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sampling complexity is essential. Our results are constructive and the sampling
complexity is much larger than the number of samples used in practice. The other
possibility is that the learning algorithm that is mostly used is not the algorithm
that can find a good approximation. To get further insight into this question we
continue this work with the analysis of different expressivity results with respect
to their computability. We then aim to consider also a more restrictive family of
functions to reduce the sampling complexity. Finally, the weights in the construc-
tion are very large and we aim to reduce them as well with more sophisticated
architecture choices.

In the long run, we want to get a good understanding of the ground truth,
especially in image classification to understand which problems are computable
and sensible. In this line, a measure that allows us to investigate both the stability
and accuracy of the network approximation is of high interest.
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INTRODUCTION

In the present work, we examine signals on graphs whose structure is motivated
by time series analysis. In typical models for time series data, the values that
occur closely together in time show a stronger dependence than observations that
are spaced further apart [9]. However, this property may need to be modified to
explain recurring patterns, such as daily or weekly periodicities in traffic intensities.
We assume that the underlying periodicities are known and encoded in a graph
structure, where neighboring vertices are immediate successors in time or related
by a shift in time corresponding to a period of the observed process. Based on
the graph structure, one may devise a type of scattering transform in the spirit
of Mallat’s method to generate feature vectors with convolutional networks in a
non-adaptive way [1,7]. This has been done by Zou and Lehrman [11] based on
graph wavelets [4], see also [2]. Here, we pursue a parallel strategy that is based
on heat kernels.
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PRELIMINARIES

An oriented graph (V| E) is described by a vertex set V and an edge set E, for
which E contains ordered pairs of vertices. When considering a directed graph,
we also speak of an edge without orientation when passing from (i,j) € E to
{i,j}. Two edges are adjacent if they have a vertex in common. A graph is
connected if any two vertices in V' appear in a sequence of vertices such that each
pair of consecutive elements in this sequence forms an edge. A directed graph
is weakly connected if any two vertices appear in a sequence of adjacent edges
without orientation.

The Hilbert space ¢2(V) is the space of all real-valued functions f : V — R,
equipped with the canonical inner product that associates (f, g) = > sev [(1)g(d)
with f,g € (V). The standard graph Laplacian A is the self-adjoint operator
corresponding to the quadratic form defined by Q(f) = 37, ;cp [f(1) — f(4)[? for
f € 2(V). Given a directed graph (V, E) and a function a : E — R, we let A, be
the operator on ¢2(V) corresponding to Q. (f) = > i) €2 £ (i) — f(5)]?. In
this context, we call the function a a connection. Finally, for two functions w, a on
the edge set of a directed graph with w assuming only strictly positive values, we let
Aw,a be deﬁned via Qw,a(f) = Z(i,j)eE w(laj)’ea(ld)f(l) - f(])‘z = _<Aw,af7 f>
We then say that the edges are weighted by w. If there is ¢ : V' — R such that for
each (i,7) € E, a(i,j) = ¢(j) — ¢(i), then we say that a is a gradient function.

MAIN RESULTS

With the help of the Laplacian A, 4, we define a cascade of transforms.

Definition. Let (V, F) be a directed graph with weights w : E — R™, connection
a: E — R and Laplacian Ay q, (Awaf, f) = =20 w; ;e f(i) — f(5)]%
Fore >0, f:V = R, let So(f) = f, we inductively set for m € N
S (f) = (I — (I — €Ay a)e@=) 2|8, 1 (f)]
and
Tm(f) = (I - 6Aw,a)l/QeéAw’a|Sm—1(f)| .
Here, for any function g on V, |g| = max{g, —g}.

It is a direct consequence of this definition that the norm of a signal is preserved
under this transform.

Proposition. Let (V,E), w, a, and Ay 4, S and T, be as above, then for
N e N,

12 = 1SN (OIZ + D 1T (I

Next, we observe that if a is a gradient function, then the functions in the kernel
of the Laplacian saturate the norm of 77.
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Proposition. Let (V, E) be a weakly connected, directed graph, w, a, and A, 4,
Sy and T as above, and there is ¢ : V' — R such that a(i,j) = ¢(j) — ¢(i), then
1Ty (F)|l = || £l if and only if there is ¢ € R and for each i € V, f(i) = ce®®.

More generally, we study the behavior of the norm when applying Sy or T, with
a similar motivation as in [10]. Here, we relate the norm to the Rayleigh quotient of
the Laplacian. Because of the Parseval-type identity || f||? = |[S1(f)I|* + || T1(f)||?,
it is enough to investigate 77 .

Theorem. Let (V,E) be a weakly connected, directed graph with weights w,
connection a, and Laplacian A,, , such that A; is the first non-zero eigenvalue of
—Ay q, and Apax the maximal eigenvalue of —A,, 4. If € >0, 0 < p < Ay, and

_<Aw,af7 f> = prH2

then T3 as defined above satisfies
P —Amax P
1T ()17 > [( —‘BTJ + (1 + €Amax)e” Sf——]HfHQ
1 max

and
ITUIP < [(= 552) + (e I

)\max

Corollary. If the assumptions of the preceding theorem hold, f € ¢2(V) \ {0},
and € > 0 is sufficiently small so that (1 + e)\l)e_ekl)\max > A1 then

1Ty (NHI/If)?—1
AT en)e ™ = 1o =

Estimating the Rayleigh quotient is useful when it is used as a statistic to infer

whether an observed graph signal is consistent with a stochastic model for it. This
will be pursued in an application to traffic counts in forthcoming work.
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1. DEFINITION AND MAIN RESULT

In [2], we characterize optimizers for a variational problem with applications in
various fields. Let A be a lattice in R? and consider the function

(1) Er(za) = Z emelAtzl? z€R?* a>0.
AEA
The function Ea(z; ) is simply the sum of (scaled) Gaussians centered at points
given by a (shifted) lattice: it may thus be understood as the two-dimensional
analogue of a Jacobi theta function. Given the fundamental nature of this object,
the function E(z; «) naturally arises in many different areas of mathematics. In
[2], we are concerned with minimizing and maximizing the function Fa(z; ). The
canonical candidate for solving the variational problem is the hexagonal lattice;
1

1 1L
A, — 2 2
2= %(0 \Z§>Z

Theorem (Montgomery, 1988). Among all lattices A C R? with fized density,

max E (z; o) is minimized
z€R?

if and only if A is the hexagonal lattice As.

Main Result (Bétermin, Faulhuber, Steinerberger, 2021). Among all lattices
A C R? with fized density,

min F(z; «) is mazimized

2€R2
if and only if A is the hexagonal lattice As.

One nice aspect of Montgomery’s result is that the maximum is assumed in a
lattice point; in contrast, we have relatively little control over the point z in
which the minimum is assumed (see Figure 1) which makes the proof significantly
harder. One important consequence of our Main Result is that the hexagonal
lattice maximizes the minimum while simultaneously minimizing the maximum
of E (the latter being due to Montgomery). We expect this to be a very rare
property if (1) is generalized to higher dimensions. This reaffirms the special
role that the hexagonal lattice Ao plays for variational problems in R?. The Main
Result has many consequences, one of which is, in combination with Montgomery’s
result, that the conjecture of Strohmer and Beaver [9] is finally affirmed.



