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Abstract— This paper studies the deployment of joint moving
target defense (MTD) and deception against multi-stage cyber-
attacks. Given the system equipped with MTD that randomizes
between different configurations, we investigate how to allocate
a bounded number of sensors in each configuration to optimize
the attack detection rate before the attacker achieves its
objective. Specifically, two types of sensors are considered:
intrusion detectors that are observable by the attacker and
stealthy sensors that are not observable to the attacker. We
propose a two-step optimization-based approach for allocating
intrusion detectors and stealthy sensors: Firstly, the defender
allocates intrusion detectors assuming the attacker will best
respond to evade detection by intrusion detectors. Secondly, the
defender will allocate stealthy sensors, given the best response
attack strategy computed in the first step, to further reduce the
attacker’s chance of success. We illustrate the effectiveness of
the proposed methods using a cyber defense example.

I. INTRODUCTION

This paper considers a game-theoretic design of a proac-

tive cyber defense system using a combination of Moving

Target Defense (MTD), intrusion detectors, and deception

(with stealthy sensors). Proactive defense means that the de-

fender does not know the attacker’s presence or the progress

made by the attack but employs randomization to thwart and

mitigate attacks. For example, an attack action can fail if

the system configuration changes and invalidates the targeted

vulnerability. Meanwhile, the defender can deploy sensors to

detect the attacker at the early stage of the attack. Nonethe-

less, with the increasingly advanced MTD [1], detection, and

cyber deception [2], it remains a challenge to assess the

effectiveness of a combination of MTD and sensor-based

detection mechanisms, let alone to design an effective cyber

defense system with joint MTD and deception. In this paper,

we integrate a formal-method modeling and optimization-

based approaches to address the following question: “how

to allocate a limited number of (potentially heterogeneous)

sensors in this system to maximize the probability of attack

detection before that the attacker achieves its objective?”

“What is the benefit of employing deceptive, stealthy sensors

for proactive defense?”

To model the effects of MTD on the attack performance,

we employ a variant of attack graphs [3], [4], which mod-
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els the causal and logical dependencies between system’s

vulnerabilities or attacker’s subgoals observed in multi-stage

attacks. We introduce the Markov Chain as a formal model

of a class of MTD in which the defender switches randomly

between different system configurations [5], [6], [7]. Given a

system equipped with such an MTD strategy, we first capture

the attacker’s decision-making problem using an Markov

decision process (MDP) with a reachability objective; that is,

the attacker aims to reach some goal states eventually while

evading detection by sensors. For example, the attacker’s

goal state can be that the attacker gains root access to a

critical database server. Then, we focus on the synthesis

problem for the defender to minimize the attack success rate

by optimally allocating two types of sensors: intrusion detec-

tors that are observable by the attacker and stealthy sensors

that are unobservable to the attacker. A stealthy sensor can

be realized by honey patching [8] of a known vulnerability.

When the attacker exploits a honey-patched vulnerability,

he will be detected. We incorporate the attacker’s safety

constraints, i.e., evading sensor detection, into the attack

objective and formulate a bi-level optimization problem. We

then design Mixed-Integer Linear Programmings (MILPs)s

in a two-step manner to approximately optimize intrusion

detectors and stealthy sensors allocation for the defender.

Related work: The synthesis of proactive defense strate-

gies studied herein is closely related to the Stackelberg

security game (SSG) (surveyed in [9]). In an SSG, the

defender is to defend a set of targets with limited resources,

while the attacker selects the optimal attack strategy given the

knowledge of the defender strategy. The solution concepts of

Stackelberg Equilibrium are employed by [10] to design a

mixed strategy for the defender to allocate intrusion detectors

and implement the intrusion detectors randomization sched-

ule using MTD. In [11], the authors formulate the security

countermeasure-allocation problem as a resource-allocation

game, where attack graphs are used to evaluate the security of

the network given the allocated resources. A Bayesian attack

graph is an empirical attack behavior model constructed

from the data and exploitability of the targeted vulnerabil-

ity [12]. In [13], the authors assume that a Bayesian attack

graph [14] represents the attacker’s behavior and design

optimal defender strategies under partial observations using

solutions of partially observable Markov decision processes.

