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Summary: The classification of frequently occurring terrestrial-origin transient signals, called glitches, in the time series data 
from gravitational wave detectors is important for mitigating their adverse effects on searches for rare and valuable 
astrophysical signals. While formally a time series classification problem, recent successes in glitch classification have all 
come from using their time-frequency image representations. Using transfer learning with the VGG16 deep convolutional 
neural network for image classification, we compare the efficacy of different types of image representations for classifying 
simulated glitches. We find the novel result that training the network with 2D plots of the noisy glitch time series provides 
better classification accuracy than their time-frequency images. 
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1. Introduction 
 
With the detection of the first signal from two 

merging black holes in 2015 [1], the birth of 
gravitational wave (GW) astronomy has opened a new 
window for observing the Universe. Data analysis 
plays a crucial role in this field because astrophysical 
GW signals must be extracted from the noise 
dominated time series output of a GW detector. A 
challenge here is the high rate of diverse types of 
transient terrestrial-origin signals, called glitches, that 
elevate the false alarm rate of GW searches. The 
classification of glitches, therefore, is of great 
importance to improving GW search sensitivity. 
The Gravity Spy [2] project  has produced a dataset 

of ≈ 8000 glitches that have been divided into 22 
manually labeled classes based on their constant Q-
transform [3] (CQT) time-frequency images. Although  
formally a time series classification (TSC) problem 
[4,5], the most successful methods to date for 
automated glitch classification (e.g., [6]) have used 
convolutional neural networks trained on CQT images. 
Here, we propose a novel approach that uses 2D plots 
of noisy glitch time series and find better classification 
performance than CQT images. This result may have 
wider implications for the TSC problem in general. 
 

2. Methodology 
 
We used transfer learning with VGG16 [7], a pre-

trained deep convolutional neural network with 16 
layers. The weights of the base model layers were 
frozen up to the 5th convolutional block and a new 

fully connected head model was created to train on our 
dataset. We used the adaptive moment estimation 
(Adam) optimizer with the categorical cross-entropy 
loss function and trained the model over 10 epochs. 
We simulated an ensemble of glitch time series, 

each  2.0 sec long and sampled at 4096 Hz with one 
glitch signal occupying the central T sec, where 𝑇 ≤
0.04 sec. The strength of a glitch relative to unit 
variance white Gaussian noise (WGN) is quantified by 
its signal to noise ratio (SNR) defined as the Euclidean 
norm of the noise-less glitch signal. We considered the 
following different types of glitch time series. (1) 
Noisy: glitch added to WGN and SNR drawn from a 
uniform distribution over [10, 100]. (2) Noise-less: 
glitch SNR fixed at 60 and no WGN added. (3) 
Denoised: time series obtained by passing an SNR=60 
glitch added to WGN  through an adaptive spline 
fitting method called SHAPES [8].  Fig.1 (left panel) 
illustrates the noisy and denoised time series. The 
noise-less time series is an idealization that serves as a 
benchmark. For real data, the denoised time series is 
the closest that one can get to the noise-less case. 
For each type of time series, we compared two  

image representations for training VGG16: (1) CQT 
computed with the full 2.0 sec, and (2) the 2D plot of 
a 0.2 sec section of the time series centered on the 
glitch. We also used a multi-view approach 
(2D+CQT) in which the two types of images are 
paired with a common class label. The time series used 
for generating the test data have glitches added to 
WGN with SNRs having a uniform distribution over 
(1) a broad ([10, 100]) and (2) a narrow ([5, 20]) 
range. The test dataset presented to VGG16 always has 
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the same image representation as the corresponding 
training data. 
To make the simulations realistic, we took 

representative glitches  from three of the most 
frequently occuring Gravity Spy classes (called Blip, 
Koi Fish, and Tomte) and fitted each with a model 
consisting of a superposition of Gaussians. Each best 
fit model was then used as the centroid of a cluster in 
ℝ!, where 𝑁 is the number of samples in the fitted 
model. For each centroid, a cluster of glitch signals was 
generated by independently drawing the parameters of 
the Gaussians in the glitch model from uniform 
distributions centered on their respective values in the 
centroid. Of these, only the  glitches that fell within a  
given Euclidean distance of the centroid were retained. 
Similarly, we generated 6 additional  clusters with 
arbitrarily chosen centroids (also modeled as a 
superposition of Gaussians). Finally, the training and 
testing  datasets had 600 and 450 images, respectively, 
of each type of time series for each of the 9 classes. 
 

  
 

Fig. 1. (Left) Noisy (dots) and denoised (red) glitch 
time series example. (Right) CQT of the  noisy time series. 
 
3. Results 
 
Tables 1 and 2 summarize our results. Each 

numerical entry corresponds to a given combination, 
labeled by the column and row headings,  of the type 
of time series and image representation used for the 
training data. The numerical value is the accuracy of 
classification given by the fraction of test images that 
were classified correctly.  
We see that training with 2D plots of the noisy 

glitch time series  outperforms all other combinations. 
Furthermore, training using the denoised time series is 
comparable in performance to the ideal case of noise-
less glitches. Training with variable SNR shows the 
best performance in all cases. 2D+CQT does not 
confer an advantage over 2D alone. As expected, 
performance of all methods worsens at lower SNRs. 
 

4. Conclusions 
 
We conclude that a 2D plot of time series as the image 
representation for training deep convolutional 
networks offers a promising approach to glitch 

classification. Its use for general TSC merits further 
investigation. 
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Table 1. Classification accuracies: broad SNR range. 

 
SNR ∈ [10,100] Type of time series 

Noise-less Noisy Denoised 

Im
age type  

2D plot 0.7573 0.9552 0.7287 

CQT 0.8382 0.9162 0.8225 

2D+CQT 0.7725 0.9315 0.7531 
 

Table 2. Classification accuracies:  narrow SNR range. 
 

SNR ∈ [5,20] Type of time series 
Noise-less Noisy Denoised 

Im
age type 

2D plot 0.5843 0.7324 0.5329 

CQT 0.6007 0.7065 0.5934 

2D+CQT 0.5820 0.7216 0.5411 
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