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Abstract

We study policy optimization for Markov decision processes (MDPs) with multiple
reward value functions, which are to be jointly optimized according to given crite-
ria such as proportional fairness (smooth concave scalarization), hard constraints
(constrained MDP), and max-min trade-off. We propose an Anchor-changing
Regularized Natural Policy Gradient (ARNPG) framework, which can systemati-
cally incorporate ideas from well-performing first-order methods into the design of
policy optimization algorithms for multi-objective MDP problems. Theoretically,
the designed algorithms based on the ARNPG framework achieve Õ(1/T ) global
convergence with exact gradients. Empirically, the ARNPG-guided algorithms also
demonstrate superior performance compared to some existing policy gradient-based
approaches in both exact gradients and sample-based scenarios.

1 Introduction

In many sequential decision-making scenarios, agents usually face multiple objectives simultaneously.
This motivates the study of reinforcement learning (RL) with multiple reward values V ⇡

1:m(⇢). 2

Given the achievable region V = {V ⇡
1:m(⇢)}⇡2⇧ consisting of value vectors achieved by policies in

policy class ⇧, the agent employs certain criteria to reflect the system requirement. For example,

1. Proportional fairness [13]: Given a1:m > 0, find v 2 V that
Pm

i=1 ai
v0
i�vi
vi

 0, 8v0 2 V .
2. Hard constraints [4]: Given b2:m, maximizev2V v1, subject to vi � bi, 8i = 2, . . . ,m.
3. Max-min trade-off [8]: Given c1:m > 0, maximizev2V mini2[m] (vi/ci).

We study policy gradient-based approaches that optimize over parameterized policies ⇧ = {⇡✓ :
✓ 2 ⇥} through policy gradient. In general, the optimization problems above may not be convex in
terms of ✓, not even for single-objective MDPs with direct parameterization by ✓s,a = ⇡✓(a|s) [2].
Due to the non-convexity, O(1/T ) global convergence of policy gradient-based methods was only
established very recently for single-objective MDPs with exact gradients [2, 20]. These breakthrough
results have motivated the study of policy optimization for multi-objective MDPs, e.g., smooth
concave scalarization [5], constrained MDPs (CMDPs) [11, 31].

However, under the exact gradients scenario, the previous approaches for multi-objective MDPs,
either suffer from slow provable O(1/

p
T ) global convergence [11], or require extra assumptions

⇤The first two authors contributed equally.
2The notations are formally defined in Section 2.
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[37, 33, 18]. The compactness of ⇥ is assumed in [37], but this assumption forbids a very common
softmax parameterization, where ⇥ = R|S||A|. The NPG-based methods have been analyzed in
[33, 18] under an ergodicity assumption, but such an assumption is not required for NPG in single-
objective MDPs [2], and therefore appears artificial.

The above criteria for multi-objective MDPs could be viewed as convex optimization problems w.r.t.
a value vector v 2 V , for which there are a wide array of well-performing first-order methods for
convex optimization problems in general. It is desirable to take full advantage of such efficient
first-order methods in a unified and flexible manner when designing policy gradient-based algorithms
for multi-objective MDPs.

Main contributions
1. We propose an anchor-changing regularized natural policy gradient (ARNPG) framework in

Section 3 that can exploit and integrate first-order methods for the design of policy gradient-based
algorithms for multi-objective MDPs.

2. We demonstrate the strength of the ARNPG framework by designing algorithms for three
general criteria: smooth concave scalarization (Section 4.1), constrained MDPs (Section 4.2),
and max-min trade-off (Section 4.3).

3. Under softmax parameterization with exact gradients, the proposed algorithms inherit the
advantages of the integrated first-order methods, and are guaranteed to have Õ(1/T ) global
convergence without further assumptions on the underlying MDP.

4. In addition to the theoretical advantages, we provide the results of extensive experimentation
in Section 5 and Appendices A and B which demonstrate that the ARNPG-guided algorithms
provide superior performance in exact gradient and sample-based tabular scenarios, as well as
actor-critic deep RL scenarios, compared to several existing policy gradient-based approaches.

1.1 Related works

Policy gradient (PG)-based methods have drawn much attention recently [1, 20, 10, 14] due to their
simplicity as well as the potential to generalize to large scale problems. Despite their non-convex
nature, PG-based methods have been shown to converge globally for single-objective MDPs [1, 20].
Their convergence may be further accelerated with appropriate regularization [10, 17], e.g., entropy
regularization, but the algorithms only converge to the optimum of the regularized problem instead of
the desired (unregularized) problem.

