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Abstract

This paper studies temporal planning in probabilis-
tic environments, modeled as labeled Markov de-
cision processes (MDPs), with user preferences
over multiple temporal goals. Existing works re-
flect such preferences as a prioritized list of goals.
This paper introduces a new specification language,
termed prioritized qualitative choice linear tempo-
ral logic on finite traces, which augments linear
temporal logic on finite traces with prioritized con-
junction and ordered disjunction from prioritized
qualitative choice logic. This language allows for
succinctly specifying temporal objectives with cor-
responding preferences accomplishing each tempo-
ral task. The finite traces that describe the system’s
behaviors are ranked based on their dissatisfaction
scores with respect to the formula. We propose a
systematic translation from the new language to a
weighted deterministic finite automaton. Ultilizing
this computational model, we formulate and solve a
problem of computing an optimal policy that min-
imizes the expected score of dissatisfaction given
user preferences. We demonstrate the efficacy and
applicability of the logic and the algorithm on sev-
eral case studies with detailed analyses for each.

1 Introduction

In this work, we study preference-based planning given a
preference order over temporal goals, i.e. , ordered goals
specified in temporal logics. Temporal logic are expres-
sive and rigorous languages for specifying complex tasks
and mission objectives. Planning with temporal logic goals
[Pnueli, 1981] has seen studied for robotic systems [Kan-
taros et al., 2022; Bradley et al., 2021; He et al., 2020;
Vasile et al., 2020; Yang et al., 2020; Wang et al., 2020;
Hekmatnejad and Fainekos, 2018; He et al., 2015; Li et al.,
2021] and other intelligent systems [Kasenberg et al., 2020;
De Giacomo and Vardi, 2015; Camacho et al., 2017; Mallett
etal.,2021; Zhou et al., 2022; Zhao et al., 2022].

*This material is based upon work supported by Air Force Office
of Scientific Research under award number FA9550-21-1-0085 and
by NSF under Grant No. 2024802 and Grant No.2144113.

Specifying preferences over temporal goals gives the deci-
sion maker flexibility to revise the task and achieve the most
preferred outcomes when not all constraints/subtasks can
be satisfied. Early works consider deterministic systems—
modeled as finite, discrete systems or system with deter-
ministic dynamics. Several works [Tumova et al., 2013b;
Tumova et al., 2013a; Wongpiromsarn et al., 2021; Vasile
et al., 2017] proposed minimum violation planning methods
that decide which low-priority constraints should be violated
in a deterministic system. [Mehdipour et al., 2021] associate
weights with Boolean and temporal operators in signal tem-
poral logic to specify the importance of satisfying the sub-
formula and priority in the timing of satisfaction. They de-
velop algorithms to maximize the weighted satisfaction in de-
terministic dynamical systems. [Rahmani and O’Kane, 2019;
Rahmani and O’Kane, 2020] studied temporal planning given
both hard and soft specifications of the goal, using linear tem-
poral logic (LTL) and linear dynamic logic on finite traces
(LDLy). [Cai ef al., 2020] consider minimizing the devi-
ations from infeasible LTL specifications while maximizing
the total rewards.

Recently, preference-based probabilistic planning with
temporal logic constraints are studied. [Li er al., 2020]
study preference-based planning for Markov decision pro-
cess (MDP) subject to an ordered list of probabilistic tem-
poral logic formula. The algorithm enumerates tasks one
by one in a prioritized order until a policy that satisfies the
most preferred task is found. [Lahijanian and Kwiatkowska,
2016] studied syntactically co-safe LTL planning with infea-
sible specifications in environments modeled by MDPs. They
compute a policy that maximizes the probability of satisfying
a revised formula and minimizes the cost of revision. [Lac-
erda et al., 2015] considered a similar problem where the aim
is to synthesize a policy that, in decreasing order of priority,
maximizes the probability of completing the task, maximizes
the probability of progressing toward completion, and mini-
mizes the expected cost.

Despite the existing work on probabilistic preference-
based planning, the connection between preference specifi-
cation in Al and preferences over temporal goals is yet to be
established. We propose a new language that extends tem-
poral logic with fuzzy logic representation of preferences.
Specifically, we consider qualitative choice logic (QCL) pro-



posed in [Brewka er al., 2004] and its extension prioritized
qualitative choice logic (PQCL) [Benferhat and Sedki, 2007,
Benferhat and Sedki, 2008]. QCL extends propositional logic
with a new logical connective called ordered disjunction, de-

noted ; Formula A ; B means if possible then A, but if
A is not possible then at least B. PQCL introduced prior-
itized conjunction/disjunction to QCL by allowing the user
to express priorities in a user’s preference. Combined, if

(A M B)&(C x D) where & is the prioritized conjunction,
—
then the preference of A X B is more important to be satisfied

than the preference C % D.

