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Abstract. We consider the space of solutions of the Bethe ansatz equations 
 

of the slN XXX quantum integrable model, associated with the trivial repre- 
 sentation of slN. We construct a family of commuting flows on this space 

and identify the flows with the flows of coherent rational Ruijesenaars-Schneider 

systems. For that we develop in full generality the spectral transform for the rational 

Ruijesenaars-Schneider system. 
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1. Introduction 

In the Gaudin model associated with a Lie algebra one considers a commutative 

family of linear operators (Hamiltonians) acting on a tensor product of 

representations of the Lie algebra. To find common eigenvectors of Hamiltonians one 

considers a suitable system of Bethe ansatz equations, and then assigns an 
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eigenvector to each solution of the system. That construction is called the Bethe 

ansatz method. 
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It turns out that the set of solutions of the Bethe ansatz equations is 

an interesting object. For example, for the affine Lie algebra slN and its trivial 

representation the associated system of the Bethe ansatz equations has the 

form 

(1.1) , 

where n = 1,...,N and i = 1,...,kn. The system itself depends on the choice of nonnegative 

integers k1,...,kN, which must satisfy the equation 

(1.2) . 

Here we adopt the notations kN+n = kn and u(iN+n) = u(in) for all i,n. The set of solutions of 

such a system forms one cell or an empty set. In [VWr] a family of commuting flows, 

acting on such a cell, was constructed. The family of flows was identified with the 

flows of the N mKdV integrable hierarchy. 

The initial goal of this paper was to extend these results to the sl  XXX this case 

the Bethe ansatz equations take the form 

quantum integrable model, associated with the trivial representation ofslN. In 

, 

where n = 1,...,N, i = 1,...,kn, and the parameters k1,...,kN still satisfy equation (1.2). 

It turns out that we can do much more than just simple identification with a 

proper discrete analog of the N mKdV hierarchy. Roughly speaking we explicitly solve 

equations (1.3) using interplay with the theory of finite-dimensional integrable 

systems of particles, which are known to be equivalent to the theory of rational 

solutions of basic hierarchies considered in the framework of the theory of integrable 

partial differential, differential-difference and difference-difference equations. One 

way to write any solution of the Bethe ansatz 

equations (1.3) is to start with a suitable matrix 

A and write the polynomials ( (x) = ki (x u(n)))N as discrete Wronskians of some auxiliary 
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polynomials in x associated with A, see Theorem 7.9. Another way to write any 

solution is to start with a suitable flag in some infinite-dimensional vector space and 

write these polynomials (   as discrete Wronskians of some auxiliary 

polynomials in x associated with the flag, see Corollary 10.11. 

In the remarkable paper [AMM] it was observed that the dynamics of poles of the 

elliptic (rational or trigonometric) solutions of the Korteweg–de Vries equation (KdV) 

can be described in terms of commuting flows of the elliptic (rational or 

trigonometric) Calogero-Moser (CM) system restricted to the space of stationary 

points of the CM system. In [K3] and [K6] this constrained correspondence between 

the theory of the elliptic CM system and the theory of the elliptic solutions of the KdV 

equation was extended to a similar construction of solutions of the KP equation in 

terms of the flows of the Calogero-Moser system. Moreover it was discovered for the 

first time that this correspondence of solutions can be established at the level of 

auxiliary linear problems. 

In the rational case, which we consider in this paper, the corresponding result is 

as follows: the linear equation 

(1.4) (∂t − ∂x2 + u(x,t))ψ(x,t) = 0 

with a rational in x potential u(x,t) vanishing as infinity, u(x,t) → 0 as x → ∞, has a 

rational in x solution if and only if the potential u(x,t) is of the form 

(1.5) , 

and its poles ui(t) (a.k.a. the zeros of the polynomial y(x,t)) as functions of t satisfy the 

equations of motion of the rational CM system. 

Recall, that the rational CM system with k particles is a Hamiltonian system with 

coordinates u = (u1,...,uk), momentums p = (p1,...,pk), the canonical Poisson brackets 

{ui,pj} = δij, and the Hamiltonian 

(1.6)  . 

The corresponding equations of motion, 

(1.7) ¨ 

admit the Lax presentation L˙ = [M,L] with 

(1.8) . 

The commuting flows, generated by the integrals Hk = k−1 trLk, are called the hierarchy 

of the rational CM system. Note that the Hamiltonian H equals H2. It was shown in [KZ] 

that the linear equation 

(1.9) ∂tψ(x,t) = ψ(x + 1,t) + w(x,t)ψ(x,t) 
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with 

(1.10) , 

where y(x,t) is a polynomial in x, has a solution rational in x if and only if the zeros 

ui(t) of y(x,t) satisfy the equations of motion of the rational Ruijesenaars-Schneider 

(RS) system. 

The rational RS system with k particles is a Hamiltonian system with coordinates 

u = (u1,...,uk), momentums p = (p1,...,pk), the canonical Poisson brackets 

{ui,pj} = δij, and the Hamiltonian 

(1.11)  

where 

(1.12)  . 

It is a completely integrable Hamiltonian system, whose equations of motion, 

(1.13) u˙i = γi, i = 1,...,k, 

(1.14)  , 

admit the Lax representation L˙ = [M,L], where 

(1.15)  

(1.16) . 

The functions Hm = trLm are integrals of the system. Note that the Hamiltonian H of the 

system equals H1. These integrals are in involution, and hence generate commuting 

flows called the rational RS hierarchy. 

A scheme, in which an integrable system of particles arises as a condition for a 

linear equation with elliptic (trigonometric, rational) coefficients to have a double 

Bloch solution (trigonometric, rational), was called in [KZ] a generating linear 

problems scheme. 

The next step had been done in [KLWZ]. There the system of linear equations 

(1.17) ψn+1(x) = ψn(x + 1) − vn(x)ψn(x), n ∈ Z, 

with respect to unknown functions (ψn(x))n∈Z was considered with 

 , 

where (yn(x))n∈Z is a given sequence of polynomials. It was shown that system (1.17) 

has a solution (ψn(x))n∈Z rational in x with the poles of ψn(x) only at the zeros of yn(x), 

if and only if the zeros ( ) satisfy the Bethe ansatz equation (1.3). 
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We stress that in [KLWZ] the Bethe ansatz equations were considered for 

sequences of polynomials without the periodicity assumption that yn(x) = yn+N(x) for 

some N. 

Remark. In [K7] and [K8] all three linear problems with y(x,t) being an entire 

function in x were used for the proof of the remarkable Welter’s trisecant conjecture 

on the characterization of the Jacobians of smooth algebraic curves. 

In this paper we apply these ideas to relate solutions of the N-periodic Bethe 

ansatz equations (1.3) with the equations of motion in the N-tuple of coherent 

rational Ruijesenaars-Schneider systems with respectively k1,...,kN particles. 

The paper is organized as follows. In Section 2 we reformulate the Bethe ansatz 

equations (1.3) and prove formula (1.2). In Section 3 we describe the procedure of 

generation of new solutions of the system of Bethe ansatz equations, if one solution 

is given. Theorem 3.4 says that all solutions are obtained from the single solution, 

namely, from the solution corresponding to the case of k1 = ··· = kN = 0. 

In Section 4 we start using the generating linear problem (1.17) and its interplay 

with two other generating linear problems. Having a solution of the Bethe ansatz 

equations we construct a family of solutions (ψn(x,z)) of (1.17) parameterized by a 

complex parameter z, see Theorem 4.2. The construction reveals an unexpected 

connection with the theory of the RS system. Namely, one of the steps in the proof of 

Theorem 4.2 can be seen as a map from the space of N-tuples of polynomials (yn(x)) 

representing solutions of the Bethe ansatz equations to the product of N phase spaces 

of the rational RS systems with respectively k1,...,kN particles, i.e. as the map 

(1.18) (  

where  are defined in (4.4). On each of these phase spaces we define commuting 

flows with some times t = (t1,t2,...). That definition induces commuting flows with 

times t on the product of the phase spaces. One of our main results is the statement 

that the image of this map is invariant under these commuting flows on the product 

of the phase spaces, see Theorem 7.10. 

In Section 5 we consider the functions (ψn(x,z)), constructed in Theorem 4.2, and 

study their analytic properties with respect to the spectral parameter z. In this way 

we identify the functions (ψn(x,z)) with a particular case of more general notion of the 

so-called Baker-Akhiezer functions. The results of Section 5 can be seen as a 

construction of the direct spectral transform for the rational RS system. To our 

surprise we were unable to find in the literature such a construction in its full 

generality. 

The analogous result for the rational CM system was obtained in [W]. Our 

construction of the direct spectral transform is different from the one in [W]. It is pure 

algebraic and does not require the use of infinite dimensional Grassmanians, whose 

definition involves elements of real analysis, in particular, of the theory of Fredholm 

operators. 

