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a b s t r a c t

In this paper, we model the trajectory of the cumulative confirmed cases and deaths of
COVID-19 (in log scale) via a piecewise linear trend model. The model naturally captures
the phase transitions of the epidemic growth rate via change-points and further enjoys
great interpretability due to its semiparametric nature. On the methodological front,
we advance the nascent self-normalization (SN) technique (Shao, 2010) to testing and
estimation of a single change-point in the linear trend of a nonstationary time series. We
further combine the SN-based change-point test with the NOT algorithm (Baranowski
et al., 2019) to achieve multiple change-point estimation. Using the proposed method,
we analyze the trajectory of the cumulative COVID-19 cases and deaths for 30 major
countries and discover interesting patterns with potentially relevant implications for
effectiveness of the pandemic responses by different countries. Furthermore, based on
the change-point detection algorithm and a flexible extrapolation function, we design
a simple two-stage forecasting scheme for COVID-19 and demonstrate its promising
performance in predicting cumulative deaths in the U.S.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Since the initial outbreak of the novel coronavirus in Wuhan, China in early January 2020, the COVID-19 pandemic has
rapidly spread across the world. Due to the high infectivity of the virus and the lack of immunity in the human population,
the epidemic grows exponentially without intervention, and thus can greatly stress the public health system and bring
enormous disruption to economy and society. Thus, a crucial task facing every country is to reduce the transmission rate
and flatten the (infection) curve. Various emergency measures, such as regional lockdown and mass testing, have been
taken by different countries and a natural question is whether (and to what degree) these interventions are effective
in slowing down the pandemic. Additionally, each country is at a different stage of the epidemic and it is essential for
countries to understand its own pattern of virus growth, as such information is critical for important policy decisions
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uch as extending lockdown or reopening. To (at least partially) answer these questions, a natural step is to analyze the
rajectory of the infection curve of COVID-19 since the initial outbreak in each country.

In this paper, we propose to model the time series of cumulative confirmed cases and deaths (in log scale) of each
ountry via a piecewise linear trend model (see formal definition later). In other words, we model the mean of the
ogarithm of cumulative infection as a linear trend with an unknown number of potential changes in the intercept and
lope, as it is natural to expect that the spread of COVID-19 may experience several phases, where the initial growth
s typically rapid due to absence of immunity and lack of preparation, and the spread may then evolve into phases
ith slower growth depending on government intervention and public health responses (i.e. flattening the curve). The
stimation of such a model can be formulated as a change-point detection problem.
In recent years, change-point analysis has become an increasingly active research area in statistics and econometrics

hanks to its applications across a wide range of fields, including bioinformatics (Fan and Mackey, 2017), climate
science (Gromenko et al., 2017), economics (Bai, 1994, 1997; Cho and Fryzlewicz, 2015), finance (Fryzlewicz, 2014),
medical science (Chen and Gupta, 2011), and signal processing (Chen and Gu, 2018); see Perron (2006), Aue and Horváth
(2013) and Truong et al. (2020) for some recent reviews. However, most existing change-point literature operates under
the piecewise stationarity assumption, where it is assumed that the time series of interest is (potentially) non-stationary
but can be partitioned into piecewise stationary segments such that observations within each segment are stationary and
share a common parameter of interest such as mean or variance. While the piecewise stationarity assumption is proven
to be reasonable and fruitful for many applications, methods developed under this framework cannot handle time series
with intrinsic non-stationarity, such as the cumulative infection curve of COVID-19.

A simple but important class of time series with intrinsic non-stationarity is the piecewise linear trend model, which
has the following mathematical formulation. Let the time series {Yt}

n
t=1 admit

Yt = at + bt (t/n)+ ut , t = 1, . . . , n, (1.1)

(at , bt )⊤ = β(i)
= (β (i)

0 , β
(i)
1 )⊤, τi−1 + 1 ≤ t ≤ τi, for i = 1, . . . ,m+ 1,

where (at , bt )⊤ is the linear trend (intercept and slope) of E(Yt ) at time t , {ut} is a weakly dependent stationary error
process, τ = (τ1, . . . , τm) denotes the m ≥ 0 change-points with the convention that τ0 = 0 and τm+1 = n, and we
require β(i)

̸= β(i+1), i = 1, . . . ,m. In this paper, we set {Yt}
n
t=1 to be the time series of daily cumulative confirmed cases

or deaths (in log scale) of COVID-19. Due to the log transformation, the slope bt naturally measures the growth rate of
the virus at day t .

The piecewise linear trend model is intuitive, interpretable and is useful for tracking the dynamics of a pandemic
as it naturally segments the spread process into phases with (approximately) the same growth rate. The slope of the
last segment can shed light on the current status of the pandemic and provide short-term forecast, while the estimated
change-points can be compared with dates when emergency measures such as lockdown were introduced to help assess
the effectiveness of different policies. Also, the semiparametric nature of (1.1) helps to achieve model flexibility while
maintaining simplicity, which is advantageous for modeling the cumulative cases at the early stage of a pandemic as the
time series is relatively short, curbing the use of sophisticated fully nonparametric methods.

An important part in estimation of (1.1) is to recover the unknown number m and location τ of the change-points.
As discussed above, such a problem has mostly been ignored in the change-point literature with only a few exceptions.
A CUSUM based detection algorithm is proposed in Baranowski et al. (2019), and a model selection based procedure is
derived in Maidstone and Letchford (2019). However, both methods assume temporal independence of {ut}, which can
be restrictive as serial dependence is commonly found in time series data. Although Baranowski et al. (2019) briefly
discussed possible extensions to temporally dependent series, potentially important issues such as choice of tuning
parameters seem not carefully addressed. Bai and Perron (1998) can detect structural breaks in the linear trend model
under serial dependence. However, numerical study (see Section 4) suggests that their method is relatively sensitive to
positive temporal dependence, which is indeed exhibited by the COVID-19 data, and may give less favorable estimation
performance under small sample size.

Based on the self-normalization (SN) idea in Shao (2010), we propose a novel SN-based change-point detection
procedure for the estimation of (1.1) that is robust to temporal dependence both in asymptotic theory and in finite sample.
The essential idea of SN is using an inconsistent variance estimator to absorb the unknown serial dependence in the data.
See a brief review of SN in Section 2.1 and Shao (2015) for a comprehensive overview of recent developments of SN for
low dimensional time series.