The preference language proposed herein, called
prioritized qualitative choice linear temporal logic on
finite traces (PQCLTL ), integrates PQCL with a subclass of
LTL over finite traces. In particular, we introduce LTL for-
mulas for atomic preference and employ PQCL to represent
a preference over the temporal goals. We assign a dissatisfac-
tion score for each outcome (temporal sequence of states) in
light of semantics for PQCL. This scoring function enables
us to formulate a preference-based probabilistic planning
objective, that is, to minimize the expected dissatisfaction
score in a stochastic system, modeled as a labeled MDP.

However, this compact, logical representation of prefer-
ences alone is not sufficient for probabilistic planning, which
generally requires a computational model. Based on the re-
lation between LTL and automata, we developed a proce-
dure that translates a prioritized qualitative choice temporal
logic (PQCTL) formula into a weighted deterministic finite
automaton. This weighted automaton ensures for each path
that satisfies the preference to a degree k, the sum of weights
of the corresponding induced run on the weighted automa-
ton is exactly k. Augmenting the planning state space with
the state set of the weighted automata using a product opera-
tion, we show that the most preferred policy in the stochastic
system can be obtained by solving a product MDP. The cor-
rectness of the solution hinges upon the definition of a reward
function based on the weights on transitions in the weighted
automaton. We formally prove that the reward-maximizing
policy in the product MDP minimizes the expected degree
of dissatisfaction in the original MDP given the PQCTL for-
mula. In experiments, we employ several examples of robotic
motion planning example to demonstrate the efficacy and ap-
plicability of the method and provide a detailed compari-
son of preference-based planning and traditional probabilistic
planning with a monolithic temporal logic formula.

2 Preliminaries

Notations: The set of all probability distributions over a
finite set X is denoted D(X).
We introduce necessary preliminaries and notations next.

System model We model the interaction between the plan-
ning agent (a robot) and its stochastic environment as a vari-
ant of MDP.

Definition 1 (Labeled Markov Decision Process with a ter-
minating state). A labeled Markov decision process with
a teminating state (TLMDP) is a tuple M = (S, A =

UsesAs, P, so, s1, AP, L) where S is a finite set of states; A
is a finite set of actions, where for each state s € S, A, is the
set of available actions at s; A includes a special terminating
actiona, andforany s € S,a, € As;. P: SxAxS — [0,1]
is the transition probability function, where for each s, s’ € S
anda € A, P(s' | s,a) is the probability that the MDP tran-
sitions to s’ after taking action a at s; so € S is the initial
state; s € S is the terminating state, which is a unique sink
state. For any s € S, P(s,a,,s;) = 1. That is, if an agent
selects the terminating action a | , then a terminating state s
can be reached surely. The set AP is a finite set of atomic
propositions; and L: S — 24%7 U {x} is a labeling function
that assigns to each state s € S \ {s.}, the set of atomic
propositions L(s) C AP that hold in s. Only the terminating
state is labeled the empty string, i.e., L(s) = X.

A finite run in this MDP is a sequence p =
S0@pS1ay -+ * Sp—1ak—1Sk, In which, sg is the initial state
and for each 0 < ¢ < k — 1, P(siy+1 | Si,a;) > O.
The path associated with this run is the sequence p =
S0S1-+ Sk € S* an the trace of this path is defined as
trace(p) = L(so)L(s1)L(s2)---L(sx) € (247)*. A path
which ends at s is called terminating.

A finite-memory, randomized policy in the MDP is a func-
tion 7 : S* — D(A) that maps a state sequence into a distri-
bution over actions. A Markovian, or memoryless, random-
ized policy in the MDP is a function 7 : S — D(A) that maps
the current state into a distribution over actions. We denote
the set of all Markovian randomized policies as II.

A finite-memory, randomized policy 7 : S* — D(A) in-
duces a Markov chain M™ = (S*, P™) over S* as follows:
Forany p € S*,s € S,

P (pslp) = Y _ P(s|Last(p),a) - w(p,a), (1)
acA

where Last(p) is the last state given the sequence p.

The stochastic process induced by a Markov policy is a
Markov chain M™ = (S*, P™), where P™ can be obtained
as a special case of (1). The probability of a path p in the
Markov chain M7 is denoted by Pr(p; M™).

Planning objectives We are interested in probabilistic
planning subject to a preference over a set of temporal goals,
captured using linear temporal logic on finite traces (LTL )
formulas.

Definition 2 (LTL; Syntax [De Giacomo and Vardi, 2013]).
Given a finite set AP of atomic propositions, the syntax of
LTL; formulas is defined as follows:

p=ploplene|OpleUgp,

where p € AP, negation (—) and conjunction (A) are stan-
dard Boolean operators, and “Next” (()) and “Until” (U)
are temporal operators.

Informally, formula ) ¢ states that o holds at the next time
instant, and ¢; U 2 means there is a future time instant at
which ¢4 holds and for all time instants from the current time
until that future time, ¢; holds true. The temporal operator
“Eventually” (¢ ) is defined using “Until” as ¢ ¢ := true U ¢.
The dual of this operator is “Always” ([J), which is defined



as Jy := =0 —p. Formula ¢ ¢ means there is some future
time instant at which ¢ holds, while U ¢ is interpreted that ¢
is true at all future time instants. The semantics of LTL is
given as interpretations over finite traces and can be found in
[De Giacomo and Vardi, 2013].

