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1 | INTRODUCTION

Since the initial outbreak of the novel coronavirus in Wuhan, China in early January 2020, the
COVID-19 pandemic has rapidly spread across the world and brought enormous disruption to
the economy and society. Various emergency measures, such as social distancing, school closures
and economic shutdowns, have been taken by different countries to contain the first waves of
the pandemic. To balance saving lives and the economy, a condition-based phased approach has
since been adopted in much of the world, including United States and European Union, where
the strictness of public health measures is set to adapt in accordance with the present epidemic
condition. The success of such a phased approach critically depends on the accurate assessment
of the current and near-future status of the pandemic.

One natural and fundamental indicator of the epidemic condition is the trajectory of daily
new cases (i.e. the infection curve), as it reflects the transmission rate of the coronavirus and sig-
nals the potential impact on the public health system in coming days. This makes the modelling
and forecast of the COVID-19 infection curve an important statistical task that can help provide
valuable information for public health decision-making of the phased approach. A distinctive
feature of the trajectory of new cases is its ever-changing growth rate, as evidenced by the mul-
tiple peaks and troughs of the curve (see Figure 1 in Section 4 and Figure S2 in the supplement
for trajectories of nine representative countries). Another salient characteristic of the curve is its
heteroscedasticity and the presence of notable outliers.

To accurately capture these important features, in this paper, we propose to study the tra-
jectory of new cases (in log scale) via a piecewise linear quantile trend model. Specifically,
let Y, = log (R, + 1), where R, denotes the daily new cases on time t. Here, the addition of
1 in the log-transformation is to handle the case of R, = 0. For a given set of quantile levels

™ = {z,, 75, ..., Ty} C (0, 1), weassume that forallz € =, the rth quantile of {Y;}"_, follows

Q.(Y)= ﬁor(f)+ﬁ1t(7)t/n, = 1? R (5 .
Bor (@), Br )T =B P =Bo(0)D, f()N)T, |ng,_,| <t<l|ng|, i=1,..,my+1, (1)

where (f;(7), B1,(z))is the linear trend (intercept and slope) of the rth quantile Q(Y,) at time ¢ and
q = {q1, ---» @, } € (0, 1)denotes the m,, > 0 change-points with the convention that g, = 0 and
@my+1 = 1 Denote Y = (B(z)D, ..., B(zy)?), we require pO % gtV fori =1, ..., my + L
Due to the log transformation, the slope f,;(z) naturally measures the growth rate of the new case
at the th quantile. Note that within each segment, the linear trend f(z)? is allowed to vary across
quantile levels and thus naturally accommodates heteroscedasticity. We provide more detailed dis-
cussion on the model assumption in Section 3.1.

The piecewise linear quantile trend model is intuitive, interpretable and is useful for tracking
the epidemic condition as the change-points naturally segment the trajectory of new cases into
phases with (approximately) the same growth rate. The slope of the last segment sheds light on
the current pandemic status and helps guide the short-term forecast. The quantile-based ap-
proach is more natural and advantageous than the mean-based counterpart due to its built-in
robustness to outliers and heteroscedasticity, and its ability to deliver both point and interval
forecasts across multiple quantile levels M.

An important part in the estimation of model (1) is to recover the unknown number m; and
location q of the change-points. Note that model (1) can be seen as a piecewise quantile re-
gression with deterministic covariates (1, t/n). Though change-point estimation for piecewise
linear regression has been extensively studied in the literature, see excellent reviews in Perron
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(2006) and Aue and Horvath (2013), piecewise linear quantile regression has not received
much attention with only a few exceptions. A sub-gradient testing-based algorithm is studied
in Oka and Qu (2011) and a model selection-based procedure is derived in Aue et al. (2014,
2017). However, for methodological and theoretical simplicity, both methods impose temporal
independence or martingale difference assumptions on the quantile error process, which can
be restrictive for time series applications, see Jiang et al. (2020) for evidence of significant
serial dependence in COVID-19 data. Wu and Zhou (2018) study change-point testing in a gen-
eral M-estimation framework and allow for non-stationary and temporally dependent errors;
however, the bootstrap-based testing procedure seems difficult to be extended to change-point
estimation.

Based on the self-normalization (SN) idea in Shao (2010, 2015), we propose a novel SN-based
change-point detection procedure for the piecewise linear quantile trend model (1) that is robust
to temporal dependence and heteroscedasticity. The essential idea of SN is to form an inconsis-
tent variance estimator (i.e. self-normalizer) based on recursive subsample estimates, which is
proportional to both the unknown density function at the given quantile levels (due to the non-
smooth objective function in quantile regression) and the long run variance (due to temporal
dependence). The proposed change-point detection algorithm couples the SN tests computed on
nested windows with a local scanning procedure and performs favourably in numerical studies.
Due to the use of SN, theoretical results such as segmentation consistency are derived based on a
novel non-standard technical argument new to the change-point literature.

Using the piecewise linear quantile trend model and SN-based segmentation method, we
analyse the infection curves of COVID-19 (in log scale) in 35 major countries. We find that
the spread of coronavirus in each country can typically be segmented into several phases with
distinct growth rates and countries with geographical proximity share similar spread patterns,
which is particularly evident for continental European countries and developing countries in
Latin America. A change-adaptive two-stage forecasting scheme is further designed to gener-
ate both point and interval prediction of one-week and two-week ahead cumulative new cases,
which delivers accurate forecast valuable to public health decision-making.

Related literature: There are a few recent works in statistics and econometrics literature
on COVID-19 modelling. Li and Linton (2021) model the infection and death curves via a qua-
dratic trend function and aim to estimate the inflection point of the pandemic. This work seems
less suitable for the current coronavirus trajectories as the pandemic clearly exhibits multiple
waves. Liu et al. (2021) analyse country-level infection curves via panel models with piecewise
linear trends allowing for one known break-point. Jiang et al. (2020) model the mean trajectory
of cumulative cases via a linear trend model allowing for unknown number of change-points,
where an SN-based test statistic combined with NOT (a novel segmentation algorithm proposed
in Baranowski et al., 2019) is used for change-point estimation. However, no segmentation con-
sistency is provided.