Using the proposed SN method and the piecewise linear trend model, we analyze the time series of cumulative
confirmed cases and deaths of COVID-19 (in log scale) in 30 major countries. We find that the spread of coronavirus in
each country can typically be segmented into several phases with distinct growth rates and countries with geographical
proximity share similar spread patterns, which is particularly evident for continental European countries and developing
countries in Latin America. In addition, the transition date from rapid growth phases to moderate growth phases is
typically associated with the initiation of emergency measures such as lockdown and mass testing with contact tracing,
which partially provides evidence that strict social distancing rules help slow down the virus growth and flatten the curve.
Moreover, our analysis further indicates that compared to developed countries, most developing countries are still in the
early stages of the pandemic and are generally less efficient in terms of controlling the spread of coronavirus, thus may
need more international aids to help contain the epidemic.
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Combining the SN-based change-point detection algorithm with a flexible extrapolation function, we further design
a simple two-stage forecasting scheme for COVID-19. The proposed method is used to forecast the cumulative deaths in
the U.S. and is found to deliver accurate prediction valuable to data-driven public health decision-making.

2. Methodology

In this section, we propose a novel SN-based method for change-point detection in model (1.1) that is robust against
a wide range of temporal dependence. Specifically, an SN-based test statistic is first proposed for testing a single change-
point alternative and then modified to consistently estimate the change-point. A multiple change-point estimation
procedure is further developed by combining the proposed SN test with the NOT algorithm in Baranowski et al. (2019).

.1. Testing for a single change-point

We start with a change-point testing problem where for model (1.1) we want to test the null hypothesis H0 of no
hange-point against the alternative Ha of one change-point:

H0 : β1 = · · · = βn = β v.s. Ha : βt =

{
β(1), 1 ≤ t ≤ τ

β(2), τ + 1 ≤ t ≤ n,
such that β(1)

̸= β(2),

here βt = (at , bt )⊤, τ = ⌊κn⌋ is an unknown change-point satisfying ϵ < κ < 1− ϵ for some 0 < ϵ < 1/2 and ϵ is the
ommonly used trimming parameter in the change-point analysis (see e.g. Andrews (1993)).
Throughout this paper, we operate under the following mild assumption of {ut}, which covers a wide range of weakly

ependent error process and is weaker than most existing literature where independence of {ut} is assumed.

ssumption 2.1. The error process {ut} is strictly stationary such that E(ut ) = 0, E(u4
t ) < ∞ and the long-run variance

atisfies Γ 2
= limn→∞ Var(n−1/2 ∑n

t=1 ut ) ∈ (0,∞). Denote {et} as a sequence of i.i.d. random variables with zero mean
nd unit variance, we further assume that {ut} admits one of the following two representations:
(i). ut =

∑
∞

j=0 cjet−j and
∑

∞

j=0 |jcj| < ∞.
(ii). ut = G(Ft ) for some measurable function G and Ft = (et , et−1, . . .). For some χ ∈ (0, 1), ∥G(Fk) −

G({F−1, e′0, e1, . . . , ek})∥4 = O(χ k) if k ≥ 0 and 0 otherwise. Here e′0 is an i.i.d. copy of e0 and ∥X∥4 = (E(X4))1/4 for
random variable X .

Assumption 2.1(i) is popular in the linear process literature to ensure the central limit theorem and the invariance
rinciple. Assumption 2.1(ii) is basically equivalent to the geometric moment contracting condition for the nonlinear
ausal process in Wu and Shao (2004) and Wu (2005), which implies invariance principle.
Earlier works on this testing problem include Andrews (1993) and Bai and Perron (1998) where Lagrangian multi-

lier, Wald, likelihood ratio and F statistics are considered. These tests typically require an estimator of the long-run
ariance (LRV) Γ due to the unknown temporal dependence of the error process {ut}. However, as pointed out in Shao
nd Zhang (2010), the size and power performance of these tests may depend crucially on the selection of various tuning
arameters. In particular, if a data-driven bandwidth parameter is used for the estimation of LRV, an undesirable non-
onotonic power phenomenon may occur; see Crainiceanu and Vogelsang (2007) and Shao and Zhang (2010). To avoid the
andwidth selection involved in the estimation of LRV, we instead adapt the idea of self-normalization in Shao (2010),
hich was originally proposed for inference of stationary time series and was generalized to change-point testing for
iecewise stationary time series in Shao and Zhang (2010) and Zhang and Lavitas (2018). See Shao (2015) for a review of

SN.
To proceed, we first introduce some notations. Given ϵ, denote h = ⌊ϵn⌋. For a vector x, denote the l2 norm as ∥x∥2

and denote x⊗2
= xx⊤. Define F (s) = (1, s)⊤, for 1 ≤ i < j ≤ n, we denote β̂i,j =

[∑j
t=i F (t/n)F (t/n)

⊤

]−1 ∑j
t=i F (t/n)Yt

as the OLS estimator of β based on {Yt}
j
t=i. For any 1 ≤ t1 < k < t2 ≤ n, given the subsample {Yt}

t2
t=t1 and a potential

change-point k, we define a contrast statistic Dn where

Dn(t1, k, t2) =
(k− t1 + 1)(t2 − k)
(t2 − t1 + 1)3/2

(̂βt1,k − β̂k+1,t2 ). (2.1)

Note that Dn(t1, k, t2) is a normalized difference between the OLS estimates of β with pre-k samples {Yt}
k
t=t1 and post-k

samples {Yt}
t2
t=k+1. Intuitively, a large maxh≤k≤n−h ∥Dn(1, k, n)∥2 leads to the rejection of H0. However, the asymptotic

istribution of Dn(1, k, n) depends on the unknown LRV of {ut}, and as discussed before the accurate estimation of LRV is
ather challenging and problematic in practice.

To bypass the problematic estimation of LRV, we utilize the self-normalization technique. Define 0 < δ < ϵ/2 as a
local trimming parameter, we define the self-normalizer Vn,δ(t1, k, t2) = Ln,δ(t1, k, t2)+ Rn,δ(t1, k, t2) where

Ln,δ(t1, k, t2) =
k−2−⌊nδ⌋∑ (i− t1 + 1)2(k− i)2

(k− t1 + 1)2(t2 − t1 + 1)2
(̂βt1,i − β̂i+1,k)

⊗2, (2.2)

i=t1+1+⌊nδ⌋
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Table 2.1
Simulated quantiles of G.
ϵ δ 1− α

90% 95% 99% 99.5% 99.9%

0.1 0.01 14.963 19.284 32.168 36.145 45.354
0.02 24.959 32.727 53.645 64.898 92.982
0.03 38.277 50.872 83.713 107.062 137.433
0.04 54.569 76.244 116.497 144.437 182.786

0.2 0.01 4.656 5.905 9.691 12.037 14.148
0.02 7.217 9.404 15.486 18.389 24.079
0.03 10.526 13.767 23.060 26.758 36.388
0.04 14.439 19.075 33.049 37.426 49.495

Rn,δ(t1, k, t2) =
t2−1−⌊nδ⌋∑
i=k+3+⌊nδ⌋

(i− 1− k)2(t2 − i+ 1)2

(t2 − t1 + 1)2(t2 − k)2
(̂βi,t2 − β̂k+1,i−1)

⊗2. (2.3)

he local trimming parameter δ is introduced to make sure all the subsample estimates of β in the self-normalizer
n,δ(t1, k, t2) are constructed with a subsample of size being a positive fraction of n, which is a technical condition
ecessary in our theoretical analysis. We later discuss the implication of the trimming parameters (ϵ, δ).
Based on the contrast statistic Dn(1, k, n) and the self-normalizer Vn,δ(1, k, n), we propose an SN-based test statistic Gn

or testing the single change-point alternative where

Gn = max
k∈{h,...,n−h}

Tn,δ(k), Tn,δ(k) = Dn(1, k, n)⊤Vn,δ(1, k, n)−1Dn(1, k, n). (2.4)

ntuitively, due to the presence of the self-normalizer, the LRVs in Dn(1, k, n) and Vn,δ(1, k, n) cancel out with each other,
eading to a test statistic Gn that is invariant to LRV. This phenomenon is made formal in Theorem 2.1.