Another related formulation is the plan interdiction problem

studied in [15], where the attacker is to reach a subset of

goals with attack actions, and the defender is to mitigate

the attack by interdicting or removing the attack actions.

They formulated a mixed-integer programming problem to

maximize the defender’s objective function assuming the
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optimal plan of the attacker given the interdiction strategy.

In comparison to existing work, we introduce a formal

model of MTD strategy and capture the effects of MTD

on system configuration randomization as a probabilistic

switching between different attack graphs. For allocating

intrusion detectors given a randomization schedule, we con-

sider the optimal allocation given a “worst-case” attacker

who knows about the MTD schedule and the locations of

intrusion detectors and plans to evade detection by intrusion

detectors. In addition, we allocate stealthy sensors, which are

unobservable to the attacker, to decrease the attack success

rate further. To the best of our knowledge, the combined

effect of MTD and cyber deception has not been investigated

in the literature. This work contributes a formal method-

based approach for modeling and synthesizing approximately

optimal cyber defense with a class of sensor deception.

II. PROBLEM FORMULATION

Our modeling of the attack-defend interaction is inspired

by the formal graphical security model called attack graphs,

introduced in [16] for modeling sequential attacks in a

network. Specifically, in network security, an attack graph

is constructed from the attack actions (vulnerabilities in

a program/network) and the pre- and post-conditions of

actions.

Besides cybersecurity applications, attack graphs are

commonly used for analyzing terrorist networks, counter-

terrorism networks, and transportation networks (see a survey

in [17]). In this work, though the examples are set with cyber

security applications in mind, similar solution approaches

are applicable for general security problems modeled using

attack graphs.

Definition 1 (Attack Graph). Given a system configuration,

the corresponding attack graph is represented as a probabilis-

tic transition system TS = 〈S,A, T, ν0, F 〉, where 1) S is

a finite set of states, representing security-related attributes

of the system and the attacker; 2) A is a finite set of attack

actions; 3) T : S ×A → Dist(S) is a probabilistic transition

function that maps a state-action pair into a distribution over

next states; 4) ν0 is the initial state distribution; 5) F ⊆ S
is a subset of states. The attacker’s objective is to reach one

of the states in F .

A path ρ = s0a0s1a1 . . . of TS is a state-action sequence

such that for any i ≥ 0, there exist a ∈ A, for which T (si+1 |
si, a) > 0.

In cybersecurity, an example of a state can be “the attack is

at host 1, and host 2 running an ftp server”. An attack action

can be to exploit a known vulnerability on the ftp server, to

reach a state where “the attacker has user access to host 2.” In

relation to logical attack graph [18], one can employ PDDL

language [19] to generate a (deterministic) transition system

from the pre- and post-conditions of exploitation actions in

logical attack graphs.

Defender’s proactive, randomized moves A defense con-

figuration i describes the network connectivity, node con-

figurations, defensive countermeasures, and the allocation of

sensors. It is observed that the changes in system configu-

ration can be directly captured by the changes in the attack

graph, including removing/adding transitions or changing the

probability distributions given state-action pairs.

Let Γ be the set of indices of different system configura-

tions among which the defender switches. Each configuration

i ∈ Γ generates a probabilistic transition system TSi =
〈S,A, T i, ν0, F 〉. To simplify notations, we assume that

different configurations i and j will have different transition

functions but share all other components. Note that if the

transition systems constructed from two attack graphs of

different configurations do not have the same set of states,

then we can make the union of the state sets as the set S.

The same argument applies to justify the same set of attack

actions with different configurations.

Next, we introduce a computational model of proactive

defense strategies using randomization.

Definition 2 (Proactive Defense Strategy). A proactive de-

fense strategy is defined by a Markov Chain

MC = 〈Γ, P, γ〉,

where

• Γ is a finite set of system configurations.

• P : Γ → Dist(Γ) is the probabilistic transition function.

Given the current configuration i, the probability of

reaching configuration j is P (i, j).
• γ is an initial state distribution of configurations.

Defender’s Proactive Intrusion Detection with Deceptive

Sensors Besides randomization, the defender can allocate

sensors to monitor different subsets of states. The defender

can block the attacker from the network when a sensor

detects an attack.