This paper considers single-policy multi-objective MDPs, including CMDPs where constraints are
specified on some objectives. Global convergence of PG-based approaches in the multi-objective
MDPs has been previously studied. For smooth concave scalarization, Bai et al. [5] showed an
O(1/✏4) sample complexity (to achieve ✏-optimal in expectation) of the policy-gradient method
under sample-based scenarios. However, with exact gradients, we are unaware of works with fast
Õ(1/T ) convergence. For CMDPs, Ding et al. [11] have studied a primal-dual NPG algorithm
achieving O(1/

p
T ) global convergence for both the optimality gap and the constraint violation. Xu

et al. [31] have proposed a primal approach that reduces constraint violations with a higher priority
than optimizing objective, and enjoys the same O(1/

p
T ) global convergence. In work conducted

concurrently with ours, [33] and [18] have proposed algorithms that achieve Õ(1/T ) convergence
but with extra ergodicity assumptions.

A general setting of optimizing a concave function of the state-action visitation distribution has been
considered in [37]. Though the problem is more general, its gradient estimation is more complicated
than the canonical policy gradient estimate. Zhang et al. [37] showed that the gradient ascent
achieves O(1/T ) global convergence for smooth scalarization with exact gradients, under several
assumptions such as convexity and compactness of the parameter set ⇥. Directly viewing the state-
action visitation as the decision variables and imposing equality constraints for their feasibility, a
smooth concave scalarization has been studied in [36] and later generalized to the constrained setting
in [6]. These two works focus on sample-based scenarios, but due to their primal-dual approach with
equality constraints, the convergence rate is only O(1/

p
T ) even with exact gradients. Moreover, the

state-action visitation parameterization is difficult to generalize to larger scale deep RL scenarios.

A more thorough discussion on related works is given in Appendix F.
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2 Preliminaries

System model A Markov decision process (MDP) is represented by a tuple (S,A, P, ⇢, �, r), where
S is the state space, A the action space, P : S ⇥ A ! �(S) the transition kernel, ⇢ 2 �(S) the
initial state distribution, � 2 (0, 1) the discount factor, and r : S ⇥A ! [0, 1] the reward function.
Given any policy ⇡ : S ! �(A) and any reward function r : S ⇥A ! [0, 1], we define the state
value function V ⇡

r : S ! [0, 1
1�� ], and the state-action value function Q⇡

r : S ⇥A ! [0, 1
1�� ], as

V ⇡
r (s) := E[

1X

t=0

�tr(st, at) | s0 = s,⇡], Q⇡
r (s, a) := E[

1X

t=0

�tr(st, at) | s0 = s, a0 = a,⇡],

where expectation E is taken over the random trajectory of the Markov chain induced by the policy
⇡ and the transition kernel P . With a slight abuse of notation, we denote V ⇡

r (⇢) := Es⇠⇢[V ⇡
r (s)].

Define the discounted state-action visitation distribution (state-action visitation for short) of policy
⇡ with initial state distribution ⇢ by d⇡⇢ (s, a) := (1� �)Es0⇠⇢[

P1
t=0 �

tP(st = s, at = a|s0,⇡)]. It
then follows that V ⇡

r (⇢) = 1
1�� hd

⇡
⇢ , ri by viewing d⇡⇢ and r as |S||A|-dimensional vectors indexed

by (s, a) 2 S ⇥A. When it is clear from the context, we denote the state visitation distribution by
d⇡⇢ (s) := Es0⇠⇢ [(1� �)

P1
t=0 �

tP(st = s|s0)], which is the marginal distribution of the state-action
visitation d⇡⇢ (s, a), i.e., d⇡⇢ (s) =

P
a2A d⇡⇢ (s, a).

We study an MDP with m objectives represented by (S,A, P, ⇢, �, r1:m), where ri : S ⇥ A !
[0, 1] is the i-th reward function for each i 2 [m]. For simplicity, denote V ⇡

i (·) := V ⇡
ri (·) and

V ⇡
1:m(·) := (V ⇡

1 (·), . . . , V ⇡
m(·)). We consider parameterized policies in ⇧ = {⇡✓ : ✓ 2 ⇥}, where

⇥ ⇢ Rn is the parameter space. For example, the softmax policy is ⇡✓(a|s) = exp(✓s,a)P
a0 exp(✓s,a0 )

with

⇥ = R|S||A|; and neural softmax policy is ⇡✓(a|s) = exp(NN✓(s,a))P
a0 exp(NN✓(s,a0)) , where NN✓ is some neural

network parameterized ✓. Define V := {V ⇡✓
1:m(⇢) : ✓ 2 ⇥} as the achievable region of value vectors.