Smooth time-varying coefficient models have also been proposed to capture the changing
growth rate of the pandemic. For example, Harvey and Kattuman (2020) introduce the dynamic
Gompertz model. Dong et al. (2020) and Gu et al. (2020) propose time-varying coefficient panel
and SEIR models respectively to analyse the initial outbreak of the pandemic. In comparison, a
change-point model may be more suitable for providing decision-making support for the phased
approach to containing the epidemic as it naturally partitions the infection curve into segments
with distinct growth rates (thus different severity). Indeed, in real data analysis, we compare
with the quantile trend filtering proposed in Brantley et al. (2020), a non-parametric quantile re-
gression method, and demonstrate the advantages of the piecewise linear quantile trend model.
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1592 | JIANG ET AL.

Notably, all the aforementioned works on COVID-19 focus on the modelling of mean.
However, as discussed above, the quantile-based approach we adopt here may be more advanta-
geous given its built-in robustness to outliers and ability to capture heteroscedasticity (commonly
found in COVID-19 infection curves) and deliver both point and interval forecasts with minimal
assumptions.

The rest of the paper is organized as follows. Section 2 proposes the SN-based change-point
detection algorithm for the piecewise linear quantile trend model. Section 3 studies the theo-
retical guarantees of the algorithm. Section 4 conducts real data analysis and demonstrates the
promising utility of the proposed methodology for public health decision-making. Section 5 con-
cludes. Simulation studies and technical proofs can be found in the supplementary material.

Some notations used throughout the paper are defined as follows. Given avectorx = (xy, ..., x;) ",
denote || x||9 = _, |xi|9and denote x®% = xx" where x' is the transpose of x. For a random
vector X € Rd denote X, = = E(IXIDY and | X || = |IX||,- We write X € £4 if || X|]lq < oco. For
a € R, define |a] asits 1nteger part.

2 | METHODOLOGY

In this section, we address the key task of estimating the unknown number m, and location q
of the change-points in the piecewise linear quantile trend model (1). Section 2.1 proposes a
subsample-based SN statistic for change-point testing. Built on the SN test, a novel segmentation
algorithm, GOALS, is proposed in Section 2.2 for multiple change-point estimation at a single
quantile level 7. Section 2.3 further extends the segmentation algorithm to change-point detec-
tion across multiple quantile levels 7M.

We proceed by introducing two important quantities involved in the proposed algorithm: the
global trimming parameter ¢ € (0, 1/2) and the local trimming parameter § € (0, €/2). The
global trimming parameter ¢ takes a small value such as € = 0.05, 0.1, 0.15 and we require that
Miny i< +1 (4 — 9i—1) = €, which is a common assumption on the minimum spacing between
change-points in the literature, see Andrews (1993), Bai and Perron (2003), Oka and Qu (2011)
and Aue et al. (2014). The local trimming parameter § € (0, /2) is needed for the stability of the
subsample-based SN statistic. See more detailed discussions in Sections 2.1 and 2.2.

2.1 | An SN-based test statistic

For the ease of presentation, we first focus on the piecewise linear quantile trend model (1) at a
single quantile level 7 (i.e. M = 1) and leave the extension to multiple quantile levels ™to Sectlon
2.3. Denote ﬁ[ ,(7) as the estimated linear trend parameters based on the subsample {Yl via

quantile regression at level 7. For notational simplicity, we omit 7 and write ﬁtl’tz = ﬂtl,tz(f)
when no confusion arises.

Given a subsample {Yt and a location k € (4, t,), to assess the possibility of k being a

t=t
change-point, it is natural to consider the CUSUM-type contrast statistic D,,(t;, k, t,) where

(k—t; +1)t,— k)
(ty —t; +1)3/2

Dyt k, 1) = Bry i — Brarsy)- )
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JIANG ET AL. | 1593

However, the asymptotic distribution of D, (t;, k, t,) depends on the long run variance for the in-
fluence function due to unknown temporal dependence and the unknown density function at the
quantile level 7, and the consistent estimation of both quantities involves tuning parameters that are
notoriously difficult to choose in practice, especially under the presence of change-points.

To bypass these issues, we utilize the SN technique for change-point testing (Shao, 2010;

Shao & Zhang, 2010; Zhang & Lavitas, 2018). Specifically, for a subsample {Y; }?: " andk € (¢, t,)

such thatmin(t, — k, k — t;) > | ne |, we define the self-normalizer V,, 5(¢, k, t;) = L, 5(t1, k, t;)
+ Rn,é(t19 k9 t2)5 where

Felmel G+ 1)2(k— i)

L ’5(t1, k, t2)=
" i=t1+2[n5J (k—t; +1)2(ty—t; +1)2

Ll 1k, i+ 1)
—t; +1)%(t, —k)?

~ ~ ®2
(ﬁtl,i _ﬁi+1,k) ’

(3)

n o 5
Ry 5ty k, )= (Bis, = Brari-)®

i=k+ | nd| (t

The local trimming parameter & € (0, €/2) is introduced to ensure that all the subsample estimates
in the self-normalizer V, 5(¢;, k, t,)are constructed with a subsample of size being a positive fraction
of n. Intuitively, local trimming removes estimators based on small samples (thus large variance)
and helps improve the stability of the self-normalizer. Theoretically, local trimming is needed for
the uniform convergence of the deterministic design matrix and weak convergence of the recursive
estimates based process {ﬁun, |» I € [8, 1]}, see for example Zhou and Shao (2013) and Rho and
Shao (2015).

Based on the contrast statistic D,(f;, k, t,) and the self-normalizer V,, 5(t, k, t,), we define the
subsample SN statistic T, 5(¢;, k, t,) such that

Tn,é(tl’ k, tz) = Dn(tl’ k, tz)TVn,é(tl, k, tz)_an(tl, k, [2).