Specifically, we consider two kinds of sensors: the first

kind, called intrusion detectors, can be detectable by the

attacker; and the second kind, called stealthy sensors, cannot

be detected by the attacker unless the attacker directly

interacts with it. In practice, intrusion detectors are intru-

sion detection systems or firewalls. Stealthy sensors can be

realized by honeypots and honey patching [8]. A honey patch

misleads the attacker into believing a specific vulnerability

exists. However, such a vulnerability is patched, and exploita-

tion of it will be directly detected by the defender. Honey

patching has been recently proposed as an effective detection

mechanism using cyber deception.

Definition 3 (Sensor Allocation). The defender’s sensor

allocation design is a pair of Boolean-valued vectors (~x, ~y),
where ~x, ~y ∈ {0, 1}|S×Γ×A| such that

• ~xs,i,a = 1 if and only if under the configuration i, the

intrusion detector is placed on state-action pair (s, a).
• ~ys,i,a = 1 if and only if under the configuration i, the

stealthy sensor is placed on state-action pair (s, a).

It is observed that this modeling of the defender’s obser-

vation captures realistic sensing modalities. For example, an

intrusion detector may only be able to detect one type of



exploitation/action from a given state. A similar argument

applies to honey patching, which is used to detect the

exploitation of a specific known vulnerability on a target

system. Note that the action can still be detected even if the

attack fails (with the probabilistic action outcomes).

Assumption 1 (Sensor Allocation Constraints). For any

configuration i ∈ Γ, the intrusion detector can be allocated

to a subset I ⊂ S × A of state-action pairs and the stealthy

sensor can be allocated to a subset H ⊂ S × A. The set

I and H may have a nonempty intersection. However, if,

for configuration i ∈ Γ, (s, a) is allocated with the intrusion

detector, then it cannot be allocated with a stealthy sensor at

the same configuration, and vice versa.

Problem 1. Consider the set of attack graphs {TSi |
i ∈ Γ} for different system configurations, the set of goal

states F , and the defender’s randomization schedule modeled

as a Markov Chain MC. Assuming the sensor allocation

constraints in Assumption 1, compute a sensor allocation

strategy given a finite number h ∈ Z of intrusion detectors

and k ∈ Z of stealthy sensors such that the defender can

maximize the probability of detecting the attacker before the

attacker reaches a goal state in F .

III. A STACKELBERG GAME FORMULATION

To formulate the sensor allocation problem, we first con-

struct a model that describes the attacker’s interaction with

the defense system using randomization but no sensors, then

we show how a fixed sensor allocation (~x, ~y) can change

such a model to different models perceived by the attacker

and the defender.

Assumption 2. It is assumed that the defender and attacker

move concurrently. At every time step, the attacker selects an

attack action and the defender makes a probabilistic move.

Definition 4 (Attacker’s Markov Decision Process with-

out Sensors). Given a proactive defense strategy MC =
〈Γ, P, γ〉, a set of probabilistic transitions systems {TSi =
〈S,A, T i, ν0, F 〉 | i ∈ Γ} generated from different network

configurations, the attacker’s planning problem is captured

by the MDP:

M = 〈Z,A,P, ι,F〉

with following components:

• Z : S × Γ is the set of states.

• A is the set of attack actions.

• P : Z × A → Dist(Z) is a probabilistic transition

function defined as follows. Consider (s, i), (s′, j) ∈ Z,

for each action a ∈ A, we consider two cases:

(a) If T j(s′ | s, a) > 0, then P((s′, j) | (s, i), a) =
P (i, j) · T j(s′ | s, a);

(b) If T j(s′ | s, a) is not defined, then we have

P((s, j) | (s, i), a) = P (i, j). In this case, the

defense state changes, but no progress is made by

the attacker. This is because that the attack action

is invalid given the updated configuration.

• ι is the initial state distribution, defined by the joint

distribution of initial state distribution ν0 in the attack

graph and the initial state distribution γ of the proactive

defense strategy.

• F = F × Γ is the set of final states which the attacker

is to reach.

The probabilistic transition function P is understood as

follows: When the attacker takes an action at the current

state, the outcomes of its action will be probabilistic due

to the randomized switching of system configurations pre-

defined by the defender’s proactive defense strategy and the

probabilistic outcome of successfully exploiting the vulnera-

bility. For example, if the system shuffles the IP address, an

attack action using the IP address in configuration i will be

invalid given the updated system configuration j.