The agent wishes to optimize the policy in ⇧ for a given specific multi-objective criterion on value
vectors in V .
Mirror ascent As one of the most well-known iterative optimization methods, mirror descent
(actually ascent in the context of our formulation as a maximization problem) [21, 7] is a general
class that encompasses many first-order methods in convex optimization. Given a variable x in a
compact convex set X ⇢ Rn and an ascent direction g 2 Rn, the variational representation of the
mirror ascent update is

x0 2 argmax
y2X

{hg, yi � ↵Bh(y||x)}, (1)

where Bh(x||y) := h(x) � h(y) � hrh(y), x � yi is some Bregman divergence generated by a
differentiable convex function h : X ! R. When analyzing the convergence of first-order methods,
certain fundamental inequalities are usually established to facilitate the proof. One such inequality is

hg, x0i � ↵Bh(x
0||x) � hg, yi � ↵Bh(y||x) + ↵Bh(y||x0), 8y 2 X , (2)

which is a critical step in many previous works, e.g., [22, 27, 16].

It is desirable to construct a similar fundamental inequality for multi-objective MDPs that can
facilitate the analysis of convergence. As we will show in the next section, such an inequality can
indeed be established in a new framework, which we refer to as the Anchor-Changing Regularized
Natural Policy Gradient (ARNPG).

Notations Denote KL-divergence between two n-dimensional probability vectors x, y byD(x||y) :=Pn
i=1 xi log(xi/yi), which is a widely-used Bregman divergence. For any policies ⇡,⇡0 and state

visitation distribution d, define Dd(⇡||⇡0) :=
P

s2S d(s)D(⇡(·|s)||⇡0(·|s)). A uniform policy is one
which chooses actions uniformly at random.

3 Anchor-changing regularized natural policy gradient

Let us consider a hypothetical mirror ascent update on decision value vector vk 2 V according to (1).
Given an ascent direction G̃k along which to improve vk, the updated value vector is

v0 2 argmax
v2V

{hG̃k, vi � ↵Bh(v||vk)}. (3)
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Suppose the value vector vk is achieved by a policy ⇡✓k , i.e., vk = V
⇡✓k
1:m (⇢). Denote the reward

function in the ascent direction as r̃k(s, a) = hG̃k, r1:m(s, a)i. It follows that hG̃k, vki = V
⇡✓k
r̃k

(⇢).
Note that Bh(v||vk) in (3) serves the role of a soft constraint on v by keeping v within a vicinity of

vk. Replacing B(v||vk) by
D

d
⇡✓
⇢

(⇡✓||⇡✓k
)

1�� will induce a similar soft constraint that prefers the vicinity
of the “anchor" policy ⇡✓k . Therefore we consider replacing the variational update in (3) by

✓0 2 argmax
✓2⇥

n
Ṽ ⇡✓
k,↵(⇢)

o
, where Ṽ ⇡✓

k,↵(⇢) := V ⇡✓
r̃k

(⇢)� ↵
Dd

⇡✓
⇢
(⇡✓||⇡✓k)

1� �
. (4)

ARNPG Motivated by the intuition above, we propose the Anchor-Changing Regularized Natural
Policy Gradient (ARNPG) framework. At (macro) step k, the ARNPG framework determines
the reward function in the ascent direction r̃k and the anchor policy ⇡✓k , which can exploit well-
performed first-order methods in convex optimization literature utilizing the features of the specific
criteria in use. With r̃k and ⇡✓k , we wish to solve for (4) to improve the value vector. However the
optimal solution ✓0 of (4) is generally not determinable explicitly. ARNPG therefore approaches
the optimal solution via a subroutine that executes a natural policy gradient (NPG) algorithm w.r.t.
the KL-regularized value function Ṽ ⇡✓

k,↵(⇢). We refer to this subroutine, given in Algorithm 1, as
InnerLoop(r̃k,⇡✓k ,↵, ⌘, tk). It iteratively updates the parameter ✓(t)k for tk (micro) steps according to
the NPG update rule as in (5), where F⇢(✓)† is the Moore-Penrose inverse of the Fisher information
matrix F⇢(✓) := E(s,a)⇠d

⇡✓
⇢

h
r✓ log ⇡✓(a|s) (r✓ log ⇡✓(a|s))>

i
.