In Section 6 we write equations for zeros of the polynomials obtained by the 

construction of the Baker-Akhiezer functions corresponding to the spectral data of 

the rational RS systems. 
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In Section 7.1 we identify the spectral data corresponding to solutions of the N-

periodic Bethe ansatz equations. The rest of Section 7 is on the inverse spectral 

transform. First we construct a family of solutions of the generating linear problem 

starting from a certain matrix A, see Theorem 7.4. That is done without any 

Nperiodicity assumptions. Then in Section 7.6 we describe the matrices A that give N-

periodic answers. Theorem 7.9 can be seen as one of our main results. 

For completeness in Section 8 we briefly present the integrable hierarchy, whose 

rational solutions describe the commuting flows on the space of solutions of the Bethe 

ansatz equations. We call it the discrete N mKdV hierarchy. Section 8.6 contains a short 

remark of discrete Miura opers. 

Section 9 we discuss combinatorial data that will be used in Section 10. In Section 

10 we identify solutions of the Bethe ansatz equations with points of a suitable 

infinite dimensional Grassmannian. We introduce a family of commuting flows on the 

Grassmannian and identify the flows induced on the space of solutions of the Bethe 

ansatz equations with the flows of the discrete N mKdV hierarchy, introduced in 

Section 8. 

2. Incarnations of the Bethe ansatz equations 

2.1. Bethe ansatz equations. Let N > 2 be a positive integer,  

. Denote k := k1 + ··· + kN. Consider Ck with coordinates 

u collected into N groups, the n-th group consists of kn variables, 

. 

We adopt the notations kN+n = kn and u(iN+n) = u(in) for all i,n. 

The Bethe ansatz equations is the following system of k equations: 

, 

where n = 1,...,N, i = 1,...,kn. 

These are the Bethe ansatz equations associated with the XXX quantum 

intehighest weight. To study the associated Hamiltonians one assigns an eigenvector 

grable model of the affine Lie algebra slN and the single representation with zero 

of Hamiltonians to a solution of the Bethe ansatz equations. We will not discuss this 

topic in this paper. Different versions of the Bethe ansatz equations associated with 

Lie algebras see, for example in [OW,?MV2,MV3,MV4]. 

Remark. Equation (2.1) with N = 2 is the quasi-classical limit of the Bethe ansatz 

equations derived in [AL] for the Quantum Internal Long Wave model. 
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2.2. Polynomials representing a solution. Given u = (u(in)) ∈ Ck, introduce an N-

tuple of polynomials y = (y1(x), ..., yN(x)), 

(2.2) . 

We adopt the notations yN+n(x) = yn(x) for any n ∈ Z. Each polynomial is considered up 

to multiplication by a nonzero number. The N-tuple defines a point in the direct 

product (P(C[x]))N, where P(C[x]) is the projective space associated with C[x]. We say 

that the tuple y represents the point u. 

We say that an N-tuple of polynomials y = (y1(x), ..., yN(x)) is generic if for any n, 

the polynomial yn(x) has no common zeros with the polynomials yn(x+1), yn−1(x + 1), 

yn+1(x). Denote 

(2.3) , 

Lemma 2.1. Assume that an N-tuple of polynomials y = (y1(x), ..., yN(x)) is generic. 

Then each equation in (2.1) can be reformulated as one of the following equations: 

(2.4) yn−1(u(jn) + 1)yn(u(jn) − 1)yn+1(u(jn)) 

+yn−1(u(jn))yn(uj(n) + 1)yn+1(u(jn) − 1) = 0, 

(2.5) resx=ui(n) (Fn(x) + Fn(x − 1)) = 0, 

(2.6) res . 

 

An important corollary of (2.6) is 

Corollary 2.2. A generic N-tuple y represents a solution of the Bethe ansatz 

equations (2.1) if and only if the following equation holds: 

(2.7)  

This equation is a discrete version of “the new form” of the Bethe ansatz equations in 

the Gaudin model of an arbitrary Kac-Moody algebra, see [MSTV]. 

Proof. Equation (2.6) is equivalent to the condition that the function L(x) defined 

in (2.7) has no poles. Each of the function Ln(x) tends to 1 as x → ∞. Hence, L(x) = N. 

In its own turn Corollary 2.2 directly implies the following important statement. 

Consider the quadratic form 
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introduced in [MV3]. 

Corollary 2.3. If a generic N-tuple of polynomials (y1,...,yN) of degrees 

(k1,...,kN) represents a solution of the Bethe ansatz equations (2.1), then 

(2.8) Q(k1,...,kN) = 0. 

Proof. Expanding at infinity, we observe that 

+O(x−3). 

Corollary 2.4. If a generic N-tuple of polynomials (y1,...,yN) of degrees represents 

a solution of the Bethe ansatz equations (2.1), then 

1 ···

 N = 0.  

Remark. Equations (2.4), (2.5), (2.7) can be thought of as incarnations of the 

Bethe ansatz equations (2.1). 

3. Generation of solutions of Bethe ansatz equations 

3.1. Discrete Wronskian. For arbitrary functions f1(x),...,fm(x) introduces the 

discrete Wronskian by the formula: 

(3.1) . 

For example, 

 Denote

 
(3.2) 

. 

Then 

(3.3) . 

Lemma 3.1 ([?MV2]). We have 

(3.4) . 

Lemma 3.2 ([?MV2, Lemma 9.4]). For functions f1(x),...,fn(x), g1(x),g2(x) we have 

(3.5) 

. 
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3.2. Elementary generation. Recall that an N-tuple of polynomials y = (y1(x), ..., 

yN(x)) is called generic if for any n, the polynomial yn(x) has no common zeros with 

the polynomials yn(x + 1), yn−1(x + 1), yn+1(x). 

We say that an N-tuple of polynomials y = (y1(x), ..., yN(x)) is fertile, if for any n the 

first order difference equation 

(3.6)  with respect to 

˜yn(x) has a polynomial solution. 

If ˜yn(x) is a polynomial solution of (3.6), then all other polynomials solutions are 

of the form 

y˜n(x,c) = y˜n(x) + cyn(x) 

for c ∈ C. The tuples 

(3.7) y(n)(c) := (y1(x),...,y˜n(x,c),...,yN(x)) ∈ (P(C[x]))N form a one-parameter 

family. This family is called the generation of tuples from y in the n-th direction. A 

tuple of this family is called an immediate descendant of y in the n-th direction. 

For example, the N-tuple 

(3.8) y∅ = (1,...,1) 

of constant polynomials is fertile, and y∅,(n)(c) = (1,...,1,x + c,1...,1). 

It is convenient to think that y∅ represents a solution of the Bethe ansatz 

equations with k = 0, see (2.5). 

Theorem 3.3 ([?MV2], cf. [MV1]). 

(i) A generic tuple y = (y1,...,yN) represents a solution of the Bethe ansatz 

equations (2.1) if and only if y is fertile. 

(ii) Let y represent a solution of the Bethe ansatz equations (2.1), n ∈ {1,...,N}, 

and y(n)(c) an immediate descendant of y, then y(n)(c) is fertile for any c ∈ C. 

(iii) If y is generic and fertile, then for almost all values of the parameter c ∈ C 

the corresponding n-tuple y(n)(c) is generic. The exceptions form a finite set 

in C. 

3.3. Degree increasing generation. For n = 1,...,N, let kn = degyn. 

The polynomial ˜that the generation is degree increasingyn in (3.6) is of degree knif 

ork˜
nk˜>n =knk. In that case deg ˜n−1 + kn+1 + 1 −yknn. We say= k˜n for 

all c. 

If the generation is degree increasing, we will normalize the family (3.7) and 

construct a map Yy,n : C → (C[x])N as follows. First we multiply the polynomials y1,...,yN 

by numbers to make them monic. Then we choose a monic polynomial 
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yn,0(x) satisfying the equationkn in ˜yn, 0(x) equals zero. We define) = const 

yn−1(x + 1)yn+1(x) and such that the coefficient of x 

(3.9) y˜n(x,c) = yn,0(x) + cyn(x) 

and 

(3.10) 

. 

All polynomials of the tuple y(n)(c) are monic. 

3.4. Degree-transformations and generation of vectors of integers. For j = 

1,...,N, the degree-transformation 

 

corresponds to the shifted action of the affine reflection wj ∈ WAN−1, where WAN−1 is the 

affine Weyl group of type AN−1 and w1,...,wN are its standard generators, see Lemma 

3.11 in [MV1] for more detail. 

We take formula (3.11) as the definition of degree-transformations: 

(3.12) 

 
for j = 1,...,N. The degree-transformations act on arbitrary vectors (k1,...,kN). 

In this formula we consider the indices of the coordinates modulo N, that is, we 

have kN+j = kj for all j. 