We introduce false negative rates for intrusion detectors

as follows.

Assumption 3. Given a state-action pair (s, a), if the attack

action a is monitored at state s, then with probability 1 −
ε(s, a), the attack action will be detected. The value ε(s, a) ∈
(0, 1) is false negative rate of the detector.

Next, we capture the effects of sensors on the attacker’s

MDP.

Definition 5 (Attacker’s MDP given Incomplete Information

about Sensor Allocation). Given a sensor allocation (~x, ~y),
the attacker’s planning problem is captured by the following

MDP:

M~x = 〈Z,A,P~x, ι,F〉,

where Z,A, ι,F are the same as those in the MDP without

sensors M. The transition function P~x is obtained as follows.

Consider (s, i) ∈ Z, for each action a ∈ A,

(a) If T j(s′ | s, a) > 0 and ~xs,j,a = 0, then we have

P~x((s′, j) | (s, i), a) = P((s′, j) | (s, i), a);
(b) If T j(s′ | s, a) > 0 and ~xs,j,a = 1, P~x((s′, j) |

(s, i), a) = P (i, j)T j(s′ | s, a)ε(s, a), where ε(s, a) is

the state-action dependent false negative rate; In words,

if the updated configuration has a detector to monitor the

exploitation (s, a) but has a false negative rate ε(s, a),
then the attacker may reach the next state (s′, j) at the

chance of a detection failure.

(c) If T j(s′ | s, a) is not defined, then P~x((s, j) |
(s, i), a) = P (i, j), which means the defense state

changes but no change in the state from the attack graph.

(d) P~x(sink | (s, i), a) =
∑

j∈Γ P (i, j) · (1− ε(s, a)) ·~xs,j,a;

In words, the probability of reaching the state sink is the

probability of getting detected in a configuration at which

the intrusion detector is allocated to monitor state-action

pair (s, a).

The defender’s model of the attack planning problem,

described below, is however different due to the use of

stealthy sensors. The following assumption is made.

Assumption 4. A stealthy sensor has a false negative rate

of zero.



This assumption is due to the nature of honey patching. It

can be relaxed, however, to have false negative rates similar

to the treatment for intrusion detector.

Definition 6 (Defender’s MDP given Complete Information

about Sensor Allocation). Given a sensor allocation (~x, ~y),
the defender’s model of the attack planning problem is

captured by the following MDP:

M~x,~y = 〈Z,A,P~x,~y, ι,F〉,

where Z,A, ι,F are the same as those in the MDP without

sensors M. Consider (s, i), (s′, j) ∈ Z, for each action a ∈
A, the transition function P~x,~y is obtained from the transition

function P~x in the attacker’s MDP by letting P~x,~y((s′, j) |
(s, i), a) = P~x((s′, j) | (s, i), a)(1− ~ys,j,a); and P~x,~y(sink |
(s, i), a) =

∑

j∈Γ P (i, j)~ys,j,a.

Next, we formulate the defender’s value function and the

attacker’s value function respectively.

By the construction of the attacker’s MDP, the objective

is equivalent to maximizing the probability of reaching the

set F , which is a stochastic shortest path problem [20]. The

optimal attacker’s strategy π∗ can be computed by solving

the stochastic shortest path problem with the following

reward function:

R(z) =

{

1 if z ∈ F ,

0 otherwise.

This reward function means that a reward of 1 is received

only if the agent reaches a state in F . In this stochastic

shortest path problem, the MDP terminates at an absorbing

state. The sink state sink and F are absorbing.

The attacker’s perceptual value given the policy π and the

attacker’s MDP M~x is

V π
2 (ι; ~x) =

E





∑

k≥0

R(zk) | zk+1 ∼ P~x(· | zk, π(zk)), z0 ∼ ι



 (1)

where the expectation is taken with respect to the stochastic

process induced by policy π in M~x terminating at absorbing

states. That is, ak ∼ π(zk) and zk+1 ∼ P~x(· | zk, ak), for

all k > 0.

And for the same policy π, the defender’s value is given

by

V π
1 (ι; ~x, ~y) =

E





∑

k≥0

R(zk) | zk+1 ∼ P~x,~y(· | zk, π(zk)), z0 ∼ ι



 (2)

where the expectation is taken with respect to the stochastic

process induced by policy π in M~x,~y terminating at absorbing

states. Note that the terminating time is perceived differently

in the attacker’s MDP M~x and the defender’s MDP M~x,~y

because the attacker cannot observe the stealthy sensors.

