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Incarnations of XXX sly Bethe ansatz equations

and integrable hierarchies

Igor Krichever and Alexander Varchenko
In memory of Boris Dubrovin (1950-2019)

Abstract. We consider the space of solutions of the Bethe ansatz equations

of the slvXXX quantum integrable model, associated with the trivial repre-
sentation of slv. We construct a family of commuting flows on this space
and identify the flows with the flows of coherent rational Ruijesenaars-Schneider
systems. For that we develop in full generality the spectral transform for the rational
Ruijesenaars-Schneider system.
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1. Introduction

In the Gaudin model associated with a Lie algebra one considers a commutative
family of linear operators (Hamiltonians) acting on a tensor product of
representations of the Lie algebra. To find common eigenvectors of Hamiltonians one
considers a suitable system of Bethe ansatz equations, and then assigns an
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eigenvector to each solution of the system. That construction is called the Bethe
ansatz method.
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It turns out that the set of solutions of the ___ Bethe ansatz equations is
an interesting object. For example, for the affine Lie algebra slvand its trivial
representation the associated system of the Bethe ansatz equations has the
form -1

2 o 1 g 1
Z ul™ — ul (n) Z u™ — (7t a Z ™ “(”*1 =0

(11) i'#i Vi i’ i'=1 " i’ i'=1 i ' ,

wheren=1,..,Nandi=1,..,kn The system itself depends on the choice of nonnegative

integers kai,...,kn, which must satisfy the equatlon
N

Z(A j+1 Z"") -0

(1.2) Jj=1 j=1

Here we adopt the notations kn+n = knand u(¥* = u( for all i,n. The set of solutions of
such a system forms one cell or an empty set. In [VWTr] a family of commuting flows,
acting on such a cell, was constructed. The family of flows was identified with the
flows of the N mKdV integrable hierarchy.

The initial goal of this paper was to extend these results to the s XXX this case
the Bethe ansatz equations take the form

quantum integrable model, associated with the trivial representation ofsly. In

kp—1 ko kn41
(13) H (uin) _ ‘.'_L;”_l) + 1) (UEH) _ UE,N) _ 1) H (,U'En.) _ [u£n+1))
=1 /=1 =1
kn—1 ki knt1
+ H (u{™ —u{"") ]:[(U,E”) ul™ 4 1) H (™ —u{" —1)=0
=1 =1 =1

where n = 1,..,N, i = 1,..,kn, and the parameters ki,... kn still satisfy equation (1.2).

It turns out that we can do much more than just simple identification with a
proper discrete analog of the N mKdV hierarchy. Roughly speaking we explicitly solve
equations (1.3) using interplay with the theory of finite-dimensional integrable
systems of particles, which are known to be equivalent to the theory of rational
solutions of basic hierarchies considered in the framework of the theory of integrable
partial differential, differential-difference and difference-difference equations. One
way to write any solution of the Bethe ansatz .,
equations (1.3) is to start with a suitable matrix
A and write the polynomials ( (x) =% (x u(™))Vas discrete Wronskians of some auxiliary

i n=1
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polynomials in x associated with A, see Theorem 7.9. Another way to write any
solution is to start with a suitable flag in some infinite-dimensional vector space and

write these polynomials (Uvr(-77))$yz1 as discrete Wronskians of some auxiliary
polynomials in x associated with the flag, see Corollary 10.11.

In the remarkable paper [AMM] it was observed that the dynamics of poles of the
elliptic (rational or trigonometric) solutions of the Korteweg-de Vries equation (KdV)
can be described in terms of commuting flows of the elliptic (rational or
trigonometric) Calogero-Moser (CM) system restricted to the space of stationary
points of the CM system. In [K3] and [K6] this constrained correspondence between
the theory of the elliptic CM system and the theory of the elliptic solutions of the KdV
equation was extended to a similar construction of solutions of the KP equation in
terms of the flows of the Calogero-Moser system. Moreover it was discovered for the
first time that this correspondence of solutions can be established at the level of
auxiliary linear problems.

In the rational case, which we consider in this paper, the corresponding result is
as follows: the linear equation

(1.4) (0e- 0.2+ u(x ) P(x8) = 0

with a rational in x potential u(x,t) vanishing as infinity, u(xt) = 0 as x - o, has a

rational in x solution if and only if the potential u(x,t) is of the form

k
u(z,t) = QZ(.‘I: —u(t)) 72 = 202 Iny(x, 1)
i=1

’

(1.5)

and its poles ui(t) (a.k.a. the zeros of the polynomial y(x,t)) as functions of t satisfy the
equations of motion of the rational CM system.

Recall, that the rational CM system with k particles is a Hamiltonian system with
coordinates u = (u,..,,ux), momentums p = (pu,...,pk), the canonical Poisson brackets
{u;pj} = 65, and the Hamiltonian

k
1 . 1
H=- p? —
2 Zp,_ - Z (u; — uj)?
(1.6) i=1 i#] L
The corresponding equations of motion,

1

u; =2  EEEE— i=1,..., k,

U; Z (ui —u;)? L
(1.7) i#i :
admit the Lax presentation L' = [M,L] with

1— 6,

Lij = pidij + 2 L,
(1.8) Ui — Uy .
The commuting flows, generated by the integrals Hik= k-1trLk, are called the hierarchy

Pi = Uy

of the rational CM system. Note that the Hamiltonian H equals Ha. It was shown in [KZ]

that the linear equation

(1.9) Jap(xt) =(x + Lt) + w(xt)P(xt)
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with

, Yyl +1,¢
w(xr,t) = In (g

(1.10) y(z,1)

where y(x,t) is a polynomial in x, has a solution rational in x if and only if the zeros
ui(t) of y(x,t) satisfy the equations of motion of the rational Ruijesenaars-Schneider
(RS) system.

s

The rational RS system with k particles is a Hamiltonian system with coordinates
u = (us,...,ux), momentums p = (p1,..,px), the canonical Poisson brackets
{uipj} = 65, and the Hamiltonian

(1.11) i=1
where
1/2
i = ePi H (lt.,‘ —Uj — 1)(““5 —uj+ 1)
o (u; —uj)?
(1.12) g ! .
[t is a completely integrable Hamiltonian system, whose equations of motion,
(1.13) ui = i=1,..k
. 1 1 2
(1.14) o ; " (“f —u;—1 i wi—uj 1 U - U:>
admit the Lax representation L’ = [M,L], where
Lii(u,y) = — ii=1,..., k.
(1.15) J(U. r) wp —uy — 1’ t, 0 ) ,

~

M;; = i Gy (1)
g Z w; — Up + Z w; — Uy + 1 it ( "’)u.,; —uy
(1.16) i ¢ o
The functions Hm = trL™ are integrals of the system. Note that the Hamiltonian H of the
system equals Hi. These integrals are in involution, and hence generate commuting
flows called the rational RS hierarchy.

A scheme, in which an integrable system of particles arises as a condition for a
linear equation with elliptic (trigonometric, rational) coefficients to have a double
Bloch solution (trigonometric, rational), was called in [KZ] a generating linear
problems scheme.

The next step had been done in [KLWZ]. There the system of linear equations

(117) lpn+1(x) = l,bn(X + 1) - Vn(X)lpn(X), nelz
with respect to unknown functions (n(x))rnez was considered with

v (T) — jl}.“‘(ilf)y.,hq ('T + 1)
‘n\- Un (gj + 1)'yn.+1(‘T) s

where (ya(x))nezis a given sequence of polynomials. It was shown that system (1.17)

has a solution ((x))rez rational in x with the poles of ¥,(x) only at the zeros of yn(x),
PRV

5, (n St (e . .
if and only if the zeros (*: )iZy of yn (“V') satisfy the Bethe ansatz equation (1.3).
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We stress that in [KLWZ] the Bethe ansatz equations were considered for

sequences of polynomials without the periodicity assumption that yn(x) = yn+n(x) for
some N.

Remark. In [K7] and [K8] all three linear problems with y(xt) being an entire
function in x were used for the proof of the remarkable Welter’s trisecant conjecture
on the characterization of the Jacobians of smooth algebraic curves.

In this paper we apply these ideas to relate solutions of the N-periodic Bethe
ansatz equations (1.3) with the equations of motion in the N-tuple of coherent
rational Ruijesenaars-Schneider systems with respectively kj,..., kv particles.

The paper is organized as follows. In Section 2 we reformulate the Bethe ansatz
equations (1.3) and prove formula (1.2). In Section 3 we describe the procedure of
generation of new solutions of the system of Bethe ansatz equations, if one solution
is given. Theorem 3.4 says that all solutions are obtained from the single solution,
namely, from the solution corresponding to the case of k1 =+ =kn= 0.

In Section 4 we start using the generating linear problem (1.17) and its interplay
with two other generating linear problems. Having a solution of the Bethe ansatz
equations we construct a family of solutions (¥n(x,z)) of (1.17) parameterized by a
complex parameter z, see Theorem 4.2. The construction reveals an unexpected
connection with the theory of the RS system. Namely, one of the steps in the proof of
Theorem 4.2 can be seen as a map from the space of N-tuples of polynomials (yn(x))
representing solutions of the Bethe ansatz equations to the product of N phase spaces
of the rational RS systems with respectively ki,.., kv particles, i.e. as the map

(1.18) ) — @™ 4"M), n=1,...,N,

where'Ti( " are defined in (4.4). On each of these phase spaces we define commuting
flows with some times t = (t3,t2,...). That definition induces commuting flows with
times t on the product of the phase spaces. One of our main results is the statement
that the image of this map is invariant under these commuting flows on the product
of the phase spaces, see Theorem 7.10.

In Section 5 we consider the functions (n(x,z)), constructed in Theorem 4.2, and
study their analytic properties with respect to the spectral parameter z. In this way
we identify the functions (n(x,z)) with a particular case of more general notion of the
so-called Baker-Akhiezer functions. The results of Section 5 can be seen as a
construction of the direct spectral transform for the rational RS system. To our
surprise we were unable to find in the literature such a construction in its full
generality.

The analogous result for the rational CM system was obtained in [W]. Our
construction of the direct spectral transform is different from the one in [W]. It is pure
algebraic and does not require the use of infinite dimensional Grassmanians, whose
definition involves elements of real analysis, in particular, of the theory of Fredholm
operators.

In Section 6 we write equations for zeros of the polynomials obtained by the
construction of the Baker-Akhiezer functions corresponding to the spectral data of
the rational RS systems.
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In Section 7.1 we identify the spectral data corresponding to solutions of the N-
periodic Bethe ansatz equations. The rest of Section 7 is on the inverse spectral
transform. First we construct a family of solutions of the generating linear problem
starting from a certain matrix A, see Theorem 7.4. That is done without any
Nperiodicity assumptions. Then in Section 7.6 we describe the matrices A that give N-
periodic answers. Theorem 7.9 can be seen as one of our main results.

For completeness in Section 8 we briefly present the integrable hierarchy, whose
rational solutions describe the commuting flows on the space of solutions of the Bethe
ansatz equations. We call it the discrete N mKdV hierarchy. Section 8.6 contains a short
remark of discrete Miura opers.

Section 9 we discuss combinatorial data that will be used in Section 10. In Section
10 we identify solutions of the Bethe ansatz equations with points of a suitable
infinite dimensional Grassmannian. We introduce a family of commuting flows on the
Grassmannian and identify the flows induced on the space of solutions of the Bethe
ansatz equations with the flows of the discrete N mKdV hierarchy, introduced in
Section 8.

2. Incarnations of the Bethe ansatz equations
2.1. Bethe ansatz equations. Let N > 2 be a positive integer, k=
(k.o k) € Zgﬂ. Denote k := k1 + -+ + kn. Consider Ckwith coordinates
u collected into N groups, the n-th group consists of k»variables,

u = (u(l). e '.'.l-(N)) u™ = (Ugﬂ), s ug‘:) )

H

We adopt the notations kn+n = knand u(¥m = u( for all i,n.

The Bethe ansatz equations is the following system of k equations:

kn_1 kn knt1
(2.1) H (ugn) - ug”_l) +1) H(UEH) - ui.”) -1) H (ug”) — uE”H))
=1 =1 o=1
kn—1 ko knt1
+ H (ul —ul"™") H(UE”) —u{™ +1) H W™ —u{™ —1)=0
i=1 =1 i=1

wheren=1,.,N,i=1,..kn.
These are the Bethe ansatz equations associated with the XXX quantum

intehighest weight. To study the associated Hamiltonians one assigns an eigenvector
grable model of the affine Lie algebra slyvand the single representation with zero

of Hamiltonians to a solution of the Bethe ansatz equations. We will not discuss this
topic in this paper. Different versions of the Bethe ansatz equations associated with
Lie algebras see, for example in [OW,?MV2,MV3,MV4].

Remark. Equation (2.1) with N = 2 is the quasi-classical limit of the Bethe ansatz
equations derived in [AL] for the Quantum Internal Long Wave model.
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2.2. Polynomials representing a solution. Given u = (u(9) € C%, introduce an N-

tuple of polynomials y = (y1(x), ..., yn(X)),
kn .
yn(2) = e H(T — uEJ)), cn #0

(2.2) i=1 .
We adopt the notations yn+n(x) = ya(x) for any n € Z. Each polynomial is considered up
to multiplication by a nonzero number. The N-tuple defines a point in the direct
product (P(C[x]))¥, where P(C[x]) is the projective space associated with C[x]. We say
that the tuple y represents the point u.

We say that an N-tuple of polynomials y = (y1(x), ..., yn(x)) is generic if for any n,
the polynomial y»(x) has no common zeros with the polynomials yn(x+1), yn-1(x + 1),
yn+1(x). Denote

- yn(-T + 1)yn+l (QE - 1)

2y Un (@ DYy (2) |
Fo(x):= L,(z):= Y (T)Yno1(2)

(23) ! Yn (-T +1 )y'n(‘r)

7

Lemma 2.1. Assume that an N-tuple of polynomials y = (y1(x), .., yn(x)) is generic.
Then each equation in (2.1) can be reformulated as one of the following equations:

(2.4) yn-1(ugn) + 1)yn(ugn) = 1)yn+1(u@n))

+yn-1(u@n))yn(ujm + )yn+1(ugn)- 1) = 0,

(2.5) resx=uim (Fn(x) + Fa(x - 1)) =0,

(26) reS'“:“E”) (L"-(:r) + L??—l("’l?)) = 0

An important corollary of (2.6) is

Corollary 2.2. A generic N-tuple y represents a solution of the Bethe ansatz
equations (2.1) if and only if the following equation holds:
J\r

L(z) =Y Ly(z) = N.
(2.7) n=1

This equation is a discrete version of “the new form” of the Bethe ansatz equations in
the Gaudin model of an arbitrary Kac-Moody algebra, see [MSTV].

Proof. Equation (2.6) is equivalent to the condition that the function L(x) defined

in (2.7) has no poles. Each of the function La(x) tends to 1 as x — c. Hence, L(x) = N.

In its own turn Corollary 2.2 directly implies the following important statement.
Consider the quadratic form
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246 IGOR KRICHEVER AND ALEXANDER VARCHENKO

.‘N'
Qlky,..., kn) = ) kjilky — 1) = kiky — - — kn_tkn — knky
i=1
N 9 N
(kj — kjt1)”
— Z J 2J+1 72};},
j=1 j=1

introduced in [MV3].

Corollary 2.3. If a generic N-tuple of polynomials (y1,...yn) of degrees
(k1,...kn) represents a solution of the Bethe ansatz equations (2.1), then

(2.8) Q(k,...kn) = 0.

L(z) — N = Q(ky, ... k)2

Proof. Expanding at infinity, we observe that 0

+0(x3).

Corollary 2.4. If a generic N-tuple of polynomials (y3,..,yn) of degrees represents

ki = -+ = kx asolution of the Bethe ansatz equations (2.1), then

}(f: :k’
1

N=0.

Remark. Equations (2.4), (2.5), (2.7) can be thought of as incarnations of the
Bethe ansatz equations (2.1).
3. Generation of solutions of Bethe ansatz equations

3.1. Discrete Wronskian. For arbitrary functions fi(x),...fm(x) introduces the
discrete Wronskian by the formula:
3.1) W(f1-.., fn) = det]_y (filx +35 — 1)),
For example,
Denote
Af(z) = flz+1) — f(x),
AT f(a) = AA f)(@), AOf(z) = f(2)
W(fi,f2) = fi@) falw+1) = fi(w+ 1) fa(2).

(3.2)

Then

(33) W(f1seooy fu) = det?_ (AT fi(2)),
Lemma 3.1 ([?MV2]). We have

(34) PV(].. fl.' fn.)(i') = I’}V(Afls ey A.fn.),

Lemma 3.2 ([?MV2, Lemma 9.4]). For functions fi(x),....fa(x), g1(x),g2(x) we have
35) WV (fre- o fur 1) W (fro s fn2) ()
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3.2. Elementary generation. Recall that an N-tuple of polynomials y = (y1(x), ...,
Yn(x)) is called generic if for any n, the polynomial y»(x) has no common zeros with
the polynomials yu(x + 1), yn-1(x + 1), yn+1(X).