The language of an LTL s formula ¢, denoted £(¢), is the
set of finite traces over the alphabet 27 that satisfy (. For
notational simplicity, let 3 := 247 in the following context.
The set of all finite words over a finite alphabet X is denoted
by X*. The language of LTL; formula ¢ can be represented
by the set of words accepted by a deterministic finite automa-
ton (DFA) A, = (Q, X, 0, qo, F'), where Q is a finite set of
states; 3 = 247 is a finite set of symbols called the alphabet;
d: Q x X — @ is a transition function such that 6(¢q, o) = ¢’
is the state reached upon reading input o from state ¢; gy € @
is an initial state; and F' C ( is a set of accepting/final states.
A transition function is recursively extended in the general
way: (g, ow) = 0(d(q,0),w) for given 0 € ¥ and w € £*.
A word w is accepting if and only if §(¢q, w) € F. The DFA
A, accepts the exact set of words satisfying ¢ given the se-
mantics of LTL.

3 Preference Language: Integration of
Prioritized Qualitative Choice Logic and
Temporal Logic

In this section, we present a new task specification language
to describe a subset of preferences over temporal goals. We
call this language POQCLTLy, which combines LTL; with
PQCL [Benferhat and Sedki, 2007]—a propositional logic for
representing ranked objectives.

—
PQCL augments propositional logic with a connective X,

called ordered disjunction: A formula ¢ Q ¢o means that if
poss1b1e then ¢4, and if ¢ is not possible then ¢2 The oper-

ator >< is left assomatlve and therefore ¢ >< o >< >< Gn =

01 % (¢2 X (... X ¢n) ...). In addition to ordered d1SJunct10n,
PQCL introduces prioritized conjunction: A formula ¢18&¢o
defines the lexicographical ordering between individual satis-
faction of ¢ and ¢s.

Definition 3 (Prioritized Qualitative Choice Linear Temporal
Logic on Finite Traces). Let ® be a set of LTL; formulas
over a set of atomic propositions AP. A PQCLTL  fragment
over AP (without negation) is defined by

.
=] xop|pkp,
in which ¢ € .

In comparison to PQCL, we do not include negation oper-
ation and thereby exclude the prioritized disjunction. Nega-
tion is only allowed in the construction of LTL; formulas.
The reason of not including negation is mainly due to ambi-

guity: A negation of flight ; train can mean the two options
are indifferent, incomparable, or train is preferred to flights.

Different words satisfy a PQCLTL; formula to different
degrees, which motivates us to quantify the number of alter-
natives a PQCLTL ; formula can be satisfied.

Definition 4 (Optionality, extended from [Benferhat and
Sedki, 20071). Given an PQCLTL; formula ¢, the option-
ality of ¢, denoted opt(v)), is the number of ways ( can be
satisfied, and is computed recursively as follows:

* If  is an LTL; formula, then opt(y) = 1;

—
* If © = @1 X @3, then opt(p) = opt(p1) + opt(p2);

* If o = 18y, then opt(p) = opt(p1) - opt(pa).
Associated with this definition of optionality, for each word

w € X" and a PQCLTL formula, the word satisfies the for-
mula to a certain degree.

Definition 5 (Satisfaction Degree, extended from [Benferhat
and Sedki, 2007]). Let ¢ be a PQCLTL; formula over AP
and w € ¥* (recall ¥ = 24%) be a finite word. We write
w =y ¢ for some positive integer k£ > 0 to denote that the
satisfaction degree of w with respect to ¢ is k, and use w = ¢
to denote that w does not satisfy .

The satisfaction degree of w with respect to ¢ is computed
as follows:

e If pis an LTL ; formula, then w =1 ¢ if w € L(yp), and
w g ifw ¢ L(p).

- — . .
o If o = @1 X o, then w =f @1 X o if either

- w g ¢1; or
- w Ep @2, w E o1, and k = n + opt(e1).
o If o = p1& o, then w [ p1& 9 if
— there exist 4, j > 0 such that w |=; @1, w |=; @2,
and k = opt(pa) X (i — 1) + 7;
— otherwise, if w = 1 or w £ @9, then w [~
p1&p2.

The definition of satisfaction degree induces a total order
only on the set of all the words that satisfy the PQCLTL ¢
formula, but it does not rank those words who does not satisfy
the formula. For planning purposes, we introduce a metric
whose range of values is circumscribed between 0 and 1.

Definition 6 (Dissatisfaction Score). The dissatisfaction
score function is a function d : ¥* x ® — (0,1] that as-
signs to each word w € X* and PQCLTL formula ¢ € @, a
positive real value in (0, 1], called the dissatisfaction score of
w with respect to , which is computed as follows:

o If w }£ @, then d(w, @) = 1;

e Ifw ':k gOfOI'k > O, then d(w,gp) = Opt(kW'

The lower the score, the more satisfied is the word. Note
that the score is always greater than 0. In the following con-
text, when the formula ¢ is clear from the context, we simply
write d(w) for the dissatisfaction score of w w.r.t. ¢.