Denote
D

−→ as convergence in distribution and b = β(2)
− β(1). Define Q (r) =

∫ r
0 F (s)F (s)⊤ds and BF (r) =

∫ r
0 F (s)dB(s)

here B(·) is a standard Brownian motion. Theorem 2.1 states the asymptotic behavior of the SN test statistic Gn under
0 and Ha respectively.

heorem 2.1. Suppose Assumption 2.1 holds. Let Gn be defined in (2.4), we have
(i) under H0, we have

Gn
D

−→ G(ϵ, δ) := sup
η∈(ϵ,1−ϵ)

D(η)⊤Vδ(η)D(η), (2.5)

here D(η) = η(1 − η)
{
Q (η)−1BF (η) − [Q (1) − Q (η)]−1

[BF (1) − BF (η)]
}

and Vδ(η) = Lδ(η) + Rδ(η) with Lδ(η) =

η−δ

δ

r2(η−r)2

η2

{
Q (r)−1BF (r) − [Q (η) − Q (r)]−1

[BF (η) − BF (r)]
}⊗2dr, Rδ(η) =

∫ 1−δ

η+δ

(r−η)2(1−r)2

(1−η)2
×

{
[Q (1) − Q (r)]−1

[BF (1) −

BF (r)] − [Q (r)− Q (η)]−1
[BF (r)− BF (η)]

}⊗2dr.
(ii) under Ha, given that n∥b∥22 → L, we have

lim
L→∞

lim
n→∞

Gn = ∞, in probability.

Due to self-normalization, the limiting distribution G(ϵ, δ) in (2.5) is pivotal and invariant to the LRV. The corresponding
critical values can be easily obtained via simulation. Table 2.1 gives the 1− α quantiles of G(ϵ, δ) for some combinations
of (ϵ, δ) (based on 10000 replications). Note that the limiting null distribution G(ϵ, δ) explicitly depends on the choice
of (ϵ, δ), thus the impact of trimming parameters (ϵ, δ) is accounted for at the first order, in the same spirit of the
fixed-b asymptotics (Kiefer and Vogelsang, 2005). See also Zhou and Shao (2013). Throughout the paper, we set (ϵ, δ) =
(0.1, 0.02).

Give that the null hypothesis H0 is rejected, we estimate the change-point τ by τ̂ = argmaxk∈{h,...,n−h} Tn,δ(k). The
following theorem gives the consistency result of κ̂ = n−1τ̂ .

heorem 2.2. Under Ha, suppose Assumption 2.1 holds, and n∥b∥22 → ∞ as n → ∞. Then, we have that for any η > 0,

lim
n→∞

P(|̂κ − κ| < η) = 1.

Theorem 2.2 allows a diminishing change size ∥b∥2 with the sample size n as long as n∥b∥22 → ∞. Note that no
consistency result is provided in Shao and Zhang (2010) for the change-point location estimation, and our result seems to
be the first formal attempt based on the SN technique. However, it is challenging to obtain an explicit rate of convergence
for τ̂ due to the complicated nature of the self-normalizer V and we leave it for future investigation.
n,δ
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2.2. Multiple change-point estimation

To extend single change-point testing to multiple change-point estimation, the classical idea is to combine the change-
point test with binary segmentation (BS). Although conceptually and computationally simple, it is well known that BS can
cause severe power loss for detecting non-monotonic changes (Olshen et al., 2004), which is common in real data. Several
variants of BS have been proposed to address this drawback, such as wild binary segmentation (WBS) (Fryzlewicz, 2014)
and Narrowest-Over-Threshold (NOT) (Baranowski et al., 2019). Since NOT is shown to be superior to WBS, we combine
he SN-based test with the NOT algorithm to estimate multiple change-points and name our algorithm SN-NOT.

The essential idea of SN-NOT is to compute the SN test on a large collection of random subsamples of {Yt}
n
t=1 instead

f the entire sample {Yt}
n
t=1. With high probability, some subsamples will only contain a single change-point, where the

N test statistics are expected to exhibit large values, leading to the discovery of a change-point.
Denote FM

n = {(si, ei) : i = 1, . . . ,M} as the set of M random intervals such that each pair of integers (si, ei) are drawn
niformly from {1, . . . , n} and satisfy 1 ≤ si < ei ≤ n and ei − si + 1 ≥ 2h. For each random interval (s, e) ∈ FM

n , we
alculate the SN test

Gn,δ(s, e) = max
k∈{s+h−1,...,e−h}

Tn,δ(s, k, e), Tn,δ(s, k, e) = Dn(s, k, e)Vn,δ(s, k, e)−1Dn(s, k, e)⊤.

SN-NOT finds the narrowest interval (s, e) ∈ FM
n where the test statistic Gn,δ(s, e) exceeds a given threshold ζn and

estimates the change-point as τ̂ = argmaxk∈{s+h−1,...,e−h} Tn,δ(s, k, e). Note that for large M , with high probability there is
only one change-point in this narrowest interval, which thus remedies the drawback of BS in detecting non-monotonic
changes. Once a change-point τ̂ is identified, SN-NOT then divides the sample into two subsamples accordingly and apply
the same procedure on each of them. The process is implemented recursively until no change-point is detected. In addition
to the advantage of detecting non-monotonic changes, SN-NOT broadens the applicability of the NOT algorithm itself by
allowing for temporal dependence in the error process thanks to the self normalization technique.

The detailed implementation of SN-NOT is given in Algorithm 1. We propose to select the threshold ζn as follows.
Generate B sequences of i.i.d N (0, 1) random variables {εbt }

n
t=1, b = 1, . . . , B; for the bth sample, we calculate

ζ b
n = arg max

i=1,...,M
Gn,δ(si, ei), b = 1, . . . , B.

The threshold ζn is set as the 95% sample quantile of {ζ b
n }

B
b=1. Since the SN test statistic is asymptotically pivotal, this

threshold is expected to well approximate the 95% quantile of the finite sample distribution of the maximum SN test
statistic on the M random intervals under null. Throughout this paper, we set B = 1000, M = 300.