We say that an N-tuple of polynomials y = (y1(x), .., yn(x)) is fertile, if for any n the
first order difference equation

(3.6) W (Yn, Un) = Yn—1(2 + )tn+1(2) with respect to
“yn(x) has a polynomial solution.

If “yn(x) is a polynomial solution of (3.6), then all other polynomials solutions are
of the form

V(%) =yn(x) + cyn(x)
for c € C. The tuples

3.7)  y"(c) := y1(x),..y) n(x,0),...yn(x)) € (P(C[x]))¥form a one-parameter
family. This family is called the generation of tuples from y in the n-th direction. A
tuple of this family is called an immediate descendant of y in the n-th direction.

For example, the N-tuple
(3.8) y°=(1..,1)
of constant polynomials is fertile, and y?((c) = (1,..,1,x + ¢, 1..,1).

It is convenient to think that y? represents a solution of the Bethe ansatz
equations with k=0, see (2.5).

Theorem 3.3 ([?MV2], cf. [MV1]).
(i) A generic tuple y = (y1,...yn) represents a solution of the Bethe ansatz
equations (2.1) if and only if y is fertile.
(i) Lety represent a solution of the Bethe ansatz equations (2.1), n € {1,..,N},

and y(M(c) an immediate descendant of y, then y((c) is fertile for any c € C.

(iii) If y is generic and fertile, then for almost all values of the parameter c € C
the corresponding n-tuple y(W(c) is generic. The exceptions form a finite set

in C.

3.3. Degree increasing generation. For n = 1,..,N, let kn = degyn.

The polynomial “that the generation is degree increasingy» in (3.6) is of degree kuif
ork nk >n=kuk. In that case deg “n-1+ kn+1+ 1 =yknn. We say= k™» for
all c.

If the generation is degree increasing, we will normalize the family (3.7) and
construct a map Yyn: C = (C[x])Vas follows. First we multiply the polynomials yx,...yn

by numbers to make them monic. Then we choose a monic polynomial
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yno(x) satisfying the equationk»in ”yn,W(ym Yn.00(x) equals zero. We define) = const

Yn-1(x + 1)yn+1(x) and such that the coefficient of x

(3.9) V(%) = yno(x) + cyn(x)
and
(3.10) Yyn:C — (Cl])V,

c = y"e)= (). ... dulz,e).. .. yn(T))

All polynomials of the tuple y((c) are monic.

3.4. Degree-transformations and generation of vectors of integers. For j =

1,..,N, the degree-transformation
(3.11)

Eo= (k... kn)
= B9 = (ky, . kg kg ke =k Lk, k)
corresponds to the shifted action of the affine reflection wj€ Way.1, where Wan-1is the
affine Weyl group of type An-1 and wx,..,wn are its standard generators, see Lemma
3.11 in [MV1] for more detail.
We take formula (3.11) as the definition of degree-transformations:

(3.12)

w; E = (k1y..n,y kn)
— E(J) = (Al s 1"":;,571 + kf_.',‘+1 — kf +1,..., A’TN)
forj=1,.,N. The degree-transformations act on arbitrary vectors k =(k1,....kn).

In this formula we consider the indices of the coordinates modulo N, that is, we
have kn-j= kjfor all j.

. - L .
~ We start with the vector k= (0,... ‘0) and a sequence | = (j,j2,...,jm) of integers,
1Ji < N, we apply the corresponding degree transformations to the vectork” and

. N (J1) e gy IO 1.02) -
obtain a sequence of vectors " » k9 = w0, K, k) =
Wi, Wy, km,...,

nd ., P A
(3.13) k? = wy,, . owgwy KD

We say that the vector k! is generated from (0,..,0) in the direction of ].
We call the sequence ] degree increasing if for every i the transformation wy
. w ws k0. . .

applied to%si-1 - - - Wi1 " increases the ji-th coordinate.

3.5. Multistep generation. Let ] = (j1,..,jm) be a degree increasing sequence of
integers. Starting from y? = (1,..,1) and J, we construct, by induction on m, a map

YJ: Cm— (C[x]N.

IfJ = @, the map Y ?is the map C” = (pt) vy Tmzq and J = (j1), the map
Y (01: C - (C[x])Nis given by formula (3.10). More precisely,

Y0 o Cos (Cla))Y, em (1L, La+el...,1)
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where x + ¢ stands at the ji-th position. By Theorem 3.3 all tuples in the image are
fertile and almost all tuples are generic (in this example all tuples are generic).

Assume that for/ we apply the generation procedure in theJ” = (jy,...,jm-1), the map
Yj/ mis already constructed. To-th direction to every tuple

obtain Y of the image of Y /. More
precisely, if

(3.14) y' o e= (€1, vem_1) = ((z,8),...,yn(z, )
Then

(3.15) Y7o e (Cla))Y,
(Cem) = (yi(x, 6).... 5,028 + enyj, (2.6),....un(2,E))

see formula (3.9). The map Y/is called the generation of N-tuples from y®in the J-th
direction.

All tuples in the image of Y/are fertile and almost all tuples are generic. For any ¢

r

€ Cmthe N ~-tuple Y /(c) consists of monic polynomials. The degree vector of this
tuple equals ¥, see (3.13).

The set of all tuples (y1,...yn) € (C[x])N obtained from y? = (1,..,1) by generations
in all degree increasing directions will be called the population of N-tuples generated

from y2.
3.6. Population generated from y?.

Theorem 3.4 ([MV4]). If an N-tuple of polynomials y = (y1,...,yn) with degree vector
k represents a solution of the Bethe ansatz equations (2.1), then y is a point of the
population generated from y? by degree increasing generations, that is, there exist a
degree increasing sequence J = (j,...jm) and a point ¢ € C"such thaty = Y/(c).

Moreover, for any other N-tuple y, representing a solution of the Bethe ansatz

equatio]ns (2.1) and having the same degree vector k, there is a pointc’ € C™ such that
y =Y’ ().

By Theorem 3.4 the N-tuples y, representing solutions of the Bethe ansatz
equations (2.1) with the same degree vector k, form one cell C.
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250 IGOR KRICHEVER AND ALEXANDER VARCHENKO

The proof of Theorem 3.4 is word by word the same as the proof

of [MV5, Theorem 3.8], although the generation procedure in [MV5] is slightly
different from the generation procedure in this paper. The key point of the proof is

the equality Q(k’) = 0, which is proved in Corollary 2.8 for our generation procedure
and was proved in the proof of [MV5, Theorem 3.8]. See also the proof of [VW1,

Theorem 6.4].

Remark. The condition of fertility of an N-tuple y can be also thought of as another
incarnation of the Bethe ansatz equations (2.1), see Theorem 3.3.

4. Generating linear problem

4.1. Non-periodic sequences of polynomials. In this section we consider
sequences of polynomials y = (ya(x))sez, not assuming that the sequences are N-

periodic. Let

ol

n

yn(x) = e | |(z - u,f_“)), en # 0

i=1

The system of the Bethe ansatz equations in this case is the infinite system of

equations:
kn—1 En Kyt
(4.1) H (u{™ —u{""" 4 1) H(u&”l —u™ —1) H (u{™ —u{"tY)
=1 =1 /=1
ko —1 kn Frnt1
+ H (uEu) _ 11.‘5‘1},—1)) H(U-’(;”} _ ’H'E‘”} + 1) H (ME:'H.) _ Mi-n+1) _ l) —0
=1 =1 =1 ;

wheren€7z,i=1,..,kn.

We say that the sequence y is generic if for any n the polynomial ys(x) has no
common zeros with the polynomials ya(x + 1), yn-1(x + 1), yn+1(x).

As in the periodic case the system of the Bethe ansatz equations (4.1) can be
reformulated as the infinite system of equations (2.4), or equations (2.5), or equations
(2.6).

Remark. Let the degrees (kn)nez of the polynomials (yu(x))rezbe all equal. Then for

each n system (4.1) can be regarded as a system of equations for ( ’”-::”H))with (uGm)
and (u("-D) given. Hence, system (4.1) can be seen as a second order discrete time
dynamical system. In such a form these equations were introduced in [NRK] as an
integrable time-discretization of the Ruijesenaars-Schneider system, which in its turn
was introduced as a relativistic analog of the Calogero-Moser (CM) system.

In [KLWZ] for system (4.1) the discrete time Lax representation with a "spectral
parameter” was found with the help of a "generating linear problem”, see Theorem
6.1 in [KLWZ]. The Hamitonian approach for this system was developed in [K6].
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Proof.

Notice that the case of all (kn)sez being equal is not allowed in the periodic case
by Corollary 2.4. This fact can be interpreted as the statement that the
timediscretization of the Ruijesenaars-Schneider system has no periodic orbits.

Given a generic sequence of polynomials y = (ya(x))rez the associated generating

linear problem is the infinite system of equations

(42) ll)n+1(x) = wn(X + 1) - Vn(X)wn(X), nez

with respect to the unknown sequence of functions ¥ = (Yn(x))nez with v = (va(x))

given by the formulas

N yn,(-?;) Yn+1 (-f + 1)
Un, (3) =
(4.3) Y2 + 1) Y1 ()
We say that a solution ¥ = (n(x))nez of system (4.2) is admissible if for any n the
function yn(x)n(x) is holomorphic. Define the nonzero numbers

(n) . g ) —
Vi = Ibe:u_E")—l U-.,,(HL) =

Yo (1™ = 1) g1 (™)
) _

(4.4) Hj;éi(”’g”) - u_ﬁ”’) y-n+1('“-£” 1),
where i = 1,...,kn, and nonzero numbers
e i=res,_ uin) () = (?{:‘;r(ﬁfﬂJrrl)) P (u(g,:,!::j) - 1() 1)
(4.5) : Yn (1, + 1) IT;(u; —u; )’
where i = 1,..., kn+1.
Lemma 4.1. The infinite system of equations
(4.6) ";‘.,(”Jrl) + €_§”) =0, net, i=1,... ,k,,+1’

is equivalent to the infinite system of equations (2.4).

In its turn the property of the infinite system of equations (2.4) to have a solution
y is equivalent to the property of y to represent a solution of the Bethe ansatz
equations (4.1), see Lemma 2.1.

Theorem 4.2. Let y = (yn(x))nez be a generic sequence of polynomials. Then the
system of equations (4.2) has an admissible solution ¥ = (n(x))rez if and only if y
represents a solution of system (4.1). Moreover, if a generic sequence y represents a
solution of system (4.1), then there exists a unique one-parameter family ¥(z) =

(Wn(x,2)) of admissible solutions of system (4.2), which has the form

kn
n(,2) = 2" (14 2)" (l + ZEE”)(Q’)z") , nelZ

i=1

(4.7) y
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~(n)r . . . . (n) .
where$; (7’) are rational functions in x such that all the functions ¥»(%) & (%)are

holomorphic in x.

Remark. The first statement of the theorem is an analog of Lemma 5.1 in [K8],
and the second statement is a stronger version of Lemma 5.2 in [K8].

Remark. The equivalence in Theorem 4.2 of the existence of an admissible
solution  of system (4.2) and the property of y to represent a solution of system (4.1)
may be thought of as another incarnation of the Bethe ansatz equations.

Let i be an admissible solution of the generating linear problem equa-
tion (4.2). For any n € Z and i = 1,..,kn, consider the Laurent expansion of n(x) at

r= u,g”)

(lt(-”)
n(z) = ——5+0(1), o ec
(4.8) Ty .
The comparison of the residues of the left and right-hand sides of equation (4.2) at
( (n+1)

— ”) . T = . . .
T=1u; " —1and® %  gives us the equations

(4.9) aitm) = yi(m) Yn(u@n) - 1), (4.10) aj(n+1) = =&(m) Yn(ugn+1)),

respectively. We obtain the third set of equations

(n+1) (“+1)).

(4.11) 1,45:1,_+1(7Lj —-1) = -z.,i‘”(uj i=1,..., k7,_+1’

by substituting x = u("*1) - 1 to equation (4.2) and taking into account that v, (u(™1 -
1) = 0. Shifting the index (n,i) = (n + 1,j) in (4.9) we obtain

(1) _ _(nk1) o (o)
(4.12) " =T g (T = 1)

(n+l)' _(n)
Using (4.10), (4.11), (4.12) we obtain equations Vi +E '=0forn€zZandj=

1,...kn+1, which are equations (4.6). By Lemma 4.1 this means that the sequence y
represents a solution of the Bethe ansatz equations (4.1). That proves the "only if”
part of the first statement of the theorem.

Now the goal is to construct the family 1(z) of admissible solutions of (4.2)
assuming that y is generic and represents a solution of (4.1). The construction has
two steps. First, we construct a certain sequence of functions ¥(z) by using the
generic y, but not using the fact that y satisfies (4.1). Then we prove that 1)(z) has the
form (4.7) and is a solution of (4.2), if y represents a solution of (4.1).

Lemma 4.3. Lety be a generic sequence of polynomials. Then for n € Z there exists

a unique function ¥n(x,z) of the form
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Proof.
C(fl)

Vn(z,2) = 2" (1 4 (1 + Z (n))

(4.13) -1 T

such that the function

(4.14) ¢n(x2) = Yu(x + 1,z) - va(x)n(xz) has no residues at

()
T =1u; " —1foralli=1,..,kn

(4.15) resz=u;"’ (@ ):0.

Remark. Notice that Ci"(z) are some functions in z. The proof shows that Ci{"(z)

are rational functions in z.

Remark. Notice that ¢n(xz) would be equal to n+1(x,2z) if the sequence (Pn(x,2))
were a solution of the system of the generating linear problem equations
(4.2).
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Proof.
By (4.13) the function 1n(x,z) is regular at x = u(¥ — 1. We also

have

ke

(4.16) resz=u{"'~1
Hence, equation (4.15) is equivalent to the equation

'Q"’u-(:l‘. +1, 2) = I.CS_?::.,_,(WJ Ul"n (‘Tr 2)

(4.17) resx=uie Yn(X,2) = yilM Pn(ulM - 1,z) = 0.

Let Ct)(z) be the kn-vector with coordinatesc(n){z) appearing in (4.13). Let y(Wbe

the kn-vector with coordinates” n Let L(z) be the ka xks-matrix with

entries
(n)
n n n - '\,"; . .
L) =142+, LG = —m—  i#d
(4.18) up —uy —1
Then the substitution of (4.13) into (4.17) gives an inhomogenous linear equation
(4.19) Lin(2)Cin(2) = yin)

with respect to C("(z). Indeed, the substitution gives us

Ny () . i _
(1+2) ") =" (143 | =0
which implies (4.19). It is clear that for generic z we have det L=y /= 0 and
equation (4.19) has a unique solution C("(z). The lemma is proved.

Below we give a determinant formula for 1x(x,z). By Cramer’s rule we have
(}v(ﬂ')(z) — dCt LE”)(“’Z)
(4.20) - det L(”)(z)

where‘ir (2) is the matrix obtained from L (z) by replacing the i-th column by the
vector y(.

Define a (kn+ 1) x (kn+ 1) matrix" (. %), whose rows and columns are labeled

by indices 0,..,knand entries are given by the formulas:

=(n) #(n) 1 =(n) (
Ly =1, L()r.}j = ) Ly = ’hn
xr — ”UJ‘
Fn) _ p(n) P
(421) LI’J = Lirj N 1.] = ]..‘ aaay k‘n, .

Using the determinant expansion ofL(”)(z) relative to the 0-th row we obtain the
formula
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Proof.

‘ ‘ . v,z
Yoz, 2) =2"(1 4+ 2)" —————=
(4.22) det L") (2)

Lemma 4.4. If y represents a solution of the Bethe ansatz equations (4.1), then the
sequence W(z), constructed in Lemma 4.3, is an admissible solution of (4.2).
By definition of {n(x,2z) and ¢n(x,z), the function

Rn(%,2) := pn(x,2)z~ (1 + 2)*

is a rational function of x with at most first order poles at the zeros of yn+1(x). Since
vn(x) = 1 as x = oo, we have Rn(xz) > 1+z-1=2zasx— . Hence,

the function ¢n(x,z) has the form

i{)”_(:??f z) = Z”Jrl(l +Z)J: I+ Z _(n+1)
(4.23) =
with suitable functions D\ (2)-

PR (n+1) .
Since the function ¥n(x + 1,2) is regular at¥ — %i it follows from (4.14) that

(4.24) ogemutrtd) Pa(@2) = =V (™Y, 2)
(n+1)
From the equation n (u;" —1) =0 it follows that
(4.25) p"L(U£7’+1) 1, Z) _ w”(ugn-&—l)! z)
Hence
n n+1
(4.26) regz=ui"t en(z,2) + SE )‘PH(UE = 1,2) = U.