Algorithm 1: InnerLoop(r̃k,⇡✓k ,↵, ⌘, tk)

Initialize ✓(0)k = ✓k
for t = 0, 1, . . . tk � 1 do

✓(t+1)
k  ✓(t)k + ⌘F⇢(✓

(t)
k )†r✓Ṽ

⇡(t)
k

k,↵ (⇢) (5)
Return ✓(tk)k

The choice of the number of iterations in InnerLoop (i.e., tk) involves a trade-off between the
variational update precision and the overall efficiency. On the one hand, a larger tk leads to a more
accurate approximation of the optimal solution ✓0 to (4), but it may cause the algorithm to spend
unnecessary computational resources on the regularized objective Ṽ ⇡✓

k,↵(⇢), instead of on the true
optimization problem. On the other hand, a smaller tk saves inner loop iterations but the update
follows less closely to the underlying mirror-ascent update in improving the value vector. In our
experiments, we choose tk within 10 to strike a balance and empirically observe tk > 1 has better
performance.

We note that when tk = 1, the gradient r✓Ṽ
⇡✓k
k,↵ (⇢) = r✓V

⇡✓k
r̃k

(⇢), since Dd
⇡✓
⇢
(⇡✓||⇡✓k) has zero

gradient at ✓ = ✓k. The update in (5) reduces to an NPG update on the unregularized value function
Ṽ ⇡✓
r̃k

(⇢). For single-objective MDPs, it reduces to the canonical NPG method.

3.1 Theoretical guarantee of ARNPG

We now present the main theoretical tool for the analysis of the ARNPG framework. Recall the
discussion of the fundamental inequality after (2). Proposition 1 establishes such a fundamental
inequality with controllable approximation error under the softmax policy parameterization, i.e.,
⇡✓(a|s) = exp(✓s,a)P

a0 exp(✓s,a0 )
. In the rest of the paper, we omit ✓ in ⇡✓ when it is clear from the context,

but it should be noted that all updates of policies are performed on the parameters.
Proposition 1. Under the softmax parameterization, given ✏k > 0, for any r̃k, tk �
1

1�� log( 5kr̃kk1
(1��)2✏k

) + 1, ↵ > 0 and ⌘ = 1��
↵ , the update ⇡k+1  InnerLoop(⇡k, r̃k,↵, ⌘, tk)

satisfies

V
⇡k+1

r̃k
(⇢)� ↵

Dd
⇡k+1
⇢

(⇡k+1||⇡k)

1� �
� V ⇡

r̃k(⇢)� ↵
Dd⇡

⇢
(⇡||⇡k)�Dd⇡

⇢
(⇡||⇡k+1)

1� �
� ✏k, 8⇡. (6)
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The inequality (6) is critical to the convergence proof. Its right hand side allows telescoping, which
by summing over k can iteratively cancel the termsDd⇡

⇢
(⇡||⇡k). Since tk = ⇥(log(1/✏k)) it suffices

to use very few iterations in InnerLoop for maintaining precision.

Remark. It has been shown that for the entropy-regularizedMDP, i.e., KL-regularized with the uniform
policy as the anchor policy, NPG converges linearly (i.e., geometrically fast) to the regularized optimal
policy [10]. It is natural to anticipate that for the KL-regularized MDP Ṽ ⇡

k,↵(⇢) with anchor ⇡k, NPG

would similarly converge linearly (i.e., Ṽ ⇡k
k,↵ � Ṽ

⇡⇤
k

k,↵ � ✏ for tk = ⇥(log(1/✏))) to a corresponding
optimal policy, denoted as ⇡⇤

k. In contrast, the right hand side of inequality (6) has a positive drift

↵
Dd⇡⇢

(⇡||⇡k+1)

1�� for any policy ⇡, which is considerably stronger.

Proof sketch of Proposition 1. We can show that InnerLoop approximately solves the variational
update in (4) with linear convergence as anticipated. However to establish (6), the difficulty lies in the
introduction of positive drift, since V ⇡✓

r̃k
(⇢) is not concave w.r.t. ✓ and Dd

⇡✓
⇢
(⇡✓||⇡✓k) may not be a

Bregman divergence. We tackle this difficulty by showing that optimizing ⇡✓ in InnerLoop implicitly
performs a mirror ascent update for state action visitation d⇡✓

⇢ .