We start with the vector 0) and a sequence J = (j1,j2,...,jm) of integers, 
1 . We apply the corresponding degree transformations to the vector  and 

obtain a sequence of vectors  

,..., 

(3.13) . 

We say that the vector  is generated from (0,...,0) in the direction of J. 

We call the sequence J degree increasing if for every i the transformation wji 

applied to  increases the ji-th coordinate. 

3.5. Multistep generation. Let J = (j1,...,jm) be a degree increasing sequence of 

integers. Starting from y∅ = (1,...,1) and J, we construct, by induction on m, a map 

Y J : Cm → (C[x])N. 

If J = ∅, the map Y ∅ is the map = 1 and J = (j1), the map 

Y (j1) : C → (C[x])N is given by formula (3.10). More precisely, 

, 
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where x + c stands at the j1-th position. By Theorem 3.3 all tuples in the image are 

fertile and almost all tuples are generic (in this example all tuples are generic). 

Assume that forJ we apply the generation procedure in theJ˜ = (j1,...,jm−1), the map 

YjJ˜mis already constructed. To-th direction to every tuple 

obtain Y of the image of Y J˜. More 

precisely, if 

(3.14) . 

Then 

(3.15) 

, 

see formula (3.9). The map Y J is called the generation of N-tuples from y∅ in the J-th 

direction. 

All tuples in the image of Y J are fertile and almost all tuples are generic. For any c 

∈ Cm the  -tuple Y J(c) consists of monic polynomials. The degree vector of this 

tuple equals kJ, see (3.13). 

The set of all tuples (y1,...,yN) ∈ (C[x])N obtained from y∅ = (1,...,1) by generations 

in all degree increasing directions will be called the population of N-tuples generated 

from y∅. 

3.6. Population generated from y∅. 

Theorem 3.4 ([MV4]). If an N-tuple of polynomials y = (y1,...,yN) with degree vector 

k represents a solution of the Bethe ansatz equations (2.1), then y is a point of the 

population generated from y∅ by degree increasing generations, that is, there exist a 

degree increasing sequence J = (j1,...,jm) and a point c ∈ Cm such that y = Y J(c). 

Moreover, for any other N-tuple y, representing a solution of the Bethe ansatz 
equations (2.1) and having the same degree vector k, there is a point  such that

 

By Theorem 3.4 the N-tuples y, representing solutions of the Bethe ansatz 
equations (2.1) with the same degree vector k, form one cell Cm. 
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The proof of Theorem 3.4 is word by word the same as the proof 
of [MV5, Theorem 3.8], although the generation procedure in [MV5] is slightly 
different from the generation procedure in this paper. The key point of the proof is 

the equality ) = 0, which is proved in Corollary 2.8 for our generation procedure 
and was proved in the proof of [MV5, Theorem 3.8]. See also the proof of [VW1, 

Theorem 6.4].  

Remark. The condition of fertility of an N-tuple y can be also thought of as another 

incarnation of the Bethe ansatz equations (2.1), see Theorem 3.3. 

4. Generating linear problem 

4.1. Non-periodic sequences of polynomials. In this section we consider 

sequences of polynomials y = (yn(x))n∈Z , not assuming that the sequences are N-

periodic. Let 

. 

The system of the Bethe ansatz equations in this case is the infinite system of 

equations: 

, 

where n ∈ Z, i = 1,...,kn. 

We say that the sequence y is generic if for any n the polynomial yn(x) has no 

common zeros with the polynomials yn(x + 1), yn−1(x + 1), yn+1(x). 

As in the periodic case the system of the Bethe ansatz equations (4.1) can be 

reformulated as the infinite system of equations (2.4), or equations (2.5), or equations 

(2.6). 

Remark. Let the degrees (kn)n∈Z of the polynomials (yn(x))n∈Z be all equal. Then for 

each n system (4.1) can be regarded as a system of equations for ( with (u(in)) 

and (u(in−1)) given. Hence, system (4.1) can be seen as a second order discrete time 

dynamical system. In such a form these equations were introduced in [NRK] as an 

integrable time-discretization of the Ruijesenaars-Schneider system, which in its turn 

was introduced as a relativistic analog of the Calogero-Moser (CM) system. 

In [KLWZ] for system (4.1) the discrete time Lax representation with a ”spectral 

parameter” was found with the help of a ”generating linear problem”, see Theorem 

6.1 in [KLWZ]. The Hamitonian approach for this system was developed in [K6]. 
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Notice that the case of all (kn)n∈Z being equal is not allowed in the periodic case 

by Corollary 2.4. This fact can be interpreted as the statement that the 

timediscretization of the Ruijesenaars-Schneider system has no periodic orbits. 

Given a generic sequence of polynomials y = (yn(x))n∈Z the associated generating 

linear problem is the infinite system of equations 

(4.2) ψn+1(x) = ψn(x + 1) − vn(x)ψn(x), n ∈ Z, 

with respect to the unknown sequence of functions ψ = (ψn(x))n∈Z with v = (vn(x)) 

given by the formulas 

(4.3)  . 

We say that a solution ψ = (ψn(x))n∈Z of system (4.2) is admissible if for any n the 

function yn(x)ψn(x) is holomorphic. Define the nonzero numbers 

(4.4)  , 

where i = 1,...,kn, and nonzero numbers 

(4.5) , 

where i = 1,...,kn+1. 

Lemma 4.1. The infinite system of equations 

(4.6) , 

is equivalent to the infinite system of equations (2.4).  

In its turn the property of the infinite system of equations (2.4) to have a solution 

y is equivalent to the property of y to represent a solution of the Bethe ansatz 

equations (4.1), see Lemma 2.1. 

Theorem 4.2. Let y = (yn(x))n∈Z be a generic sequence of polynomials. Then the 

system of equations (4.2) has an admissible solution ψ = (ψn(x))n∈Z if and only if y 

represents a solution of system (4.1). Moreover, if a generic sequence y represents a 

solution of system (4.1), then there exists a unique one-parameter family Ψ(z) = 

(Ψn(x,z)) of admissible solutions of system (4.2), which has the form 

(4.7) Ψ , 
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where  ) are rational functions in x such that all the functions  are 

holomorphic in x. 

Remark. The first statement of the theorem is an analog of Lemma 5.1 in [K8], 

and the second statement is a stronger version of Lemma 5.2 in [K8]. 

Remark. The equivalence in Theorem 4.2 of the existence of an admissible 

solution ψ of system (4.2) and the property of y to represent a solution of system (4.1) 

may be thought of as another incarnation of the Bethe ansatz equations. 

Let ψ be an admissible solution of the generating linear problem equa- 

tion (4.2). For any n ∈ Z and i = 1,...,kn, consider the Laurent expansion of ψn(x) at

, 

(4.8) . 

The comparison of the residues of the left and right-hand sides of equation (4.2) at 

1 and  gives us the equations 

(4.9) αi(n) = γi(n) ψn(u(in) − 1), (4.10) αj(n+1) 
= −ε(jn) ψn(u(jn+1)), 

respectively. We obtain the third set of equations 

(4.11) , 

by substituting x = u(jn+1) − 1 to equation (4.2) and taking into account that vn(u(jn+1) − 

1) = 0. Shifting the index (n,i) → (n + 1,j) in (4.9) we obtain 

(4.12) . 

Using (4.10), (4.11), (4.12) we obtain equations  = 0 for n ∈ Z and j = 

1,...,kn+1, which are equations (4.6). By Lemma 4.1 this means that the sequence y 

represents a solution of the Bethe ansatz equations (4.1). That proves the ”only if” 

part of the first statement of the theorem. 

Now the goal is to construct the family ψ(z) of admissible solutions of (4.2) 

assuming that y is generic and represents a solution of (4.1). The construction has 

two steps. First, we construct a certain sequence of functions ψ(z) by using the 

generic y, but not using the fact that y satisfies (4.1). Then we prove that ψ(z) has the 

form (4.7) and is a solution of (4.2), if y represents a solution of (4.1). 

Lemma 4.3. Let y be a generic sequence of polynomials. Then for n ∈ Z there exists 

a unique function ψn(x,z) of the form 
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(4.13)  

such that the function 

(4.14) ϕn(x,z) := ψn(x + 1,z) − vn(x)ψn(x,z) has no residues at 

1 for all i = 1,...,kn, 

(4.15) res . 

Remark. Notice that Ci(n)(z) are some functions in z. The proof shows that Ci(n)(z) 

are rational functions in z. 

Remark. Notice that ϕn(x,z) would be equal to ψn+1(x,z) if the sequence (ψn(x,z)) 

were a solution of the system of the generating linear problem equations 

(4. 2). 



254 IGOR KRICHEVER AND ALEXANDER VARCHENKO 

Proof. 

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 

By (4.13) the function ψn(x,z) is regular at x = u(in) − 1. We also 

have 

(4.16) res . 