Using equations (4.6) we rewrite this as

(4.27) resx=ui1) Pn(x,2) = Yi+1)¢n(u(in+1) - 1,z) = 0.

By Lemma 4.3 the function a+1(x,z) is uniquely determined by the equations

, +1) n+1
(4.28) resz=u{"* VYny1(z,2) — ’?";'(”+ )wn+1(u£”+ ) - 1,2) =0

Hence ¢n(x,2) = Yn+1(x,2z) and the lemma is proved.

For any n € Z, let gn(z) be the monic polynomial of minimal degree such that
(7) det E(n)(::;z)
4n(0) /=0 and the function?"\*) @t L (%) is a functionin z holomorphic on C - {0}.

Clearly the polynomial g.(z) does exist, it divides the polynomial detL("(z), and deg
qn(2) < ko,

Lemma 4.5. The polynomial g.(z) does not depend on n € Z. Proof.

Equation (4.2) implies
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det Lt D(2,2) (142) det L (z + 1, 2)
T odet Linth(2) det L") (2)
_ det L™ (z, )
(4.29) Y det L (2)

Given ¢ /=0, letdsbe the multiplicity of the root z = { of the polynomial g.(x). We
need to show that dn = du+1. Clearly the inequality dn < dn+1 contradicts equation (4.29).
Now we assume that d» > dn+1 and also will obtain a contradiction. Namely, consider
the expansions

det L") (2, 2)
det L") (2)

en(z)(2 =) 4 O((z— C)—rIn—H)
(b + Oz ) (2 = )~ + O((z — )+

’

det (™) (x,2)
where the first equality is the Laurant expansion of det L("/(z) atz = ¢, and ca(x) = bx®

+ 0(x2-1) is the Laurent expansion of c(x) at x = co. Here a is a suitable integer and b a
nonzero number. We also have va(x) = 1 + O(x™1) as x = oo. Considering the leading
coefficients of these double expansions for each of the three summands in (4.29) we

obtain the equation 0 = {+ 1 — 1, which is impossible. The lemma is proved.

The n-independent polynomial ga(z) will be denoted by q(z). Let k be the degree
of q(2).
Introduce new functions

kn  ~(m)
z Lq(z Y (z
n(z,2) = QEH)@-‘)”(QT, z) =z2"(1+2)" —qEH) (1 - Z 4= ((”)))
(4.30) vy - ~ = T
Clearly the sequence (Ws(x,z)) is an admissible solution of (4.2) and

C(”) ,
E)(-'_Z (H))1+Z& )

(4.31) ? Pl i

(n) .. . . . .
where&i (-‘*) are rational functions of x with at most first order poles at the zeros of
Yn(x). Thus the sequence of functions (Wn(x,z)) has the properties listed in

’

Theorem 4.2. Theorem 4.2 is proved.

4.2. Example. Consider the sequence y? = (ya(x))nez, where yn(x) = 1 for all n, see
(3.8). As discussed in Section 3.2, this sequence represents a solution of the Bethe
ansatz equations (4.1) with k»= 0 for all n. In this case, the generating linear

problem equations (4.2) take the form

(4’32) ll}n+1(x) = l/)n(X + 1) - l/)n(X), ne Z,
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Proof.
and the admissible solution W%(z) = (W?x(x,2z))nez of Theorem 4.2 is

(4.33) Wo,(x,2z) = z'(1 + z)%, nez

4.3. Solutions ¥(z) and the operation of generation. Let y = (ya(x))nez be a
generic sequence of polynomials, which represents a solution of the Bethe ansatz
equations (4.1). Then there exists a unique one-parameter family W(z) = (Wa(x,2)) of
solutions of the generating linear problem equations (4.2) given by Theorem 4.2.

Choose m € Z. Consider the one-parameter family y(™(c) = (y"n(x,¢))nez, obtained
from y by generation in the m-th direction, see (3.7). Here “yn(x,c) = yn(x) for™ # Mand

the polynomial “ym(x,c) satisfies the equation
(4.34) Y m(X%ymx + 1) =y m(x + 1L,)ym(x) = ym-1(x + 1)ym+1(x).

Choose the value ¢ = co so that the sequence y(™(co) is generic. Then y(m(co)
represents a solution of the Bethe ansatz equations (4.1) by Theorem 3.3. Define the

sequence "y = (y"n(x))nez by the formula 7y = y(m(co). Denote K n= deg “yn(x) forn € Z.
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Starting from "y define a sequence of rational functions “v = (v's(x)) by formula
(4.3). We have “Un(2) = vn(x) if n#m —1.m  apq

~ . o Ym—1 (-’Ir)[.l}m (.’IT + ]-)
Umn—1 (7) - ~
Ym—1(T + 1)Gm(2)
~ :m‘m T)Ym z+1
vm(.’zf) _ ¥ ()Y 1 ( ) .

(435) gm(ﬂ" + l.)ym+1(2?) ,

Apply Theorem 4.2 to the sequence “v and obtain the unique one-parameter family
Y(" z) = (WYu(x2)) of admissible solutions of the generating linear problem equation
(4.2) with the chosen sequence v,

k.,
‘1’,,_{:1'. z)=z2"(1+2)" [ 1+ Zfﬁf”)(a?)z”

(4.36) =1 ,
whereéf " (-"") are rational functions in x with at most first order poles at the zeros of
Yn().

Theorem 4.6. We have ¥n (2, 2) = W, (, 2) for n # mapg

(4.37) l‘IJ~m(X,Z) =Wn(x2) + g(x)¥m-1(x2),
where
alz) = y-m—l(-’f)ym+l(r)
(4.38) 9(2) Y ()T ()
Proof.

Lemma 4.7. We have
(4.39) Vm(X)g(x) = vm-1(x)g(x + 1),

(4.40) Vim(x) —vm(x) =g(x+ 1).

Remark. Equations (4.39) and (4.40) imply the equation
(4.41) vm(x)g(x) - vm-1(x)g(x + 1) + g(x)g(x + 1) = 0.

This equation with respect to g(x) is called the discrete Riccati equation, see [MV3].
This discrete Riccati equation has a rational solution g(x), given by (4.38). On discrete
Riccati equations with rational solutions see [MV3].

Proof. The proof of (4.39) is straightforward. We also have
(@) — v () = Lol Wmr @ E L) G2 n 2 1)
Ym (1: + l)ym+l (1) Ym (T + l)merl (1’)
Y1 (T +1) T (@)ym (2 + 1) — G(@ + 1ym (@)
Ymi1(T) Um (2 + 1)fm(x + 1)
Ym+1 (-’17 + 1) ymfl(fr + 1)ym+1(1’)

= - — =glx+1).
Ym+1(2) Gz + 1) G (z+ 1) 9( )
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Let us check that the functions Wm+1(x,2), ¥m(x,2) + g(X)¥m-1(x,2), ¥m-1(x,2) satisfy
equations (4.2) with “vin-1(x),V'm(x). Indeed, we have
Win(xz) + gX)¥m-1(%2) = Pm-1(x + 1) = Vim-1(x)¥m-1(x,2)

by formula (4.40) and
‘I'erl (17: z) = U, (

— (@) (P, (
by formulas (4.39) and (4.40).

2) +glr+ 1), g (z+1,2)
€T, ) ( )‘L’.,,,{,l(.’l,'}z))

Lemma 4.8. We have

ml(,2) +g(@) W q(x,2) =2" (142 (1 -+ Z 7i(a )

>0

(4.42) y
where “ri(x) are rational functions of x with at most first order poles at the zeros of
Ym(X).

Proof. It is enough to show that the left-hand side in (4.42) is regular at the roots

of the polynomial ym(x). Indeed,
lI)‘m (3:: 2) + g(-T')‘I’mfl(-T': Z)

=V, 1(z+1,2) — v (2)¥,,_1(z, 2) + g(2)¥,,—1(x, 2)
=V_1(z4+1,2) — (Vo1 (z) — g(2))¥p—i (2, 2)

g(z)
=V, (z+1,2)— ——v,,(2)V,,,_1(x, 2
1(@+1,2) eI (@) ¥m-1(,2)
:‘L’f{r—l(:?'+lyz) yl’”_l(al)ym(m+1)\1":!# 1(7 Z)

- ymfl(*r + l)gm (T)
and the last expression is regular at the roots of ym(x).

Theorem 4.6 is proved.

Remark. Let y = (yu(x))nez be a generic N-periodic sequence of polynomials
representing a solution of the Bethe ansatz equations (2.1). Let ¥(z) = (Wn(x,2z))nezbe
the associated one-parameter family of admissible solutions determined by Theorem
4.2. By Theorem 3.4 the sequence y = (yn(x))nez can be obtained from the sequence y?
by the iterated generation procedure of Section 3. Theorem 4.6 shows how to obtain
the family of admissible solutions W(z) from the family of admissible solutions W9(z)

in (4.33) by transformations of Theorem 4.6.

5. Spectral transforms for the rational RS system

5.1. Lax matrices. In Section 4 for any sequence of polynomials (ys(x))sez, whose
roots satisfy the Bethe ansatz equations (4.1), we constructed solutions (1n(x,z))nez
of the generating linear problem equation (4.2) depending on the spectral parameter
z.Formulas (4.18), (4.19) of that construction reveal a’priory unexpected connections
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of the construction with the theory of the rational RS system. In this section we
develop the direct and inverse spectral transforms for the rational RS system.

We identify the phase space of the k-particle rational RS system with the subspace
Px c Ckx(C*)kof pairs of vectors u = (uy,..,,ux) and y = (y4,.., k), such that
(5.1) Ui FUj, Ui F Uy ] for 8 F T
A point (u,y) € Prdefines the k x k Lax matrix L(u,y),

Lii(w,n R — i,i=1,..., k.
(5.2) e = w—1 T
Notice that the Lax matrix has already appeared in (4.18), where

Lm(2) =1+ z - L(um,ym).

The matrix L(u,y) is a particular case of the Cauchy matrix. Its determinant equals

i ")2

(5.3) det ,<,
[t satisfies, the so-called displacement equation
(5.4) [U L(wy)] = L(uy) + TF,

where U = diag(uz,...,ux), I' = diag(ys,-..¥x), F = (fij) with fij= 1 for all ij. Equation (5.4)
can be easily checked directly. Let E be the k x k unit matrix. Denote

(5.5) L(z|uy):=(1+2)E-L(uy).

Let L"(x,z |u,y) be the (k+1)x(k+1)-matrix, whose rows and columns are labeled by

indices 0,..,k and entries are given by the formulas:

1 ~

Loog=1, EU._} == % Lio=—".
(5.6) L . dg=1,...,k.
i = Laj(zu)
cf. formulas (4.21). Define the function (w2 |u,y ) by the formula

‘ . det fj(m. z|u, )
e, z|u,y) = (14 2) —F———F—~
(5.7) (] ( ) det L(z|u,vy)
5.2. Direct transform in generic case. We define the direct spectral transform
first for points (u,y) of the following open subsetPr C
Let u = (y1,..,ux) be the set of eigenvalues of the matrix L(u,y). We have i /=0

for all j by formula (5.3). Hence u € (C¥)k.

Define
(5.8) Pr. = {(u,v) € Pi | payo s i aredistinct}.
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Clearlypi- is nonempty, since for big distinct us,..., ux the matrix L(u,y) is close to the
diagonal matrix —diag(ys,...,vx).

The function ¥ (x,z |u,y) has at most simple pole at z = y;— 1. Consider the Laurent

expansion of Y(x,z |u,y) atz=pj—- 1,

(©
©; Na | u,7)

| (1)
(w2 |u,y) = + @ (.T.|U.,"})+O(Zfﬂ' +1)
(5.9) p—pi+1 T o
Theorem 5.1. For (% 7) € P there exists a unique a = (ai,...,ax) € Cksuch that
(5.10) ¢W; (x|uy) + ajp®; (x|u,y) = 0, j=1..k.

Proof. The function ¥(xz |u,y) has the form

koo
(@, z]u,y) = (1+2)° (1 + Culz) )
(5.11) Sr-uw)

cf. (4.13). The vector C(z) with coordinates Ci(z) is given by (4.20). The vector C(z)
solves equation (4.19). Consider the Laurent expansion of C(z) atz = y;-1,

s
Cl2)= —L—+d; +O(z — pj +1)

(5.12) 2—p;+1 )

where c;dj are k-vectors with coordinates denoted by cjdj, respectively. The

substitution of (5.12) into (4.19) gives the relations:

(5.14) (j—L)dj+¢; = ~

)

where L = L(u,y).

Let “c; be a nonzero eigenvector of L with eigenvalue yj;. It is unique up to
multiplication by a nonzero constant. Using (5.4) we get

(5.15) (wi- L)Uc=[UL]c= (L + TF)Cy= pc'j+ vy,
k ~
where?i = 2.i—1Cij, We have Vi /=0. Indeed, if vj= 0, then (5.15) shows that L has

a nontrivial Jordan block with ei;envalue ui. That contradicts to the assumption that
(u1,...,ux) are distinct. Since ¥i /= 0. We can uniquely define the vector “¢; by the

normalization v;~ -p;.

Lemma 5.2. The vector cjdefined in (5.12) is nonzero.
Proof. If ¢j= 0, then (5.14) gives

(wi- L)dj=y.

Formula (5.15) with v;~ -y, gives
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Hi(w- L)Uci=cj-y.
Adding the two formula gives

(5.16) (W= L)(utU0c+ dj) = ¢,

which means that L has a nontrivial Jordan block with eigenvalue p;. Contradiction.

Lemma 5.3. Let “¢cj= (c"y), d~j € Ckbe a solution of the system of equations
(5-17) w-L)cj = 0

(5.18) =7
(W= L)dj+c

such that¢j / = 0. Then
J‘.
D=y, dj =t UEG — a8
i=1

for a; € C.

some
Corollary 5.4. The vectors ¢;d;in (5.12) satisfy the equations

k
Zc,;j = —;, d; = —,uj_lch —a;c;
(5.19) i=1

for some ag;€ C.

’

Proof of Lemma 5.3. The vector “cjis an eigenvector of L with eigenvalue y;. Fix ¢’jby
k - ~
the condition 2_i—1 ¢ij = —Hj. Then (5.15) and (5.14) show that "cjand d j= -y~ 1Uc;
give a solution to the system of equations (5.17) and (5.18). For that “¢c; the general
solution of (5.18) has the form
(5.20) dj=-H-1Uc- ajcj,
where a;is an arbitrary constant.
Let (~Cj,d~j) and (ACj,dAj) be two solutions of system (5.17), (5.18). Then
(wi=L)(cj= ) = 0, (wi-
L) (dj-d7) + (- ¢7) = 0.

If*¢i —¢j /=0, then L has a nontrivial Jordan block with eigenvalue yj. This leads to
contradiction. Hence “¢j= ¢"j. The lemma is proved.

By formula (4.13) the first two coefficients of the Laurent expansion of y¥(x,z |u,y)
atz=pj—1are
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(5.21) o

;‘.
0) ¢, ~ _ x Cij
?j (z ‘ w,y) = Hj (Z T — ‘L'-,_)

(5.22). (

k 1
Vil Ay — apy i+ di
vy (luy) = w; (1 + Zl T —
Using (5.19) a we get
ko1
(D0 ) — (»Uj (r —u;) —aj)ei;
s Aol = (1

k
. o Cii
= i (1 30 (e —ai; )) = —a;¢)" (z ] u,7)
i=1 v o

The theorem is proved.

Theorem 5.1 gives us the correspondence
(5.24) St (uy) v (pa)
where (U 7) € P CCF x (C*)F anq (wa) € (C)kx Ck,

Below we will need the following stronger version of Lemma 5.2.

Lemma 5.5. Let yj be an eigenvalue of L(u,y) (of any multiplicity). Then the
function ¥ (x,z |u,y) is not holomorphic at z = ;- 1.

Proof. The function (x,z |u,y) has the form (5.11) with the vector C(z) that solves

equation (4.19). If ¥(xz |u,y) is holomorphic at z = y;j — 1, then the vector C(z) is
gives the relation:

(5.25) (wi-L)di=v,

holomorphic at z = ;- 1 as well.

Let dj:= C(uj— 1), then (4.19)

where L = L(u,y).
Let ¢j. s = 1,....£ pe aJordan chain of the operator L = L(u,y) of maximal
length with eigenvalue y;. Let ¢jsibe coordinates of the vector cjs. Then

(5.26) (Wi-L)cj1=0, (- L)cjs= ¢js-1.

Using the displacement equation (5.4) we get

(5.27) (M5 — L)Uffj.f = WiCj1 — Cje—1 + Vi1,
whereVi.¢ == 2_; Cj..ilUsing equations 5.25, (5.26) withs = fand (5.27) we get
geq g
(5.28) (i — LYUcjo+cje—vied;) = IiCie

which contradicts to the assumption that the Jordan chain is of maximal length.
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5.3. Inverse correspondence. We recall the construction of the correspondence
inverse to (5.24), cf. the construction in [K6]. We define it simultaneously with the
construction of generic solutions to the rational RS system.