Intuitively, a large T}, 5(t;, k, t,) indicates evidence of k being a change-point (see more discussions
in Section 2.2). Asymptotically, the presence of V,, 5(t;, k, t,) removes the effects of the unknown
temporal dependence and density function on T, 5(¢;, k, t,) and thus helps avoid the estimation of
the two quantities. A formal statement of this phenomenon is given by Theorem 1 in Section 3.2.
Note that SN can be viewed as a way of prepivoting (Beran, 1987) such that the distribution of SN-
based test statistic is pivotal in large sample and does not depend on weak temporal dependence. To
conserve space, we refer to Shao (2015) for a more detailed explanation.

2.2 | The GOALS algorithm

To extend change-point testing to multiple change-point estimation, a classical approach in the
literature is to combine a change-point test statistic with binary segmentation (Scott & Knott,
1974). However, as pointed out in Baranowski et al. (2019), such a strategy breaks down under
the presence of linear trend. In this section, we propose a new segmentation method, the GIObAl
testing + Local Scanning (GOALS) algorithm, to couple with the SN-based test statistic for multi-
ple change-point estimation in {Y; }'_, at a single quantile level 7.

Given the global trimming parameter ¢, define the window size h = |en|. Foreachk =1, ..., n,
we define its nested window set G, (k) where
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1594 | JIANG ET AL.

G, (k)= {(t;. )|t =k —ih+1, i=1, ..., |[k/h],t,=k+jh, j=1, ..., [(n—k)/h]}.

Note that for k < h and k > n — h, by definition, we have G, (k) = @. As suggested by its name,
GOALS consists of two components.

Step 1. Global-testing: For each k = 1, ..., n, we define a global SN test statistic T, (k)
based on the subsample SN test T, ;(f;, k, t,) computed on its nested window set G,(k)
such that

T, .s(k)= max T, s(t,kt,)= max D,(t;.k,t,)"V,(t;.k t,)"'D (t;,k,t),
n,e,ﬁ() ([1J2)€)G(n(k) n,5(1 2) (L) e 0, (k) n(ty 2) n,é(l 2) n(ty 2)

where we set max;, ;yeg T 5(t1, ks 1) = 0.

Step 2. Local-scanning: For each k = 1, ..., n, we define k as an h-local maximizer if
Ty.s5(k)>T,.5(), forall je€[k—h+1,k+h]n[1,n].

Given a properly chosen threshold ¢,, we estimate the change-points via

(%1, oo 76\,71) = {k|k is an h-local maximizer and T, . (k) > {,}.

The scale of the maximal SN statistic T, . s(k) computed in the global-testing step reflects
the likelihood of k being a change-point. The intuition is as follows. For a non-change-point
k, if the nested window (t;, t;) € G, (k) contains no change-point, its subsample SN statis-
tic Ty, 5(t;, k, t,) is expected to be small. If (¢}, t,) € G, (k) contains change-points, the self-
normalizer V), 5(t;, k, t,) is expected to experience inflation as L, 5(¢;, k, t;) and R, 5(t;, k, t,) are
based on contrast statistics and could significantly inflate due to the existence of change-points
within (¢, k) or (k +1, t,). Thus, V, 5(t1, k, t,) inflates along with D, (;, k, t,), which in turn
keeps T}, 5(£;, k, t,) small. Together, the maximal SN statistic T, s(k) is expected to be small for
a non-change-point k. On the other hand, with a sufficiently small global trimming parameter
¢ such that min; <, +1(q; — gi—1) = €, for any true change-point k, there exists at least one
nested window (%, f,) € G,(k) which contains k as the only change-point, thus the maximal
statistic T, . 5(k) is expected to be large thanks to T, 5(,, k, f,). Note that the nested window set
G, (k) is discretized to lower computational cost.

The local-scanning step further exploits the notion that min, ¢;cp, 41 (q; —g;—1) = €, since
for any change-point k, k is expected to be the h-local maximizer (with high probability) as
[k — h + 1, k + h] contains k as the only change-point. The local scanning step avoids sequen-
tial estimation of change-points and thus greatly simplifies both numerical computation and
theoretical analysis. With a properly chosen threshold ¢,, the local scanning step achieves seg-
mentation consistency. More detailed discussion on the theoretical and practical choices of the
threshold ¢, is provided in Section 3.2.

The local-scanning component of GOALS is inspired by the Screening and Ranking algorithm
(SaRa) in Niu and Zhang (2012) and Hao et al. (2013), which is designed for change-point detec-
tion in the mean of a univariate sequence with i.i.d. error. However, SaRa is a pure local approach
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JIANG ET AL. | 1595

in that its CUSUM-based test statistic is computed solely on local-windows around k. In contrast,
GOALS is a hybrid approach as the SN statistic T), . 5(k) is computed on a global nested window
set G,,(k). This nested nature of G, (k) helps T, . S(k) adaptively retain more power when a change-
point k is far away from other change-points by utilizing larger windows that cover k. The sub-
stantial power gain from the hybrid approach of GOALS over the pure local approach of SaRa
is further confirmed in unreported simulation studies. A detailed comparison of GOALS with
existing works of change-point estimation in quantile regression by Oka and Qu (2011) and Aue
et al. (2014) is further given in Section 3.2.

Remark 1 A key element for the success of the hybrid approach by GOALS is the self-normalizer
Vns(t1, k, t,) in the SN statistic. As discussed above, the inflation of the self-normalizer
helps keep T}, 5(¢;, k, t,) small for a non-change-point k even when (¢, t,) contains change-
points. Thus, the global SN statistic T, . s(k) achieved by change-point k and non-change-
point k are asymptotically well separated, facilitating the selection of the threshold ¢,. Such
a phenomenon does not hold for CUSUM-based tests under the presence of linear trend,
see Figure 1 in Baranowski et al. (2019) and the discussion therein.