As demonstrated in the next section, Proposition 1 ensures that the convergence rate of the algorithms
derived from the ARNPG framework is of the same rate as the underlying first-order methods with
only extra logarithmic factors.

4 Theoretical applications

In this section, we apply the ARNPG framework to several important multi-objective MDP scenarios
and obtain new policy optimization algorithms by integrating first-order methods in convex opti-
mization. All the theoretical results presented in this section are under the softmax parameterization
with exact gradients. However, the obtained algorithms can be implemented in more general settings
such as neural softmax and sample-based scenarios, as in the next section. We theoretically establish
Õ(1/T ) convergence of these algorithms by leveraging the fundamental inequality in Proposition 1.

4.1 Smooth concave scalarization function

We start by considering the following optimization problem
max

✓
F (V ⇡✓

1:m(⇢)), (7)

where F is a concave function, and �-smooth w.r.t. k · k1 norm, i.e., krF (v) � rF (v0)k1 
�kv�v0k1. Since the set of achievable values V ✓

h
0, 1

1��

im
, it can be verified that krF (v)k1  L

for some factor L > 0.

The proportional fair criterion discussed in Section 1 can be approximated by F (v) :=Pm
i=1 ai log(� + vi), where � > 0 is some constant introduced to circumvent the pathological

case vi = 0 for some i 2 [m]. Under this criterion, � =
Pm

i=1 ai/�
2 and L =

Pm
i=1 ai/�.

When v is viewed as the decision variable, at macro step k with value vector V ⇡k
1:m(⇢), the ascent

direction in a typical gradient ascent step is the gradient G̃k = rvF (V ⇡k
1:m(⇢)). This naturally

determines the reward in the ascent direction as r̃k(s, a) = hG̃k, r1:m(s, a)i. Adapting the ARNPG
framework to this specific context, we present the algorithm for solving the program (7) in Algorithm
2. We refer to it as “implicit mirror descent" because the algorithm implicitly employs mirror descent.

Algorithm 2: ARNPG Implicit Mirror Descent (ARNPG-IMD)
Input ⇡0,↵, ⌘, t0:K�1,K
for k = 0, 1, . . . ,K � 1 do

Update ⇡k+1  InnerLoop(⇡k, r̃k,↵, ⌘, tk)
Return the policy in {⇡k}Kk=1 with the largest F (V ⇡k

1:m(⇢))

Let ⇡⇤ be the optimal policy for (7). Based on Proposition 1, we present the following theorem which
guarantees the convergence of ARNPG-IMD with appropriately selected parameters ⇡0,↵, ⌘, tk.
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Theorem 1. For any K � 1, take uniform policy ⇡0, ↵ � �
(1��)3 , ⌘ = 1��

↵ , and tk =

d 1
1�� log( 5LK

� log(|A|) ) + 1e. The optimality gap of ARNPG-IMD (Algorithm 2) satisfies

F (V ⇡⇤

1:m(⇢))� max
k2[1:K]

F (V ⇡k
1:m(⇢)) F (V ⇡⇤

1:m(⇢))� 1

K

KX

k=1

F (V ⇡k
1:m(⇢))  2↵ log(|A|)

(1� �)K
. (8)

There are a total of K macro steps, and the total number of iterations is T =
PK�1

k=0 tk =
⇥( K

1�� log(K)). The following corollary provides the convergence rate in terms of T .
Corollary 1. Under the same conditions as in Theorem 1, the ARNPG-IMD algorithm satisfies

F (V ⇡⇤

1:m(⇢))� 1
K

PK
k=1 F (V ⇡k

1:m(⇢)) = O
⇣

� log(T )
(1��)5T

⌘
.

Remark. In the absence of knowledge of K, we can select time-varying numbers of InnerLoop
iterations, such as tk = ⇥(log(k)), and ARNPG-IMD will still have the same Õ(1/T ) convergence.

4.2 Constrained Markov decision process

Another way of trading off the objectives is to optimize one while setting hard constraints on the
others. This can be formulated as the following constrained MDP (CMDP) problem:

max
✓

V ⇡✓
1 (⇢), s.t. V ⇡✓

i (⇢) � bi, 8i 2 [2 : m], (9)

where b2:m 2 [0, 1
1�� ]

m�1. Let ⇡⇤ = ⇡✓⇤ be the optimal policy of the CMDP problem in (9).