Let Q(x,tz) be the function in x,z, and t = (ty,t2,...) defined by the formula
(5.29) Q(x,t,2) = (14 2)%eXizti 1’

in which we always assume that only a finite number of the variables tjare nonzero.
The function Q(x,tz) in more details is considered in Section 7.3.

Let u € (CX)kwith/i 7y for i # j et Y(x,t,z) be a function of the form

T‘jTt

Y(z,t,2) = Az, 1, 2) ]+Z~+lfﬂ

(5.30)
Consider the Laurent expansions
@5.”) (z,1)
2=+ 1
Lemma 5.6. If (u,a) € (C)k x Ckwith/i # tj for i # j then there is a unique

(5.31)  W(w,t,2) = +\,u1 (13,t)+(9(2—,u.‘,~+1.), i=1...k.

function ¥(xtz) as in (5.30), such that coefficients ¢(©); (x,t), p(1); (x,t) satisfy the

equations
(5.32) ¢Wj(xt) + ajp; (xt) =0, j=1,..k.

Notice that the form of the second factor in the right-hand side of (5.30) is just
the simple fraction decomposition of a rational function in z with at most simple poles
at the points z = yi- 1 that equals 1 at z = co.

Proof. The lemma is proved by explicit computation of 1(x,¢,z). Let r(xt) be the
k-vector with coordinates ri(x,t). Taking the first coefficient of the Laurent expansion
of (x,t,z) at z = yj— 1 shows that equations (5.32) are equivalent to the
inhomogeneous equation

(5.33) T(xt)r(xt) = —eo,
where eois the k-vector with all coordinates equal to 1 and T = T(x,t) is the k x k-matrix

1
5.34) Tyi=a;+ [xp7 '+ sty =171, Ty, = i,
530 (s 4 =) =t
with entries
Let T'(x,t,z) be the (k + 1) x (k + 1)-matrix with the entries
A A 1 ” a
5.35 Tow=1, Ty;=———, To,=1, T, =Ty, ij=1,...k.
(5.35) 00 , 0.5 ril-p, 0, ; g gy 5] ,
Then y(x,t,z) equals
‘ i det T’ r.t, 2
P(a,t, z) = Qa,t,2) det T(z, 1, 2)
(5.36) y(z, t)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



XXX5!~ BETHE ANSATZ EQUATIONS AND INTEGRABLE HIERARCHIES 265
where

(5.37) Y(xt) = detT(xt).

The function y(x,t) will also be denoted by y(xt|ua). It is a polynomial in x of
degree k. Let ui(t|p,a), i = 1,..,k, be its roots. Define y(t|p@,a) =

(y1(t|wa),...vk(t|pna)) by the formula
(5.38) vi(tlu,a) = Ouui(t|ua).

Let S c (C*)kx Ckbe the subset of points (y,a), such that

(@) u=(u1..,ux) has distinct coordinates;
(b) u(0|ma) = (u1(0|pa),...ur(0|y,a)) has distinct coordinates.

Theorem 5.7. For (u,a) € S, the map
(5.39) S (pt,a) — (u(0 | wya),v(0 | L, 1)) is
inverse to the map in (5.24).

Proof. The standard arguments based on the uniqueness of the BakerAkhiezer
function prove the following statement.

Lemma 5.8. The function 1(x,tz) given by (5.36) satisfies equation (1.9) with
y(xt) defined in (5.37).

Proof. Define the function w(x,t) by the formula

(5.40) w(xt) =&(xt) - &(x+1L,t) -1,

where &1(x,t) is the coefficient of the expansion of the second factor in (5.36) at z = oo,
ie.

(x,t, z) = Qa, t, 2) (1 + f:fs(.r t)z_“)
s=1 ;

(5.41)

Then the corresponding expansion for the function lp”(x,t,z) =
6:11/)[x,t,z) - llJ(X + 1,1',',Z) - W(X,t)l/J(X,t,Z)

has the form 1/)~(x,t,z) = Q(xt2z)0(z1), i.e. the simple fraction expansion for 1,/)~ has the

form
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5 (1)
b, t, 2) = Qx,t, 2 0
Pl t,2) = Qa, t, 2) ZZ+1—M
(5.42) i=1 '

Since ajin (5.10) is a constant, the first two coefficients of the Laurent expansion of

1,[1~ at ;- 1 satisfy equation (5.10), i.e. for the vector "r with coordinates “rjthe

homogeneous linear equation 7r” = 0 holds. Hence, 'r = 0 and the equation 1/)~ =0is

proved.

It remains to show that the function w(x,t), defined by (5.40), has the form
(1.10) with y(x,t) given by (5.37). The equation

(5.43) &(xt) = -0ulny(x,t)

can be derived from Cramer’s formulas for the coordinates r;of the vector r and the

equation
;‘.

&i(x,t) = Zw‘j (x,1)
(5.44) i=t :

It is more instructive to prove it directly using equation (1.9). Indeed, by definition,
&1(x t) is a rational function in x with poles at the zeros of y(x,t). The comparison of
the coefficients at (x-ui)~2 of the Laurent expansion of the right and left-hand sides of
(1.9) at u:gives the equation

(5.45) Yi(t) := resx=uw(x,t) = resx=u1(x,t) = duui(t).
The latter implies (5.43).

The left-hand side of (1.9) has poles only at the zeros of y(x,t). Hence the right-
hand side of (1.9) has no residue at x = ui-1. From (5.40) it follows that the residue of
w(xt) at x = ui—1 equals -yi(t) and we recover the defining condition for ¥(x,tz) in

Lemma 4.3. Put t = 0. The theorem is proved.

5.4. Extension of the direct spectral transform. Our goal is to extend the direct
spectral transform (5.24) to the whole phase space of the rational RS system.

For (4,y) € Pk consider the function y¥(xz |u,y) defined by (5.7). The function

(5.46) Y(x,z |uy) = detL(z |u, V)Y (%2 |u,y) = (z + 1)*detL*(x,z |u,¥) has the form

k
2,2 u,7) = (1+2)° (A + el )A)
(5.47) w( — .

It is well-defined on the whole phase space. The coefficients&¢ (z | u, ) are rational
function in u,y holomorphic on P«
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Let (HMi = i (u,7))i=1 l?e the set of all distinct eigenvalues of L(u,y) with
respective multiplicities (7% )iz, We have 2_i—1 i = k and

det L(z | u,7) = H(,, — D)™ #

i=1

For a positive integer denote byQ |the vector subspace of C[z] of polynomials
of degree less than . We have dimClz]e = € .
Let u € c- We will often identify C[ lewith Cl2]/{(z — u + 1)%) under

the isomorphism9(2) = 9(2) + ((z= p+1)%).

Theorem 5.9. Let (u,y) € Pr. Then for j = 1,..,q, there is a unique mydimensional

vector subspace W,-(u,y) C C[z]2m;such that

g(2)¥(x, 2| u,7)
-1 75— = 0, T W (. ~
(5.48) reszju'j ! (7 — py + 1)2m; ; Vg(z) € g (u, '7).

Remark. Let (% 7) € Py, Then the one-dimensional subspace Wj(u,y) c C[z]z2is
spanned by the polynomial aj(z — yj+ 1) + 1. Then equations (5.48) take the form
(aj(z = s + 1) + ) ¥(z, 2] u,7)
z=p;i—1

(5.49) res (z —p;+1)°
which is the same as equations (5.10).

=0, j=1,...,k

Proof. The coefficients of detL(z |u,y) are holomorphic functions on Pk. Hence for
any ('”'I-. 7) € Piina sufficiently small neighborhood of (u,y) the multiple eigenvalue
ujof L(u,y) splits into a set of simple eigenvalues of the matrix
L{u', 7, je.

q m;

det L(z|u', ") HH‘—#H—O-I

i=1s=1

where |u;s - yj| < € for some small e. We may assume that the e-neighborhoods of p, j
=1,..,q, do not intersect.

The set of m;jequations (5.49), corresponding to a subset of the eigenvalues s,
can be represented in the form

() W2 o)
(550) cj Hq(z — Hj.s + 1)2

where ¢;jis the circle |z - yj+ 1| = € and

95.5(2) = (aj(z — pj +1)+1) H(z — Wie+ 1)2

dz, s=1,...m;

s

(5.51) is
It is easy to see that the polynomlals,)gjsgz(%are linearl] mdependent and hence span
an mj-dimensional subspaceW (u' 0 [2]2'""-;, e Wilu',y ) can be seen as a point

of the Grassmanian Gr(m;,2my).
PN AR ’
The Grassmanian is compact. Therefore, for any sequence (( W™ " ))=1 € Py,
converging to (u,y) there is a subsequence of points W;j(u™y™) of the Grassmanian
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converging to some point W; € Gr(m;,2m;). Since the integral in (5.50) is taken over a
constant circle the equations (5.50) converge to (5.48).

It remains to show that W; does not depend on the choice of a convergent
sequence ((u™y™m))*m=1. Notice that if W (x,z |u,y) satisfies (5.48), then
9(2) W(t.2|u) _
(5.52) reszz}'r1 (2 = pj +1)%m
The function ‘P(fw z|u, 7) is a monic polynomial of degreek + /. Hence, the tuple of
functions W(,z) defines a point W* € Gr(k,2k). The k-dimensional vector space

W1 defines all spaces W, j = 1,..,,q, uniquely. Corollary 5.10. By Theorem 5.9,
every point (u,y) € Pkproduces the two collections

(ui(u,¥))%=1and (Wi(u,y) € Gr(m;2m;))%-=1. That is an extension of the map

(5.24).

Equations (5.48) imply the following lemma.

Lemma 5.11. The function y(x.z | u,) has a pole of order ™ < T at 2 =1,y )

- 1 if and only if the corresponding subspace Wj(u,y) _ 1y + 1)2mi—t=1 g
M J i , b=

contains (m;— m)-dimensional subspace spanned by the O

polynomials ( 0,...m - 1.

The following statement is used below in the proof of Theorem 7.9. Let f{z) be a

function holomorphic at z = y;— 1. Multiplication by f{z) defines a linear operator

I (=1 / .
(5.53) fu @ Clz]/{(z—p;4+1)"") — Clz]/{(z—p;+1)°™9), g(z) — f(2)g(2).
. Lemma 5.12
o 21
Cla/{(= = _‘; 1)\ ’) = 0, then the only m;-dimensional subspace
z—p;+ 1) 0=my, ..., 2m; — 1. Wof
, invariant under the action of f, is the subspace spanned

by (

Proof. The Jordan normal form of f«is the single Jordan block of size 2m;. Such an
operator has a single invariant mj-dimensional subspace. That subspace is described
in the lemma.

5.5. Extension of the inverse transform. The construction of the inverse

correspondence is straightforward. The spectral data is a triple (x,m, W), where u =
(u1,...,4q) is a set of distinct nonzero complex numbers; m = (ma,..,mq) a set of positive

integers with2oi—1 My = ki W= (Wi, ..., H’yq) a set of spaces, where each W;is an
mj-dimensional subspace of the space of polynomials of degree 2m; - 1.
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Lemma 5.13. Given (u,m, W) there is a unlque functlon Y(xtz),

x,t,z) = Q(x, ( —I—Z@(I t)z )
(5.54) w(

such that equations (5.48) hold.

s

Proof. The proofis by explicit construction, as in its particular case of Lemma 7.3.
Choose a basis gjk(z) in W;. Then equations (5.48) can be represented in the form of
the inhomogeneous linear system of equations

(5.55) M(x,t|u,mW)E(x,t) = —eo

with some matrix M, whose entries are explicit expressions that are polynomial in x
and t and linear in the coefficients of the polynomials g;«(z). As before the function ¥
can be written in the same determinant form as in (5.35):

¢! t.j-f Ltz p,m, 0%
:r.t,z|;;,,=n-,_,W}: det M (z, 1, |,u m., )

(5.56) P( yla, t| g, m, W)
where
(5.57) y(xt|jumW) = detM(x,t|u,m,W).

Remark. We emphasize that unlike in the generic case considered in Section 5.3,
the degree k of the polynomial y(x,t|u,m, W) in x depends not only on the number of
distinct eigenvalues yjand their multiplicities m;but also on the combinatorial types
of cells of Grassmannians Gr(mj,2myj), which contain the given subspaces W,

Denote the roots of the polynomial y(x,t|u,m W) by ui(t|umW), i = 1,...k. Define

y(tlwm W) = (y1(t|lum,W),... vr(t|u,m,W)) by formula
(5.38).

3 q q . G T
etS (€)1 x HJ=1 Gr(my, 2mJ) be the subset of points (u, /), such that
(@) p=(uy-..H1q) has distinct coordinates;
(®) u(0|uW) = (u1(0|pu W),...,ur(0], W)) has distinct coordinates.

Theorem 5.14. For (y,W) € SA the map

(5.58) S (W) = (w(O0] g, W), 70, W) s inverse to
the map in Corollary 5.10.

Proof. The proof of Theorem 5.14 is similar to the proof of Theorem 5.7. The key
point of the proof is the following lemma.

Lemma 5.15. Functions W(x,t,z) and y(x,t) given by (5.56) and (5.57), respectively,
satisfy equation (1.9).
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The proof of the lemma is based on the uniqueness of the Baker-Akhiezer
function corresponding to the data (4, W) and almost word by word follows the proof
of Lemma 5.8.

6. Solution of the rational RS hierarchy

The goal of this section is to write explicitly equations describing time
dependence of the roots (ui(t)) of the polynomial y(x,t) corresponding to the spectral

data (u, W) € S~

It was proved in [KZ] that the dependence of (ui(t)) in the variable t1 coincides
with the equation of motion of the RS system. Note that in [KZ] this result was proved
for the elliptic RS system. The dependence of (ui(t)) in the variables t'= (t7o,t 1,t 2...),
defined by formula

o0 (s o)

6.1)  2(z+1)"1+ Z Mty 2™t =t (2+1)"1 + Z Mty (24 1)
m=1 m=1 ;
was identified in [KZ] with the pole dynamics of the elliptic (rational) solutions of the
2D Toda hierarchy. In [I] and [Z] it was proved that the latter coincides with the flows
defined by the higher Hamiltonians Hk = trLk of the RS system, where L is the
corresponding Lax matrix.

Remark. Note that the change of variables (6.1) is well-defined only under the
assumption that there are only finitely many of nonzero time variables. Nevertheless,
the corresponding triangular change of the vector fields is well-defined always:

Oro= ax, ori= atl, Or2= 0+ 26:1, Ors= 0+ 300+ 3at1,

6.1. Hierarchies of linear equations. In this section we show that for any
spectral data (u,W) the corresponding Baker-Akhiezer function ¥(xtz) given by
formula (5.56) satisfies a hierarchy of linear equations.

Let Tx= e%be the shift operator acting on functions of: To: f(z) = flz+1).

Lemma 6.1. Let W(x,t,z) be a formal series of the form

Q2. t, 2) (1 + iﬁﬁ{:r. t)z’)
s=1

where k € Z and &(x,t) are some functions of x,t. Then for each m 1 there is a unique

(6.2) Y=

’

difference operator Dnin the variable x,

m

Do = T + 3, wim(e, ) T

(63) i=1 ,
such that
(6.4) Dm¥(x,tz) = z"¥(x,t,z) + O(zk-1)Q(x,t,2).
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The coefficients wim(x,t) of these operators Dmare (explicit) difference polynomials in
&(xt),s=1,.m-1
Proof. Divide both sides of (6.4) by Q(x,t,z) and compare the leading coefficients
of Laurent series. That gives a triangular system of m - 1 linear equations for m - 1

unknown functions wim(x,t). The system is solved recurrently.

The following theorem follows from the uniqueness of the Baker-Akhiezer
function.

Theorem 6.2. Let Dmbe the operator defined in Lemma 6.1 by the BakerAkhiezer
function W(x,t,z |, W) given by (5.56). Then

(6.5) ((), — D) W(a, t, 2| p, W) m =1

Proof. The definition of Dy in Lemma 6.1 1mp11es that the left-hand side of (6.5)
has the form R™ (), where R is a polynomial in z of degree k -1. The function R™ Q
satisfies the system of equations (5.52) defining ¥. Therefore the coefficients of R
satisfy the homogeneous linear system of equation with matrix M as in (5.55).

Hence, R =0.

Remark. Lemma 5.15 is a particular case of Theorem 6.2 for m = 1.

The compatibility conditions of equations (6.5) imply:

Corollary 6.3. If the Baker-Akhiezer function W is given by (5.56), then the
corresponding operators Dn satisfy the equations
6.6) [0 —Di0, =D =0 goran i

Remark. The collection of equations (6.6) is the so-called Zakharov-Shabat

presentation of a part of the 2D Toda hierarchy. We call the collection of equations
(6.6) the positive part of the 2D Toda hierarchy, see Section 8.2.