2.3 | Multi-quantile GOALS

In this section, we propose M-GOALS, a straightforward extension of GOALS that conducts
change-point estimation for the piecewise linear quantile trend model (1) simultaneously across
multiple quantile levels ™ = (71, Tyy)- R

Fori=1, .., M, denote B, , (7;) = (Byy, 1,(70), B1y, ,tz(Ti))T as the estimated linear trend pa-
rameters based on the subsample {Y;}2 f via quantile regression at the quantile level ;.
Furthermore, define ﬁ]:{tz = (ﬁl;tl,tz(fl)’ /Bl;tl,tz(TM))T7 which collects the slope estimators
across ™. As discussed in Section 1, the main task of our analysis is to segment the infection
curves into phases with different growth rates, which is captured by the slope parameters 31:14,5 of
the quantile regression. Thus, we construct the SN statistic based on ﬁM and propose the multi-
quantile GOALS (M-GOALS) algorithm.

Step 1. Global-testing: For k = 1, .., n, we compute a global SN test statistic Tfye 5(k)
such that

M _ TyM 1M
Tn,g,,;(k) = (tl,tzr?eaén(k)DI'}‘/I(tl’ k,t,) Vn,g(tp k, )7 Dy (4, k, 1), 4)

~ ~M
where Dﬁ’f (t;, k, t,)and Vfl‘f’a(tl, k, t,) are defined as in Equations (2)-(3) by replacing g; ; with g; -
. . . M . . .
Step 2. Local-scanning: Given a properly chosen threshold {’,", we estimate the change-points via
(ki ..., ka) = {k|k isa h-local maximizer and ™ (k)> M)
Given the estimated change-points (ﬁl, e /]Eﬁl) by M-GOALS, quantile regression can be con-

ducted on each estimated segment {Yt}k”% to estimate its linear trend parameters for each
t=k;+1

i
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1596 | JIANG ET AL.

quantile level 7 € ™. To ensure the non-crossing constraint across quantiles, we employ the
non-crossing quantile regression in Bondell et al. (2010) to simultaneously estimate the linear
quantile trend parameters (8,(t)?, B,()®) across all quantile levels r € 7M.

Choice of trimming parameters (¢, §): The trimming parameter e commonly appears in the
change-point literature under various context, see for example Andrews (1993), Bai and Perron
(2003), Oka and Qu (2011), and Yau and Zhao (2016). Since the value of ¢ in part reflects the mini-
mum spacing between true change-points, it is typically set at a small value such as 0.05, 0.1, 0.15
in the literature to ensure min, ;< 11 (q; — ¢;—1) > €. The choice of & is less essential and we
find the performance of (M-)GOALS stable across § € (0, €/2). Throughout the paper, we set € =
0.1 and & = 0.02, which ensures decent estimation quality of the subsample SN statistics under
the moderate sample size n of the COVID-19 data (n ranging from 200 to 300) and is found to
perform well in both simulation studies and real data analysis.

In practice, the optimal choice of (¢, §) may depend on the specific real data application, and
different choices of (¢,6) could lead to different segmentation results by (M-)GOALS. A sensitivity
analysis conducted in the supplement suggests that (M-)GOALS gives robust performance across
a wide range of (¢, §) under strong signal-to-noise ratio (SNR), however, its performance may
tend to vary across different (¢, §) under weak SNR. Thus, it is desirable to have a fully data-driven
procedure that automatically selects a suitable (e, ) based on the observed data.

To this end, in Section S4 of the supplement, we further propose multi-scanning M-
GOALS, which augments M-GOALS with a model selection based post-processing step and
automatically consolidates estimated change-points from M-GOALS with different trim-
ming parameters (¢, §) via minimizing a quantile regression BIC function adapted from Lee
et al. (2014). The multi-scanning M-GOALS is seen to perform well in the simulation stud-
ies, matching or exceeding the best performance by M-GOALS across a wide range of (g, 9).
In Section S6 of the supplement, we further re-examine the COVID-19 data using the multi-
scanning M-GOALS, and it is seen that the analysis results in Section 4 given by M-GOALS
with (e, §) = (0.1, 0.02) can be reproduced by multi-scanning M-GOALS to a remarkable
degree, providing further support for the robustness of our empirical findings about the
COVID-19 infection trajectories later presented in the real data section. To conserve space,
we refer to Section S4 of the supplement for more details of multi-scanning M-GOALS.

3 | ASYMPTOTIC THEORY

In this section, we establish theoretical guarantees of GOALS and M-GOALS. To keep the pres-
entation clear and intuitive, we derive the theoretical results under the framework of a location-
scale model (5), which is an important special case of the piecewise linear quantile trend model
(1). The theoretical guarantees for the general model (1) can be established via the same argu-
ments with additional technical assumptions. Specifically, denote X,=(1,t/ n)', we assume the
observations {Y;}7_, is generated from

Y, =X"0,+Xy)e, t=1,..,n, (5)
@],y =097, YO, |ng;_ | <t<|ngy], for i=1, ..., my+1,

where 60 = (0(00, Hgi))T, Y@ = (yg), ygi))T, {e]} is a stationary and weakly dependent error process
andinfy¢<, X'y, 2 ¢ > 0.
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Essentially, model (5) is an extension of the widely used classical location-scale model
with i.i.d. error (Koenker, 2005) to accommodate temporal dependence and structural breaks.
Model (5) indicates that the linear trend parameter f(z)® of the rth quantile can be written as
B)D = 9D 1 yDQ_(¢,). Note that model (5) exhibits heteroscedasticity if v # 0, which im-

) ; : 1
plies different growth rate g,(z)® = 0(11) + y(ll)QT(et) across different quantile level 7.

3.1 | Regularity conditions

We regulate the temporal dependence via the physical dependence measure in Wu (2005). Specifically,
we assume the error process { ¢, } ;7 is stationary and admits the causal representation such that

g, =Gle,e_q,...), teZ,

where {e, },c7 are i.i.d. random variables and G(-) is a measurable function. Let {e}},-7 be an i.i.d.
copy of {e;},c7, we define F; = (..., ¢,_;, ¢,)and define F/ = (F_y, e[, e;, ..., ¢,). For areal valued
function H(-) such that H(F;) € L£P, we define

8 G.p) = IHF)-HF)I,, p=1LjeN.

Following Wu (2005), we can view F; and H(F;) as the input and output of a physical system and the
dependence measure &},(j, p) quantifies the dependence of H(F;) on e, by measuring the distance
between H(F;) and its coupled version H (7?].’ ).