Algorithm 1: SN-NOT
Input: Data {Yt}

n
t=1, threshold ζn, trimming size d = ⌊δn⌋ and h = ⌊ϵn⌋, random intervals FM

n .
Output: Estimated number of change-points m̂ and estimated change-points set τ̂
Initialization: SN-NOT(1, n, ζn)
Procedure: SN-NOT(s, e, ζn)

1 if e− s+ 1 < 2h then
2 Stop
3 else
4 M(s,e) := {i : [si, ei] ∈ FM

n , [si, ei] ⊂ [s, e], ei − si + 1 ≥ 2h} ;
5 if M(s,e) = ∅ then
6 Stop
7 else
8 O(s,e) :=

{
i ∈ M(s,e) : Gn,δ(si, ei) > ζn

}
;

9 if O(s,e) = ∅ then
10 Stop
11 else
12 i∗ = argmini∈O(s,e) |ei − si + 1|;
13 τ ∗ = argmaxk∈{s∗i +h−1,··· ,e∗i −h} Tn,δ(si∗ , k, ei∗ ) ;
14 τ̂ = τ̂ ∪ τ ∗, m̂ = m̂+ 1;
15 SN-NOT(s, τ ∗, ζn);
16 SN-NOT(τ ∗ + 1, e, ζn);
17 end
18 end
19 end
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ize and size-adjusted power for SN test and supLM test.
α ρ SN supLM

−0.5 −0.2 0 0.2 0.5 −0.5 −0.2 0 0.2 0.5

Size

5% n = 100 0.003 0.012 0.026 0.042 0.093 0.043 0.023 0.016 0.012 0
10% 0.008 0.028 0.053 0.091 0.160 0.091 0.064 0.047 0.035 0.018

5% n = 500 0.022 0.033 0.036 0.045 0.057 0.049 0.042 0.032 0.030 0.020
10% 0.051 0.064 0.074 0.085 0.105 0.101 0.089 0.082 0.078 0.064

5% n = 1000 0.040 0.045 0.045 0.045 0.049 0.042 0.037 0.036 0.034 0.025
10% 0.086 0.086 0.089 0.092 0.096 0.108 0.096 0.090 0.079 0.067

Power

5% n = 100 1 0.990 0.909 0.654 0.269 1 0.999 0.965 0.846 0.438
10% 1 1 0.983 0.879 0.531 1 1 0.996 0.925 0.587

5% n = 500 1 1 1 1 1 1 1 1 0.989 0.277
10% 1 1 1 1 1 1 1 1 0.998 0.568

5% n = 1000 1 1 1 1 1 1 1 1 1 0.906
10% 1 1 1 1 1 1 1 1 1 0.989

3. Simulation

In this section, we study the finite sample performance of the SN test in testing single change-point and the SN-NOT
lgorithm in detecting multiple change-points through numerical experiments. All results are reported based on 1000
eplications.

.1. Testing size and power

We generate the data from model (1.1) with sample size n = 100, 500 and 1000 respectively. For the size performance,
we let β = (3, 0.05n) while for the power performance, we let β(1)

= (3, 0.06n) and β(2)
= (3+ 0.015n, 0.03n) with the

change-point τ = n/2. The error process {ut} is generated via an AR(1) model where ut = ρut−1+et , et
i.i.d.
∼ N (0, (1−ρ2)σ 2)

ith ρ = 0,±0.2,±0.5 and σ = 0.15.
For comparison, we also implement the supLM test defined in Andrews (1993) (using function sctest of the R package

strucchange) with the same trimming parameter ϵ = 0.1. The results are summarized in Table 3.1 at significance levels
α = 5% and 10%. It can be seen that when n is small, both methods have distorted sizes. In particular, SN is prone to be
conservative when ρ is negative and oversized when ρ is positive while supLM is undersized in all cases. As n increases,
we find that both tests tend to have more accurate sizes. For n = 100, supLM test has slightly higher power than SN test
while for n = 500 and n = 1000, SN test beats supLM test under positive ρ. Note that both tests are more powerful under
negative ρ.

3.2. Multiple change-point estimation

We examine the numerical performance of SN-NOT by considering the following DGP with n = 100:

Yt =

⎧⎪⎪⎨⎪⎪⎩
3+ 3.2(t/n)+ ut , 1 ≤ t ≤ 20,
5.8+ 1.8(t/n)+ ut , 21 ≤ t ≤ 40,
9.8+ 0.8(t/n)+ ut , 41 ≤ t ≤ 70,
15.05+ 0.05(t/n)+ ut , 71 ≤ t ≤ 100.

The error process {ut} is generated via an AR(1) model where ut = ρut−1 + et , et
i.i.d.
∼ N (0, (1 − ρ2)σ 2) with ρ =

0,±0.2,±0.5 and σ = 0.15. For comparison, we also implement the multiple change-point detection procedure proposed
in Bai and Perron (1998) (denoted as BP hereafter), which is the most widely used detection algorithm allowing for
temporal dependence in the error term of model (1.1). BP is implemented using function breakpoints of the R package
strucchange.

To assess the accuracy of change-point estimation, we define the Hausdorff distance between two sets. Denote the set
of true change-points as τo and the set of estimated change-points as τ̂, we define d1(τo, τ̂) = maxτ1∈̂τ minτ2∈τo |τ1 − τ2|
and d2(τo, τ̂) = maxτ1∈τo minτ2∈̂τ |τ1 − τ2|, where d1 measures the over-segmentation error of τ̂ and d2 measures the
under-segmentation error of τ̂. The Hausdorff distance is then defined as d (τ , τ̂) = max(d (τ , τ̂), d (τ , τ̂)). In addition,
H o 1 o 2 o
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Table 3.2
Estimation results for SN-NOT and BP.
ρ SN-NOT BP

−0.5 −0.2 0 0.2 0.5 −0.5 −0.2 0 0.2 0.5

ARI 0.844 0.852 0.849 0.828 0.784 0.863 0.852 0.840 0.805 0.714
d1 4.817 3.846 3.953 4.765 6.049 2.854 3.176 3.379 3.970 4.837
d2 2.949 3.170 3.574 3.964 6.032 2.854 3.252 3.915 5.605 10.457
dH 4.830 3.877 4.141 4.960 7.152 2.854 3.252 3.915 5.605 10.457
m̂ = 3 0.902 0.955 0.950 0.922 0.808 1 0.989 0.930 0.775 0.337
|m̂− 3| = 1 0.098 0.045 0.050 0.078 0.186 0 0.011 0.069 0.198 0.402
|m̂− 3| > 1 0 0 0 0 0.006 0 0 0.001 0.027 0.261