Preference model generated from a PQCLTL; formula
Each PQCLTL; formula ¢ over a set of atomic proposi-
tions AP induces a preference model =% over ¥* = (24)*
such that for any two words w,w’ € X*, w is preferred
to w’ with respect to ¢, i.e. , w =% w’, if and only if
d(w, ) < d(w', p).

It is easy to prove the following property.



Lemma 1. If w =% w’, then one of the following conditions

holds: 1. w =i wand w' £ @ o1 2. w =, ¢, W' Em @, and
n <m.

The preference model over X* directly translates to a pref-
erence model over S*—the set of finite paths in a labeled
MDP such that path p € S* is preferred to p’ € S* if and
only if d(L(p), ¢) < d(L(p’), ). Thus, given a policy in a
labeled MDP, we introduce the following measure to evaluate
how preferred a policy is with respect to a PQCLTL ; formula.

Definition 7 (Expected Dissatisfaction Score). Let 7 be a
finite-memory, randomized policy for a given MDP, M™ =
(S*, P™) be its induced Markov chain, and ¢ be a PQCLTL
formula. The expected dissatisfaction score of m with respect
to ¢, denoted by d(m, ¢), is defined

d(m, @) = Y Pr(p; M) -d(L(p), o). 2
peES*

We now formally state the probabilistic planning problem:

Problem: Probabilistic Planning with Prioritized Prefer-
ences over Temporal Logic Objectives (PPwPPoTLO)

Input: A labeled MDP M = (S, A =
UsesAs, P,so,s1,AP,L) and a PQCLTL;
formula .

Output: A policy : S* — D(A) that minimizes the ex-
pected dissatisfaction score of ¢.

4 Optimal planning for PQCLTL ; formulas

We now present a planning algorithm to solve the PPwP-
PoTLO problem. Our approach consists of two steps: In
the first step, we construct an automata-theoretic model for
PQCLTL formula. In the second step, we show that the op-
timal policy that minimizes the expected dissatisfaction score
of the given formula can be computed by solving a reward-
maximizing MDP with augmented states.

4.1 Automata-theoretic modeling of PQCLTL
formulas

We focus on constructing a computational model for a given
PQCTL formula ¢. The choice of such a computational
model for representing the subclass of PQCLTL formulas
is a weighted deterministic finite automaton.

Definition 8 (Weighted Deterministic Finite Automa-
ton [Droste and Gastin, 2009]). A weighted deterministic fi-
nite automaton is a tuple A = (Q, %, 6, o, W), where Q is a
finite set of states; X U {x } is a finite set of symbols (alpha-
bet); and x is a unique symbol representing the end of a string
L§:Q x (BU{x}) — Q is a deterministic transition func-
tion; g is the initial state; and w : @ x (XU {x}) x Q@ = R
is a weight function that assigns each transition (g, 0, ¢’) to a
real value, called the weight of this transition.

'In general, one can include x as the beginning of a finite string
and X as the ending of a finite string. The beginning symbol x is
omitted as it is clear from the context.

Consider a finite word w = ooy ...0,-1X, let w[i] be
the i-th symbol of this word. The run p generated by word
wis p == qoooq1 - - . On—1¢y that satisfies ¢;11 = 6(q;, w[i]),
fori =0,...,n — 1. We write Word(p) = w to denote the
word associated with the run p. The total weight is w(p) =
Yo wlgi, wlil, gita)-

First, we show how to construct the weighted deterministic
finite automaton (WDFA) for an LTL ¢.

Definition 9 (WDFA for an LTL; Formula ¢). Let A, =
(Q,X%,9,qo, F') be a DFA encoding . A WDFA for encoding
¢ is constructed from A, as a tuple

A= (QU {sink}, B U{x},d" g0, W)
in which for each ¢ € Q U {sink} and 0 € ¥ U {x },
if ¢ # sink and 0 # X

4(q,0)
§(q,0) =4O\ 3
(g,0) {sink otherwise, 3)
and for each ¢, ¢’ € Q U {sink} and 0 € Z U {x },
, 1 ifge Fando = x and ¢’ = sink
= 4
w(a,0.q) {O otherwise. @

Intuitively, the WDFA A extends the DFA A, with a sink
state sink. For any state s € S of the original DFA A, a
transition to sink is made with an input symbol x. A weight
one is received only if the transition is from an accepting state
to the sink state upon reading the ending symbol x.

Lemma 2. Given a WDFA A for an LTL; formula ¢ and
a finite run p = qoooq1...0n—1qn, if Ww(p) = 1 then

Word(p) =1 .

The proofs of Lemmas 2, 3 4, and 5 can be found in Ap-
pendix A.

Next, we define the construction process of WDFAs for
ordered disjunction and prioritized conjunction of PQCLTL ¢
formulas.