Let F(-) and f{*) be the distribution function and density function of &, respectively. For eachz € 7, we

defineT" (7) = f(Q,(e))™2 X 2 _ o Coviy (&), u/,(st)}wherey/i(u) =7 — 1(u < Q,(¢)). Denote
oM = (Sl o € yrand  define TV = lim,_ Var(—= ¥ ¢_,v}). In addition, let
£ T Q0@ F@ey @) Vn &=

Dok (s;Fp) = 7 — Fleyy + s|Fp)and 1et¢(rl,)k(s; F;) be the Ith derivative of ¢, (s; 7). Formg > 1, de-
fineb,(z) = B(z)0+V — B(r)Pfori = 1, ..., m, We introduce some mild regularity conditions.

Assumption 1 (7)(i) The distribution function F(-) admits a continuous density function f{-)
that is bounded away from 0 and « at Q (¢); (ii) F(s + Q¢)) — F(Q(¢)) = sf(Q.(¢)) + O(s%)
ass — 0.

Assumption 2 (7)There exists s, > 0 such that, (i)

sup (1 (83T — i (523 F))/ sy — 5,1 € £,

[s11,185] <80,81 #53

(ii) for I = 0, 1, we have Sup|g <, ||¢(Tl)1(s; Folls < ooand

o0

sup
=0 Is1<so

E[6 (s FDIFol L6 (s FIFG |

< 00.
4

Assumption3 (i) Y 1 k36’(;(k, 4) < oo; (ii) (GOALS) I',(7) € (0, 0); (ii)’ (M-GOALS) I' is
positive definite.

Assumption 4 (i) min, o, 41(q; — gi—1) > & (i) (GOALS) we have by(r) = ¢j(z)x where
ci(r) € R?/{(0, 0)" }fori = 1, ..., my; (i) (M-GOALS) let b, ;(r) € R be the second element
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of b;(z) (i.e. change in slope parameters), we have by ;,(r) = ¢; ;(r)x for each 7 € ™, where
¢1,(r) € Randforeachi = 1, ..., m, there exists atleast onez € M such that ¢, (1) # 0. Here,
x = 1(n) > 0is a scalar dependent on n that measures the magnitude of changes.

Assumption 1 is a standard regularity condition in the quantile regression literature.
Assumptions 2-3 regulate the error process {¢,} and guarantee the uniform Bahadur representa-
tion of the subsample estimates {ﬁan,ernJ(r), 0<r <r,<1, |rhL—r| >n}tforanyn > 0.
Assumptions 2-3 are adapted from Zhou and Shao (2013), where the authors extend the SN
methodology in Shao (2010) from stationary time series to regression models with deterministic
covariates and weakly dependent stationary errors. In comparison, our framework allows the
error process to exhibit both heteroscedasticity and temporal dependence. Moreover, our theo-
retical argument hinges on the asymptotic analysis of subsample estimates [Ai,l,tz(r) allowing for
the presence of change-points in the interval [¢,, t,], and thus is substantially different from that
in Zhou and Shao (2013).

Assumption 4(i) requires the minimum spacing of the change-points to be larger than the
global trimming parameter e. Assumption 4(ii) and (ii) require the magnitudes of the changes
are of the same order x. See similar assumptions in Oka and Qu (2011) and Aue et al. (2014).

3.2 | Consistency of GOALS and M-GOALS

We first introduce some notations before presenting the consistency result. Denote X(s) = (1,5)" and
denote By (r) = jg X(s)dB(s) where B(:) is a standard Brownian motion. Fori = 1, ..., m, + 1, de-
fine X;(r) = for (X YD1 X ()X ()" ds, A(ry, 1y) = [Zi(ry) — Z(r)] ™} [By(ry) — Bx(ry)], and
define AM(ry, ry) = f:lz {e] [Zi(ry) — Zi(r))]~1X(s)} dBM(s) where e, = (0, 1)" and BY(-) is an M-
dimensional Brownian motion with independent entries.

Foru € (g, 1 — ¢), define the scaled limit of G,(k) by

G.(w) = {(uy, u)luy =u—ie, i=1,.., lufe], uy=u+je, j=1, ..., [A-w/e]}. (6)

Furthermore, foru € (g, 1 —¢) and (u,, u,) € G.(u), define

%{Al(ul’ u)= A, uy)},

(u
Vs(uy, U, u )=r_l32 (r—w (u—-ry
o w+s (U —up)?(U—uy)?
N [5 (r =)y —r)?

urs Uy —uy)?(uy —u)?

D(uq, u,u,)=

{A(ug, 1) = Ay (r, w)}®2dr

{A(r,up) — Ay (u, ")}@2 dr,

and define

(u—uy)(uy —u)
W{W% )= AY (1, 1)},

M [ r—u)u=r)y
V5 (uy,u,u,) —Ju1+5 (Uuy— ul)Z(u _ ul)z
uy—o (r _ u)z(u2 _ r)2
¥ L+5 (Uy —up)2(uy —u)?

DM(”D U,uy)=

(A Quy, 1) =AY (r,u)}®2 dr

{Allw(r, u,) —All\’l(u, r1®%dr.
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Here, D(u,, u, u,), V(u,, u, u,) and D"(uy, u, u,), Vé\’f (uy, U, u,) are used to quantify the asymp-
totic limit of the contrast statistic and the self-normalizer under the no change-point scenario with
mo = 0.