Table 4.1
Summary of estimated models (1.1) for cumulative confirmed cases in 8 representative countries.
Country Start n No.CP 1st CP (S1) 2nd CP (S2) Latest CP (Sm̂+1) ρ̂

United States Feb-22 96 5 Mar-04 (0.113) Mar-24 (0.292) May-09 (0.015) 0.492
Brazil Mar-09 80 2 Mar-25 (0.301) Apr-12 (0.129) Apr-12 (0.066) 0.438
Russia Mar-12 77 4 Apr-05 (0.218) Apr-21 (0.146) May-17 (0.028) 0.573
United Kingdom Mar-01 88 5 Mar-20 (0.254) Mar-29 (0.181) May-12 (0.011) 0.575
Spain Feb-28 90 5 Mar-14 (0.359) Mar-27 (0.176) May-01 (0.004) 0.611
Italy Feb-23 95 6 Mar-09 (0.289) Mar-22 (0.151) May-18 (0.003) 0.616
India Mar-05 83 5 Mar-24 (0.159) Apr-02 (0.142) May-09 (0.052) 0.375
South Korea Feb-06 112 6 Feb-18 (0.022) Mar-03 (0.360) May-08 (0.002) 0.749

we report the adjusted Rand index (ARI) which measures the similarity between two partitions of the same observations.
Roughly speaking, a higher ARI (with the maximum value of 1) means more accurate change-point estimation. For the
definition and detailed discussions of ARI, we refer to Hubert and Arabie (1985).

Table 3.2 summarizes the numerical result where we report ARI, d1, d2, dH and the frequency of |m̂−mo| for SN-NOT
and BP. It can be seen that SN-NOT is overall better than BP in terms of ARI, dH and the estimated number of change-
points when ρ ≥ 0. This finding suggests using SN-NOT could be more advantageous for analyzing COVID-19 data, which
exhibit positive temporal dependence (see the last column of Table 4.1). For applications where negatively correlated
error is expected, BP could be a better choice.

4. Analysis for cumulative confirmed cases and deaths of COVID-19

In this section, based on the proposed SN-NOT algorithm, we provide detailed in-sample analysis of the cumulative
confirmed cases (Sections 4.2–4.3) and deaths (Section 4.4) of COVID-19 (in log scale) in 30 major countries.

4.1. Data and method

We focus on G20 (with 19 sovereign countries4) and 11 other countries leading the total infected cases as of May 27,
2020, including Australia (AUS), Argentina (ARG), Belgium (BEL), Brazil (BRA), Canada (CAN), Chile (CHI), China (CHN),
France (FRA), Germany (GER), India (IND), Indonesia(INA), Iran (IRI), Italy (ITA), Japan (JPN), Mexico (MEX), Netherlands
(NED), Pakistan (PAK), Peru (PER), Portugal (POR), Qatar(QAT), Russia (RUS), Saudi Arabia (KSA), Spain (ESP), South Africa
(RSA), South Korea (ROK), Sweden (SWE), Switzerland (SUI), Turkey (TUR), United Kingdom (GBR), United States (USA).

We obtain the data from https://ourworldindata.org/coronavirus-source-data maintained by ‘‘Our World in Data",
where cumulative measures such as confirmed cases and deaths are updated daily for each nation. For each country,
the logarithm of cumulative confirmed cases (or deaths) {Yt} starts on the date when the cumulative cases (or deaths)
exceeded 20 and ends on May 27.

We study the cumulative confirmed cases and deaths (in log scale) of each country via the piecewise linear trend model
(1.1), where given {Yt}, the change-points (τ1, . . . , τm̂) are estimated by the SN-NOT algorithm. An OLS is then used to
recover the linear model for the ith estimated segment {Yt }̂

τi
t=τ̂i−1+1, i = 1, 2, . . . , m̂+ 1. With a slight abuse of notation,

denote b̂i as the estimated slope for the ith segment. We define the normalized slope Si = b̂i/n for each segment. As can
be seen from (1.1), the normalized slope Si measures E[Yt+1 − Yt ] for the ith segment, which can be interpreted as the
‘‘log-return" and measures the daily growth rate of the cumulative confirmed cases (or deaths) in the original scale.

Methodologically speaking, for cumulative confirmed cases, the piecewise linearity allows us to assess the growth rate
of the coronavirus at any given time and further facilitates short-term forecast. In particular, the estimated slope Si of
each segment indicates the pace of the growth rate during the corresponding period. Moreover, by comparing the slope
before and after each change-point, we can quantitatively assess the changes in growth rate, which partially measure the
effectiveness of policies taken by the government.

4 G20 is an international forum for the governments and central bank governors from 19 countries and the European Union. We will view
members of the European Union as individual countries because the responses to COVID-19 usually come from the national level.

https://ourworldindata.org/coronavirus-source-data
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.2. Detailed analysis of cumulative confirmed cases in 8 representative countries

We first conduct a detailed case study for eight representative countries that either lead confirmed cases (the U.S.,
razil, Russia, and India) in the corresponding continent or receive most media attention (the U.K., Spain, Italy, and South
orea).
Table 4.1 summarizes the detailed estimation result for each country (in descending order of the cumulative confirmed

ases), where we report the starting date of the series, length of the series n, the estimated number of change-points, dates
f the first, second and latest estimated change-point. The first (S1), the second (S2) and the current normalized slope
Sm̂+1) are also presented. In addition, we report the lag-1 sample autocorrelation ρ̂ of the error process. From the table,
e can see all of these countries have been affected by the coronavirus for more than two months. The average length
f segments between two adjacent change-points is around 13–20 days, indicating that the spread rate can be relatively
teady for a window of 2–3 weeks. The latest change-point for most countries appeared in May except for Brazil. We
lso note that the current normalized slopes (i.e. growth rate) vary considerably across countries with comparably large
alues in Brazil and India. Meanwhile, the lag-1 sample autocorrelation ρ̂ are all positive, which suggests the use of
N-NOT instead of BP as discussed in Section 3.2. In Figures C.1 and C.2 of the supplementary material, we further plot
he lag-1 to lag-30 ACF and PACF of the residuals, which rules out the scenario of long memory and supports the validity
f Assumption 2.1.
Fig. 4.1 visualizes the estimated piecewise linear models for the eight countries, which gives a more direct perception

f how the growth rate changes over time. Note that the U.S. and South Korea are the only two countries that witnessed
n increase in the slope after the first change-point. For the U.S., the first change-point is March 4, one day after the first
onfirmed case appeared in New York. Since then, the pandemic underwent an outbreak in the New York state, which
as been the leading state in the U.S. in terms of infected cases. The second change-point appeared on March 24, after
hich the slope began to drop. This is also noteworthy as on March 20, the U.S. began barring entry of foreign nationals
ho had traveled to 28 European countries within the past 14 days. While in South Korea, after February 18, the infected
ases increased drastically, and the slope dropped after March 3. We find that the first change-point is the day when the
irst super-spreader in South Korea was diagnosed.5 The second change-point, March 3, is when the drive-through testing
as made widely available to Korean citizens.
The growth rate decreased after the first change-point in other countries. For the U.K., the first and second change-