The synthesis of sensor allocation is now formulated as

a Stackelberg game, in which the defender designs the

allocation, in anticipation of the attacker’s best response, in

the attacker’s MDP with incomplete information.

Problem 2. Let X × Y be the domains of sensor allocation

variables (~x, ~y) under the allocation constraints (Assump-

tion 1). The sensor allocation design is a bi-level optimization

problem:

min.
(~x,~y)∈X×Y

V π∗

1 (ι; ~x, ~y)

s.t. π∗ ∈ argmax
π

V π
2 (ι; ~x).

The bi-level optimization problem is known to be strongly

NP-hard [21]. However, we show that due to the special

properties of the sensor allocation problem, an optimal

solution can be found by reducing it to two single-level

MILP problems. The first one considers optimally allocating

intrusion detectors in the absence of stealthy sensors. The

second one allocates stealthy sensors given the knowledge

of the attacker’s best response.

Here, we review Linear Programming (LP) formula-

tion [22] for solving the optimal attack policy. Later, we

will show how this LP formulation facilitates the solution of

sensor allocation problems.

Let the optimal value vector be defined by ~v∗ = [v∗z ]z∈Z ,

where v∗z is the probability of reaching F from z under the

optimal attack policy. We introduce a decision vector ~v =
[vz]z∈Z , where vz is an upper bound on v∗z for each z ∈ Z.

Consider the following LP:

min.
~v

∑

z∈V

czvz (3)

s.t. vz ≥
∑

z′∈Z

P(z′ | z, a)vz′ ,

∀a ∈ A, ∀z ∈ Z, (4)

vz = 0, ∀z ∈ {sink}, (5)

vz = R(z), ∀z ∈ F , (6)

vz ≥ 0, ∀z ∈ Z (7)

where ~c = [cz]z∈Z is a positive vector, termed as state-

relevance weights. The state-relevance weights can be se-

lected to be the initial distribution over the states Z. It is

shown in [22] that any vector ~v that satisfies (4) is an upper

bound on the optimal value vector ~v∗. The objective function

is equivalent to minimizing a weighted norm between the

upper bound ~v and ~v∗, given the weight vector ~c = [cz]z∈Z .

The solution ~v is shown to be equal to the optimal value

vector ~v∗ [22].

From a value function ~v, a stochastic attack policy, π :
Z → Dist(A), can be computed as the following equation:

π(a | z) = exp((Q(z, a)− vz)/µ), (8)

where µ > 0 is a customized temperature. As the µ goes to

0, equation (8) recovers hardmax operation. The state-action

value function Q(z, a) is defined by

Q(z, a) =
∑

z′∈Z

P(z′ | z, a)vz′ . (9)



IV. SYNTHESIZING THE (SUB)-OPTIMAL SENSOR

ALLOCATION

A. Step 1: Optimal intrusion detector allocation without

stealthy sensors

We first consider the case that the defender only allocates

detectors but not stealthy sensors. We propose a mixed inte-

ger program to solve the optimal intrusion detector allocation

strategy as follows. For clarity, we use xs,i,a and ys,i,a to

represent ~xs,i,a and ~ys,i,a.

min.
~x∈X ,~v

∑

z∈Z

czvz (10)

s.t. vz ≥
∑

(s′,j)∈Z

(

P((s′, j) | z, a)vs′,j(1− xs,j,a)

+ P((s′, j) | z, a)vs′,j · xs,j,a · ε(s, a)
)

, (11)

∀a ∈ A, ∀z = (s, i) ∈ Z \ (F ∪ {sink}),
∑

(s,a)∈S×A

xs,i,a ≤ k, ∀i ∈ Γ, (12)

(5), (6), and (7),

where the domain of variable ~x is X that restricts the

allocation to satisfy the constraints in Assumption 1. When

xs,j,a = 1, the right-hand side of constraint (11) is the value

given two cases of the next state: The first case is when

the attack action is taken but not detected by the intrusion

detector. In this case of detection failure, the attack reaches

the next state z′ = (s′, j) from the current state z = (s, i) by

taking action a with a probability obtained by the original

probability P(z′ | z, a) multiplied with the false negative rate

ε(s, a). The second case is when the attack action is taken

and detected, the attacker will reach the sink state and the

attack terminates. If xs,j,a = 0, then no intrusion detector is

allocated in configuration j to monitor the state-action pair

(s, a), then the value is given by P((s′, j) | z, a)vs′,j .