Theorem 1 (Consistency)Suppose Assumptions 1, 2, 3(i)-(ii) hold at t for GOALS and
Assumptions 1, 2, 3(i)-(ii) hold at all T € ™ for M-GOALS. Furthermore, suppose

SUP1<t<n l7:ll < Cy < o0.
Case 1 [No change-point scenario, m, = 0]: For GOALS, we have

max T,.s(k)—>p7T(e,6)= sup max  D(uy,u,u,) Vs(ug, u,uy) ~1D(uy, u, u,).
k=1,....,n ue(e,l—e)(Uur) EGe(u)

For M-GOALS, we have

M
(max Ty s

(k) B’ TM(€, 6)= sup max DM(“L u, uz)TVéw(ul, u, uz)_lDM(uh U, up).

ue(e,l—e) W) €G.()

In particular, for any ¢, ¢ zr\le — oo, we have for both GOALS and M-GOALS,

lim P(m=0)=1.
n— oo
Case 2 [Change-point scenario,q = (qy, ---» Ay )s My 1/: Assumex — 0 andlog(n)~?(nk?) — oo
as n — oo. Suppose additionally Assumption 4(i)-(ii) hold for GOALS and Assumption 4(i)-
(i) hold for M-GOALS. For any ¢, Clr‘f = (nx?) with . € (0, 1), we have for both GOALS

and M-GOALS,
nhm P(im = m, and mln | q;—q;| <n)=1, forany n>0,
whereq = (qy, ..., Gp) = (@1, ic\fh)/ n denotes the estimated change-points.

Theorem 1 establishes the consistency result for GOALS and M-GOALS. In particular,
Theorem 1 indicates that under the no change point scenario, the global SN test statistic
max; <<, Tpes(k) of GOALS and max, <, T (k) of M-GOALS converge to non-degenerate

limiting distributions 7 (e, ) and TM(e, 6), respectlvely. Due to the use of SN, 7 (e, ) and
TM(e, 6) do not depend on the temporal dependence and the density function of the error pro-
cess {¢,}. On the other hand, SN cannot fully remove the heteroscedasticity effect caused by y due
to the presence of the deterministic trend, and thus in general 7 (¢, ) and TM(e, 6) are not piv-
otal. However, elementary algebra shows that fory D_o (i.e. the error is homogeneous), 7 (¢, §)
and 7M(e, ) only depend on (¢, §) and are indeed p1vota1 thus providing a viable solution to the
choice of {, and ¢ ﬁ/’ in practice.

Specifically, given (g, §) and a significance level «, we set ¢, of GOALS to be the (1 — o) X 100%
quantile of the pivotal 7 (e, §) and set Zjﬁd of M-GOALS to be the (1 — ) X 100% quantile of
the pivotal 7M(e, §). Thus the threshold ¢, and Clr‘l’f is adaptive to the choices of (g, §) and M.

d 'S TTOT ‘8986LIV 1

AN AQ €SKTIqSSY/1 T11°01/10p w00 Ad]1av Kreaquaut

out][] JO Ansx:

dy) suonIpuo,) pue Lo 1 o) 03§ “[£207/50/50] U0 Areiqry suruo Aopiy ‘uStedwrey)) vurqin 1 s

p-SuL12)/ 00 A1 A

55 JO S0[n1 10 AIBIIT UIUQ) ADJIAY O (:

1w oI VO

5u0o1] suowwoy) dAnEaL) A[qEardde oy 4 powanod



1600 | JIANG ET AL.

Throughout the paper, we set « = 0.1 and (g, §) = (0.1, 0.02), which yields {,=65.41 for GOALS
and ¢ 2’1 = 49.89 for M-GOALS with M = 3. Simulation studies and real data analysis indicate the
satisfactory performance of ¢, and ¢ Ir‘f in practice. We refer to Section S5 of the supplement for a
sensitivity analysis w.r.t. the significance level « and trimming parameters (g, 9).

4 | REAL DATA ANALYSIS

In this section, we analyse the COVID-19 pandemic via the piecewise linear quantile trend model
and the proposed M-GOALS algorithm. Section 4.1 provides in-sample analysis of the corona-
virus infection curves in 35 major countries. Section 4.2 further designs an accurate short-term
forecasting scheme based on M-GOALS and demonstrates its promising utility for public health
decision-making.

4.1 | In-sample analysis of daily new cases

We focus our analysis on 35 major countries, which are the union of G20 nations and top 30
countries leading the total coronavirus cases as of Nov-07, 2020.! For each country, denote the
observed trajectory of daily new cases as {(Y}, d;)}{_,, where Y, = log (R, + 1) is the logarithm of
new cases recorded on date d,. We set d, as the date when the total cases of the country exceeded
1000 and set d,, as Nov-07. The average starting date d, is mid-late March and the average obser-
vation length n is 224 days across the 35 countries. Note that ¢ = 0.1 indicates that the spread
pattern of the coronavirus remains stable for at least 22 days (around 3 weeks), which is a reason-
able assumption. More information, including country names (and its abbreviation) and data
length, can be found in Table S6 of the supplement.

For each country, we analyse the trajectory of its (log-scale) daily new cases {Y;}}_; via the
piecewise linear quantile trend model (1) estimated by M-GOALS with ™ = (0.1, 0.5, 0.9)
and (g, ) = (0.1, 0.02). For the ith estimated segment, based on its linear trend parameter
Bo()D, B,(r)D), we define SO(r) = F,(r)?/n as its normalized slope at r € M. Note that S¥(7)
measures QY,,) — Q(Y) = log [Q(R,, + 1)/Q«R; + 1)] and therefore can be nicely inter-
preted as the (approximate) growth rate of the daily new cases R, at the tth quantile. Thus, the
piecewise linear quantile trend model (1) allows us to assess the growth rate of the coronavirus at
any given time, which helps better understand the trajectory of the pandemic and further facili-
tates short-term forecast across all quantile levels in 7.

Case studies for United States and United Kingdom: We first present a detailed case
study for United States (d, = Mar-11, n = 242) and United Kingdom (d, = Mar-13, n = 240).
Detailed results for seven other representative countries (India, Brazil, France, Russia, Spain,
South Africa and Australia) can be found in the supplement.