oints are quite close. In particular, we find the U.K. governments gradually increased the restrictions on freedom of
ovement for the general public between these two change-points (March 20 and March 29). This could help explain why
oth change-points are associated with significant drops in the virus growth rate. In addition, we find that Italy extended
he quarantine lockdown from region-focused to nationwide on March 10, one day after the first estimated change-point.
or Spain, the first change-point is estimated as March 14, which is one day after Spain declared the nationwide state
f emergency. Similar to Italy, the slopes dropped drastically after the first change-point. Generally speaking, the first or
econd change-point of these countries are closely associated with the date when local or nationwide interventions from
he governments were initiated. These countries typically transition from a rapid growth phase to a moderate growth
hase after the first or second change-point. This may serve as evidence that government intervention such as lockdown
nd massive testing could effectively slow down the spread of the coronavirus.
From Fig. 4.1, we also find the situations in Brazil, Russia and India rather somber, as of May 27. Russia is still

ransitioning from the rapid growth phase to the moderate growth phase, while the fast growing trend in Brazil has
ot changed since April 12. Even though Brazil managed to bring down the slope by a significant amount at the first
hange-point on March 25, it seemed the right-wing government took few follow-up effective measures. The situation
n India is also grim where the decreases of growth rate at the first and second change-points are quite small and the
urrent growth rate is still high, suggesting that stricter measures to be taken. In summary, these three countries still
ave a long way to go in terms of slowing down the spread of COVID-19.

.3. Analysis of cumulative confirmed cases in 30 countries

We further extend the scope of analysis to 30 countries to obtain a relatively complete picture of the pandemic
ituations around the world. Specifically, we conduct a comparative study based on two important quantities: the
aximum normalized slope and the current normalized slope, which are estimated by Smax = max1≤i≤m̂+1 n−1̂bi and

cur = n−1̂bm̂+1 respectively. Combined together, the two measures allow us to obtain an overall picture of the phase
hen the virus transmitted fastest and the current situation in each country. In particular, Smax provides information on

the growth rate at the early stage of the pandemic for a particular country. In this phase, often no government regulations
are imposed so it depicts the worst scenario if no emergency measure is taken. Scur gives the ongoing epidemic growth
ate and could help make predictions in the short run.

In Fig. 4.2, we plot Smax against Scur for each country. Note that by their relative positions in Fig. 4.2, the 30 countries
an be roughly grouped into three clusters: East Asian countries and Australia, European and North American countries

5 A member of the Shincheonji religious organization was diagnosed as 31st case in Daegu, see https://foreignpolicy.com/2020/02/27/coronavirus-
outh-korea-cults-conservatives-china/.

https://foreignpolicy.com/2020/02/27/coronavirus-south-korea-cults-conservatives-china/
https://foreignpolicy.com/2020/02/27/coronavirus-south-korea-cults-conservatives-china/
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Fig. 4.1. Estimated piecewise linear trend for cumulative confirmed cases in 8 representative countries.

and other developing countries. We find that countries within the same cluster tend to have similar current growth rate.
China, South Korea, and Australia are among the best with Scur close to zero. Most European and North American countries
are in the second tier while countries in continental Europe generally have slower ongoing virus growth than the U.K.,
the U.S. and Canada. The only exceptions are Sweden and Russia. In fact, Sweden adopted a different strategy than other
countries in that no lockdown has been imposed by the government and large parts of its society remain open. Note that
Fig. 4.2 does not take the time effect into account, thus the cluster along the horizontal direction may also be attributed
to the cluster of similar eruption time of the virus. This could help explain why Russia is closer to developing countries
and why Latin American countries have the largest Scur .

To take the time factor into consideration, in Fig. 4.3, we plot the ratio Scur/Smax against the days in between
(i.e. τcur − τmax with τmax as the start date for the segment with the largest slope and τcur = τm̂ as the latest change-
point), which allows us to further understand how the growth rate changes from its peak to the current status with time.
Horizontally speaking, for the same ratio Scur/Smax, if country A is to the left of country B, then A acts faster than B in
bringing down the virus growth from its peak value. Vertically speaking, for the same time length τcur −τmax, if A is below
B, then A is more effective than B in reducing the growth rate.
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Fig. 4.2. Plot of maximum normalized slope Smax and normalized slope after the latest change-point Scur for cumulative confirmed cases of each
ountry. Black △: East Asian Countries and Australia; red +: European and North American Countries; blue •: Other developing countries.

We again find that most European and North American countries tend to share similar characteristics. The growth rates
n the current phases for these countries are less than one-tenth of their peak value, and it took them about two to three
onths to achieve that. From the lower panel in Fig. 4.3, we find that South Korea, China and Australia outperform other
ountries as the ratios were brought to near zero in around 65 days. Again, we find that continental European countries
except Russia and Sweden) perform better than U.S, Canada and U.K.

Most developing countries are on the top-left of the plot, suggesting that they are still in the relatively early stage of
he pandemic and the situation has not improved much since the beginning of the outbreak. In addition, we find Latin
merican countries, such as Mexico, Brazil, Chile, and Peru, tend to cluster. Given their geographical proximity, this is not
surprise. We note that developing countries tend to be less efficient in slowing the spread of COVID-19. For example,
ith roughly the same amount of time, the ratios in India and Argentina are three times larger than developed countries.

n summary, more caution and attention should be given to the epidemic in developing countries as they may need more
nternational aids compared to the developed countries.

.4. Analysis of cumulative deaths in 30 countries

Based on the same methodology, we analyze cumulative deaths in the 30 countries. Note that unlike confirmed cases,
ublic health interventions naturally have a longer lagged effect on coronavirus-related deaths, as severe symptoms may
ot develop immediately upon infection. Thus, we believe a change-point analysis on cumulative confirmed cases should
e preferred in terms of quantifying the effectiveness of emergency policies. Additionally, the criteria for certifying deaths
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Fig. 4.3. Plot of ratio between the current normalized slope Scur and maximum normalized slope Smax against days from the start date for the segment
with the largest slope to the start date for the latest segment for cumulative confirmed cases of each country. Black △: East Asian Countries and
Australia; red +: European and North American Countries; blue •: Other developing countries.

due to COVID-19 vary from nation to nation, thus comparative analysis across countries should be interpreted with
caution.