6.2. Rational RS hierarchy.
6.2.1. Let (u,y) € Prbe a point of the phase space. Let L = L(u,y) be the Lax matrix.

We define recurrently a set of rational functions "w1,m(x),w2,m(X), .., Wmm(x) by the
formula

LH 1 {L”il"“ s—1 (Ls 1-— F"/)
6.7 s, m = - m -
67) @ Z( T — U, Tr—u+m Zt I—U +m—¥

i=1 =1

’

a set of matrices Him,...,Hmm by the formulas
H. ) _ resg—y,; Ws,m (3)
(6.8) ( ST g —uy+mo— s
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res:l"=‘ui TI’!T? ,m

Hm..-m)fij = gm.idfj + (1 - ‘5111'}

(6.9) ( up —u;
wherefm.iis defined by the Laurent expansion of "Wmm(x) at x = ui, w

6.10 I€Se—u.  mm | ~ w - Hmi+ O(x - wi),
( ) .rn.m(-T) = # + ( )

m by the formula

and the matrix M
m
A'f'm, = Z Hr;:ernig
(6.11) s=1 .
6.2.2. Let us return to the situation of Section 5.5. Let the spectral data

(wmW) be given. Let y(xt) be the poly}}omial defined by formula (5.57) and
u(t) = (ui(t));-1 its roots. LetV(t) = (7i(t))i=1 with yi(¢) = duui(t). Having the
pair (u(t),y(t)) we may define all the objects of Section 6.2.1, which will depend on ¢.

Let t'mbe the variables defined in (6.1).

Theorem 6.4. The pair (u(t),y(t)) satisfies the equations of motion of the hierarchy
of the k particle rational RS system. Namely, for all m 1 we have
(6.12) O0¢mlUi = reSx=uiw mm(X),

k

3?,,,,%’ = Z ((in"fm.)i._j Lj-i - Lij(ﬂ[m)j.‘)
(6.13) i=1 .

Proof. The following lemma gives the Lax presentation of these flows in terms of
the RS system.

Lemma 6.5. Let the linear equation

m
(f)f.,,, - T.::n - Z TI‘S_”,'(.?Z, f) T‘:T:“S) ’t;"}‘(;??, f 2) =0
(6.14)

s=1 with some (a’priory

unknown) coefficients “wsm(x,t") has a solution of the form

k o
= (145 Ci(F, 2)
'IJJ,J'(.’]','st5 M) = (1 + : Tiﬂ,)
(6.15) p—

where "z =z + 1 and C is given by (4.20) with the matrix L defined in (4.18) with y;=
Yi(t m),ui= ui(t'm). Then equations (6.12), (6.13) hold.
Proof. The vector C with the coordinates Cigiven by (4.20) solves equation

2T, 2"

S]]

’

(4.19), i.e.

(6.16) (CzL°-L)C=y,

where L% = E is the identity matrix. This equation easyly implies that for any s the
equation

s—1
z.‘;L(] _ Ls)c — ZELS—E_l";’
(6.17) C —
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holds.
The substitution of (6.15) into (6.14) gives the equation

k s, 9w\, 9 O,
(618) Z ( ~ C‘i + (()rm ll-,.)C;. + (){,MC‘.>

—\r—u (v w;)?  or—uy

k

S, m k )
_ z C'i ST —58,— C'?
= —_— z Wem | 1+ _ .
‘(e T — Ui +m — r—u;+m-—s
1=

i=1 s=1

Using (6.17) and then equating the coefficients at z* for f =m 1 2 - m-
0 at
both sides of the equation we recurrently find that "wsm(x) are given by formulas (6.7).
The remaining part of the equations (of order O("z1)) are linear equations containing
C('z). Equating the coefficients at (x — ui)~2 we get equation (6.12). Equating the

coefficients at (x—ui)~1 we get that the vector C satisfies the equation
(6.19) 0ruC = (Mm - LM)C,

where the matrix Mmis defined in (6.11). Comparing the leading coefficients at of the
expansions in "z-1 of the both sides of (6.19) we get

(6.20) (M- Lm)y = 0.

From (6.16) and (6.19) it follows that

(6.21) [0¢n— Mm,L]C = ~(Mm— Lm)y = 0.

Since equation (6.21) holds for C = C(z) we have
(6.22) 0wl = [Mm,L].

The latter is the Lax presentation of equations (6.12) and (6.13).
In the framework of the dynamical r-matrix approach the matrices Mm were
obtained in [Su].

Now Theorem 6.4 follows from Theorem 6.2.

7. Spectral transform for N-periodic Bethe ansatz equations

7.1. Spectral data for solutions of the Bethe ansatz equations. We begin this
section by identification of the spectral data corresponding to solutions of the N-
periodic Bethe ansatz equations. Recall that for a given sequence of generic
polynomials (yn(x))nez whose roots satisfy the Bethe ansatz equations the solutions
(n(x,2))nez of the generating linear problem constructed in Section 4 are equal to

(7.1) Yn(x,2) = zP(x,z |u@,ym),
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(n)\kn (n)\kyp
where (% ))7‘.=1are roots of yx(x) and (Vi ))-;:=1 are defined in (4.4). Notice that y®
depends on the polynomials ys(x) and yn:+1(x), only. By definition of generic
polynomials, we have (u(,y(®) € Pk,

equations, then the matrixLemma 7.1. If (yn(x))neLz(urepresents a solution of
the(),y(m) has only one eigenvalueN-periodic Bethe ansatzy = 1 (of multi-

plicity kn).

Proof. By Theorem 5.9 the function

Y(x,z |u®,y®) = detL(u®,y®)iho(x,2)

satisfies equations (5.48) with W0 := Wj(u(®,y(®). From equation (4.2) it then follows
that for functions det(u'” ;7' )t (2, 2) for n =g equations (5.48) with
Wi := Wj(ul9,y(®) hold, as well. The N-periodicity of (y») implies that = zNpo(x,2).

Hence, ¥ (x,z |u(®,y(0) satisfies equation (5.48) and the equations

=0, Yg € W;(u®,~+)

g(2)2NU(x, 2 |-u(”), ,},(()))
z=pji—1

(7.2) res (2 = pj +1)%
Since ¥ (x,z |u(9),y(9) defines Wj(9 uniquely, equations (7.2) imply that Wj(©is invariant
under the action of the operator of multiplication by zV. It follows from Lemmas 5.11
and 5.12 that W(x,z |u©®,y®) has zero of order m;at z = y; -1 for any Hj /= 1, or
equivalently that the function (x,z |u(®,y(9,z) is holomorphic at z = yj - 1.

Now the reference to Lemma 5.5 finishes the proof.

Remark. In Lemma 4.5 we proved that the poles of solutions (yn(x,z))nez of the
generating problem corresponding to a sequence of polynomials (ya(x))rez (possibly
non-periodic) are n-independent away from z = 0. The lemma above gives a stronger
statement: for periodic sequences of polynomials the solutions (yn(xz))nez are
holomorphic at? # 0.

7.2. The inverse spectral transform: construction. By Theorem 5.9 and
Lemma 7.1 the functions yn(xz) constructed in Section 4 are uniquely defined by a
sequence of points W € Gr(kn,2kn) corresponding to the only eigenvalue u = 1 of the
matrix L(u®,y™). In this section we explicitly describe the data defining such
sequences and present in a closed form the construction of the solutions of the N-
periodic Bethe ansatz equations.

The parameters of the construction are nonnegative integers v, D, and an
(N +v) x (D + 1)-matrix
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A= (ax)), k=1,.,N+v, j=0,..D.

We say that the matrix A is nondegenerate if for any n = 0,...,N, the matrix A(W composed
of the first n + v rows of the matrix A has rank n + v.
Two matrices 4, A" are called equivalent ifA = G'A’ where G is an (N + v) x

(N + v) nondegenerate matrix of the form

-(20)
(7.3) * 0

where g is a v x v-matrix and g1 is lower-triangular.
We call A reducible if there is a nondegenerate v x v-matrix H such that

HAD = ( E0 )
(7.4) 0 *

where E is thef x funit matrix with £ 21, We call A4 irreducible otherwise.

7.3. Function Q(x,tz). Below we present some notations and properties of the
function Q(x,t,z) defined in (5.29),

(75) Q(.’L’._ t, 2) — (1 + Z):LfZ?i, f.;z‘i‘
The function Q(x,t,z) satisfies the equation
(7.6) (z+1DQxtz) = Qx+ 1,t2) = 0uQ(xt2)

and, more generally, the equations

¢
) , f4 ,
b4 " — _1yf—m . L t2) = (#) x.t.
2Ot 2) ;};(;]( 1) (m)sz(a +mt,z) = AOQ(a, 1, 2)

N

(7.7) Qz+£4,t,2) = 0 U t,2)=0,Qxtz2), (=1

Introduce the polynomialan-(iH t), n € L, by using the expansion

Qx,t,2) = Zx,,(:):, t)z"
(78) n=0 ,

where yo(xt) =1,

xr .
Xn (-T«. t)lf,:[) - (71) » Xn (-T t)lfl,‘:(). =0 — til

7

(7.9)
degyxn(x,t) = deguyn(x,t) = n.

For n 0, we have
(7.10) xn(x + 1,t) — xn(x,t) = 0uxn(x,t) = xn-1(x,t),
where y-1(x,t) = 0. More generally, we have

(711) A(‘:)Xk(.],‘j f) = ()fl Xn (‘T'- t) = afp Xn (.T?, t) = Xk—f.'(mv t),

Let us write
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o0
ooy tiz? _ Z h,g.(t)zk

k=0 )

where ho(t) = 1. Then

= x
Xnl2Z,t) = fnf't
) =3 ho(5)

Given the spectral data 4 = (ax;), define the polynomials fi(xt) by the formula

D
fu(z,t) = Za;‘,.j x;lx, t), k=1,....N+v.
3=0

(7.12)

(7.13)
For k=1,..,N + v, introduce the differential operators

D i

D=y

(7.14) j=o 1" o=
Then

(715) [DAQ(Tt-z)} 2—0 = f;‘,{;lf,f).

Lemma 7.2. If A is nondegenerate, then for every n = 0,...,N,
(i) the discrete Wronskian (/1. -, f-n+u) is nonzero;
(ii)
(716) H’r(fl) vy .f!hH/) = \Vrtl (fl! ey f-n+i/),
m nj—1
where Wrt1 (f1:++5 futv) = dct'i-f'i=1(dfj~1 fi) is the standard Wronskian
with respect to the variable ti;
(iii)
(7.17) dege W15y fow) = degy, W(f1.ooo, furo),

7.4. Baker-Akhiezer functions. For every n = 0,..,N, consider a polynomial of
degree n + v in z of the form

n+uv
R,(z,t z) = 2" (1 - ZE}”J (x,1) zp)
(7.18) =1 )

whose coefficients are some functions in x, t.

Lemma 7.3. If A is nondegenerate, then for any n = 0,..,N, there exists a unique
function Yn(x,tz) of the form

(7.19) Yu(xt,2) = Q(x,t,2)Ra(x,t,2), such that
[Dk.w,,(m,f:z)] =0, k=1,....n+v.

z=0

(7.20)

For fixed n,x the function ¥n(xtz) is a particular case of the Baker-Akhiezer
functions introduced in [K5] to construct rational solutions of the KP equation.

Proof. Using equation (7.7), we rewrite equation (7.20) as
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n+r
3 T v—=m +
(7.21) {Dk( S (-1t (”m”

m=0

n+tv ( ) ”+”7€ , n+v—=~{
+Zf Nt Z (_])”Jﬂ}_i—m( m )Q(I—Fm’t'z))]_o =0

m=0

Using (7.8) and (7.13) we rewrite (7.21) as
n+uv

w22 Y e () e

m=0

)Q(:c +m,t,2)

n+uv n4v—£
#2603 (M s o
=1 .

m
m=0

The system of equatlons (7.22) is the systems of n+v inhomogeneous linear equations

1)
for the coefficientsé: (7 b,
n+uv

S M (@ ) & () = B (1)
(7.23) £=1 )
where
n+uv—~¢ n+uv ¢
) o _1yntr—~f—m -t g
= A" f (2, 1)
( ) n—4v n+y
FR. 3 (.L t) — Z_(I(_l)n+y—m( " )_fk(:{‘-i- m.t)
(7.24) = A" fi(at).
Using (7.10) we may rewrite
D
(7.25) M (@.t) = 7 ang Xjmrpa (1),
Jj=£-1
D
F}'(.Tl)(_’,l?:t) = Z @k, j Xj—n—v(z, 1)

j=n+v

of  formula % (z,t) in (7.13).
for
Formula (7.24) implies that the determinant of the matrix M("(x,t) equals

(7.26) Yn(2,1) i= det MO (2,8) = W(f1,..., furo),

the discrete Wronskian of the polynomials fi(x,t),...fa+v(xt) with respect to x. By
Lemma 7.2 the determinant is a nonzero polynomial. Hence equations (7.20)
determine uniquely a function ¥u(x,t,z). The lemma is proved.

Below we give a determinant formula for ¥.(x,t,z). Define an (n + v + 1) x

(n+v+1) matrixiw(’”)(‘“a £, 2), whose rows and columns are labeled by indices 1,...,n
+ v+ 1 and entries are given by the formulas:
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ﬁg_'_;’_)vﬂ_(, = T f=1,....n+v+1
JTF;ET;) = ]U',f:?, ki=1,....,n+w
(7.27) — ,

Using the determinant expansion of M("(x,t,z) by the last row we obtain

d I-ﬁ(”) z,t. 2
1.*{1(3 (-T_- t; Z) = Q(.’I.’, t_, Z) G—(l)
(7.28) 3]11-(T:t)

Here is a useful formula foréi " (% B,
5571) {.T, f) — Ai‘ln (-’1-‘-. t) — 8t1 yn(l‘a t)
(7.29) Yn(2,t) Yn(,t)

Theorem 7.4. The Baker-Akhiezer functions (m(x,t,z))¥m=0 satisfy equations (4.2)
with indices n = 0,..,N - 1 in which the functions va(x,t) are given in terms of yn(x,t)
and yn+1(x,t) by formula (4.3).

Proof. Consider the function

(730) l/)~n+1(X,t,Z) = l/)n(X + 1,t,Z) - Vn(X,t)l/)n(X,t,Z) - ll)n+1(X,t,Z).

We need to show that 1 »+1(x,¢,2) is the zero function.

We have
1,5.,,_+1 (x,t,2) =Qz+ 1, t,2)R,(z+ 1,1, 2)
— v (2, )2, t, 2) Ry (2, 8, 2) — Qae, 4, 2) By pq (2,1, 2)
= Q(a,t, 2) ((1 4 ) Ro(z 4+ 1,8, 2) — vn (@, ) R(,t,2) — Ry (2, z))

= Qx, b, 2) Bpgq (2t 2),

where Rn+1(x,t,2z) is a polynomial in z of degree at most n + v,
n+r+1

Royi(z,t,2) = Z éénﬂ)(:z:,t) L1
(7.31) 2 |

Each of the three functions Yu(x+1,t2), va(xt)Yn(xt2), Yur1(xtz) satisfy the

equations (7.20) for k = 1,..,n + v. Hence the function ll)~n+1(X,t',Z) satisfies equations
(7.20) for k=1,..,n +v.

Lemma 7.5. The function l,[)~n+1(X,t,Z) satisfies equation (7.20) for k = n+v+1. Proof.

Recall the function detM((x,t,z)Q(x,t,2), see (7.27). Then

(7.32) Dpsv+1 [(det M™ (z,t,2)) Qz,t, z)] = det MV (2,t) = ypy1(2,t)

z=0 ’
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see formulas (7.7) and (7.15). Now we apply the operator Dn++1[]z=0 to both sides of
equation (7.30). We have Dyyut [Unr1 (2., 2)] oz by definition of
Yn+1(x,t,2z). Hence
Dysvst [-@TE,,,H (a,t, z)]::(]: Dhtvs1 [g‘ff” (x4 1,t, 2) — v (x, £))y, (. L, z)]
M (2 41,8, 2 t M) (2,1, ,
=Dy [(dﬂ gi (r(jr -ll_ i) t2) _ vy (2, 1) %)Sl(m. L, z)] -
_ Yn+1 (1 + 1, t) Un (Tz t)ynJrl (T +1,t) Yni1 (T t)

_ =0.
yn(z + 1,1) Yn(x 4+ 1, 0)ypya(2,t) yn(x,t)

Comparing the system of equations (7.23) with k = 1,..,n + v for the coefficients (
..g”) (@, )iy with the system of equations (7.20) with k = 1,.,n+v+1 for the
coefficients (‘fénﬂ) (x, t))?:f“ we conclude that the coefficients
(NE”H) (z, t))}lif+l satisfy the system of homogeneous equations

n+v+1 . _
S M@ ) " @) =0
(7.33) P )

with k = 1,.,n + v + 1. According to our previous reasonings the determinant
detM*1(x,t) = yn+1(xt) of the matrix of this homogeneous system is a nonzero

F(n+1)
polynomial. Hence all the functionss (z, t) are the zero functions, the function

Y n+1(x,t,z) is the zero function, the functions Yn(xtz) with n = 0,.,.N -1 satisfy

equations (4.2), and the theorem is proved.
7.5. Reconstruction of A. Let A and A™ be two nondegenerate (N + v) x

(D + 1)-matrices,

A=(ar), A =(a%), k=1,.,N+v, j=0,.D.

fy S~V oy o VYNV . .
Let (T"""”-(Tf(]r"‘))m-:[) and (¥m (2,0,2))m=0 be the corresponding Baker-Akhieser
functions given by the above construction.