Define the Lagrangian of the CMDP problem as L(⇡✓,�) = V ⇡✓
1 (⇢) +

Pm
i=2 �i(V

⇡✓
i (⇢) � bi),

where �i is the Lagrange multiplier (dual variable) corresponding to the constraint V ⇡✓
i � bi, for

each i 2 [2 : m]. The Lagrange dual function max⇡ L(⇡, ·) is a convex function of dual variables
� � 0. Denote by �⇤ the optimal dual variables that minimize the Lagrange dual function. We
assume �⇤ is finite, which is guaranteed by Slater’s condition, i.e., there is some ⇡✓ and ⇠ > 0 with
V ⇡✓
i (⇢)� bi � ⇠ for any i 2 [2 : m]. Note (⇡⇤,�⇤) is a saddle point of the Lagrangian L(⇡,�). This

motivates the primal-dual approach, which iteratively performs gradient ascent for ⇡✓ and gradient
descent for �. This is suitable for the CMDP setting, since for any fixed �, the Lagrangian L(⇡,�)
corresponds to an MDP for which policy gradient can be employed.

The canonical primal-dual gradient ascent-descent method for constrained convex optimization can
only guarantee O(1/

p
T ) convergence, and consequently the primal-dual policy gradient-based

approach for CMDPs [11] has the same convergence. Recently, Yu et al. [35] have proposed a primal-
dual-based method withO(1/T ) convergence under the Euclidean setting, i.e.,Bh(x||y) = 1

2kx�yk22.
Adopting ideas from [35], we next propose the ARNPG with Extra Primal-Dual (ARNPG-EPD)
algorithm (Algorithm 3). To the best of our knowledge, this new primal-dual update appears in the
CMDP-related literature for the first time.

Note that bi � V ⇡
i (⇢) is the amount of constraint violation. There are two key ideas we adopt from

[35]. The first is the design of the reward in the ascent direction
r̃k(s, a) := r1(s, a) +

Pm
i=2(�k,i + ⌘0(bi � V ⇡k

i (⇢)))ri(s, a),
where an extra constraint violation term is added to the dual variables. The second idea is that the
update of dual variables should not fall below the negative constraint violation (the first term in (10)),
and it can alleviate the overshooting of dual variables. The extra constraint violation terms in r̃k and
the dual update work jointly to ensure the Õ(1/T ) convergence.

Theorem 2. For any K � 1 and ⌘0 2 (0, 1], take uniform policy ⇡0, ↵ � 2⌘0m
(1��)3 , ⌘ = 1��

↵ ,

and choose tk = d 1
1�� log( 5LkK

2⌘0m log(|A|) ) + 1e with Lk = 1 + ⌘0(m�1)
1�� +

Pm
i=2 �k,i. The average

optimality gap and the average constraint violation of ARNPG-EPD (Algorithm 3) satisfy

V ⇡⇤

1 (⇢)� 1

K

KX

k=1

V ⇡k
1 (⇢)  3↵ log(|A|)

(1� �)K
, (11)

bi �
1

K

KX

k=1

V ⇡k
i (⇢)  1

K

 
2k�⇤k2

⌘0
+ 3

s
↵ log(|A|)
(1� �)⌘0

!
8i 2 [2 : m]. (12)
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Algorithm 3: ARNPG with Extra Primal Dual (ARNPG-EPD)
Input ⇡0, ⌘0,↵, ⌘, t0:K�1,K
Initialize �0,i = max{⌘0(V ⇡0

i (⇢)� bi), 0}, 8i 2 [2 : m]
for k = 0, 1, . . . ,K � 1 do

Update ⇡k+1  InnerLoop(⇡k, r̃k,↵, ⌘, tk)
Update �k+1,i = max

�
⌘0(V

⇡k+1

i (⇢)� bi),�k,i + ⌘0(bi � V
⇡k+1

i (⇢))
 
, 8i 2 [2 : m] (10)

Return: a policy randomly chosen from {⇡k}Kk=1

Note that the number of micro steps tk is chosen according to the dual variables �k in the previous
theorem. Denote by T :=

PK�1
k=0 tk the total number of iterations.

Corollary 2. Under the same conditions as in Theorem 2, the ARNPG-EPD algorithm satisfies

V ⇡⇤

1 (⇢)� 1
K

PK
k=1 V

⇡k
1 (⇢) = O(m log(T )

(1��)5T ), and bi � 1
K

PK
k=1 V

⇡k
i (⇢) = O(

p
m log(T )

(1��)2.5T ).