Table 4.2 summarizes the detailed estimation result for cumulative deaths in the eight representative countries.
Notably, for each country, the estimated number of change-points for deaths is smaller than or equal to that for cumulative
confirmed cases in Table 4.1. This is intuitive as the history of cumulative deaths is shorter and number of deaths
largely depend on infections (with a lag). Note that the duration between the starting date and the first change-point
for cumulative deaths is around 2–3 weeks, which is consistent with that for confirmed cases in Table 4.1. The same
phenomenon also applies to the duration between the first and second change-points. This consistency in part confirms
the validity of the change-point estimation results and indicates a 2–3 weeks response lag between changes in growth
rate of infections and changes in growth rate of deaths. We note that Italy and Spain have the highest growth rate of
cumulative deaths before the first change-point, which highlights the extreme importance of ‘‘flattening the curve", as it
is known that the exponential surge of coronavirus cases exhausted the public health system in the two countries at the
early stage of the pandemic.

Fig. 4.4 further plots the estimated piecewise linear models for cumulative deaths in the eight countries. The pattern
exhibited by each country is largely consistent with its pattern in Fig. 4.1, except for South Korea. Note that the start date
of the cumulative death curve in South Korea is almost 30 days later than the start date of the cumulative confirmed
cases, which partially explains the different pattern around its first change-point.
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able 4.2
ummary of estimated models (1.1) for cumulative deaths in 8 representative countries.
Country Start n No.CP 1st CP (S1) 2nd CP (S2) Latest CP (Sm̂+1) ρ̂

United States Mar-09 80 5 Mar-26 (0.229) Apr-09 (0.195) May-15 (0.012) 0.556
Brazil Mar-23 66 2 Apr-11 (0.195) May-01 (0.086) May-01 (0.056) 0.696
Russia Apr-02 56 3 Apr-22 (0.149) May-03 (0.093) May-11 (0.043) 0.366
United Kingdom Mar-15 74 4 Apr-03 (0.254) Apr-19 (0.099) May-15 (0.008) 0.657
Spain Mar-10 79 5 Mar-27 (0.307) Apr-05 (0.121) May-15 (−0.000a) 0.507
Italy Feb-29 89 6 Mar-14 (0.305) Mar-22 (0.167) May-08 (0.005) 0.287
India Mar-29 60 3 Apr-13 (0.179) May-06 (0.070) May-20 (0.039) −0.012
South Korea Mar-02 87 4 Mar-13 (0.100) Mar-30 (0.0518) May-07 (0.003) 0.363

aSpain revised its death toll downwards on May 25, see https://english.elpais.com/society/2020-05-26/spanish-health-ministry-lowers-coronavirus-
eath-toll-by-nearly-2000.html.

Fig. 4.4. Estimated piecewise linear trend for cumulative deaths in 8 representative countries.

https://english.elpais.com/society/2020-05-26/spanish-health-ministry-lowers-coronavirus-death-toll-by-nearly-2000.html
https://english.elpais.com/society/2020-05-26/spanish-health-ministry-lowers-coronavirus-death-toll-by-nearly-2000.html
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Fig. 4.5. Plot of maximum normalized slope Smax and normalized slope after the latest change-point Scur for cumulative deaths of each country.
Black △: East Asian Countries and Australia; red +: European and North American Countries; blue •: Other developing countries.

We further conduct a comparative analysis for cumulative deaths in 30 countries. We exclude China, Spain and Qatar in
he analysis as the death tolls were either revised or unavailable.6 Fig. 4.5 plots Smax against Scur for each country. Similar
to the results for confirmed cases in Fig. 4.2, European and North American countries tend to cluster while developing
countries generally have higher ongoing growth rates Scur .

Note that South Korea and Australia deliver the best responses with small Smax and near-zero Scur for cumulative
deaths. However, it is unexpected to see that western developed countries, such as Italy and the U.K., experience the
largest maximum growth rate. Since the maximum growth rate always takes place in the first segment of the cumulative
death curve, it indicates that the coronavirus may take these countries by surprise and the health systems may not be
well prepared for the flood of coronavirus patients in the early stage of the pandemic. Another notable pattern is that
Latin American countries tend to have larger values in both maximum and current growth rates than other developing
countries, signaling the possibility of Latin America becoming the next epicenter of the COVID-19 pandemic.

Fig. 4.6 plots Scur/Smax against τcur−τmax for cumulative deaths in each country, where the observed patterns are similar
to the ones for cumulative confirmed cases in Fig. 4.6. Specifically, developing countries again tend to be less efficient in
slowing the spread of COVID-19, where with roughly the same amount of time, the ratios Scur/Smax in developing countries
are noticeably larger than developed countries.

6 China revised its death toll upwards on April 17, see https://www.nytimes.com/2020/04/17/world/asia/china-wuhan-coronavirus-death-toll.html.
The death toll is not available for Qatar.

https://www.nytimes.com/2020/04/17/world/asia/china-wuhan-coronavirus-death-toll.html
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Fig. 4.6. Plot of ratio between the current normalized slope Scur and maximum normalized slope Smax against days from the start date for the
egment with the largest slope to the start date for the latest segment for cumulative deaths of each country. Black △: East Asian Countries and
ustralia; red +: European and North American Countries; blue •: Other developing countries.

. SN-NOT based forecast for cumulative deaths

As stated by the Centers for Disease Control and Prevention (CDC),7 accurate forecast of COVID-19 deaths is critical
or public health decision-making, as it projects the likely impact of coronavirus to health systems in coming weeks and
elps government officials develop data-driven public health policies for controlling the pandemic.
In Section 5.1, we propose a simple and intuitive forecasting scheme for cumulative deaths due to COVID-19

y combining SN-NOT with a flexible extrapolation function. In Section 5.2, we further demonstrate its promising
erformance in predicting cumulative deaths in the U.S.

.1. Method

As suggested by the analysis in Section 4, the spread of coronavirus typically experiences several different stages due to
xternal interventions. While a sophisticated epidemiology model based on differential equations may manage to take into
ccount information about interventions and characterize the entire cumulative death curve, a more natural (and simpler)
olution from the change-point aspect is to first segment the time series into periods with relatively stable behavior and

7 https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html#why-forecasting-critical.

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html#why-forecasting-critical
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then generate forecast based on observations in the last segment, see for example, Pesaran and Timmermann (2002)
and Bauwens et al. (2015).

Following this idea, we propose an SN-NOT based two-stage approach for cumulative deaths prediction. Specifically,
in the first stage, given the cumulative deaths (in log scale) {Yt}

n
t=1, a piecewise linear trend model is estimated via SN-

NOT with change-points τ̂. In the second stage, a flexible function f (t) is fitted on the last segment {Yt}
n
t=τ̂m̂+1 with the

assumption that E(Yt ) = f (t) and the k-day ahead forecast for cumulative deaths can be readily made via extrapolation
of f̂ (t).