Theorem 7.6. Assume that
(7.34) ¥n(%,0,2) = ¥ n(x,0,2), n=0,.,N.
Then A = GA™ for a matrix G as in (7.3).

Proof. For any n the function n(x,0,z) is given by the formulas (7.23),
(7.24). Consider the linear difference operator of order n + v,

(7.35) Ao+ ED)(X%,0)Am+v-1) + €2)(%,0)An+v-2) +
eee + f[n+v)(X,0).

By formulas (7.23), (7.24) the kernel of this difference operator is generated by the
polynomials fi(x,0),...,fn+v(x,0) given by formula (7.13).
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If two matrices A,A” have the same ¥n(x0,z) and ll)~n(X,O,Z), then the n +

vdimensional space generated by the polynomials fi1(x,0),....fa+v(x,0) coincides with the
space generated by the polynomialsf1(x,0),...,f~n+v(x,0). Hence A =
GA” for suitable G.

7.6. Periodicity constraint. Given spectral data A = (axj), the construction of
Section 7.4 gives yo(x,t),...yn(x,t) and Po(x ¢t 2),...n(xt,z). We say that these functions
extend periodically if there exist sequences (yn(x,t))nezand

(¥n(x,t,2))nez such that
ynn(xt) = yn(xt), Ynen(X%,62) = ZNpn(x,6,2), nez

and the sequence (n(x,t,z))nez satisfies equations (4.2) with (va(x,t))nez given by (4.3)
in terms of (yn(x,t))nez.
It is clear that the periodic extension is possible if and only if
(7.36) yn(xt) =yo(x,t), Yn(xt,z) = zVPo(x,t,2).
Our goal is to identify matrices A for which the periodicity equations (7.36) hold.
7.7. Construction of matrices A. Given v, let Wbe an (N +v)x(N +v) matrix such

that its upper-right v x v corner U is nilpotent,

W (V U)
(7.37) Sk ox and U = 0

forsomer<v.

Using W we construct an (N +v)xN(v +1)-matrix A = A(W) in three steps.

First using VVand U we construct a v x Nv matrix Q as follows. Let V' =

(v1,...,vv) be column vectors of V and Q = (q1,...,qw) column vectors of Q. Define g;= v;
forj=1,..,N. Define gjfor j > N recursively by the formula

(7.38) qn+j= Ug;.
Define an (N + v) x N(v + 1)-matrix P by the formula
p- ( By )
(7.39) Q)

where E'is the N x N unit matrix. Define the matrix 4 by the formula

(7.40) A=WP.

It is easy to see that the matrix 4 has the form

A ( Q 0 )
(7.41) KX
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7.8. Properties of the construction.

Lemma 7.7. If a matrix A = A(W) is given by the construction of Section 7.7, then
the functions yo(x,t),...yn(xt) and Po(x,t,2),...Pn(xt,z) extend periodically.

Proof. The functions yo(x,t), o(x,t,z) are determined by the first v rows of A. That
gives v equations (7.20) for o(x,t,z). The functions yn(x,t), Yn(xtz) are determined
by the full matrix A. That gives N + v equations (7.20) for ¥n(xtz). The periodicity
constraint (7.36) holds if the space of linear combinations of equations defining
Yn(x,tz) contains N equations 9:Dn(x,t,z)|z=0=0,j = 0,..,N - 1, and,v equations (7.20)

defining yo(x,t,z) in which the opera;~tors Dy = ZI “‘:"fj c‘))J are replaces with the
operatorsD*‘ - ZJ W;_‘} Odz% The relations (7.39), (7.40), (7.41) mean exactly that.
The lemma is proved.

Let A = (ai) be a nondegenerate (N + v) x (D + 1)-matrix. Let yo(x,t),.., yn(x,t) and
Yo(x,t,2),...,n(x,t,z) be the associated functions. Let m be a positive integer. Define the
(N +v)x(D+1+m)-matrix A" = (a"j) by the formula

a;; = @, Jj<D,

Aij = Qij ,  j>D

We call A" the m-extension of A. Let “yo(xt),...y"n(x,t) and l/)Ao(x,t,z),..., 1/)A1v(x,t,z) be the
functions associated with A". Clearly, we have

(7.42) y'a(x,8) = ya(x.), ¥ n(x62) = Yn(x2), n=0,.N.

Let A = (ai) be a nondegenerate (N+v)x(D+1)-matrix with associated functions
yo(x.t),...yn(xt) and Yo(xt2),...n(xt,z) which extend periodically Let A™ be the N-
extension of the matrix of A. According to (7.42) the matrix A" has the same associated

functions yo(x,t),...yn(xt) and Po(x,t,2),...1pn(x,t,z) which extend periodically.

Lemma 7.8. Under these assumptions the matrix A is given by the construction

of Section 7.7, namely, we have A" = A”(W" ) for a suitable W".

Proof. We have n(x,0,z) = z¥)o(x,0,z) and the function yYn(x,0,z) is defined by the
(N +v) x (D + 1+ N)-matrix A". The same function ¥n(x,0,z) is defined also by the (N
+v) x (D + 1+ N)-matrix

E 0
(7.43) P( 0 A® )

where E'is the N x N unit matrix and A©is the v x (D + 1)-matrix formed by the first v
rows of the matrix A. By Theorem 7.6 this means that A" = WP" for a suitable matrix
W” . It remains to show that the upper-right v corner of W, denoted in (7.37) by U is
nilpotent. As it was already noted above from equations (7.39), (7.40) and 7.41 it
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follows that the columns gjof A(0) should satisfy equation (7.38). Since A® is of rank
vand g;= 0 for j > D we get that U= 0 for some r. If that holds for some r then r < v.
From the latter it follows that the integer D used in the construction in the N periodic
case is bounded by ) < Nv,

Theorem 7.9. If an N-periodic sequence of polynomials ( v (@), .yl (7))
represents a solution of the Bethe ansatz equations (2.1), then there exists a matrix A
= A(W) given by the construction of Section 7.7 such that the associated polynomials
yo(x.t),...yn(xt) have the property:

(7.44) yn(x,0) = ynO(x), n=1..,N.

Proof. By Lemma 7.1 the function wo(xz) corresponding to a sequence
polynomials (yn(x))nez representing a periodic solutions of the Bethe ansatz equation
has the form

Yo(z, 2) = ¥z, 2| w4 D) = (2 +1)" (1 + Z&fn)(.’l?)zi)
(7.45) p

0
with l(/ ) /" =0.The integer” < ko is the order of the pole of o at z = 0. By Theorem
5.9 the function zm™o(xz) satisfies (5.48) for any g € Wo(ul®,y(®). The space

Wo(u(®,y(0)0 ) is a ko-dimensional subspace of polynomials of degree 2ko - 1. The

function zk 1o(x,z) has zero of order ko- v at z = 0. __ Then, by Lemma 5.11
the polynomials 2** "'~ for £ = 0,... . ky — v — 1 are in Wo(u(©,y(®).
Hence, the space Wo(u®,y() contains a v- » dimensional

subspace WO c Wo(u(®,y®) of polynomials of degree ko+ v - 1 such that the function

2z, 2| u®, ) = (2 + 1)* (z” + Z&_f;“) (:r}z”")
i=1

(7.46)

satisfies . . the
equations g(2)z"vo(x,2) _  g(2)(z to(r,2)) _

q z:UT—I‘OSzz T—O, VQE )

(7.47) resW©. polynomials

Choose a basis gk(z),k = 1,...v, in the space W(). The coefficients ax;of these
mo+r—1

gﬁ,:(f;‘,’) — Z aj;_jZTHU+V_j—]
(7.48) 2.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



XXX sy BETHE ANSATZ EQUATIONS AND INTEGRABLE HIERARCHIES 283

define a v x (ko + v)-matrix A™©), which for any D) = ko + ¥ —1 can be trivially
extended to a v x (D + 1)-matrix A by setting ax;= 0,j ko+ v. Then equations (7.47)
coincide with equations (7.20) defining the Baker-Akhiezer function 1o(x,0,z |A©®),
where we have included in the notation the dependence of the Baker-Akhiezer

function on the defining matrix A9, i.e.

(7.49) 2Po(x,z) = Po(x,0,z |A®).
Applying recurrently equation (4.2) we get that for” 2= 0 the solution of the linear
generating problem has the form

n+tv
2 (m,2) = (2 4+ 1)° (:5'"'"" + Z Ef“')(.r)z"’*“_")
(7.50) i1 '

Since zYn(x,t) = zmvih(x,z |u(,y™M), we a’priory know that the coefficients

57'(4”4) (f”) are defined by a nondegenerate system of equations of the form (4.2) defined

by an (n + v) x (D + 1) matrix A™ for sufficiently large D. From (4.2) it follows that
zViPn+1(x,z) satisfies the system of (n+v) linear equations defining zvin(x,z). Hence,
A1) can be chosen such that its first (n + v) rows coincides with the matrix A. Then
we define A in the construction of Section 5 to be equal to

AW, Theorem 7.9 is proved.

7.9. Remark on difference operators. In formula (7.35) we identified, roughly
speaking, the Baker-Akhiezer function n(x,0,z) with the linear difference operator of
order n + v, whose kernel is spanned by the polynomials fi(x,0), ..., fa+v(x,0). From that
point of view, the Baker-Akhiezer function tn+1(x,0) is identified with the linear
difference operator of order n + v + 1, whose kernel is spanned by the polynomials
f1(x,0), ..., fa+v(x,0) and one new polynomial fo+v+1(x,0). The main formula of this paper,
that is, formula (4.2), is the formula expressing the second of these difference
operators in terms of the first one. The periodicity property of the functions yo(x,t,2),
., Yn(xtz) can be reformulated as a special relation between the kernels of the
differential operators corresponding to ¥o(xtz) and ¥n(xtz). That property is
implicitly explained in Sections 7.6 - 7.8. A version of this point of view is developed
in Section 10.

7.10. Main theorem on commuting flows. By Theorem 7.9 any solution of the
N-periodic Bethe ansatz equations is defined by some matrix A. Theorem 7.4 implies
that the space of solutions of the N-periodic Bethe ansatz equations is invariant with
respect to times t under the deformations defined by the BakerAkhiezer functions.
For each n the corresponding function Ws(x,tz) is a particular case of the Baker-
Akhiezer function corresponding to the rational kn-particle rational RS system. Hence,
by Theorem 6.4 the dependence of roots of the corresponding polynomial yn(x,t) is
described by equations of the rational RS system. Therefore we have the following
theorem.
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Theorem 7.10. Let (yn(x))nez be an N-periodic sequence of polynomials of degrees

(kn) representing a solution of the N-periodic Bethe ansatz equations. Then the

correspondence
(75 1) (yn ) —_ (“('n,) : ”}’(ﬂl) )’
~”— (A1) ~n)
where ' — (7175 'kn ) is given by (4.4), is an embedding of the space of solutions

of the Bethe ansatz equations into the product of N phase spaces of the kn-particle
rational RS systems, n = 1,..,N. The image of this map is invariant under the hierarchy
the rational RS systems (6.12), (6.13) acting diagonally on the product of the phase
spaces.

Consider the extension of the sequence y = (yu(x))nez to the family y(t) =

(Zn(xt))nez, defined by Theorems 7.4 and 7.9. Then the correspondence in (7.51)
sends the family y(t) to a solution of the rational RS hierarchy.
8. Bethe ansatz equations and integrable hierarchies

The existence of the one parameter family W(z) of solutions of equations (4.2)
having the form (4.7) reveals the connection of the Bethe ansatz equations (4.1) with
basic hierarchies of the soliton theory. We begin this section with a brief review of the
hierarchy, which is referred throughout the paper as the positive part of the 2D-Toda
hierarchy.

8.1. Pseudo-difference operators. We regard sequences g = (gn)nez with gn € C
as elements of the ring of functions of the discrete variable n. In particular we have
addition f+ g and multiplication fg of sequences defined by the formulas (f+g)n= fa
+gn, (fg)n = fagn. Let T be the shift operator acting on sequences g = (gn)nez by the
formula, where (Tg)n= T:f—=Tg gn.

The space of pseudo-difference operators is the space F of Laurent polynomials

in T-1, whose coefficients are functions of the variable n € Z, i.e.

F= Y fT7,  fo=(fas), nel

(8.1) s=—M s
for some integer M. Recall that the coefficient foin (8.1) is called the residue of F,
(8.2) restF = fo.

The ring structure on F is defined by the ring structure on the space of coefficients
and the composition rule
(8.3) T(fT™) := (Tf) T, where fis a sequence.

In what follows we will apply the pseudo-differential operators to sequences ¢(z)
= (¢n(z))nez, whose elements are formal Laurent series in z of the form
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. n - - L=
nlz) =2 Z Pn,s

s=—K

(8.4)
where K is some integer.

s

8.2. Positive part of the 2D Toda hierarchy. The difference analog of the KP
hierarchy is defined almost verbatim to the definition in the continuous case, cf. [SW],
[Di]. It leads us to the positive part of the 2D Toda hierarchy.

Consider the affine space of monic pseudo-difference operators of degree 1, i.e.,
the space of pseudo-difference operators of the form

L=T+> wIl™"
(8.5) 5=0
The positive part of the 2D Toda hierarchy has time variables t = (¢3,tz,...). The flow
corresponding to the time variable tnis defined by the equation
(86) O£ = [EJJ: E] Oy 1= 0y

m,

where£: is the nonnegative part of the operator L™, i.e. the difference operator such
thatll = LM — L' = o(r-1.

The standard arguments show that (8.6) is a well-defined system of equations on
the coefficients of the operator L. For that one needs to show that the right-hand side
of (8.6) is a pseudo-difference operator of degree at most zero. That follows from the
equality [ L£m L] = —[Lm £+, , ] and the fact that{” is a pseudo-
difference s-L operator of degree

The flows commute. The proof of the commutativity of the flows, i.e. the proof
that equations (8.6) imply the equations

(8.7) [Om — (LY), 0r — (L)) = 0
is standard and word by word follows its continuous variant, see [Di].

Remark. The hierarchy of commuting flows (8.6) is a part of the 2D Toda
hierarchy. Recall that the full 2D Toda hierarchy is defined on the space of pairs of
pseudo-difference operators, one of which is as in (8.5) and the other is a
pseudodifference operator with respect to T,

L~ = Z w, T°
(88) s=—1 .
The full set of time variables of the 2D Toda hierarchy consists of the variables ¢t =
(t1,t2,...) as above and the variables t- = (t"1,t2,...). We do not give further details, see
[TU], since the second part of the 2D Toda hierarchy is not relevant for our purposes.

For any pseudo-difference operator L of the form (8.5) there is a unique formal

solution ¥"'(2) = (¥} (2))nez of the equation
(8.9) LW¥v(z) = z¥v(2)

of the form
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(8.10) g nl(2)=2" (1 + Zfz)

normalized by the condition
(8.11) q;[‘]'(z) =1 & &.=0, s> 0.
The solution W¥(z) is called the wave solution.

Let the pseudo-difference operator L depend on times, L = L(¢t). One can check
that this pseudo-difference operator is a solution of the hierarchy equation (8.6) if
and only if the following equations hold:

(812) O (t,2) = LYW (8, 2) + hyn (£, 2) (8, 2)

where hm(tz) is a scalar (not a sequence) Laurent series in z. The comparison of the
right and left-hand sides shows that hm(t,z) has the form

(8.13) hm(t,z) = zm+ 0(z1).
From equation (8.7) it follows that
(8.14) Onhe(t,z) = Ophy(t, z)

Hence, there is a unique Laurent series h(tz) such that dmh(tz) = hm(tz) and
normalized by the condition h(0,z) = 1. Then equation (8.13) implies that

Z f,,,A,m + O —1)

(8 15) m=1
It is easy to see that the sequence W(tz) := Ww(t,z)e (t2) satlsﬁes the equations

(8.16) L(OW(t2) = 2¥(L2), (O — L)W (t,2) =0
The elements Wx(t,z) of the sequence lP(t 7) have the form

" (1 N Z Xe ) eT Xy tm™

8.3. Discrete N mKdV hierarchy. Consider sequences of functions g =

(8.17) y

of(gnT(xis as above. The operator))nez. There are two shift operators acting on them: T
= edxis the shift in the xTvariable, (and Tx. The actionTxg)n(x) =

gn(x+1).

