitution of tk implies that tk  tm i
 +  0:5(k      mi )(k      mi +  1) for mi  k  mi + 1       1. Thus,

K T M T  m i + 1  1

p 2T p
k = 1 k i = 1      k = m i

k

M T  m i + 1  1

2T 
i = 1      k = m i        

p
+

 
0:5(k  

 
mi )(k

 
     mi

 
+

 
1)

: (31)
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The denominator of the summands at k =  mi is equal to 
p

t m  . For other values of k it can be lower bounded by
0:5(k      mi)2. Thus,

X m i + 1  1 1

i = 1      k = m i
tm i

 +  0:5(k      mi )(k      mi +  1)

X 1          X  m i + 1  1 2

i = 1
tm i

i = 1  k = m  + 1  
k      mi

M T  m i + 1  m i  1 p
 MT +

i = 1 j = 1

 MT +  
p

2(M T  +  
X

l o g ( m i + 1       mi ))
i = 1

 MT (1 +  
p

2 )  +  
p

2M T  log( 
1 X

( m i + 1       mi )) T
i = 1

 MT (1 + 2) + 2MT log 2T

7MT log 2T ;

where the second inequality is by tm i
  1, the third inequality is by the fact that 

P
j = 1  1=j  1 +  

R
 
K  dx=x =  1 + log

K ,  the forth inequality is by concavity of log and the fifth inequality is by the fact that i = 1 (m i + 1   mi ) =
mM  + 1       1 =  K T  and K T  =MT 2T =MT 2T (see (29)). Substituting this bound into (31) and using the
upper bound on MT (30), we can write

K T  p            2T 7MT log     2T
k = 1 k

 7 2T (1 +  jS jjAj log(T +  1)) log 2T :

C Other Proofs

C .1 Proof of Lemma 1

Lemma (restatement of Lemma 1). Suppose Assumption 1 holds. Then, the policy (; ) : S  !  A  given by

(b; ) : =  argminfc(b; a) +  
X  

P (ojb; a; )v(b0; )g a 2 A

o 2 O

is the optimal policy with J  (h; ) =  J ( )  for all h 2  S .

Proof. We prove that for any policy , J(h; )   J  (h; ) =  J ( )  for all h 2  S .  Let  : S  !  A  be an



T

T

1
T

X

T

T

T

T
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arbitrary policy. We can write

J(h; ) =  lim sup 
1 X

E [ C (s t ; (h t ) ) js1   h] T ! 1
t = 1

T h i
=  lim sup             E  E[C (st ; (ht ))jFt ; s1  h] s1  h

T ! 1 t = 1

=  lim sup 
1 X

E[c(ht ; (ht ) ) js1   h]
T ! 1 t = 1

 lim sup 
1 X

E [ J ( )  +  v(ht; )      v(ht+1; )js1  h] T ! 1

t = 1

=  J ( ) ;

with equality attained by  completing the proof.