Figure 1 visualizes the estimated piecewise linear quantile trend models, where we plot the
recovered change-points and the normalized slope (i.e. growth rate) of each segment. One nota-
ble feature is the multiple peaks exhibited by the two trajectories, which is further manifested by
the alternating signs of the estimated growth rate. Specifically, the pandemic exhibited multiple
waves in both United States and United Kingdom and for both countries, the recent peak is more

'We obtain the data from https://ourworldindata.org/coronavirus-source-data maintained by ‘Our World in Data’.
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FIGURE 1 Estimated piecewise linear quantile trend models by M-GOALS. Vertical lines (solid) mark

the estimated change-points (with exact dates given by the texts). The vertical dashed line marks the h-local
maximizer below the threshold ¢ Ir\:! . The broken lines mark the estimated piecewise linear quantile trend models
at = 0.1 (black), 7 = 0.5 (red) and 7 = 0.9 (green). Numbers in the upper part of the plots give the estimated
normalized slopes (i.e. growth rate) for each segment at 7 = 0.5. Black triangles mark the estimated change-
points by multi-scanning M-GOALS [Colour figure can be viewed at wileyonlinelibrary.com|

severe than previous ones. The first change-points of the two countries are close, suggesting
the initial public health interventions taken by United States and United Kingdom have similar
effectiveness. However, the new cases in United States remain at a high-level after the first peak
while United Kingdom is more effective at flattening the first wave of the pandemic. The most
recent wave in United States and United Kingdom both initiated around the beginning of fall,
which is consistent with the timing of reopening policies in the two countries. While the growth
rate of new cases in United States is accelerating, United Kingdom seems to be levelling off and
approaching the peak of its second wave. Figure 1 also plots the estimated change-points by
multi-scanning M-GOALS (see the supplement for its detailed implementation), which almost
perfectly match the estimation by M-GOALS for both countries, indicating the robustness of our
finding.

Figure S4 of the supplement gives the estimation result by the L; quantile trend filtering (TF)
in Brantley et al. (2020), where the result seems less intuitive and notably worse than M-GOALS.
Specifically, the quantile TF seems to miss several evident change-points, and although the al-
gorithm guarantees quantile non-crossing, due to its lack of power for detecting change-points,
the estimated quantiles across 7 € T coincide on a large portion of the data. This suggests that
a change-point-based approach may be more suitable for the modelling of COVID-19 infection
curves compared to the non-parametric TF. See Fearnhead et al. (2019) for comparisons between
TF and the change-point approach in linear trend models for change in mean.

Clustering trajectories via growth rates: To gather a relatively complete assessment of the
pandemic trajectories around the world, we further conduct a clustering analysis based on the
recovered normalized slopes of the 35 countries. Specifically, for a country A, based on the esti-
mation by M-GOALS, we can recover its growth rate path G, = {ﬁt(r) /n, d;}7_, at any quantile
level = € ™. Denote Gf1 = {ﬁ[(r)/n}:’=1 and Gfl = {d,}}_, For two countries (4, B), we then
measure the (dis)-similarity of their coronavirus trajectories by d(A, B) = 1 — p(A,B), where
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FIGURE 2 Left panel: Visualization of the dissimilarity matrix D for 7 = 0.5 via the Sammon MDS. Right
panel: Boxplot of the current growth rate at r = 0.5 across four groups of countries [Colour figure can be viewed
at wileyonlinelibrary.com]

we define p(A, B) as the sample correlation of the two growth rate paths Gf‘ and Gg calculated
on common dates Gj N Gg. Thus, a dissimilarity matrix D of the 35 countries can be readily
attained. The left panel of Figure 2 visualizes D for ¢ = 0.5 by multidimensional scaling (MDS)
in Sammon (1969). One notable feature of the plot is the closeness among continental European
countries, which is not surprising considering the geographical proximity and economic ties
among European Union. On the other hand, developing countries in Asia and Latin America
seem to cluster together and exhibit similar growth patterns. Another distinct group is China,
South Korea, Australia, Israel and Philippines, which may be regarded as countries that control
the pandemic relatively well (among the selected 35 nations). The clustering result is consistent
and robust across the quantile level 7, as indicated by the MDS plots for 7 = 0.1, 0.9 in the supple-
ment. The right panel of Figure 2 gives the boxplot of the normalized slope S7*+1(z) in the last
segment (i.e. the current growth rate) at ¢ = 0.5 across four groups of countries. It can be seen
that European and North American countries have notably higher growth rates, indicating the
severe situations due to the second wave. Figure S6 of the supplement further plots the cluster-
ing results based on multi-scanning M-GOALS, which closely matches patterns in Figure 2 and
confirms the robustness of the analysis.

4.2 | Short-term forecast of daily new cases

As stated by the Centers for Disease Control and Prevention (CDC),? accurate forecast of new
cases is critical for public health decision-making, as it projects the likely impact of coronavirus
to health systems in coming weeks and thus provides invaluable information for developing
data-driven public health policies to contain the pandemic. In this section, we propose a simple

*https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting- us.html/why-forecasting-critical.
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and intuitive M-GOALS based short-term forecasting scheme and demonstrate its effectiveness
in predicting new cases of COVID-19.

As suggested by the analysis in Section 4.1, one notable characteristic of the coronavirus pan-
demic is its multiple epidemic phases evidenced by the non-stationary and alternating growth
rates of the new cases, suggesting that any prediction model built on stationarity will inevitably
lead to erroneous forecasts. Thus, a natural (and simple) solution from the change-point perspec-
tive is to first segment the time series into periods with relatively stable behavior and then gener-
ate forecast based on observations in the last segment, see for example Pesaran and Timmermann
(2002) and Bauwens et al. (2015).

Method: Following this idea, we propose an M-GOALS based two-stage forecasting scheme
for new cases prediction. Specifically, in the first stage, given the observed trajectory of daily new
cases {Y;}}_,, a piecewise linear quantile trend model is estimated via M-GOALS with ™ to ob-
tain the potential change-points. In the second stage, for each quantile level 7 € =M, a flexible
function f/(¢) is fitted on the last segment {Yt}’:= . with the assumption Q/Y;) = f(t). The k-

m

day ahead forecast for new cases at the tth quantile is thus defined as fr(n + k) via extrapolation.
Importantly, the proposed procedure naturally generates robust prediction intervals thanks to
the multiple quantile levels within 7M.