The constraint (11) in the optimization problem is nonlin-

ear due to the product between the variable vz and the integer

variable xs,j,a. However, we can introduce new variables to

rewrite the problem as an MILP. Note that the constraint (11)

is equivalent to

vz ≥
∑

z′∈Z

P(z′ | z, a)wz,a,z′ , ∀z ∈ Z, ∀a ∈ A, (13)

where for z′ = (s′, j),

wz,a,z′ =

{

vz′ · ε(s, a) if xs,j,a = 1,

vz′ if xs,j,a = 0.
(14)

Using the big-M method, we can rewrite (14) as the

following linear constraints:

wz,a,z′ − vz′ · ε(s, a) ≤ M · (1− xs,j,a), (15a)

wz,a,z′ − vz′ · ε(s, a) ≥ m · (1− xs,j,a), (15b)

wz,a,z′ − vz′ ≤ M · xs,j,a, (15c)

wz,a,z′ − vz′ ≥ m · xs,j,a, (15d)

where M and m are constants to be defined shortly. When

xs,j,a = 1, the constraints (15a) and (15b) together recover

wz,a,z′ = vz′ ·ε(s, a), whereas the constraints (15c) and (15d)

become non-binding as long as M and m are chosen

appropriately. For this problem, it is not difficult to verify

that it suffices to choose M = 1 and m = −1. A similar

argument can be made for the case when xs,j,a = 0. The

final form of the MILP is given as follows:

min.
~x∈X ,~v

∑

z∈Z

czvz

s.t. (5), (6), (7), (12), (13), (15),

wz,a,z′ ≥ 0, ∀z ∈ Z, ∀a ∈ A, ∀z′ ∈ Z.

B. Step 2: Optimal stealthy sensor allocation for a fixed

detector allocation

Next, we allocate a bounded number of stealthy sensors

given the attacker’s policy π∗, calculated from the attacker’s

MDP M~x. In addition, we introduce decision variables ~v =
[vz]z∈Z , where vz is the optimal attack success rate given

both intrusion detector and stealthy sensors and new decision

variables ~q = [qz,a,z′ ](z,a,z′)∈Z×A×Z . We propose another

MILP for computing the optimal stealthy sensor allocation

strategy:

min.
~q,~v,~y∈Y

∑

z∈Z

czvz (16)

s.t. vz =
∑

(a,z′)∈A×Z

qz,a,z′ , ∀z ∈ Z, (17)

qz,a,z′ ≤ M · (1− ys,i,a), (18)

P(z′ | z, a)π∗(z, a)vz′ − qz,a,z′ ≥ m · ys,i,a,
(19)

P(z′ | z, a)π∗(z, a)vz′ − qz,a,z′ ≤ M · ys,i,a,
(20)

qz,a,z′ ≥ 0, (21)

∀a ∈ A, ∀z = (s, i) ∈ Z, ∀z′ = (s′, j) ∈ Z,
∑

s,a

ys,i,a ≤ h, ∀i ∈ Γ, (22)

and(5), (6), (7),

where M = 1 and m = −1 are constants. The domain

of variable ~y is Y that restricts the allocation to satisfy the

constraints in Assumption 1. For this optimization problem,

we aim to minimize the weighted sum of attack success rate

~v in (16). Note that if the weights ~c = [cz]z∈Z are chosen to

be the initial state distribution, the objective function in (16)

is equivalent to minimizing the attack success rate given the

initial distribution.

Constraint (17) enforces that the state value vz is the

summation over state-action-state value qz,a,z′ for all actions

a ∈ A and next states z′ ∈ Z. Constraint (18) means that if

ys,i,a = 1, then the state-action-state value qz,a,z′ = 0 as the

attacker will be detected. If ys,i,a = 0, constraints (19) and

(20) enforce

P(z′ | z, a)π∗(z, a)vz′ = qz,a,z′ . (23)

Substituting qz,a,z′ into (17), we have policy evaluation of π∗

given the stealthy sensors and intrusion detectors allocation.