Definition 10 (WDFA for Ordered Disjunction of PQCLTL ¢
Formulas). Let A; = (Q; U {sink; }, X U {x},d;, qo;, Wi)
for ¢ = 1,2 be two WDFA'’s that respectively encode two
PQCLTL formulas ¢1, 2. One can constrcut from them, a

WDFA for ¢ X o as atuple A = (Q1 x Q2 U {sink},Z U
{x}, 9, (qo1,902), W), in which, the transition function is de-
fined as, for any (q1,¢2) € Q1 X Q2 and o € ¥ U {x},

5((q1,2),0) = {<51(‘1170),52(q2,o)) if o # x

sink otherwise,
and the weight function is defined as,
 Forany (q1,¢2) € Q1 X Q2, inputo € X
w((q1,q2),0,(01(q1,0),02(q2,0))) =0
 For any (q1,¢2) € Q1 X Q2, input X,
w((q1,q2), X,sink) =

wi1(q1, X,sink)
wa(q2, X, sink) + opt(¢1)

if wy(q1, X,sink) > 0
if wi(q1, X,sink) =0
and wy(g2, X, sink) > 0
otherwise,

o



Lemma 3. Given a WDFA A for ¢ = ¢ % 2 and a finite
run p = qoooqi - - - An—10n—19n, if w(p) = kforak > 0,
then Word(p) =1 ¢, else Word(p) [~ .

Definition 11 (WDFA for Prioritized Conjunction of
PQCLTL; Formulas). Let A; = (Q; U {sink;},¥ U
{x},di,q0;, ;) for i = 1,2 be two WDFA’s that respec-
tively encode two PQCLTL ; formulas ¢4, ¢2. One can con-
struct from them, a WDFA for ¢1&¢2 as a tuple 4 =
(@1 x Q2 U {sink}, XU {x},d, (qo1,q02), W), in which, the
transition function is defined as, for any (q1,q2) € Q1 X Q2
ando € ¥ U {x},

S ) = {

and the weight function is defined as,
* Forany (q1,q2) € Q1 x Q2,foro € %,

0,(61(q1,0),02(q2,0))) =0

e For any (q1,q2) € @1 X Q, for input x, if
w;(gi, X, sink) > 0 for both i = 1,2, then

(61(Q1a0)’62(QQ7U)) lfo'# X,
sink otherwise.

w((q1,92),

w((q1,q2), X,sink) = wa(ga, X, sink)
+ opt(p2) - (W1(q1, X,sink) — 1),
else w((q1,q2), X,sink) = 0.
Lemma 4. Given a WDFA A for ¢ = ¢1&2, and a finite
run p = qoooqi - - - An—10n—19n, if w(p) = kforak > 0,
then Word(p) =k ¢, else Word(p) }= .
Given the above construction methods of WDFAs for

PQCLTL; formulas, the WDFA for a more complex
PQCLTL; formulas can be constructed recursively.

Lemma 5. Given a PQCLTL; formula ¢ for which £(¢) #

() and the constructed WDFA A, the optionality of ¢ is the
maximal weight of all transitions in .A. That is

opt(p) = max{w(q,a,q’) | §(¢,a,q') is defined.}

An example to illustrate the construction of WDFAs is
given in the Appendix B.

S Probabilistic Planning to Minimizing
Dissatisfaction Score

In this section, we show how to leverage the WDFA for solv-
ing Problem PPWPPoTLO. Similar to probabilistic planning
with linear temporal logic constraints, a product operation
between the labeled MDP and the WDFA allows us to keep
track of temporal objectives.

Definition 12 (The product between the labeled MDP and a
WDFA). The product of a given WDFA A = (QU{sink}, ZU
{x},d, g0, w) and a terminating labeled MDP M = (S, A =
UsesAs, P, sg, s1, AP, L) is an MDP

(MA = U A117P7U07R)

veV

M=MxA=

in which
e V =5 x @ is the state space,

» A is the set of actions, and for each v = (s,q) € V,
A, = A, is the v’ set of available actions,

* P is the probabilistic transition function, where for each
states (s, q), (s',¢') € V and action a € A,

P((s,9),a.(s",¢")) = P(s,a,5") - 1(d(q, L(s")) = ¢')

* v = (S0, 0(qo, L(s0))) is the initial state.

e R:V x A — Ris the reward function, where for each
(s,q) € Vanda € A,if a = a; and w(q, X, sink) > 0,

then R((s,q),a1) = opt(v) — w(q, x,sink) + 1, else
R((s,q),a) =0
Given a finite run h = wvgagvia; -..v, in the product

MDP, the total reward is R(h) = >.""_" R(v;,a;). Since
a run h in the product MDP corresponds to a run p in the
original MDP except that each state in p is augmented with
an automaton state, we use Projg(h) to compute the projec-
tion of the run h = (s0,90)(S1,q1) ---(Sn,qn) € V* to a

run $ps18z2...8, € S* whose labeling is L(so$1...8,) =
L(so)L(s1)...L(sy). We denote the set of finite runs in M
by Runs(M).