Hence, equation (4.15) is equivalent to the equation 

(4.17) resx=ui(n) ψn(x,z) − γi(n) ψn(u(in) − 1,z) = 0. 

Let C(n)(z) be the kn-vector with coordinates ) appearing in (4.13). Let γ(n) be 

the kn-vector with coordinates . Let L(n)(z) be the kn ×kn-matrix with 

entries 

(4.18)  

Then the substitution of (4.13) into (4.17) gives an inhomogenous linear equation 

(4.19) L(n)(z)C(n)(z) = γ(n) 

with respect to C(n)(z). Indeed, the substitution gives us 

, 

which implies (4.19). It is clear that for generic z we have det  = 0 and 

equation (4.19) has a unique solution C(n)(z). The lemma is proved.  

Below we give a determinant formula for ψn(x,z). By Cramer’s rule we have 

(4.20) , 

where ) is the matrix obtained from L(n)(z) by replacing the i-th column by the 

vector γ(n). 

Define a (kn + 1) × (kn + 1) matrix ), whose rows and columns are labeled 

by indices 0,...,kn and entries are given by the formulas: 

(4.21)  
, 

Using the determinant expansion of  ) relative to the 0-th row we obtain the 

formula 
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(4.22)  . 

Lemma 4.4. If y represents a solution of the Bethe ansatz equations (4.1), then the 

sequence Ψ(z), constructed in Lemma 4.3, is an admissible solution of (4.2). 

By definition of ψn(x,z) and ϕn(x,z), the function 

Rn(x,z) := ϕn(x,z)z−n(1 + z)−x 

is a rational function of x with at most first order poles at the zeros of yn+1(x). Since 

vn(x) → 1 as x → ∞, we have Rn(x,z) → 1 + z − 1 = z as x → ∞. Hence, 

the function ϕn(x,z) has the form 

(4.23)  

with suitable functions  

Since the function ψn(x + 1,z) is regular at , it follows from (4.14) that 

(4.24) res . 

From the equation 1) = 0 it follows that 

(4.25) . 

Hence 

(4.26) res . 

Using equations (4.6) we rewrite this as 

(4.27) resx=ui(n+1) ϕn(x,z) − γi(n+1)ϕn(u(in+1) − 1,z) = 0. 

By Lemma 4.3 the function ψn+1(x,z) is uniquely determined by the equations 

(4.28) res . 

Hence ϕn(x,z) = ψn+1(x,z) and the lemma is proved.  

For any n ∈ Z, let qn(z) be the monic polynomial of minimal degree such that 

= 0 and the function  is a function in z holomorphic on C − {0}. 

Clearly the polynomial qn(z) does exist, it divides the polynomial detL(n)(z), and deg

. 

Lemma 4.5. The polynomial qn(z) does not depend on n ∈ Z. Proof. 

Equation (4.2) implies 
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(4.29)  

Given = 0, let dn be the multiplicity of the root z = ζ of the polynomial qn(x). We 

need to show that dn = dn+1. Clearly the inequality dn < dn+1 contradicts equation (4.29). 

Now we assume that dn > dn+1 and also will obtain a contradiction. Namely, consider 

the expansions 

, 

where the first equality is the Laurant expansion of  at z = ζ, and cn(x) = bxa 

+ O(xa−1) is the Laurent expansion of c(x) at x = ∞. Here a is a suitable integer and b a 

nonzero number. We also have vn(x) = 1 + O(x−1) as x → ∞. Considering the leading 

coefficients of these double expansions for each of the three summands in (4.29) we 

obtain the equation 0 = ζ + 1 − 1, which is impossible. The lemma is proved. 

The n-independent polynomial qn(z) will be denoted by q(z). Let κ be the degree 

of q(z). 

Introduce new functions 

(4.30) Ψ  

Clearly the sequence (Ψn(x,z)) is an admissible solution of (4.2) and 

(4.31) , 

where ) are rational functions of x with at most first order poles at the zeros of 

yn(x). Thus the sequence of functions (Ψn(x,z)) has the properties listed in 

Theorem 4.2. Theorem 4.2 is proved.  

4.2. Example. Consider the sequence y∅ = (yn(x))n∈Z, where yn(x) = 1 for all n, see 

(3.8). As discussed in Section 3.2, this sequence represents a solution of the Bethe 

ansatz equations (4.1) with kn = 0 for all n. In this case, the generating linear 

problem equations (4.2) take the form 

(4.32) ψn+1(x) = ψn(x + 1) − ψn(x), n ∈ Z, 
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and the admissible solution Ψ∅(z) = (Ψ∅n(x,z))n∈Z of Theorem 4.2 is 

(4.33) Ψ∅n(x,z) = zn(1 + z)x, n ∈ Z. 

4.3. Solutions Ψ(z) and the operation of generation. Let y = (yn(x))n∈Z be a 

generic sequence of polynomials, which represents a solution of the Bethe ansatz 

equations (4.1). Then there exists a unique one-parameter family Ψ(z) = (Ψn(x,z)) of 

solutions of the generating linear problem equations (4.2) given by Theorem 4.2. 

Choose m ∈ Z. Consider the one-parameter family y(m)(c) = (y˜n(x,c))n∈Z, obtained 

from y by generation in the m-th direction, see (3.7). Here ̃ yn(x,c) = yn(x) for and 

the polynomial ˜ym(x,c) satisfies the equation 

(4.34) y˜m(x,c)ym(x + 1) − y˜m(x + 1,c)ym(x) = ym−1(x + 1)ym+1(x). 

Choose the value c = c0 so that the sequence y(m)(c0) is generic. Then y(m)(c0) 

represents a solution of the Bethe ansatz equations (4.1) by Theorem 3.3. Define the 

sequence ˜y = (y˜n(x))n∈Z by the formula ˜y = y(m)(c0). Denote k˜
n = deg ˜yn(x) for n ∈ Z. 
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Starting from ˜y define a sequence of rational functions ˜v = (v˜n(x)) by formula 

(4. 3). We have ˜  and 

(4.35) , 

Apply Theorem 4.2 to the sequence ˜v and obtain the unique one-parameter family 

Ψ(˜ z) = (Ψ˜n(x,z)) of admissible solutions of the generating linear problem equation 

(4.2) with the chosen sequence ˜v, 

(4.36)  , 

where ) are rational functions in x with at most first order poles at the zeros of 

˜yn(x). 

Theorem 4.6. We have and 

(4.37) 

where 
Ψ˜

m(x,z) = Ψm(x,z) + g(x)Ψm−1(x,z), 

(4.38)  . 

Proof. 

Lemma 4.7. We have 

(4.39) v˜m(x)g(x) = vm−1(x)g(x + 1), 

(4.40) v˜m(x) − vm(x) = g(x + 1). 

Remark. Equations (4.39) and (4.40) imply the equation 

(4.41) vm(x)g(x) − vm−1(x)g(x + 1) + g(x)g(x + 1) = 0. 

This equation with respect to g(x) is called the discrete Riccati equation, see [MV3]. 

This discrete Riccati equation has a rational solution g(x), given by (4.38). On discrete 

Riccati equations with rational solutions see [MV3]. 

Proof. The proof of (4.39) is straightforward. We also have 
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Let us check that the functions Ψm+1(x,z), Ψm(x,z) + g(x)Ψm−1(x,z), Ψm−1(x,z) satisfy 

equations (4.2) with ˜vm−1(x),v˜m(x). Indeed, we have 

Ψm(x,z) + g(x)Ψm−1(x,z) = Ψm−1(x + 1) − v˜m−1(x)Ψm−1(x,z) 

by formula (4.40) and 

 
by formulas (4.39) and (4.40). 

Lemma 4.8. We have 

(4.42) Ψ  , 

where ˜ri(x) are rational functions of x with at most first order poles at the zeros of 

˜ym(x). 

Proof. It is enough to show that the left-hand side in (4.42) is regular at the roots 

of the polynomial ym(x). Indeed, 

 

and the last expression is regular at the roots of ym(x).  

 Theorem 4.6 is proved.  

Remark. Let y = (yn(x))n∈Z be a generic N-periodic sequence of polynomials 

representing a solution of the Bethe ansatz equations (2.1). Let Ψ(z) = (Ψn(x,z))n∈Z be 

the associated one-parameter family of admissible solutions determined by Theorem 

4.2. By Theorem 3.4 the sequence y = (yn(x))n∈Z can be obtained from the sequence y∅ 

by the iterated generation procedure of Section 3. Theorem 4.6 shows how to obtain 

the family of admissible solutions Ψ(z) from the family of admissible solutions Ψ∅(z) 

in (4.33) by transformations of Theorem 4.6. 