In the end, we consider finite number of stealthy sensors

constrained by inequality (22). Constraint (21) means the

state-action-state values are non-negative.

V. CASE STUDY

To illustrate the effectiveness of the proposed method, we

consider an example of a cyber system shown in Fig. 1

inspired by [12]. The system has three hosts: the workstation

h1 handles users’ requests, the webserver h2 handles web

service requests, and the database server h3 houses critical

data such as personal credentials. In addition, there are a

few network security functions, such as firewall, intrusion

detectors, and stealthy sensors available to be deployed in the

network. The firewall divides hosts into hosts that internal

entities can access and hosts that outside entities can access.

In this example, h1 and h2 can be accessed by outside

entities, and h3 can only be accessed by internal entities.

The attacker is initially outside the network system, and the

goal is to acquire root privilege on host h3.

Fig. 1: Network example.

We equip this network with a proactive redundancy-based

MTD strategy; that is, we have replicas of Operating System

(OS) for network components, and the network configuration

is updated dynamically. More specifically, the hosts 1 and

2 probabilistically switch between default OSs and backup

OSs 1 This proactive MTD strategy is captured by a Markov

Chain shown in Fig. 2.

0start 1

0.3 0.7 0.6

0.4

Fig. 2: Two-state proactive MTD strategy.

The Markov Chain can be understood as follows: at the

state 0, the network MTD controller either switches to

backup OSs with probability 0.7 or stay with the default

OSs with probability 0.3; at the state 1, the network system

switch back to default OSs with a probability 0.4 or stay

1The information about the default OSs and backup OSs, along with all
the vulnerabilities, i.e., attack actions, can be found in https://bit.

ly/3xWxdDa.

with the backup OSs with probability 0.6. In this example,

the finite defender states 0 and 1 have one-to-one mappings

to the set of network configurations (default and backup).

For each network configuration, we generate its corre-

sponding host-based attack graphs [4] based on the vul-

nerabilities from Common Vulnerability Scoring System

(CVSS) [23]. Note that state (h2, user) is not reachable in

the attack graph for state 0 and thus omitted from the figure.

Given the attacker’s objective is to reach root privilege in host

h3, the set of goal states in the attack graphs is {(h3, root)}
for both attack graphs. The set of final states in the attacker’s

planning problem (Def. 4) is {((h3, root), 0), ((h3, root), 1)}.

To illustrate the attack planning problem, we plot a fragment

of the attacker’s MDP in Fig. 3. The initial state is (A, 0), and

the attacker can take action w1 to reach state ((h1, user), 0)
with probability 0.063, which is calculated based on the

product of three quantities: 1) the probability of staying in

configuration 0 (0.3); 2) the probability of exploiting the

vulnerability w1 successfully (0.7); 3) the false negative

rate ε = 0.3 for the intrusion detector is deployed in

((h1, user), 0, w1) but missed the detection. We assume for

each state except for the target (h3, root), for each attack

action, an intrusion detector or a stealthy sensor can be

allocated to monitor that state-action pair.

(A, 0) (A, 1)

((h1, user), 0)

sink

((h2, root), 1)

w1, 0.21

w1, 0.027

w1, 0.7

w1, 0.063

ub1, 0.3 ub1, 0.7

ws3, 0.3

ws3, 0.49

ws3, 0.147

ws3, 0.063

Fig. 3: A fragment of MDP constructed from Def 4.

In the first step, we solve the optimal intrusion detec-

tor allocation problem, with varying upper bounds on the

number of deployable intrusion detectors and varying false

negative rates. We assume the same false negative rates for

all intrusion detectors to illustrate how the false negative

rate affects the effectiveness of defense. Note that the al-

gorithm allows different intrusion detectors with different

false negative rates. Fig 4 summarizes the results. When

the false negative rate is fixed, the attack success rates are

monotone and non-increasing as the number of intrusion



detectors increases. That means with the more intrusion

detectors the system can deploy, the attacker has less chance

to achieve the target because although he observes intru-

sion detectors, due to the randomization it cannot always

evade intrusion detectors. When the number of intrusion

detectors is fixed, the success rates are monotone and non-

increasing as the false negative rate decreases. When the

false negative rate ε = 0.3 and the number of intru-

sion detectors is 4, intrusion detectors should be placed at

{(A, r1), (A, w1), ((h1, root), b3), ((h2, root), b3)} at state 0
and {(A, ws3), ((h1, user), b3), ((h2, root), b1),
((h2, root), b3)} at state 1.