Based on the reward function, the expected total reward of
a nonstationary policy 7 : V* — D(A) for an initial state
v € V is defined as

Jr(v) = lim ]\?up Jr.N (),
—00

with J; n(v) being the expected N-stage reward of 7 for
state v:

N
E|> R(Vi,m Vi) [ Vo=v],
t=0
where V, is the state at time k. The expectation is with respect
to the probability distribution of paths in Markov chain M™.

Lemma 6. For any policy 7 : V* — D(A) of the product
MDP M, forany v € V, J(v) < 0.

The proof is in Appendix A.
The optimal value function is defined to be

J*(v) = arg max Jr (v).

For optimal planning to maximize the total reward, J*(v) can
be attained by a Markovian policy [Puterman, 2014]. There-
fore, in the following, we only consider Markovian policies.
We also consider the Bellman operator 7', defined by

fmaxz 7m(a | v)
well acA,

+ > P |v,a)m(a | v)J (),
v'eV

and the optimal value function satisfies T'J* = J*.
Among all the Markovian policies for the product MDP,
we consider only the proper ones.

Definition 13 (Extended from [Bertsekas and Yu, 2013]). A
policy 7 for the MDP M is proper if it guarantees that the
sink state (s , sink) will be reached with probability one.



Lemma 7. The optimal value J*(v) for any v € V can be
obtained by a proper, Markovian policy of product MDP M.

The proof is in Appendix A.

Thus, to search an optimal policy, we need to consider only
proper, Markovian policies. We now relate the reward maxi-
mizing problem in the product MDP to the planning objective
of minimizing the expected dissatisfaction score.

Lemma 8. For each path h = (s0,q0)(s1,¢1) - - - (Sn,qn) €

V*, it holds that,
1— 2% i R(R) >0
d(L(Projg(h)), = opt()+1 ’
(L(Projg(h)), ¢) {1 it R(h) = 0.

The proof is in Appendix A.

Theorem 1. Let 7 : V' — D(A) be a policy for the prod-
uct MDP M. Construct from m, a policy 7’ : S* — D(A)
for M such that for each p : sgs1---s, € S*, @'(p) =
7((Sn,0(q0, L(p)))). If 7 is an optimal policy for M, then
7' is an optimal policy that minimizes the expected dissatis-
faction score, i.e. , the solution to PPwPPoTLO.

Proof. We establish a connection between the expected dis-
satisfication score of 7’ and the value of 7. First, we use (2)
to expand the expected dissatisfication score of 7'

d(r',0) = 3 Pr(p:M™) - d(L(p)¢) (5
peES™
Next, we expand the value of 7.

Tr(vo) = Y Pr(h; M™) - R(h)

heV*

- ¥

heV*:R(h)=0

Y

REV*:R(h)#£0

Pr(h; M™) -0
Pr(h; M™) - R(h) (6)

Using the result of Lemma 8, we write this summation as:

Jﬂ<v0) = Z

REV*:R(h)#£0
- (opt(p) + 1))

Pr(h; M™) - (1 — d(L(Projs(h))))

[ replace opt(p) + 1) by K, Pr(h; M™) by Pr™ (h).]

=(K - Z

heV*:R(h)#0

_K. Z

heV*:R(h)#0
=K- Y Pr'(h)-K- >
hev* heV*:R(h)=0
—~K- Y Pri(h)d(L(Projs(h)) ()
heV*:R(h)#0

(K - K - Z

heV*:R(h)=0

Pr™(h)
Pr”(h)d(L(Projs(h)))

Pr™(h)

Pr™(h)-1

- K. Z

heV*:R(h)#0

=K — K- Y Pr"(h)-d(L(Projs(h))) ©)
hev™

Pr™(h)d(L(Projs(h))  (8)

From (7) to (8), we use the probability axiom that
> hev- Pr(h; M™) = 1. From (8) to (9), we use Lemma 8
that if R(h) = 0 then d(L(Projg(h))) = 1. Thus, relating (9)
and (5), we have

J?T(UO) :K_K'd(ﬂ/7(p)a (10)

and therefore argmax . J(vg) = argmin_, d(7’, ), that is,
a policy 7 that maximizes .J yields a policy 7’ that minimizes
the dissatisfaction score d. O

6 Complexity Analysis

The first step of the algorithm constructs a WDFA that en-

codes . The constructed DFA from LTL; formulas is

double-exponential in the size of the formulas in the worst

case [Wolper, 2001; De Giacomo and Favorito, 2021]. How-

ever, in practice this translation is tractable for commonly

seen LTL; formulas in robotic planning. The construction
—

of automata for ordered disjunction ¢; X o and prioritized
conjunction ;&2 using Def. 10 and Def. 11, respectively,
takes a polynomial time to the sizes of the WDFA’s for sub-
formulas @1 and @5. Constructing the product MDP M takes
a polynomial time to the size of the WDFA and the original
MDP. And computing an optimal policy for M takes a time
polynomial in the size of the product MDP M, using standard
techniques (value/policy iteration or linear programming).

7 Experiment

We show the efficacy of the proposed algorithm using several
examples of probabilistic robotic motion planning.