5. Spectral transforms for the rational RS system 

5.1. Lax matrices. In Section 4 for any sequence of polynomials (yn(x))n∈Z, whose 

roots satisfy the Bethe ansatz equations (4.1), we constructed solutions (ψn(x,z))n∈Z 

of the generating linear problem equation (4.2) depending on the spectral parameter 

z. Formulas (4.18), (4.19) of that construction reveal a’priory unexpected connections 
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of the construction with the theory of the rational RS system. In this section we 

develop the direct and inverse spectral transforms for the rational RS system. 

We identify the phase space of the k-particle rational RS system with the subspace 

Pk ⊂ Ck ×(C×)k of pairs of vectors u = (u1,...,uk) and γ = (γ1,...,γk), such that 

(5.1) + 1 for  

A point (u,γ) ∈ Pk defines the k × k Lax matrix L(u,γ), 

(5.2)  

Notice that the Lax matrix has already appeared in (4.18), where 

L(n)(z) = 1 + z − L(u(n),γ(n)). 

The matrix L(u,γ) is a particular case of the Cauchy matrix. Its determinant equals 

(5.3) det  . 

It satisfies, the so-called displacement equation 

(5.4) [U, L(u,γ)] = L(u,γ) + ΓF , 

where U = diag(u1,...,uk), Γ = diag(γ1,...,γk), F = (fij) with fij = 1 for all i,j. Equation (5.4) 

can be easily checked directly. Let E be the k × k unit matrix. Denote 

(5.5) L(z |u,γ) := (1 + z)E − L(u,γ). 

Let Lˆ(x,z |u,γ) be the (k+1)×(k+1)-matrix, whose rows and columns are labeled by 

indices 0,...,k and entries are given by the formulas: 

(5.6)  

cf. formulas (4.21). Define the function  ) by the formula 

(5.7)  . 

5.2. Direct transform in generic case. We define the direct spectral transform 
first for points (u,γ) of the following open subset . 

Let μ = (μ1,...,μk) be the set of eigenvalues of the matrix L(u,γ). We have = 0 

for all j by formula (5.3). Hence μ ∈ (C×)k. 

Define 

(5.8)  aredistinct}. 
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Clearly  is nonempty, since for big distinct u1,...,uk the matrix L(u,γ) is close to the 

diagonal matrix −diag(γ1,...,γk). 

The function ψ(x,z |u,γ) has at most simple pole at z = μj − 1. Consider the Laurent 

expansion of ψ(x,z |u,γ) at z = μj − 1, 

(5.9) . 

Theorem 5.1. For ( , there exists a unique a = (a1,...,ak) ∈ Ck such that 

(5.10) ϕ(1)j (x|u,γ) + ajϕ(0)j (x|u,γ) = 0, j = 1,...,k . 

Proof. The function ψ(x,z |u,γ) has the form 

(5.11) , 

cf. (4.13). The vector C(z) with coordinates Ci(z) is given by (4.20). The vector C(z) 

solves equation (4.19). Consider the Laurent expansion of C(z) at z = μj −1, 

(5.12) , 

where cj,dj are k-vectors with coordinates denoted by cij,dij, respectively. The 

substitution of (5.12) into (4.19) gives the relations: 

(5. 13), 

(5.14) 

where L = L(u,γ). 

Let ˜cj be a nonzero eigenvector of L with eigenvalue μj. It is unique up to 

multiplication by a nonzero constant. Using (5.4) we get 

(5.15) (μj − L)Uc˜j = [U,L]c˜j = (L + ΓF)c˜j = μjc˜j + νjγ , 

where . We have = 0. Indeed, if νj = 0, then (5.15) shows that L has 
a nontrivial Jordan block with eigenvalue μj. That contradicts to the assumption that 
(μ1,...,μk) are distinct. Since  = 0. We can uniquely define the vector ˜cj by the 

normalization νj 
= −μj. 

Lemma 5.2. The vector cj defined in (5.12) is nonzero. 

Proof. If cj = 0, then (5.14) gives 

(μj − L)dj = γ. 

Formula (5.15) with νj 
= −μj gives 
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μ−j 1(μj − L)Uc˜j = c˜j − γ . 

Adding the two formula gives 

(5.16) (μj − L)(μ−j 1Uc˜j + dj) = c˜j , 

which means that L has a nontrivial Jordan block with eigenvalue μj. Contradiction.

  

Lemma 5.3. Let ˜cj = (c˜ij), d˜
j ∈ Ck be a solution of the system of equations 

(5.17) 

(5.18) 

(μj − L)c˜j 

(μj − L)d˜j + c˜j 

= 

= 

0, 

γ , 

such that ˜  = 0. Then 

, 

for 

some 

Corollary 5.4. The vectors cj,dj in (5.12) satisfy the equations 

(5.19)  , 

for some aj ∈ C. 

Proof of Lemma 5.3. The vector ˜cj is an eigenvector of L with eigenvalue μj. Fix c˜j by 

the condition . Then (5.15) and (5.14) show that ˜cj and d˜
j = −μj−1Uc˜j 

give a solution to the system of equations (5.17) and (5.18). For that ˜cj the general 

solution of (5.18) has the form 

(5.20) d˜j = −μ−j 1Uc˜j − ajc˜j , 

where aj is an arbitrary constant. 

Let (˜cj,d˜
j) and (ˆcj,dˆ

j) be two solutions of system (5.17), (5.18). Then 

(μj − L)(c˜j − cˆj) = 0, (μj − 

L)(d˜j − dˆj) + (c˜j − cˆj) = 0. 

If ˜  = 0, then L has a nontrivial Jordan block with eigenvalue μj. This leads to 
contradiction. Hence ˜cj = cˆj. The lemma is proved.  

By formula (4.13) the first two coefficients of the Laurent expansion of ψ(x,z |u,γ) 

at z = μj − 1 are 
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(5.21) 

(5. 22). 

Using (5.19) we get 

(5.23) 

. 

The theorem is proved.  

Theorem 5.1 gives us the correspondence 

(5.24) , 

where (  and (μ,a) ∈ (C×)k × Ck. 

Below we will need the following stronger version of Lemma 5.2. 

Lemma 5.5. Let μj be an eigenvalue of L(u,γ) (of any multiplicity). Then the 

function ψ(x,z |u,γ) is not holomorphic at z = μj − 1. 

Proof. The function ψ(x,z |u,γ) has the form (5.11) with the vector C(z) that solves 

equation (4.19). If ψ(x,z |u,γ) is holomorphic at z = μj − 1, then the vector C(z) is 

holomorphic at z = μj − 1 as well. 

Let dj := C(μj − 1), then (4.19) 

where L = L(u,γ). 

, be a Jordan chain of the operator L = L(u,γ) of maximal 

length  with eigenvalue μj. Let cj,s,i be coordinates of the vector cj,s. Then 

(5.26) (μj − L)cj,1 = 0, (μj − L)cj,s = cj,s−1 . 

Using the displacement equation (5.4) we get 

(5.27) (  

where Using equations 5.25, (5.26) with and (5.27) we get 

(5.28) ( , 

which contradicts to the assumption that the Jordan chain is of maximal length.  

gives the relation:  

(5.25) (μj − L)dj = γ , 
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5.3. Inverse correspondence. We recall the construction of the correspondence 

inverse to (5.24), cf. the construction in [K6]. We define it simultaneously with the 

construction of generic solutions to the rational RS system. 

Let Ω(x,t,z) be the function in x,z, and t = (t1,t2,...) defined by the formula 

(5.29) , 

in which we always assume that only a finite number of the variables tj are nonzero. 

The function Ω(x,t,z) in more details is considered in Section 7.3. 

Let μ ∈ (C×)k with . Let ψ(x,t,z) be a function of the form 

(5.30) . 

Consider the Laurent expansions 

 
Lemma 5.6. If (μ,a) ∈ (C×)k × Ck with , then there is a unique 

function ψ(x,t,z) as in (5.30), such that coefficients ϕ(0)j (x,t), ϕ(1)j (x,t) satisfy the 

equations 

(5.32) ϕ(1)j (x,t) + ajϕ(0)j (x,t) = 0, j = 1,...,k . 

Notice that the form of the second factor in the right-hand side of (5.30) is just 

the simple fraction decomposition of a rational function in z with at most simple poles 

at the points z = μi − 1 that equals 1 at z = ∞. 

Proof. The lemma is proved by explicit computation of ψ(x,t,z). Let r(x,t) be the 

k-vector with coordinates ri(x,t). Taking the first coefficient of the Laurent expansion 

of ψ(x,t,z) at z = μj − 1 shows that equations (5.32) are equivalent to the 

inhomogeneous equation 

(5.33) T(x,t)r(x,t) = −e0 , 

where e0 is the k-vector with all coordinates equal to 1 and T = T(x,t) is the k × k-matrix 

with entries 

Let Tˆ(x,t,z) be the (k + 1) × (k + 1)-matrix with the entries 

 
Then ψ(x,t,z) equals 

(5.36)  , 
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where 

(5.37) y(x,t) = detT(x,t). 