When the number of intrusion detectors is 1, for all ε
ranging from 0 to 0.5, we show that the attacker can reach

the target state (h3, root) with probability 1. The solution

suggests placing intrusion detectors at ((h2, root), b3) at 0
and ((h1, user), b3) at 1, but one intrusion detector at each

configuration is not sufficient to block alternative attack

actions. For example, when the configuration is at 0 and the

attacker reaches the state (h2, root), the intrusion detector is

located at ((h2, root), b3), but the attacker take action b1 to

reaches the target with probability 1.
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Fig. 4: The number of intrusion detectors versus the attack

success rates under different false negative rates ε.

After solving the optimal intrusion detector allocation, we

synthesize the optimal stealthy sensor allocation strategy. We

first extract the optimal attacker’s policy according to (8) and

(9), where the temperature µ is 0.1. We vary the number of

intrusion detectors and the number of stealthy sensors and fix

the false negative rate ε = 0.3. Fig. 5 summarizes the attack

success rates and indicates that, if we fix the number of

intrusion detectors and the corresponding policy, the success

rates are monotone and non-increasing as the number of

stealthy sensors increases.

Furthermore, we compare two cases with a false negative

rate ε = 0.3: (a) one intrusion detector and one stealthy

sensor; (b) two intrusion detectors. For case (a), the attack

success rate is 0.167; for case (b), the attack success rate is

0.205. This comparison shows that, for the same number of

sensors, deploying stealthy sensors is more effective (with

18.5% reduction in the attack success rate) because first, the
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Fig. 5: The number of stealthy sensors versus the attack

success rates, where the number of intrusion detectors is

k ∈ {0, 1, 2, 3}, and false negative rate is ε = 0.3.

stealthy sensor has zero false negative rate, and second, the

attacker cannot observe these stealthy sensors and plan to

evade them. We consider a case when false negative rate

0.3, and there are 2 intrusion detectors and 1 stealthy sensor

available. The solution suggests we deploy intrusion detec-

tors at {(A, w1), (A, r1)} and stealthy sensor at {(A, r1)} at

0; we deploy intrusion detectors at {(A, w1), (A, ws3)} and

stealthy sensor at {(A, r1)} at 1 2.

The MILPs are solved using the Python-MIP package with

Gurobi 9.1.2 on a Windows 10 machine with Intel(R) Xeon

(R) E5-1607 v3 CPU and 16 GB RAM. The average compu-

tational time of intrusion detectors allocation is 0.72 s, and

the average computational time of stealthy sensors allocation

is 0.58 s.

VI. CONCLUSIONS

For an attacker compromising a cyber system equipped

with a proactive MTD mechanism, we developed a formal

method-based modeling framework to capture the attacker’s

planning problems and synthesis algorithms for optimally

allocating sensors that minimize the attack success rate. We

specifically considered two types of sensors: intrusion detec-

tors that are observable to the attacker and stealthy sensors

that are not observable to the attacker. The experiment results

demonstrate the combined benefit of MTD, intrusion detec-

tion, and deception. In our future work, the following exten-

sions will be investigated: First, our current formulation to

allocate stealthy sensors assumes that the attacker is unaware

of the use of cyber deception. It remains open to investigate

the design of stealthy sensor allocation given deception-

aware attacker. Second, the current formulation considers

one-time interaction. To mitigate persistent attackers, one

must consider that the attacker may learn the deployment

of stealthy sensors from past interactions and improve its

2We provide the constructed attack graphs and solutions for all intrusion
detectors and stealthy sensor allocations in the following link: https:
//bit.ly/3zwHrtm.



attack policy. Lastly, we assume a powerful attacker who can

observe the defender’s states. In practice, if the defender’s

states are different from network configurations, then the

attacker may not be able to construct the defender’s MTD

strategy or observe partially the states in the attack planning

problem. It is of practical interest to investigate the sensor

allocation against attackers with partially observations.
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