The theorem and corollary establish convergence of the average optimality gap and the average
constraint violation, in the same manner as many previous works [11, 31, 12, 19] on CMDPs.
However, a guarantee on the last iterate is more preferable. This drawback is inherited from the
primal-dual algorithm for convex optimization, where the primal-dual algorithm with sublinear
convergence can only be guaranteed on the average solution, as of our knowledge. Last iterate
convergence is still an on-going open research topic.

4.3 Max-min trade-off criteria

Finally, we consider the max-min trade-off criterion defined as

max
✓

min
�2⇤

�(V ⇡✓
1:m(⇢),�), (13)

where ⇤ is a subset of them-dimensional probability simplex�([m]). We assume �(·,�) is concave
and �(v, ·) is convex. We also assume � is �-smooth w.r.t. the norm  (v,�) = kvk1 + k�k1.
The max-min criterion mentioned in Section 1 can be represented by �(v,�) =

Pm
i=1 vi�i/ci and

⇤ = �([m]). � satisfies the concave-convex assumption and is �-smooth w.r.t. the norm  with
� = O(m).

Denote F (v) := min�2⇤ �(v,�), which is concave but not necessarily smooth. Thus we cannot
apply the ARNPG-IMD algorithm (Algorithm 2) due to the non-smoothness of F , and the subgradient-
based method can only guarantee O(1/

p
T ) convergence.

We next integrate the optimistic mirror descent ascent (OMDA) method [27] for solving minimax
optimization in the ARNPG framework. Denote the gradients G̃�

k = r��(V
⇡̃k
1:m(⇢), �̃k) and G̃v

k =
rv�(V

⇡̃k
1:m(⇢), �̃k). It can be verified that kG̃v

kk1  L for some L due to the smoothness of �.
OMDA performs gradient ascent along the direction G̃v

k w.r.t. the value vector, and therefore we
construct the reward in the ascent direction as r̃k(s, a) = hG̃v

k, r1:m(s, a)i. OMDA performs mirror
descent along direction G̃�

k w.r.t. the dual vector �. A key ingredient of OMDA is that it updates
twice in each macro step. ARNPG-OMD adopts this idea and update (⇡,�) from the same anchor
points (⇡k,�k), first with ascent direction (r̃k,�G̃�

k) 2 R2m and then a further step with direction
(r̃k+1,�G̃�

k+1) 2 R2m.

We present ARNPG-OMDA in Algorithm 4, and establish the following performance guarantees:

Theorem 3. For any K � 1, take uniform policy ⇡0, ⌘0  1
6� , ↵ � 6�

(1��)3 , ⌘ = 1��
↵ , and

tk = d 1
1�� log( 5LK

6� log(|A|) ) + 1e. The ARNPG-OMDA algorithm (Algorithm 4) satisfies

F (V ⇡⇤

1:m(⇢))� F

 
1

K

KX

k=1

V ⇡̃k
1:m(⇢)

!
 3↵ log(|A|)

(1� �)K
+

log(m)

⌘0K
. (14)
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Algorithm 4: ARNPG with Optimistic Mirror Descent Ascent (ARNPG-OMDA)
Input ⇡0,�0, ⌘0,↵, ⌘, t0:K�1,K
Initialize ⇡̃0 = ⇡0 and �0, �̃0 as uniform distribution on [m]
for k = 0, 1, . . . ,K � 1 do

Update ⇡̃k+1  InnerLoop(⇡k, r̃k,↵, ⌘, tk), �̃k+1  argmin�2⇤{hG̃�
k ,�i+

D(�||�k)
⌘0 }

Update ⇡k+1  InnerLoop(⇡k, r̃k+1,↵, ⌘, tk), �k+1  argmin�2⇤{hG̃�
k+1,�i+

D(�||�k)
⌘0 }

Return: a policy randomly chosen from {⇡̃k}Kk=1

Similar to the discussion after Corollary 2, Theorem 3 provides a performance guarantee on the
average value vector F ( 1

K

PK
k=1 V

⇡̃k
1:m(⇢)), which is inherited from the OMDA methods. Denote the

total number of iterations by T :=
PK�1

k=0 2tk.

Corollary 3. Under the same conditions as in Theorem 3, ARNPG-OMDA satisfies F
�
V ⇡⇤

1:m(⇢)
�
�

F
⇣

1
K

PK
k=1 V

⇡k
1:m(⇢)

⌘
= O

⇣
� log(T )
(1��)5T

⌘
.