 

The function y(x,t) will also be denoted by y(x,t|μ,a). It is a polynomial in x of 

degree k. Let ui(t|μ,a), i = 1,...,k, be its roots. Define γ(t|μ,a) = 

(γ1(t|μ,a),...,γk(t|μ,a)) by the formula 

(5.38) γi(t|μ,a) = ∂t1ui(t|μ,a). 

Let S ⊂ (C×)k × Ck be the subset of points (μ,a), such that 

(a) μ = (μ1,...,μk) has distinct coordinates; 

(b) u(0|μ,a) = (u1(0|μ,a),...,uk(0|μ,a)) has distinct coordinates. 

Theorem 5.7. For (μ,a) ∈ S, the map 

(5.39)  is 

inverse to the map in (5.24). 

Proof. The standard arguments based on the uniqueness of the BakerAkhiezer 

function prove the following statement. 

Lemma 5.8. The function ψ(x,t,z) given by (5.36) satisfies equation (1.9) with 

y(x,t) defined in (5.37). 

Proof. Define the function w(x,t) by the formula 

(5.40) w(x,t) = ξ1(x,t) − ξ1(x + 1,t) − 1, 

where ξ1(x,t) is the coefficient of the expansion of the second factor in (5.36) at z = ∞, 

i.e. 

(5.41)  . 

Then the corresponding expansion for the function ψ˜(x,t,z) := 

∂t1ψ(x,t,z) − ψ(x + 1,t,z) − w(x,t)ψ(x,t,z) 

has the form ψ˜(x,t,z) = Ω(x,t,z)O(z−1), i.e. the simple fraction expansion for ψ˜ has the 

form 
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(5.42)  . 

Since aj in (5.10) is a constant, the first two coefficients of the Laurent expansion of 

ψ˜ at μj − 1 satisfy equation (5.10), i.e. for the vector ˜r with coordinates ˜rj the 

homogeneous linear equation Tr˜ = 0 holds. Hence, ˜r = 0 and the equation ψ˜ = 0 is 

proved. 

It remains to show that the function w(x,t), defined by (5.40), has the form 

(1.10) with y(x,t) given by (5.37). The equation 

(5.43) ξ1(x,t) = −∂t1 lny(x,t) 

can be derived from Cramer’s formulas for the coordinates rj of the vector r and the 

equation 

(5.44) . 

It is more instructive to prove it directly using equation (1.9). Indeed, by definition, 

ξ1(x,t) is a rational function in x with poles at the zeros of y(x,t). The comparison of 

the coefficients at (x−ui)−2 of the Laurent expansion of the right and left-hand sides of 

(1.9) at ui gives the equation 

(5.45) γi(t) := resx=ui w(x,t) = resx=ui ξ1(x,t) = ∂t1ui(t). 

The latter implies (5.43).  

The left-hand side of (1.9) has poles only at the zeros of y(x,t). Hence the right-

hand side of (1.9) has no residue at x = ui−1. From (5.40) it follows that the residue of 

w(x,t) at x = ui −1 equals −γi(t) and we recover the defining condition for ψ(x,t,z) in 

Lemma 4.3. Put t = 0. The theorem is proved.  

5.4. Extension of the direct spectral transform. Our goal is to extend the direct 

spectral transform (5.24) to the whole phase space of the rational RS system. 

For (u,γ) ∈ Pk consider the function ψ(x,z |u,γ) defined by (5.7). The function 

(5.46) Ψ(x,z |u,γ) = detL(z |u,γ)ψ(x,z |u,γ) = (z + 1)x detLˆ(x,z |u,γ) has the form 

(5.47) Ψ(  . 

It is well-defined on the whole phase space. The coefficients ) are rational 

function in u,γ holomorphic on Pk. 
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Let (   be the set of all distinct eigenvalues of L(u,γ) with 

respective multiplicities ( . We have  and 

. 

For a positive integer  denote by the vector subspace of C[z] of polynomials 
of degree less than . We have dim . 

Let μ ∈ C   with  under 

the isomorphism  − 

Theorem 5.9. Let (u,γ) ∈ Pk. Then for j = 1,...,q, there is a unique mjdimensional 

vector subspace Wj(u,γ) ⊂ C[z]2mj such that 

(5.48) res . 

Remark. Let ( . Then the one-dimensional subspace Wj(u,γ) ⊂ C[z]2 is 

spanned by the polynomial aj(z − μj + 1) + 1. Then equations (5.48) take the form 

(5.49) res  

which is the same as equations (5.10). 

Proof. The coefficients of detL(z |u,γ) are holomorphic functions on Pk. Hence for 

any (  in a sufficiently small neighborhood of (u,γ) the multiple eigenvalue 

μj of L(u,γ) splits into a set of simple eigenvalues of the matrix 

), i.e. 

 

where |μj,s − μj| < ε for some small ε. We may assume that the ε-neighborhoods of μj, j 

= 1,...,q, do not intersect. 

The set of mj equations (5.49), corresponding to a subset of the eigenvalues μj,s, 

can be represented in the form 

(5.50) , 

where cj is the circle |z − μj + 1| = ε and 

(5.51)  . 

It is easy to see that the polynomials gj,s(z) are linearly independent and hence span 

an mj-dimensional subspace , i.e. ) can be seen as a point 
of the Grassmanian Gr(mj,2mj). 

The Grassmanian is compact. Therefore, for any sequence (( 

converging to (u,γ) there is a subsequence of points Wj(um,γm) of the Grassmanian 
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converging to some point Wj ∈ Gr(mj,2mj). Since the integral in (5.50) is taken over a 

constant circle the equations (5.50) converge to (5.48). 

It remains to show that Wj does not depend on the choice of a convergent 

sequence ((um,γm))∞m=1. Notice that if Ψ(x,z |u,γ) satisfies (5.48), then 

(5.52) res  . 

The function Ψ( ) is a monic polynomial of degree . Hence, the tuple of 

functions Ψ(,z) defines a point W⊥ ∈ Gr(k,2k). The k-dimensional vector space 

W⊥ defines all spaces Wj, j = 1,...,q, uniquely.  Corollary 5.10. By Theorem 5.9, 

every point (u,γ) ∈ Pk produces the two collections 

(μi(u,γ))qi=1 and (Wi(u,γ) ∈ Gr(mi,2mj))qi=1. That is an extension of the map 

(5.24). 

Equations (5.48) imply the following lemma. 

Lemma 5.11. The function ψ(x,z | u,γ) has a pole of order μj(u,γ) 

− 1 if and only if the corresponding subspace Wj(u,γ) 

contains (mj − m)-dimensional subspace spanned by the 

polynomials ( 0,...,m − 1. 

The following statement is used below in the proof of Theorem 7.9. Let f(z) be a 

function holomorphic at z = μj − 1. Multiplication by f(z) defines a linear operator 

. 

 Lemma 5.12

 = 0, then the only mj-dimensional subspace 

W of 

, invariant under the action of f , is the subspace spanned 
∗ 

by ( 

Proof. The Jordan normal form of f∗ is the single Jordan block of size 2mj. Such an 

operator has a single invariant mj-dimensional subspace. That subspace is described 

in the lemma.  

5.5. Extension of the inverse transform. The construction of the inverse 

correspondence is straightforward. The spectral data is a triple (μ,m,W), where μ = 

(μ1,...,μq) is a set of distinct nonzero complex numbers; m = (m1,...,mq) a set of positive 

integers with ) a set of spaces, where each Wj is an 

mj-dimensional subspace of the space of polynomials of degree 2mj − 1. 
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Lemma 5.13. Given (μ,m,W) there is a unique function Ψ(x,t,z), 

(5.54) Ψ(  , 

such that equations (5.48) hold. 

Proof. The proof is by explicit construction, as in its particular case of Lemma 7.3. 

Choose a basis gj,k(z) in Wj. Then equations (5.48) can be represented in the form of 

the inhomogeneous linear system of equations 

(5.55) M(x,t|μ,m,W)ξ(x,t) = −e0 

with some matrix M, whose entries are explicit expressions that are polynomial in x 

and t and linear in the coefficients of the polynomials gj,k(z). As before the function Ψ 

can be written in the same determinant form as in (5.35): 

(5.56) Ψ(  , 

where 

(5.57) y(x,t|μ,m,W) = detM(x,t|μ,m,W). 

 

Remark. We emphasize that unlike in the generic case considered in Section 5.3, 

the degree k of the polynomial y(x,t|μ,m,W) in x depends not only on the number of 

distinct eigenvalues μj and their multiplicities mj but also on the combinatorial types 

of cells of Grassmannians Gr(mj,2mj), which contain the given subspaces Wj. 

Denote the roots of the polynomial y(x,t|μ,m,W) by ui(t|μ,m,W), i = 1,...,k. Define 

γ(t|μ,m,W) = (γ1(t|μ,m,W),...,γk(t|μ,m,W)) by formula 

(5. 38). 

