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Summary: The classification of frequently occurring terrestrial-origin transient signals, called glitches, in the time series data
from gravitational wave detectors is important for mitigating their adverse effects on searches for rare and valuable
astrophysical signals. While formally a time series classification problem, recent successes in glitch classification have all
come from using their time-frequency image representations. Using transfer learning with the VGG16 deep convolutional
neural network for image classification, we compare the efficacy of different types of image representations for classifying
simulated glitches. We find the novel result that training the network with 2D plots of the noisy glitch time series provides

better classification accuracy than their time-frequency images.
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1. Introduction

With the detection of the first signal from two
merging black holes in 2015 [1], the birth of
gravitational wave (GW) astronomy has opened a new
window for observing the Universe. Data analysis
plays a crucial role in this field because astrophysical
GW signals must be extracted from the noise
dominated time series output of a GW detector. A
challenge here is the high rate of diverse types of
transient terrestrial-origin signals, called glitches, that
elevate the false alarm rate of GW searches. The
classification of glitches, therefore, is of great
importance to improving GW search sensitivity.

The Gravity Spy [2] project has produced a dataset
of =~ 8000 glitches that have been divided into 22
manually labeled classes based on their constant Q-
transform [3] (CQT) time-frequency images. Although
formally a time series classification (TSC) problem
[4,5], the most successful methods to date for
automated glitch classification (e.g., [6]) have used
convolutional neural networks trained on CQT images.
Here, we propose a novel approach that uses 2D plots
of noisy glitch time series and find better classification
performance than CQT images. This result may have
wider implications for the TSC problem in general.

2. Methodology

We used transfer learning with VGG16 [7], a pre-
trained deep convolutional neural network with 16
layers. The weights of the base model layers were
frozen up to the 5th convolutional block and a new

fully connected head model was created to train on our
dataset. We used the adaptive moment estimation
(Adam) optimizer with the categorical cross-entropy
loss function and trained the model over 10 epochs.

We simulated an ensemble of glitch time series,
each 2.0 sec long and sampled at 4096 Hz with one
glitch signal occupying the central T sec, where T <
0.04 sec. The strength of a glitch relative to unit
variance white Gaussian noise (WGN) is quantified by
its signal to noise ratio (SNR) defined as the Euclidean
norm of the noise-less glitch signal. We considered the
following different types of glitch time series. (1)
Noisy: glitch added to WGN and SNR drawn from a
uniform distribution over [10,100]. (2) Noise-less:
glitch SNR fixed at 60 and no WGN added. (3)
Denoised: time series obtained by passing an SNR=60
glitch added to WGN through an adaptive spline
fitting method called SHAPES [8]. Fig.1 (left panel)
illustrates the noisy and denoised time series. The
noise-less time series is an idealization that serves as a
benchmark. For real data, the denoised time series is
the closest that one can get to the noise-less case.

For each type of time series, we compared two
image representations for training VGG16: (1) CQT
computed with the full 2.0 sec, and (2) the 2D plot of
a 0.2 sec section of the time series centered on the
glitch. We also used a multi-view approach
(2D+CQT) in which the two types of images are
paired with a common class label. The time series used
for generating the test data have glitches added to
WGN with SNRs having a uniform distribution over
(1) a broad ([10, 100]) and (2) a marrow ([5, 20])
range. The test dataset presented to VGG16 always has
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the same image representation as the corresponding
training data.

To make the simulations realistic, we took
representative glitches  from three of the most
frequently occuring Gravity Spy classes (called Blip,
Koi Fish, and Tomte) and fitted each with a model
consisting of a superposition of Gaussians. Each best
fit model was then used as the centroid of a cluster in
RY, where N is the number of samples in the fitted
model. For each centroid, a cluster of glitch signals was
generated by independently drawing the parameters of
the Gaussians in the glitch model from uniform
distributions centered on their respective values in the
centroid. Of these, only the glitches that fell within a
given Euclidean distance of the centroid were retained.
Similarly, we generated 6 additional clusters with
arbitrarily chosen centroids (also modeled as a
superposition of Gaussians). Finally, the training and
testing datasets had 600 and 450 images, respectively,
of each type of time series for each of the 9 classes.
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Fig. 1. (Left) Noisy (dots) and denoised (red) glitch
time series example. (Right) CQT of the noisy time series.

3. Results

Tables 1 and 2 summarize our results. Each
numerical entry corresponds to a given combination,
labeled by the column and row headings, of the type
of time series and image representation used for the
training data. The numerical value is the accuracy of
classification given by the fraction of test images that
were classified correctly.

We see that training with 2D plots of the noisy
glitch time series outperforms all other combinations.
Furthermore, training using the denoised time series is
comparable in performance to the ideal case of noise-
less glitches. Training with variable SNR shows the
best performance in all cases. 2D+CQT does not
confer an advantage over 2D alone. As expected,
performance of all methods worsens at lower SNRs.

4. Conclusions
We conclude that a 2D plot of time series as the image

representation for training deep convolutional
networks offers a promising approach to glitch

classification. Its use for general TSC merits further
investigation.
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Table 1. Classification accuracies: broad SNR range.

SNR € [10,100] Type of time series
Noise-less | Noisy [Denoised
g | 2D plot 0.7573 0.9552 | 0.7287
U% CcQT 0.8382 09162 | 0.8225
E 2D+CQT | 0.7725 0.9315 | 0.7531

Table 2. Classification accuracies: narrow SNR range.

SNR € [5,20] Type of time series
Noise-less | Noisy [Denoised
= | 2D plot 0.5843 0.7324 | 0.5329
&
® CQT 0.6007 0.7065 | 0.5934
% [2prcor | 05820 0.7216 | 0.5411
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