Recall the generating equation (1.17), that can be written in the form
(8.18) HY =0,
where

(8.19) H=T - Tx+ v, v = (va(x))nez, is a difference operator in x

and n.
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The hierarchy, which we call the discrete N mKdV hierarchy, is the compatibility
condition of the positive part of the 2D Toda hierarchy, defined in (8.6), with the
generating equation (8.18). More precisely, the full set of equations of the discrete N
mKdV hierarchy are equations (8.6) and equations
(820) [0,,,} — Cr.H] = D.”, H, m 2 1

’

where Dmis some difference operator in x and n depending on m.

Remark. The meaning of (8.20) is that the operatorsam*‘aﬁ and H commute on
the space of solutions of equation (8.18). In the theory of integrable systems this type
of representation is called an L,A,B triple, see [DKN].

By division with remainder it is easy to see that any difference operator D in xand

n of degree M has a unique presentation

(8.21) D = DH + D1,

where D1 is a degree M difference operator in n only, i.e. D1 is a polynomial of degree
M in T with coefficients that are sequences of functions (gn(x)). Equation (8.20) says
that the corresponding operator D: equals zero. Therefore, for any given monic
difference operator Bin n,

M
B = TM 4 ZbSTI‘--;’f.s
(8.22) po )

the equation

(8.23) [0m—- B,H] = DH

with some D is a system of M+1 equations on M+1 unknown coefficients bs,..., by and
v. The first M of them are difference equations. Unlike in the differential case, where
the corresponding equations allow us to express the coefficients b;,..,bu as the
differential polynomials in v and get a well-defined system of equations for the
coefficients of H only, in the difference case the reconstruction of by,....bmin terms of v
requires some additional assumptions, see more on that below.

Equations (8.6) and (8.20) is a system of equations on the coefficients of the
pseudo-difference operator L and the sequence v. These equations can be written
more explicitly following the argument identical to the one in the proof of equation
(5.66) in [K8]. Namely, let

(824) Fm:= reSTLm, Fm= (Fm,n)nEZ.

Lemma 8.1. The system consisting of equations (8.6) and (8.20) is equivalent to
the system consisting of equations (8.6) and equations
(825) 0}::,(1“ Un (T)) = F,,,_-,,_(ilf) - Fm.‘n(ﬂ‘ + 1) 5 m =z 1
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8.4. Remark. Notice again that the system of equations (8.25) is not a closed
system with respect to v(x) since the right-hand sides are expressed in terms of the
operator L.

A possible approach to eliminate L from equations (8.25) is as follows. Having an
arbitrary N-periodic v(x) determine a family of solutions (x,z) of equation the Hy =
0. Then L is uniquely determined from the equation Ly(x,z) = zy(x,z). Put that L into
(8.25) and obtain a system of equations on v(x) only. Such an approach works well in
similar situations but not in this one since the desired family of solutions ¥(x,z) to
equation Hy = 0 is not unique.

Below we explain a construction of (x,z) from v(x) and indicate why 1(x,z) is not
unique. That fails this attempt to eliminate L from equations (8.25). The problem of

elimination of L from (8.25) deserves further analysis.

Lemma 8.2. Let v = (va(x))nez be any N-periodic sequence of functions, va(x) =
vn+N(X). Then there is a formal solution ¥ = (n(x,2))nez of equation
(1.17),
(8.26) Hyp=0

with ¥n(x,2) of the form

oo
Pp(x,z) =2"(2+1)° (1 -+ Zgn_s(ﬁp)z-ﬁ)
(8.27) i
coefficients

(828) gn,s(X) = fn+N,s(X).

Proof. The substitution of (8.27) into (8.26) gives a system of equations for the
unknown coefficients &s(x) in (8.27)

(8.29) (Ti- T)és1=—(v+ T, ie,

with periodic

(830) fn,s+1(X+1)—fn+1,s+1(X) = —Vn(X)En,s(X)—fn,s(X‘f‘l), s=12,..

We prove the existence of N-periodic solutions of these equation by induction.
The induction starts with & = (é,0)nez and &no0 = 1 for all n. Suppose that &= (&) is
. .. Tn 1= E{V—l TN —i—1i
known and is N-periodic. Let us apply the operator /W - i=0 tw to both
sides of (8.29). Using the periodicity of &and v

we get the equation

(8.31) (TN = 1)&s+1= TN(Txés - V).
Invert the operator TxV -1,
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(I o
i=1 .

(8.32) (
Then the N-periodic solutions of (8.29) can be recurrently defined by the formula
(8.33) fop1 = (TN — 1) " TN(TE, —v)

The lemma is proved.

The choice of (Tx¥¥ - 1)-1is not unique. It can be replaced by

T )= YT
(8.34) ( i=0 .

It is easy to see that for any formal solution ¥(x,z) of (8.26) of the form (8.27)
there is a unique pseudo-difference operator L such that

(8.35) Ly(xz) = z¢(x,2).

Hence any choice of such a 1(x,z) makes the discrete N-periodic mKdV equations a
well-defined system of equations for the functions (va(x))nez only.

Notice that if a sequence (via(x)) is not an arbitrary N-periodic sequence of
functions, but a sequence defined by formula (4.3) with (yn(x)) satisfying the Bethe
ansatz equations, then Theorem 4.2 gives us another way to construct the family of
solutions Y (x,z) to equation Hi(x,z) = 0. In that case by constructing L from (8.35) we

may eliminate L from (8.25) and then solve the resulting equations on (va(x)) only.

8.5. Solutions of the discrete N mKdV hierarchy from solutions of the Bethe
ansatz equations. Let y = (yn(x)) be an N-periodic sequence of polynomials
representing a solution of the Bethe ansatz equations. By Theorems 7.4 and 7.9 we
can extend y to a family y(t) = (yn(xt)). Consider the corresponding solution of the
generating problem (Ws(x,t2)),

n(,t, 2) = 2" (1 + Zfs(r t)z_”) Qa,t, 2)
(8.36) Wy s=1 .

This solution satisfies the hierarchy of linear equations (6.5). E?quations (6.4) identify

the difference operators Dm in (6.5) with the operators ~+. Hence we have the
following theorem.

Theorem 8.3. The N-periodic sequence (va(x,t)) defined in terms of y(t) by
(4.3) is a solution the discrete N mKdV hierarchy.
8.6. Remark on discrete Miura opers. Denote by L(z), V (x) the N xNmatrices
L(z) = Esyi+FEso+-+Exn-1+2VEin
(8.37) V(.T.) = M (:1?)E1‘1 + -+ ?,’.N*(II?)E,\r_JN' ,

s
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where v1(x),..,vn(x) are some given functions of x. The first order linear difference
operator

(8.38) T-L-V

is called a discrete Miura oper, cf. [MV3]. Assume that (ya(x))nez is an N-periodic
sequence of polynomials representing a solution of the Bethe ansatz equations (2.1),
yn+n(X) = yn(x). Consider the corresponding N-periodic sequence (va(x)) defined by
formula (4.3) and the N-periodic sequence of Baker-AKkhieser functions
(Wn(x,2))nezgiven by Theorem 4.2, Wy:n(x,z) = z8N%¥4(x,z). Consider the N column vector

W(x,z) with coordinates W1(x,2),..., ¥n(xz). Then

(8.39) (Tx-L(2) - V(x))¥(x2z) =0.

For example, if N = 3, then

\Ijl U1 (.T) 0 273 ‘;[11
Uy [(x+1,2) = 1 vo(x) 0 Uy (2, 2)
Wy 0 1 va(x) ) \ W3

Our study in this paper of periodic sequences of (yn(x))nez, (Wn(x,2))nezis the study of
the difference equation (8.39).

The discrete Miura opers are discrete analogs of differential Miura opers, which
are the first order differential operators of the form
d

— —A-V.
(8.40) dx

These differential operators play an important role in the theory of the N mKdV
hierarchy, see for example [DS,VWr].

9. Combinatorial data

In this section we follow Section 6 in [VWr] and review some combinatorial data,
which will be used in Section 10 to describe Baker-Akhieser functions of points of an
infinite-dimensional Grassmannian.

9.1. Subsets of virtual cardinal zero. By a partition we mean an infinite
sequence of nonnegative integers)\ =(ho =AM = ‘) such that all except a finite
number of the A;are zero. The number! Al = >_; Ai will be called the weight of A.

Following [SW], we say that a subset S = {so < s1<s2<..} € Zis of virtual cardinal

zero, if sj=j for all sufficiently large j. If n is such that s;=j for all j > n, then we say that
Sis of depth n.
If S is of depth n, then it is also of depth n + 1.

Lemma 9.1 ([SW]). There is a one to one correspondence between elements of S
and partitions, given by § & A where
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Ai=1-si.

For a subset S = {so < s1<s2<..} C Zand an integer k € Z we denote by S + k the

subset {so+ k<si+ k<s2+k<..} CZ

Let S be a subset of virtual cardinal zero. Let A = {as,..,ar} € Z be a finite subset of
distinct integers.

Lemma 9.2 ([VWr]). If {ay,..,ar}n(S +k) = @, then {ay,...,ax}U(S +k) is a subset of
virtual cardinal zero.

9.2. KdV subsets. Fix an integer N > 1. We say that a subset S of virtual cardinal

zero is a KdV subset if S + N c S. For example, for any N > 1,

$9={0,1,2,..}

is a KdV subset.
Lemma 9.3 ([VWr]). Let S be a KdV subset. Then there exists a unique N-element
subset A ={ai< - <an} € ZsuchthatS=AU (S+ N).

The subset 4 of the Lemma 9.3 will be called the leading term of S.

The leading term A uniquely determines the KdV subset S, since S is the union of
N non-intersecting arithmetic progressions {a;ai+N,ai+2N,...},i=1,..,N. Let Sbe a KdV

subset with leading term A. For any a € A the subset
(9.1) Slal={a+1-N}U(S+1)

is a KdV subset with leading term A[a] = (A + 1) U {a + 1 - N} - {a + 1}. The subset S[a]

will be called the mutation of the KdV subset S at a € A.

Lemma 9.4 ([VWr]).
(i) LetSibeaKdV subsetwith leading term A. Let Sz be a KdV subset such that

S1+ 1 c S2. Then S2is the mutation of S1at some element a € A.

(ii) Any KdV subset S can be transformed to the KdV subset S? by a sequence of
mutations.
(iii) A subsetA ={a1< -+ <an} is the leading term of a KdV subset if and only if

equation

al N(N —1)
> - M
i=1 2

9.2)
holds true and ai - gjis not divisible by N for any? 7 J.
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9.3. mKdV tuples of subsets. We say that an N-tuple S = (51,...,.Sv) of KdV subsets
is an mKdV tuple of subsets if Si+1 c Si.1 for all i, in particular,

Sv+1c S

For example, for any N, the N-tuple
Se=(5%,.,59)

is an mKdV tuple of subsets.
If S = (Sy,...,Sn) is an mKdV tuple, then (S;Si1,...,Sn, 51,52,...,Si-1) is an mKdV tuple of
subsets for any i.

Let S be a KdV subset with leading term A = {a1 < -+ < an}. Let o be an element of

the permutation group Xn. Define an N-tuple Sso = (S3,...,.Sv), where

(9.3) Si= } ) ] {as(1y +i N,as(2) +i
LSN —_— A U (-5 + AN) — S IV,...,aa(i) +i N}+(S +i),

In particular,

Lemma 9.5 ([VWTr]).

(i) The N-tuple Sscis an mKdV tuple.
(ii) Every mKdV tuple is of the form Sso for some KdV subset S and some
element o € Zn.
9.4. Mutations of mKdV tuples.

Lemma 9.6 ([VWr]). Let S = (S4,....Snv) be an mKdV tuple. Then for any i = 1,...,N,
there exists a unique mKdV tuple

(94) SO = (Sl,...,Si—l,SNi,Si+1,...,SN) which differs from S at the i-th

position only.

The mKdV tuple SO will be called the mutation of the mKdV tuple S at the i-th
position. Denote byw; : S+ S the mutation map.

Let\'s A’ be the partitions corresponding to the KdV subsets S;, 57, respectively.
The mutationw;: : S — S will be called degree decreasing if |X"i| < |Ail.

Theorem 9.7 ([VWr]). Any mKdV tuple S can be transformed to the mKdV tuple S?
= (59,..,59) by a sequence of degree decreasing mutations.
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10. Tau-functions and Baker-Akhieser functions

In this section we follow Section 7 in [VWTr] although we define the taufunctions
as discrete Wronskians while in [VWr] the standard Wronskians are used. The tau-
functions in this paper are different from the tau-functions in [VWTr].

10.1. Remarks on the construction of Section 7.2. In Section 10 below we
assign tau-functions and Baker-Akhieser functions to vector subspaces of an infinite
dimensional vector space. The assignment is based on the construction of Section 7.2.
We formulate two remarks on the construction.

In Section 7.4 starting from an (v + N) x (D + 1)-matrix
A = {ak}, k=1,..,N+v, j=0,.,D,

we constructed the functions ya(x,t), Yn(x,t,z) for n = 0,..,N.

Choose n, 0 n N.Consider the (n + v) x D-matrix A(™ formed by the first n + v rows
of the matrix A. Then the functions yn(xt) and u(x,t,z) are determined by formulas
(7.26) and (7.28) in terms of the matrix A™ only.

Let B be a nondegenerate (n + v) x (n + v)-matrix. Let yu5(xt) and n,s(x t,z) be the
functions determined by formulas (7.26) and (7.28), respectively, in which the entries
of the matrix A(™ are replaced with the corresponding entires of the matrix BA(®. Then
YnB(xt) =yn(xt) and Yns(xtz) = Yn(xt,z). Thatis, the functions ys(xt) and Yn(x,t,z) are
determined by the (n + v)-dimensional vector space spanned by the first n+v rows of
the matrix A and do not depend on the choice of a basis in that space.

Consider the new (v + N + 1) x (D + 2)-matrix

A ={a"}, k=0,.,N+v, j=0,.D+1,
defined by the formulas
(10.1) ao;j = b, j=0,..D+1,
ako = 0, k=1,.,N+v,
ak = akj-1, j=1.,D+1

Apply the construction of Section 7.4 to the matrix A and construct the functions

V(xt) and ll)Nn(X,t,Z) forn=0,.,N.
Lemma 10.1. We have

(10.2) Yn(xt) = yn(x,t),
l,b~n(X,t,',Z) =z Yn(xt2), n=0,.,N.

Lemma 10.1 says that the functions yn(x,t) and ¥n(x,t,z), determined by the (n + v)-
dimensional vector space spanned by the first n + v rows of the matrix 4, do not change
up to multiplication of n(x,t,z) by z, if the (n + v)-dimensional vector space is extended
to the (n + v + 1)-dimensional vector space by formulas
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(10. 1)

10.2. Grassmannian Gro(H). For a Laurent polynomial
v=2 Uiz’ the number ord? = min{7 : v; # 0} will be called the order of v.

Following [SW], let H be the Hilbert space L2(S!) with orthonormal basis

{span ofzj}jez. Let{zj};<Ho+. We have the orthogonal decompositionbe the closure of
the span of {#?}iz0 and H_g = f.the closure of the@® H-.

We consider the set of all closed subspaces W c H such that
10.3. z4H.c W c z-9H+

for some q > 0. Such subspaces can be identified with subspaces W/z?H. of z-9H./zH..
We say that W is of virtual dimension zero if dimW/z9H. = q. Denote by Gro(H) the set
of all subspaces of virtual dimension zero.

Any W € Gro(H) has a basis{vi Fiz0 consisting of Laurent polynomials. We may
assume that the numbers s;= ord v;form a strictly increasing sequence Sw ™~ {so<s1<s2
<. The assignmentW — Sw is well-defined. The subset Swwill be called the order
subset of W. The order subset Swis of virtual cardinal zero.

For W € Gro(H), a basis{p-f = Dizs, vji2'}jz0 of W is called special of depth n, if
it consists of Laurent polynomials such that vj= z/'for j > n and v;;= 0 if
i>nand j <n,

1f{v; }i>0is a basis of depth n, then it is also a basis of depth n + 1.

10.3. Points in Gro(H) and finite-dimensional spaces of polynomials in x,t.
Let S = {so < s1<...} be a set of virtual cardinal zero of depth n. For

W € Gro(H) with order subset> 168 {7 = DXz, Vii?'}iz0pe 5 special basis of depth
n.

Introduce the n + 1-dimensional complex vector space Vwn of polynomials in x,t as
the space spanned by the polynomials fj»(x,t),j = 0,...,n, where
fj.'n (CI‘, t) = Z Ujn—i X‘f(T! t) ’ .] =0,...,n.
(10.4) i=0
We have deg«fi(x,t) =n - s,.