Let ) be the subset of points (μ,W), such that 

(a) μ = (μ1,...,μq) has distinct coordinates; 

(b) u(0|μ,W) = (u1(0|μ,W),...,uk(0|μ,W)) has distinct coordinates. 

Theorem 5.14. For (μ,W) ∈ Sˆ, the map 

(5.58)  is inverse to 
the map in Corollary 5.10. 

Proof. The proof of Theorem 5.14 is similar to the proof of Theorem 5.7. The key 

point of the proof is the following lemma. 

Lemma 5.15. Functions Ψ(x,t,z) and y(x,t) given by (5.56) and (5.57), respectively, 

satisfy equation (1.9). 
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The proof of the lemma is based on the uniqueness of the Baker-Akhiezer 

function corresponding to the data (μ,W) and almost word by word follows the proof 

of Lemma 5.8.  

6. Solution of the rational RS hierarchy 

The goal of this section is to write explicitly equations describing time 

dependence of the roots (ui(t)) of the polynomial y(x,t) corresponding to the spectral 

data (μ,W) ∈ Sˆ. 

It was proved in [KZ] that the dependence of (ui(t)) in the variable t1 coincides 

with the equation of motion of the RS system. Note that in [KZ] this result was proved 

for the elliptic RS system. The dependence of (ui(t)) in the variables t¯= (t¯0,t¯1,t¯2,...), 

defined by formula 

, 

was identified in [KZ] with the pole dynamics of the elliptic (rational) solutions of the 

2D Toda hierarchy. In [I] and [Z] it was proved that the latter coincides with the flows 

defined by the higher Hamiltonians Hk = trLk of the RS system, where L is the 

corresponding Lax matrix. 

Remark. Note that the change of variables (6.1) is well-defined only under the 

assumption that there are only finitely many of nonzero time variables. Nevertheless, 

the corresponding triangular change of the vector fields is well-defined always: 

∂t¯0 = ∂x, ∂t¯1 = ∂t1, ∂t¯2 = ∂t2 + 2∂t1, ∂t¯3 = ∂t3 + 3∂t2 + 3∂t1, 

... . 

6.1. Hierarchies of linear equations. In this section we show that for any 

spectral data (μ,W) the corresponding Baker-Akhiezer function Ψ(x,t,z) given by 

formula (5.56) satisfies a hierarchy of linear equations. 

Let Tx = e∂x be the shift operator acting on functions of  

Lemma 6.1. Let Ψ(x,t,z) be a formal series of the form 

(6.2) Ψ =  , 

where k ∈ Z and ξs(x,t) are some functions of x,t. Then for each m  1 there is a unique 

difference operator Dm in the variable x, 

(6.3) , 

such that 

(6.4) DmΨ(x,t,z) = zmΨ(x,t,z) + O(zk−1)Ω(x,t,z). 



 XXX  BETHE ANSATZ EQUATIONS AND INTEGRABLE HIERARCHIES 271 

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 

The coefficients wi,m(x,t) of these operators Dm are (explicit) difference polynomials in 

ξs(x,t), s = 1,...,m − 1. 

Proof. Divide both sides of (6.4) by Ω(x,t,z) and compare the leading coefficients 

of Laurent series. That gives a triangular system of m − 1 linear equations for m − 1 

unknown functions wi,m(x,t). The system is solved recurrently. 

The following theorem follows from the uniqueness of the Baker-Akhiezer 

function. 

Theorem 6.2. Let Dm be the operator defined in Lemma 6.1 by the BakerAkhiezer 

function Ψ(x,t,z |μ,W) given by (5.56). Then 

(6.5) ( . 

Proof. The definition of Dm in Lemma 6.1 implies that the left-hand side of (6.5) 

has the form R˜ Ω, where R˜ is a polynomial in z of degree k −1. The function R˜ Ω 

satisfies the system of equations (5.52) defining Ψ. Therefore the coefficients of R˜ 

satisfy the homogeneous linear system of equation with matrix M as in (5.55). 

Hence, R˜ = 0.  

Remark. Lemma 5.15 is a particular case of Theorem 6.2 for m = 1. 

The compatibility conditions of equations (6.5) imply: 

Corollary 6.3. If the Baker-Akhiezer function Ψ is given by (5.56), then the 

corresponding operators Dm satisfy the equations 

(6.6) , for all i,j. 

Remark. The collection of equations (6.6) is the so-called Zakharov-Shabat 

presentation of a part of the 2D Toda hierarchy. We call the collection of equations 

(6.6) the positive part of the 2D Toda hierarchy, see Section 8.2. 

6.2. Rational RS hierarchy. 

6.2.1. Let (u,γ) ∈ Pk be a point of the phase space. Let L = L(u,γ) be the Lax matrix. 

We define recurrently a set of rational functions ¯w1,m(x),w¯2,m(x), ..., w¯m,m(x) by the 

formula 

 , 

a set of matrices H1,m,...,Hm,m by the formulas 

(6.8) (  
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(6.9) (  , 

where  is defined by the Laurent expansion of ¯wm,m(x) at x = ui, w 

(6.10)  w¯ − Hm,i + O(x − ui), 

and the matrix M 

(6.11)  . 

 6.2.2. Let us return to the situation of Section 5.5. Let the spectral data 
(μ,m,W) be given. Let y(x,t) be the polynomial defined by formula (5.57) and 

 its roots. Let  with γi(t) = ∂t1ui(t). Having the 

pair (u(t),γ(t)) we may define all the objects of Section 6.2.1, which will depend on t. 

Let t¯m be the variables defined in (6.1). 

Theorem 6.4. The pair (u(t),γ(t)) satisfies the equations of motion of the hierarchy 

of the k particle rational RS system. Namely, for all m  1 we have 

(6.12) ∂t¯mui = resx=ui w¯m,m(x), 

(6.13) . 

Proof. The following lemma gives the Lax presentation of these flows in terms of 

the RS system. 

Lemma 6.5. Let the linear equation 

(6.14)  with some (a’priory 

unknown) coefficients ¯ws,m(x,t¯) has a solution of the form 

(6.15) , 

where ¯z = z + 1 and C is given by (4.20) with the matrix L defined in (4.18) with γi = 

γi(t¯m),ui = ui(t¯m). Then equations (6.12), (6.13) hold. 

Proof. The vector C with the coordinates Ci given by (4.20) solves equation 

(4.19), i.e. 

(6.16) (¯zL0 − L)C = γ, 

where L0 = E is the identity matrix. This equation easyly implies that for any s the 

equation 

(6.17) (¯  
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holds. 

The substitution of (6.15) into (6.14) gives the equation 

− ,m − 

,...,0 at 

both sides of the equation we recurrently find that ̄ ws,m(x) are given by formulas (6.7). 

The remaining part of the equations (of order O(¯z−1)) are linear equations containing 

C(¯z). Equating the coefficients at (x − ui)−2 we get equation (6.12). Equating the 

coefficients at (x−ui)−1 we get that the vector C satisfies the equation 

(6.19) ∂t¯mC = (Mm − Lm)C , 

where the matrix Mm is defined in (6.11). Comparing the leading coefficients at of the 

expansions in ¯z−1 of the both sides of (6.19) we get 

(6.20) (Mm − Lm)γ = 0. 

From (6.16) and (6.19) it follows that 

(6.21) [∂t¯m − Mm,L]C = −(Mm − Lm)γ = 0. 

Since equation (6.21) holds for C = C(z) we have 

(6.22) ∂t¯mL = [Mm,L]. 

The latter is the Lax presentation of equations (6.12) and (6.13). 

In the framework of the dynamical r-matrix approach the matrices Mm were 

obtained in [Su].  

 Now Theorem 6.4 follows from Theorem 6.2.  

7. Spectral transform for N-periodic Bethe ansatz equations 

7.1. Spectral data for solutions of the Bethe ansatz equations. We begin this 

section by identification of the spectral data corresponding to solutions of the N-

periodic Bethe ansatz equations. Recall that for a given sequence of generic 

polynomials (yn(x))n∈Z whose roots satisfy the Bethe ansatz equations the solutions 

(ψn(x,z))n∈Z of the generating linear problem constructed in Section 4 are equal to 

(7.1) ψn(x,z) = znψ(x,z |u(n),γ(n)), 
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where (  are roots of yn(x) and (  are defined in (4.4). Notice that γ(n) 

depends on the polynomials yn(x) and yn+1(x), only. By definition of generic 

polynomials, we have (u(n),γ(n)) ∈ Pkn. 

equations, then the matrixLemma 7.1. If (yn(x))n∈LZ(urepresents a solution of 

the(n),γ(n)) has only one eigenvalueN-periodic Bethe ansatzμ = 1 (of multi- 

plicity kn). 