5 Empirical evaluation and application

In this section, we present the experimental results on CMDP. We compare the performance of the
proposed ARNPG-EPD algorithm (Algorithm 3) with two benchmarks: NPG-PD [11] and CRPO
[31]. Experimental details on CMDP are postponed to Appendix A and further experiments on
smooth concave scalarization and max-min trade-off are presented in Appendix B. We provide code
at https://github.com/tliu1997/ARNPG-MORL.

5.1 Tabular CMDP with exact gradients

Recall that under softmax policy with exact gradients, Corollary 2 (Theorem 2) guarantees Õ(1/T )
convergence of both performance measures: average optimality gap and average constraint violation.
We compare the proposed ARNPG-EPD with the benchmarks NPG-PD and CRPO under both
performance measures on a randomly generated CMDP with a single constraint, which are illustrated
in Figure 1. The horizontal axis is the total number of iterations, i.e., including the micro steps in
InnerLoop of ARNPG-EPD.

(a) (b) (c) (d)

Figure 1: The average optimality gap and the average constraint violation versus the total number of
iterations, for ARNPG-EPD, NPG-PD, and CRPO on a randomly generated CMDP.

Figures 1(a) and 1(b) show that both the average optimality gap and the average constraint violation
of the ARNPG-EPD algorithm converge faster than those of NPG-PD. Since the CRPO focuses on
the violated constraint, the policy becomes feasible quickly, though at the cost of an initially slower
convergence for the optimality gap. As illustrated in Figures 1(c) and 1(d), the slopes of both the
optimality gap and the constraint violation of the ARNPG-EPD algorithm in the log-log plots are
approximately between -0.9 and -1, indicating a converge rate of Õ(1/T ).

5.2 Sample-based tabular CMDP

We next consider the same tabular CMDP described in Section 5.1 without exact policy gradients.
Instead, policy gradients are estimated by samples from a generative model that can generate
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(a) (b) (c) (d)

Figure 2: The reward values and the constraint violation with respect to the total number of iterations,
for sample-based ARNPG-EPD, NPG-PD, and CRPO on a randomly generated CMDP.

independent trajectories starting from any state and action pair. The assumption of such a generative
model is common [17, 11, 31].

The performances of CRPO, NPG-PD, and ARNPG-EPD in the sample-based scenario are shown in
Figure 2. Figures 2(a) and 2(b) display the averaged performance, while Figures 2(c) and 2(d) display
the performance of the current iterate (a.k.a. last-iterate in optimization literature). It shows that in
this sample-based scenario, ARNPG-EPD achieves higher reward values with faster convergence,
while all three algorithms satisfy the constraint after a few iterations.

5.3 Acrobot-v1

To demonstrate the efficacy of ARNPG-EPD on complex tasks, we have conducted experiments
on the Acrobot-v1 environment from OpenAI Gym [9]. We follow the same experiment setup in
[31], where there is a reward value to maximize, and two cost values to be constrained below some
thresholds. The superior performance of ARNPG-EPD is shown in Figure 3.

(a) (b) (c)

Figure 3: Last-iterate performance for sample-based ARNPG-EPD, NPG-PD, CRPO averaged over
10 random seeds. The black dashed lines in (b) and (c) represent given thresholds.

Figure 3(a) shows that ARNPG-EPD achieves a higher reward value compared to NPG-PD and
CRPO, while Figures 3(b) and 3(c) demonstrate that the cost values of all three algorithms are below
the thresholds after a few initial iterations. We believe the superiority is due to the new primal-dual
design inspired by [34] (discussed in Section 4.2) and the flexibility of choosing tk in the InnerLoop
in the framework. More experiments with different tk are presented in Appendix A.

6 Conclusion and future works

We propose an ARNPG framework to systematically integrate well-performing first-order methods
into the design of policy gradient-based algorithms for multi-objective MDPs. The designed algo-
rithms achieve a global Õ(1/T ) convergence rate under the softmax parameterization with exact
gradients, and empirically have satisfactory performance beyond tabular and exact gradient settings.
We believe that ARNPG has potential applications in other scenarios, since the general and flexible
framework allows integration with more advanced first-order methods, currently and in the future.

A natural future direction is to extend the theoretical results to more general settings such as function
approximation and sample-based scenarios. Viewing ARNPG as a heuristic, the anchor-changing
ideas can also be applied to policy optimization for multi-agent RL and meta RL.
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