It is clear that the space Vw» does not depend on the choice of a special basis of W
with depth n.
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The same basis of depth n is also a basis of depth n+1. Then the space Vwu+1 is
spanned by the polynomials

n—s;

fj.u,+](il"sl) - Z ’L’J_,,_,'X-,'+](£I',L), J :U“"17L$

i=0
(105) fn.+1‘u.+] (.’1,‘. t) = X0 (.’I'._ t) )

Therefore, the n + 2-dimensional space Vwn+1 consists of all linear combinations g(x,t)
of polynomials yi(x,t) such that Ag(x,t) € Vun.

The space Vw2 is related to the space Vwu+1in a similar way, and so on. Thus, to a
space W € Gro(H) we assigned a sequence of spaces Vwn, Vwn+1, ..related by formulas
(10.4) and (10.5).

The construction in the opposite direction goes as follows. Let S be a set of virtual
cardinal zero. Let n be such that s;=j for all j > n. Let V be an n + 1dimensional complex
vector space spanned by linear combinations of polynomials yi(x,t), such that V has a

basis (fj (2, {‘))LU with degxfi(x,t) = n - s;. To this vector space V with such a basis

]),7&‘7."

fj.n (3:! f) = Z Vjn—i X‘i(:l:.‘ f) y J = U: EREA L)
(10.6) i=0

we assign Wy € Gro(H) with special basis {vitizo0of depth n, where
Uj = Z Uj_,‘_Z"‘

and vj= Z for all j > n. The set S is the order subset of Wy. We also have
VWv,n =V.
For W € Gro(H) with order subset S = {so < 51 <...} of depth n, we have W = Wvu..

(10.7) for j=0,.,n

10.4. Tau and Baker-Akhieser functions. Let W € Gro(H) have order subset S =
). — A
{so < s1<..} of depth n. Let Wi = Xz, vii#' }iz0pe special basis of W of depth n.

Consider the polynomials (/i (,))7=0 defined in (10.4). Define the tau-function of W
by the formula

(108) T"{'!('T‘ t) = W(fﬂ(ﬂft t}, te fn.(-l‘5 1[) ),

cf. [SW]. The tau-function is independent of the choice of n up to multiplication by a
nonzero number, see Lemma 10.1.

Let the order subset S = {so < 51 <...} corresponds to a partition A. Then

(10.9) Tw(x,t) = ax*l + (low order terms in x),

where a is a nonzero number independent of x,t.

Define the Baker-Akhieser function of W by the formula
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_ & M (8, 2
5 (2,1, 2) = Qo t, 2) S Mw (2:1:2)

W

(10.10) ' ' w (2, 1) )
T (2t 1 e
where the matrix “*w \*: 1 <) is defined as follows.
A rn
First we definean (n+ 1) x (n + 1)-matrixMW)(‘rs 4 by the formula
(1011) A’Il(’l”)i{(a‘t) = A(f)f'z\.(fl?.t). kF = U. , T,
) .
cf. (7.24). Define an (n+2)x(n+2)-matrixiuw (2,1, #), whose rows and columns are

labeled by indices 0,..,n + 1

TP, = M. ke=0...n

and entries —(n) ' _ are given by the
My e = 2t £=0,...,n+1

formulas: — 10.12
ﬂf‘E{;?‘“.nﬂ»] = A("""'l)fk(g;, f)_ F = {) P ( )

cf. formula (7.27).

Lemma 10.2. ‘
(i) Let ;= Xins; vii?' }iz0pe 5 special basis of W of depth n. Then the

F r,(”‘) - .
Baker-Akhieser functionVw’ (%t %) does not depend on the choice of the
special basis.
(i) If another number nis chosen such that s;=j for all/ > 7', then

;("’) . _ n’fn,;("-) -
(10.13) (2, 2) = 2" Ty (2,8 2),

Proof. The lemma follows from Lemma 10.1.

10.5. mKdV tuples of subspaces. Fix an integer N > 1. We say that a subspace W
€ Gro(H) is a KdV subspace if zNW c W.

For example, for any N the subspace H+is a KdV subspace.

Lemma 10.3 ([VWr]). Let W be a KdV subspace with order subset S. Then S is a
KdV subset.

We say that an N-tuple W = (Wh,..,Wn) of KdV subspaces is an mKdV tuple of
subspaces if zW;c Wi.1 for all i, in particular, zWy € Wi. Denote by Grmxkavthe set of all
mKdV tuples of subspaces.

For example, for any N the tuple W? = (H.,...,H+) is an mKdV tuple.

If W= (Wh,...,Wn) € Grmkav, then (Wi, Wiss,.., Wx, W1, Wa,..., Wi-1) € Grmkav for any i.

Let W= (Wj,..,Wn) € Grmkav. Let Sibe the order subset of Wiand S = (S3,...,Sv). Then

Sis an mKdV tuple of subsets.
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Let W be a KdV subspace with order subset S. Let A = {a1 < - < an} be the leading
term of S. Let v = (v1,..,vn) be a tuple of elements of W such that ordvi=aifor all i. Let o
€ Xn. Define an N-tuple Wwy,s = (Wh,..., Wn) of subspaces by the formula

(10.14) W, = (z"*Nv(,(l), z 7‘\‘11;,,(2), ey z':fN-U(,(,)) + 2'W,

in particular, W= zNW + span('”lr con) =W
Theorem 10.4 ([VWr]). The N-tuple Wwyo is an mKdV tuple of subspaces.

Moreover, every mKdV tuple of subspaces is of the form Wu,,s for suitable Wy,o.

Here is another description of mKdV tuples of subspaces.
Theorem 10.5 ([VWr]). Let W be a KdV subspace. Let z8N\/W = Vo Vic V2 C -+ C

Vn-1 < Vn= W be a complete flag of vector subspaces such that dimV;/Vi-1=1 for all i.

Set

(10.15) Wi = z-VV, i=1,..,N.

Then W = (Wh,.., Wn-1,Wn= W) is an mKdV tuple of subspaces. Moreover, every mKdV

tuple of subspaces is of this form.

Let Wbe a KdV subspace. It follows from Theorem 10.5 that the set of mKdV tuples
of subspaces with prescribed last term Wy= W is identified with the set of complete
flags in the N-dimensional complex vector space W/zNW/.

10.6. Relations between Baker-Akhieser functions. Let (W4s,..., Wh)
€ Grmkav. Let (twa(X,£),..., twn(x%,t)) and (Ywi(xt2),.... Y wn(x,t,2)) be the corresponding tau

and Baker-Akhieser functions.

Recall that each Baker-Akhieser function twi(x,t) is defined up to multiplication by
amonomial zm, see Lemma 10.2. A Baker-Akhieser function with a choice of this factor
will be called a graded Baker-Akhieser function of Wi.

Theorem 10.6. There exist graded Baker-Akhieser functions Ywi(x,t,2), ..., Yww(x,£,2)
such that
(10.16) Yw, ,(z,t,2) = Yw,(z+ 11, 2)
Tw, (2, t) yw,_, (2 4+ 1,1)
yw, (x + 1,8) yw,_, (2,1)

Pw, (x,t, 2)

fori=2,..,N, and

01 P bwe(tz) = dw(e+1n2)
Tw, (2, 0) ywy (2 + 1, 1)
yw, (2 + 1,0) ywy (2, 1)

Yw, (2,1, 2)
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Denote yn(x,t) := Twwvna(xt), n = 1,..,N, and extend this sequence by periodicity,
Ynn(x,t) = yau(x,t) for all values of n € Z. Denote Yn(x,t,2) := Ywnra(xt2), n = 1,..,N, and
extend this sequence by periodicity, Yw+n(x,t2) = zMpn(xt,z) for all values of n € Z
Introduce the sequence (va(x,t))nez by formula

. Yn (2, 8) Ynia (z + 1, 1)

v, (2, 1)

(10.18) YT+ 1) Yuga (1),
see (4.3).
Corollary 10.7. For any fixed ¢, the functions (va(x,t))nezand

(¥n(x,t,2))nez satisfy relations (4.2).

Proof of Theorem 10.6. Since the tuple (W2, Ws,..,Wn, W1) is also an mKdV tuple, it is
enough to prove (10.16) for i = N only.

By Theorem 10.4 the pair Wx-1, Wy has the following form. Let S ~ {so < s1<...} be

the order subset of Wn. Let A = {a1 < -+ < an} be the leading term of S. Choose one

element a € A.

Let S be of depth n. Let {vj = Xz, vii?' }iz0 pe special basis of W of depth n.
Let® :]E\'} WiZ be the element of the basis with ordw = a. Then Wy-1is the space with
basist?' ~" w}U{zv;};>0, This basis of Wa-1is a basis of depth n + 1.

The tau and Baker-Akhieser functions of Wy are defined in terms of the basis
{vi}iz0of depth n by polynomials fjx(x,t),j = 0,..,n, see formula (10.4).

The tau and Baker-Akhieser functions of Wy-1are defined in terms of its basis
{z"7"w}U{2v;},20 of depth n+1 by the same polynomials fiu(x), j = 0,..,n,
and one additional polynomial fu+1(x,t) corresponding to the basis element z1-Nw,

Fosr(@,0) =D wnpn—ixi(z, 1)

Now the functions twu-i, Tww-1, Yww-1,Pwn-1satisfy (10.16) for i = N by Theorem 7.4.

10.7. Generation of new mKdV tuples of subspaces. Let W = (W,...,
...Wn) € Grmkav. By Theorem 10.5, the tuple W is determined by a flag

ZNWy=Voc Vic V2c - Cc Vy-1C€ Wh
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The quotient V2/Vois two-dimensional. Any line V~1/Vo in V2/Vo determines a an mKdV

tupleflag zvWn = Vo Wc V1 € V2 C «-- € Vn-1 € Wh, which in its turn determines™ =
z1-NV"1. Thus we get

= (W1, Wa,.,Wn) with W1
a family of mKdV tuples of subspaces parameterized by points of the projective line
P(V2/Vo). The new tuples are parametrized by points of the affine line A = P(V2/Vo) -
{V1/Vo}. We get a map X(: A - Grmxav which sends a € A to the corresponding mKdV
tuple W(a) = (W™1(a), Wa,..., Wn). This map will be called the generation of mKdV tuples
from the tuple W in the first direction.

Similarly, for any i = 2,..,N, we construct a map X®: A = Grmkav, where

tupleA = PW(Vi+1/Vi-1) - {Vi/V'i-(a1}),.., Wwhich sendsw). This map will be called thea
€ A to the corresponding mKdVgeneration

0(a) = (W1,..,Wiof mKdV tuples of subspaces from the tuple W
in the i-th direction.

We say that the generation in the i-th direction is degree increasing if for any a €
A, we have degx Twa)(xt) > degxTw(x,t).

The tau-function 'wi«) depends on a linearly in the following sense. Let {vitiz1

be a basis of Vi-1. Let vo € Vibe such that{?i }i>0is a basis of V. Let V0 € Vis1be such that
{V"0,vo,v1,v2,...} is a basis of Vi+1. Then the points of A =

Presponds to the line generated by the subspace(Vi+1/Vi-1)-{Vi/Vi-1} are parametrized

by complex numbersV~i(¢) with basis {v"co. A number+cvo,v1,vzc...cor-},

This c is an affine coordinate on A. Calculating the tau-function of the subspace W'i(c)

= zi-NV"i(c) with respect to the basis {z-¥(V"o + cvo),z"Nv1,z-Mv2...} we get the formula

(10.19) Twriey = Twrico) + cTwn.
Theorem 10.8. For the generation in the i-th direction, the tau-functions of the

subspaces WN,-(C), Wi, Wi-1, W1 satisfy the equation

(10.20) W(rw,(z,1), Tﬁyi({.)(w:t )) = const Twei(x, ) Twia(x + 1,8),

where const is a number independent of
X, t.
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Proof. The proof of this theorem is word by word the same as the proof of
Theorems 6.10 and 7.10 in [VWTr], see also the proof of Theorem 10.6. Define an
infinite N-periodic sequence of polynomials (yu(x,t))sez by the formula

(10.21) ya(xt) := Twa(x,£).

Corollary 10.9. For any mKdV tuple W = (Wh4,..,Wx) and any fixed ¢, the sequence

(¥n(x,t))nez of polynomials in x is fertile.

Remark. Theorem 10.8 says that the generation of mKdV tuples in the i-th
direction from the tuple W corresponds to the generation of tuples of polynomials in
the i-th direction from the tuple (zwi(xt),..,Twn(xt)), where the latter generation
procedure is described in Section 3.2. In other words, the two generation procedure
and the functor, which assigns to a point of Gro(H) its tau-function, commute.

10.8. Transitivity of the generation procedure.

Theorem 10.10 ([VWTr]). Any mKdV tuple W € Grmkav can be obtained from the

mKdV tuple W% = (H.,..,H+) by a sequence of degree increasing generations.

Combining this theorem and Theorem 3.4 we obtain the following corollary.

Corollary 10.11. If a tuple (y1(x),...yn(x)) represents a solution of the Bethe ansatz
equations (2.1), then there exists an mKdV tuple of subspaces
(Why,...,... Wn) such that

(10.22) y1(x),---YN(x)) = (Twi(x,0),..., Twn(x,0)).

In particular, the tuple (y1(x),...yn(x)) can included into the family (tw1(x,£), ..., Twn(x,t))
of tuples depending on ¢, and then extended to the sequences of functions (va(x,t))nez
and (Yn(x,t,z))nez, as explained in Corollary 10.7, and those sequences (va(x,t))nez and
(n(x,t,z))nez give a solution of the generating linear problem equation (4.2) depending

on t as stated in Corollary 10.7.
10.9. Commuting flows on Gro(H). For a subspace W € Gro(H), the subspace
(10.23) W(t) = eZEa bW

is a well-defined subspace in Gro(H). Given W, the space W(t) depends only on finitely
many of ty,tz,.... This construction gives us a family of commuting flows on Gro(H) with
times ty,t2,.... We will call them the discrete mKdV flows.

The discrete mKdV flows on Gro(H) induce a family of commuting flows on the
space of N-tuples (twi(x,0),....ywn(x0)), representing solutions of the Bethe ansatz
equations (2.1). The construction goes as follows.

Let (Wh,...,Wn) € Gro(H). Let (twi(x,t),...ywn(x,t)) be the collection of tau-functions
assigned to (Whi,..,Wn) in Section 10.4. The collection of polynomials (tw:(x,0), ...,
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Twi(x,0)) in x will be called the tuple of reduced tau-functions of (W4,.., Wn). When the
tuple (W4,.., Wn) becomes dependent on ¢t we obtain a family of tuples of reduced tau-
functions (twi(s(x,0),..., Twn(x,0)). Thus we obtain a family of commuting flows on the
space of tuples of reduced tau-functions, which will also be called the discrete mKdV
flows.

Lemma 10.12. For any (Wh,..., Wn) € Gro(H) we have

(10.24) (tw19(%,0),..., twn(n (%,0)) = (twa(x,t),...,. Twn(%,£)).

11. Appendix

After this article had been finished, the authors decided, for the sake of
completeness, to revisit the results of the work [VWr] and present them in a new form,
analogous to Theorem 7.10.

Recall, that in [VWTr] a family of commuting flows acting on the space of

constructed and identified with the flows of the N mKdV integrable hierarchy.
solutions of the Bethe ansatz equations (1.1) for the affine Lie algebra slywas

In terms of the theory of finite dimensional integrable systems of particles the
corresponding result is as follows.

Theorem 11.1. Let (yn(x))nez be an N-periodic sequence of polynomials of degrees
(kn) representing a solution of the Bethe ansatz equations (1.1) for the affine Lie

algebra slv. Then the correspondence

(111 @) — @) where

Ky 1 Krnt1 1
(n) , : ;
(D D e O R Dy o 7= HL A SRR
Ve u; T — U“j, =1 W =~ T Uy

is an embedding of the space of solutions of the Bethe ansatz equations into the
product of N phase spaces of the ki-particle CM systems, n = 1,..,N.

The image of this map is invariant under the hierarchy of the CM systems, acting
diagonally on the product of the phase spaces.

The proof of the theorem goes along the same lines as the proof of Theorem 7.10.
Its starting point is the following linear generating problem (compare it with Theorem
4.2).

Test

Theorem 11.2. The equations

(11.2) 0xtpn(x) = Yn+1(X) + va(x)Pn(x), n € Z, with the potential
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vp(2) = 0, 1n M)
(11.3) (2) =0, (y”_l(l_)

have a meromorphic in x solution 1a(x), with simple poles at zeros at y»-1(x), if and
only if equations (1.1) hold. Moreover, if (1.1) hold, then there exists a family of
solutions Ws(x,2), z € C, of (11.2) of the form

1
n(z,2) =2"e™ [ 1+ Z FRIE Pl I ne
(11.4) y =l ,

whereés™ (%) are rational functions in x such that all the functions ¥n—1 (@)™ (2)are
holomorphic in x.
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