IAction taken

O, N WA 1 O

0123 4567
X

Figure 1: A 8 x 8 stochastic gridworld g; (without the red star) and
the transition probabilities when an action “N” is taken. The red star
is an additional hole introduced in gridworld g2.

Consider a small stochastic gridworld g; shown in Fig. 1.
For each state s € S, the robot has four actions: “N”, “W”,

2 All experiments are executed on an Ubuntu 20.04 machine with
AMD Ryzen 9 5900X CPU and 32 GB RAM. We use the Gurobi
solver for planning in MDP. The computational times of solving the
optimal planning problem for any 8 x 8 gridworlds with different
formulas are no more than 0.1 seconds. The code can be found in
the supplementary file.



“S”, “E”. After taking an action from a state, the robot tran-
sits to the intended cell with probability 0.8 and slips to unin-
tended cells with probability 0.1. If the robot takes an action
and reaches the boundary wall, then it stays in the original
cell. The initial state of the robot is (6,6). The shaded ar-
eas denote holes. Once the robot enters holes, it gets stuck.
Regions of interest are labeled a, b, and c. Accordingly,
AP = {a,b,c}. Each of these atomic propositions holds
at a time instant when the robot is in the region labeled by the
corresponding atomic proposition.

Given the set AP of atomic propositions, we consider
the following preference formula (see Appendix B for the
WDFA.)

Obx (Gavoo).

We computed the optimal policy 7, that minimizes the ex-
pected dissatisfaction score. To see the difference of ordered
disjunction and regular disjunction, we also compute a opti-
mal policy that maximizes the probability of satisfying for-
mula O bV (O aV O c). We denote this policy as m,. We plot
the optimal values for different initial states in Fig 2b. Then
we perform policy evaluation of 7, and 7, against { b and
Qa Vv O c, separately. The probabilites of satisfying formula
¢ for ¢ € {0 b, O aVv c} for different initial states are shown
in Fig. 2¢, 2d, 2e and 2f. Comparing Fig. 2c against Fig. 2e
for the formula ¢ b, 7, achieves higher values in the most ar-
eas of the gridworld, especially at the top left corner. On the
other side, comparing Fig. 2d against Fig. 2f, we can see that
my, achieves higher probability of satisfying ¢ aVV$ ¢ than that
of policy 7, in most areas of the gridworld, especially at the
top right corner. This comparison indicates that when ¢ b is
preferred to ¢ a V § ¢, the preference-based policy gravitates
towards satisfying ¢ b.

Next, we consider the following formula that has prior-
itized conjunction and nested ordered disjunctions: ¢z =
p1&pa, where p; = Ob ; (OaVv Oc)and g3 = O(a A
O (bAOC)) M O (anOe)VO (bAO ). This task formula de-
scribes that the system needs to satisfy ¢; and (o both, with
1 having a higher priority than 5.

For this case, we consider an additional gridworld go
which includes an additional hole at the position (2, 5), which
blocks the access to a. Given the formula @3, we compute the
optimal policies 7r; when region a is accessible and 7~ when

region a is inaccessible.
0.4
0.2
3 1 l 0.0
5 6 7
(a) (b)

Figure 3: (a) The value J((-, qo); (71, ¢s)) in gridworld gi. (b) The
value J((+, qo); (7 , ¢3)) in gridworld go.

We plot the heatmaps of ¢3 for these two gridworlds in
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Figure 2: Each subfigure with the subcaption (7, ¢) is the value
J((+,qo); {m, ¢)) of policy evaluation of policy 7 given the formula
¢ starting from different initial states in gridworld g;.

Fig. 3a and 3b. The following observation is made: When
a is accessible, starting from the upper left corner, the agent
receives higher values with the optimal policy. But if a is
not accessible, the upper left corner states have values zero.
This is because the formulas , cannot be satisfied as the
agent cannot reach region ¢ when starting from the upper left
corner. Therefore, 3 is not satisfiable. The state values un-
der the optimal policy given a accessible are higher than the
state values when a is not accessible, indicating the agent can
achieve a more preferred outcome in the gridworld g .

8 Conclusion

In this paper, we introduced a new specification language,
termed prioritized qualitative choice linear temporal logic on
finite traces (PQCLTLy), for compactly specifying a tem-
poral goal along with the user’s preferences on sub-goals.
We presented an automatic translation from this language
to weighted deterministic finite automaton. We used this
translation in solving the problem of computing a policy
that minimizes the expected dissatisfaction score of a given
PQCTL formula in a stochastic environment modeled by
an MDP. By bridging the gap between preferences in Al
and temporal logic planning, this work enables future study
that incorporates preference elicitation and learning from
positive/negative data and adaptive planning in sequential



decision-making problems.
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A Proofs

Proof of Lemma 2

Proof. The run p has a weight 1 if and only if ¢,,—1 € F|,
on—1 = X, and g, = sink. Due to the acceptance condition
for DFAs, the word Word(p) = ooy ...0,-1 is accepted
and thus satisfies the LTL ; formula ¢. O

Proof of Lemma 3

Proof. Given the penultimate state q,—1 = (q1,¢2), if
w1(q1, X,sink) = wa(ga, X,sink) = 0, then Word(p) = o,
meaning it does not satisfy ¢. If wy(q1, x,sink) = 0, but
wa(ge, X,sink) > 0, then Word(p) satisfies @9 to a positive
degree but does not satisfy ;. The satisfaction degree w.r.t.