Note that the purpose of the first stage (in-sample) change-point analysis is to identify the most recent segment where
{Yt}

n
t=1 exhibits relatively stable behavior and thus facilitates the second stage (out-of-sample) forecast. As demonstrated

in Section 4, the piecewise linear trend model with SN-NOT is sufficient for this task. However, as for prediction in the
second stage, any flexible extrapolation function f (t) can be considered, as it is expected that a linear function may only
provide a reasonable forecast for short horizons due to its limited flexibility.

In the following, we consider three commonly used extrapolation functions (in the order of increasing flexibility) in
the literature, including the linear function f (t) = a+ b(t/n), the quadratic function f (t) = c + d(t/n)+ e(t/n)2 and the

logistic function f (t) =
L

1+ exp
(
−α(t/n− t0)

) .
Based on {Yt}

n
t=τ̂m̂+1, a standard OLS can be used to estimate the linear and quadratic functions and a standard nonlinear

least square can be used to estimate the logistic function. The k-day ahead forecast for Yn+k is formulated respectively as

SN-NOT + Linear [SNL]: Ŷn+k = â+ b̂(1+ k/n),

SN-NOT + Quadratic [SNQ]: Ŷn+k = ĉ + d̂(1+ k/n)+ ê(1+ k/n)2,

SN-NOT + Logistic [SNLG]: Ŷn+k =
L̂

1+ exp
(
−α̂(1+ k/n− t̂0)

) .
he prediction for cumulative deaths on day n+ k is D̂eathn+k = exp(̂Yn+k).

.2. Data and prediction results

We apply the SN-NOT based prediction method to forecast cumulative deaths in the U.S. and compare its performance
ith other forecasting models listed on the CDC website.8 Specifically, following the CDC website, the forecast is generated
n five dates, April-27, May-04, May-11, May-18 and May-25, and the forecast horizon is 5-day (one-week) ahead and
2-day (two-week) ahead.
We compare with five forecasting models9 available on the CDC website: ‘‘LANL" by Los Alamos National Laboratory

2020), ‘‘Imperial" by Unwin et al. (2020), ‘‘UT" by University of Texas (2020), ‘‘YYG" by Gu (2020) and ‘‘MOBS"
y Laboratory for the Modeling of Biological and Socio-technical Systems (2020). These forecasting methods are mainly
nsembles of complex mechanistic models (such as SEIR and SEIS), known as compartmental models in epidemiology,
hich track the spread of infectious disease via a system of differential equations. To highlight the importance of the

irst-stage change-point analysis, we additionally report the forecast given by fitting a logistic function on the entire time
eries without segmentation (and name it ‘‘Logistic").
Table 5.1 reports the prediction results and the findings can be summarized as follows.
(1) SNL gives comparable performance to other methods for the 5-day ahead forecast, while it considerably overesti-

ates deaths at the 12-day horizon. In other words, linear extrapolation can only be used for short-term forecasts. This is
ot surprising as the linear function essentially assumes a constant growth rate for the cumulative deaths. While such an
pproximation is reasonable for short-term, it may not be able to track the growth rate for a long period to make accurate
redictions. SNQ generally performs better than SNL due to its increased flexibility, though it tends to underestimate at
he 12-day horizon as the quadratic function may pass its peak for long-horizon extrapolation.

(2) SNLG is consistently a top performer among all models thanks to the flexibility of the logistic function, which
nsures the fitted curve is non-decreasing and is capable of tracking both increasing and decreasing growth rate. Note
hat there is a drastic performance difference between the two-stage SNLG forecast and the pure Logistic forecast, which
ndicates the value of the first-stage change-point estimation for identifying the most recent segment where cumulative
eaths exhibit relatively stable behavior.
In summary, the SN-NOT based two-stage prediction, in particular SNLG, provides decent forecasts for the cumulative

eaths in the U.S. Considering that SNLG is solely based on the time series of cumulative deaths, this result is rather
romising and further confirms the value and validity of the change-point analysis. Though by no means SNLG can replace
he complex mechanistic models built on epidemiology principles, we believe it can serve as a meaningful addition to the
xisting set of forecasting models for tracking the COVID-19 pandemic.

8 https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html#.
9 Other models can be found on the CDC website. The five models are chosen as their predictions are available on all the aforementioned dates

while other models only report on some of the recent dates.

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html#
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T
P

L
M

able 5.1
rediction performance for cumulative deaths in the U.S. (the top 3 performers on each forecast date are highlighted in bold).
Date Target True Imperial LANL MOBS UT YYG SNLG SNL SNQ Logistic

End-of-Week

Apr-27 May-02 Forecast 66527 66837 69410 63029 58720 73317 65067 70376 63775 55480
Rel.error / 0.47% 4.33% −5.26% −11.74% 10.21% −2.19% 5.79% −4.14% −16.61%

May-04 May-09 Forecast 78946 79511 78755 77035 70646 77522 77178 85775 75703 62930
Rel.error / 0.72% −0.24% −2.42% −10.51% −1.80% −2.24% 8.65% −4.11% −20.29%

May-11 May-16 Forecast 88893 91528 87022 88922 87666 88767 88128 86331 84965 69702
Rel.error / 2.96% −2.10% 0.03% −1.38% −0.14% −0.76% 2.88% −4.42% −21.59%

May-18 May-23 Forecast 97220 98076 96582 97252 96128 97625 97573 99432 97307 75659
Rel.error / 0.88% −0.66% 0.03% −1.12% 0.42% 0.36% 2.28% 0.09% −22.18%

May-25 May-30 Forecast 103915 104671 104085 104241 104736 104436 103923 108080 103197 80887
Rel.error / 0.73% 0.16% 0.31% 0.79% 0.50% 0.01% 4.01% −0.69% −22.16%

Date Target True Imperiala LANL MOBS UT YYG SNLG SNL SNQ Logistic

Two-week

Apr-27 May-09 Forecast 78946 84837 70156 65903 77336 74244 93730 67565 58341
Rel.error / 7.46% −11.13% −16.52% −2.04% −5.96% 18.73% −14.42% −29.72%

May-04 May-16 Forecast 88893 90078 85827 78243 87608 85896 109953 79531 64625
Rel.error / 1.33% −3.45% −11.98% −1.45% −3.37% 23.69% −10.53% −29.21%

May-11 May-23 Forecast 97220 93997 97513 96232 98365 96136 124580 89205 70719
Rel.error / −3.32% 0.30% −1.02% 1.18% −1.11% 28.14% −8.24% −27.26%

May-18 May-30 Forecast 103915 103461 104443 101060 106432 105985 111822 104819 76269
Rel.error / −0.44% 0.51% −2.75% 2.42% 1.99% 7.61% 0.87% −26.60%

May-25 June-06 Forecast 109802 110640 110285 111759 111799 109708 119971 106995 81251
Rel.error / 0.76% 0.44% 1.79% 1.82% −0.09% 9.26% −2.56% −26.00%

aImperial only gives one-week ahead forecast.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.07.039.
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