For flexible out-of-sample extrapolation, in the second stage, we fit both a linear trend model
£:(8) = Bo(x) + p1(x)(t/n)and a quadratic trend model £,(t) = fo(z) + f1(2)(t/n) + Po(x)t/n)
to the last segment, and generate forecast based on the model selected by quantile regression BIC
(Lee et al., 2014). The quadratic model may potentially improve forecast accuracy (if selected by
BIC) for the scenario where the trajectory undergoes a very recent change that may be detected
by M-GOALS with delay.

Data and forecast results: We set 7 = (0.1, 0.5, 0.9) and backtest the M-GOALS based predic-
tion method for generating short-term forecast of cumulative new cases in the United States and
benchmark its performance with the CDC Ensemble, which is an ensemble model built on forecasts
generated by around 70 modeling groups across the world.* Specifically, following the CDC website,
the forecast is generated on every Monday starting from Aug-03 and the forecast target is 5-day (one-
week) ahead and 12-day (two-week) ahead cumulative new cases in the United States.

Based on the estimated quantile regression f,(t), we forecast the tth quantile of the k-day
ahead cumulative new cases viaC, = exp( Y, ;‘: fr(n + i)). We use C 5 as a point forecast for the
median of the cumulative new cases and [Cy,, Cy,] naturally forms a 80% prediction interval.*
For illustration, Figure S7 of the supplement visualizes the forecasting scheme at four represen-
tative dates.

Figure 3 visualizes the forecast results given by M-GOALS and CDC Ensemble from Aug-03
to Nov-09 (see tabulated results in Tables S7 and S8 of the supplement). In general, M-GOALS
provides reasonable short-term forecasts with accuracy comparable to CDC Ensemble. Moreover,
the coverage rate of the 80% prediction interval (Cy,, C, o) seems more satisfactory than the 95%
prediction interval given by CDC Ensemble. On the other hand, both models seem to suffer no-
ticeable downward forecast bias (though less severe for M-GOALS) starting from mid-October,
highlighting the unexpected severity of the third wave of the US coronavirus pandemic. Figure S8
of the supplement further plots the forecast results based on multi-scanning M-GOALS, which

*See more details of CDC Ensemble at https://github.com/reichlab/covid19-forecast-hub#ensemble-model.

*In general sum of quantiles differs from quantile of sum. However, Proposition 11 in the supplement shows that the
prediction interval given by [C,;, Cy ] remains valid albeit conservative if the daily new cases follow an elliptical
distribution.
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FIGURE 3 Forecast results for one-week and two-week ahead cumulative new cases from Aug-03 to Nov-09
[Colour figure can be viewed at wileyonlinelibrary.com]|

are almost identical as the ones reported in Figure 3 and can be seen as further support for the
robustness of our forecast analysis.

5 | CONCLUSION

In this paper, we propose a piecewise linear quantile trend model to study the COVID-19
infection curves simultaneously across multiple quantiles. A novel segmentation algorithm,
M-GOALS, is proposed for multiple change-point estimation, which integrates SN-based
change-point tests conducted at global scales with a local-scanning procedure. The consist-
ency of M-GOALS is established under a location-scale model that incorporates heterosce-
dasticity and temporal dependence. Simulation studies and real data applications confirm
the favourable performance of our method and further demonstrate its promising ability
to provide crucial information for public health decision-making to combat the COVID-19
pandemic.

Same as most works in statistical modelling, our model and analysis come with assumptions
and thus limitations. Our analysis relies on the time series of COVID-19 daily new cases R,
reported by each country. The value R, is likely an underestimate of the actual daily new cases
R?’“e, especially at the very early stage of the pandemic, due to reasons such as lack of testing
capacity, delays in diagnosis/notification, and viral latency. The degree of such underestimation
may also vary from country to country. We note, however, if R, can reflect an approximately
constant fraction 6 € (0, 1] of R'™¢ with R, ~ ORI, our segmentation result and infection
growth rate estimation (via normalized slopes of the estimated quantile regression) will stay
valid for Rﬁ”‘e, as our analysis is performed at the log scale of R,. On the other hand, our current
model is unable to account for the case where the fraction 6 is significantly time-varying, and
our analysis result obtained based on R, needs to be interpreted with caution when generalized
to the actual cases R/"™*.

In our current work, the proposed M-GOALS conducts change-point detection and case fore-
casting for the spread of COVID-19 pandemic solely based on information contained in {R; }/_;. One
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potential extension is to further incorporate other available information in the analysis, such as
strictness of social distancing rules, testing positivity rates, and death cases, which could be use-
ful from an epidemiology perspective. In addition, our current analysis treats the infection trajec-
tories from different countries separately and thereby does not exploit the potential dependency/
similarity of change-point locations and growth rates among different nations, such as neigh-
bouring countries in Europe. One natural and promising research direction is to further extend
the piecewise linear quantile trend model and M-GOALS to a panel data setting, where multiple
time series share similarity in change-point locations and parameters of the quantile regression.
Another research direction of theoretical interest is to establish rigorous theoretical guarantees
for the multi-scanning M-GOALS, which is seen to offer promising numerical performance.

We note that our model is purely statistical in that it directly models the observed time series
of new cases, instead of modelling the dynamics of the coronavirus transmission based on mech-
anistic models such as SIR and its variants, see Anastassopoulou et al. (2020), Bai et al. (2020),
Chen et al. (2020), Lin et al. (2020) and Wu et al. (2020) among others. As evidenced by the mean-
ingful in-sample analysis and accurate out-of-sample forecast, we believe our model can serve as
a good complement to the large literature of COVID-19 modelling via mechanistic models based
on epidemiology principles.

Though primarily motivated by the study for COVID-19 infection curves, the proposed piece-
wise linear quantile trend model and the segmentation method M-GOALS can be useful in other
applications as well, such as detecting structural breaks of Value-at-Risk for financial and macro-
economics time series, where outliers and heteroscedasticity are often encountered.
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