—

(1 X (g is the sum of the satisfaction degree w.r.t. (o and

the optionality of ¢. Else, if wy(q1, x,sink) > 0, then the
—

satisfaction degree w.r.t. @1 X o is the satisfaction degree
W.I.t. 1. O

Proof of Lemma 4

Proof. The proof is by construction and similar to the proof
of Lemma 3. Thus, it is omitted. ]

Proof of Lemma 5

Proof. The property can be shown based on the recursive
definition. First, it is clear that if the PQCLTL; formula
is an LTL; formula, then the optionality is one and the
maximal weight of all defined transitions is one. Consider
two PQCLTL; formulas 1,2, and their corresponding
WDFAs A = (Q;U{sink}, XU {x }, §;, go;, w;) that satisfies
Opt(gol) = ma‘X{Wi (qa a, q/) | 61 (qa a, ql) is deﬁned'}'

In the WDFA of the ordered disjunction ¢ X g, the
maximal weight by construction is max{ws(g2, X,sink) +
opt(i21)} = max{ws (g, x, sink)} + opt(i21) = opt(i72) +
opt(¢1), which is consistent with Def. 4.

In the WDFA of the prioritized conjunction ¢1&ps, the
maximal weight by construction is max; j{opt(p2) x (i —
1) + j} where 0 < i < max{wi(q1, X,sink)} = opt(¢1)
and 0 < j < max{wa(qa, X,sink)} = opt(p2). Therefore,
max; j{opt(p2) x (i —1)+j} = opt(p2) x (opt(w1) —1)+
opt(p1) = opt(p2) X opt(e1). This is again consistent with
Def. 4. O

Proof of Lemma 6.

Proof. A finite run p = vgagvia; ... v, receives a nonzero
reward only if there exists 0 < k < n, vp = (s1,sink),
and for all j < k, v; # (s1,sink). The total reward of p is
upper bounded by opt(y). Therefore, for any policy 7 and
any state v, the limit of J; y(v) as N — oo exists and is
upper bounded by opt(). O

Proof of Lemma 7.

Proof. We show that for every improper, optimal Markovian
policy, there is a proper, Markovian policy that obtains the
same value. Consider an improper, optimal Markovian pol-
icy 1 under which there is an infinite run. Since the reward is
only obtained by reaching state (s ,sink), the infinite run h
will have a reward of zero. Thus, a proper policy 7* that has
the same value J,+ (v) = Jr+ (v) can be constructed by copy-
ing 7T for all finite runs. For all infinite runs, 7* is obtained
from 7' by terminating at any state with a zero reward. [

Proof of Lemma 8.

Proof. Prove by construction. For the first case, let us recall
R(h) = 32" " R(vi,a;). If L(Projg(h)) = ¢ for some
k > 0, then R(h) = opt(p) — w(gn, X,sink) + 1. Plug in
R(h), and we have d(L(Projg(h)),¢) = 1 — R

_ opt(p)+1
%, complying with Lemma 2, 3, and 4. For the

second case, if L(Projg(h)) & ¢, then R(h = 0), then
d(L(Projg(h)) = 1, complying with Def. 6. O

B Example of weighted automata
construction

We illustrate the construction of WDFA using an example.

Example 1. Given two LTL ; formulas ¢ band ¢ a V { c and

a PQCLTL formula ¢ b Q (0 aV ¢ c), reading “if possible,
eventually satisfy b, and if not possible, eventually satisfy a or
¢.” The WDFAs for the LTL s formulas are shown in Fig. 4a
and 4b, and the WDFA is shown in Fig. 4c. For clarity, we use
propositional logic formulas instead of 247 as the symbols
for the transitions. For example, b A (a V ¢) : 0 stands for
{b,a} : 0,{b,c} : 0, and {b, a,c} : 0. From Fig. 4c, we see
that the weight transits from (0, 1) to sink is 2, that is because
by triggering that transition the satisfied formula ¢ a vV ¢ c is
less preferred.

In Table 1 we list the satisfaction degrees given differ-
ent words. From the dissatisfaction scores, we have w; =9

wo = wg,wheregé:Ob;(Oa\/Oc).



Table 1: Dissatisfaction Scores for Words w.r.t. { b % (QaVvidc)

Words | Word descriptions | w = 0b wk; 0aVOe wlEp0bx (OaVvOe) dw,0bx (OaVic))
1 1

w1 {bH{a}x 1 1/3
wa 00{a}x = 1 2 2/3
ws | 00 - = ~ 1

—aA—c:0

(b)

—aAN-c:0

start —>

(©)

Figure 4: (a) The WDFA accepting the formula ¢ b. (b) The WDFA
accepting the formula ¢ a V ¢ ¢. (c) The WDFA accepting the for-

mula &b % (QaV o).
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