Proof. By Theorem 5.9 the function 

Ψ(x,z |u(0),γ(0)) = detL(u(0),γ(0))ψ0(x,z) 

satisfies equations (5.48) with Wj(0) := Wj(u(0),γ(0)). From equation (4.2) it then follows 

that for functions det  0 equations (5.48) with 

Wj(0) := Wj(u(0),γ(0)) hold, as well. The N-periodicity of (yn) implies that ψN = zNψ0(x,z). 

Hence, Ψ(x,z |u(0),γ(0)) satisfies equation (5.48) and the equations 

(7.2) res  

Since Ψ(x,z |u(0),γ(0)) defines Wj(0) uniquely, equations (7.2) imply that Wj(0) is invariant 

under the action of the operator of multiplication by zN. It follows from Lemmas 5.11 

and 5.12 that Ψ(x,z |u(0),γ(0)) has zero of order mj at z = μj −1 for any  = 1, or 

equivalently that the function ψ(x,z |u(0),γ(0),z) is holomorphic at z = μj − 1.  

Now the reference to Lemma 5.5 finishes the proof. 

Remark. In Lemma 4.5 we proved that the poles of solutions (ψn(x,z))n∈Z of the 

generating problem corresponding to a sequence of polynomials (yn(x))n∈Z (possibly 

non-periodic) are n-independent away from z = 0. The lemma above gives a stronger 

statement: for periodic sequences of polynomials the solutions (ψn(x,z))n∈Z are 

holomorphic at  

7.2. The inverse spectral transform: construction. By Theorem 5.9 and 

Lemma 7.1 the functions ψn(x,z) constructed in Section 4 are uniquely defined by a 

sequence of points W(n) ∈ Gr(kn,2kn) corresponding to the only eigenvalue μ = 1 of the 

matrix L(u(n),γ(n)). In this section we explicitly describe the data defining such 

sequences and present in a closed form the construction of the solutions of the N-

periodic Bethe ansatz equations. 

The parameters of the construction are nonnegative integers ν, D, and an 

(N + ν) × (D + 1)-matrix 
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 A = (ak,j), k = 1,...,N + ν, j = 0,...,D . 

We say that the matrix A is nondegenerate if for any n = 0,...,N, the matrix A(n) composed 

of the first n + ν rows of the matrix A has rank n + ν. 

Two matrices  are called equivalent if  where G is an (N + ν) × 

(N + ν) nondegenerate matrix of the form 

(7.3)  

where g is a ν × ν-matrix and g1 is lower-triangular. 

We call A reducible if there is a nondegenerate ν × ν-matrix H such that 

(7.4)  

where E is the unit matrix with 1. We call A irreducible otherwise. 

7.3. Function Ω(x,t,z). Below we present some notations and properties of the 

function Ω(x,t,z) defined in (5.29), 

(7.5) . 

The function Ω(x,t,z) satisfies the equation 

(7.6) (z + 1)Ω(x,t,z) = Ω(x + 1,t,z) = ∂t1Ω(x,t,z) 

and, more generally, the equations 

(7.7) . 

Introduce the polynomials , by using the expansion 

(7.8) , 

where χ0(x,t) = 1, 

(7.9) , 

degx χn(x,t) = degt1 χn(x,t) = n. 

For n  0, we have 

(7.10) χn(x + 1,t) − χn(x,t) = ∂t1χn(x,t) = χn−1(x,t), 

where χ−1(x,t) = 0. More generally, we have 

(7.11) . 

Let us write 
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, 

where h0(t) = 1. Then 

(7.12) . 

Given the spectral data A = (ak,j), define the polynomials fk(x,t) by the formula 

(7.13)  

For k = 1,...,N + ν, introduce the differential operators 

(7.14)  

Then 

(7.15) . 

Lemma 7.2. If A is nondegenerate, then for every n = 0,...,N, 

(i) the discrete Wronskian ) is nonzero; 

(ii) 

(7.16) , 

where Wr   is the standard Wronskian 

with respect to the variable t1; 

(iii) 

(7.17) deg . 

 

7.4. Baker-Akhiezer functions. For every n = 0,...,N, consider a polynomial of 

degree n + ν in z of the form 

(7.18) , 

whose coefficients are some functions in x, t. 

Lemma 7.3. If A is nondegenerate, then for any n = 0,...,N, there exists a unique 

function ψn(x,t,z) of the form 

(7.19) ψn(x,t,z) = Ω(x,t,z)Rn(x,t,z), such that 

(7.20)  

For fixed n,x the function ψn(x,t,z) is a particular case of the Baker-Akhiezer 

functions introduced in [K5] to construct rational solutions of the KP equation. 

Proof. Using equation (7.7), we rewrite equation (7.20) as 
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. 

Using (7.8) and (7.13) we rewrite (7.21) as 

. 

The system of equations (7.22) is the systems of n+ν inhomogeneous linear equations 

for the coefficients ), 

(7.23) , 

where 

(7.24)  

Using (7.10) we may rewrite 

(7.25) 

, 

cf. formula 

for 

Formula (7.24) implies that the determinant of the matrix M(n)(x,t) equals 

(7.26) , 

the discrete Wronskian of the polynomials f1(x,t),...,fn+ν(x,t) with respect to x. By 

Lemma 7.2 the determinant is a nonzero polynomial. Hence equations (7.20) 

determine uniquely a function ψn(x,t,z). The lemma is proved. 

Below we give a determinant formula for ψn(x,t,z). Define an (n + ν + 1) × 

(n + ν + 1) matrix ), whose rows and columns are labeled by indices 1,...,n 

+ ν + 1 and entries are given by the formulas: 
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(7.27) , 

Using the determinant expansion of M(n)(x,t,z) by the last row we obtain 

(7.28) . 

Here is a useful formula for ), 

(7.29)  . 

 

Theorem 7.4. The Baker-Akhiezer functions (ψm(x,t,z))Nm=0 satisfy equations (4.2) 

with indices n = 0,...,N − 1 in which the functions vn(x,t) are given in terms of yn(x,t) 

and yn+1(x,t) by formula (4.3). 

Proof. Consider the function 

(7.30) ψ˜n+1(x,t,z) = ψn(x + 1,t,z) − vn(x,t)ψn(x,t,z) − ψn+1(x,t,z). 

We need to show that ψ˜
n+1(x,t,z) is the zero function. 

We have 

. 

where R˜n+1(x,t,z) is a polynomial in z of degree at most n + ν, 

(7.31)  . 

Each of the three functions ψn(x+1,t,z), vn(x,t)ψn(x,t,z), ψn+1(x,t,z) satisfy the 

equations (7.20) for k = 1,...,n + ν. Hence the function ψ˜
n+1(x,t,z) satisfies equations 

(7.20) for k = 1,...,n + ν. 

Lemma 7.5. The function ψ˜
n+1(x,t,z) satisfies equation (7.20) for k = n+ν+1. Proof. 

Recall the function detM(n)(x,t,z)Ω(x,t,z), see (7.27). Then 

, 
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see formulas (7.7) and (7.15). Now we apply the operator Dn+ν+1[]z=0 to both sides of 

equation (7.30). We have = 0 by definition of 

ψn+1(x,t,z). Hence 

 
 

Comparing the system of equations (7.23) with k = 1,...,n + ν for the coefficients (

  with the system of equations (7.20) with k = 1,...,n+ν+1 for the 

coefficients (  we conclude that the coefficients 

 satisfy the system of homogeneous equations 

(7.33) , 

with k = 1,...,n + ν + 1. According to our previous reasonings the determinant 

detM(n+1)(x,t) = yn+1(x,t) of the matrix of this homogeneous system is a nonzero 

polynomial. Hence all the functions ) are the zero functions, the function 

ψ˜
n+1(x,t,z) is the zero function, the functions ψn(x,t,z) with n = 0,...,N −1 satisfy 

equations (4.2), and the theorem is proved. 

7.5. Reconstruction of A. Let A and A˜ be two nondegenerate (N + ν) × 

(D + 1)-matrices, 

 A = (ak,j), A˜ = (a˜k,j), k = 1,...,N + ν, j = 0,...,D. 

Let (   and (   be the corresponding Baker-Akhieser 
functions given by the above construction. 

Theorem 7.6. Assume that 

(7.34) ψn(x,0,z) = ψ˜
n(x,0,z), n = 0,...,N. 

Then A = GA˜ for a matrix G as in (7.3). 

Proof. For any n the function ψn(x,0,z) is given by the formulas (7.23), 

(7. 24). Consider the linear difference operator of order n + ν, 

(7.35) Δ(n+ν) + ξ(1)(x,0)Δ(n+ν−1) + ξ(2)(x,0)Δ(n+ν−2) + 

··· + ξ(n+ν)(x,0). 

By formulas (7.23), (7.24) the kernel of this difference operator is generated by the 

polynomials f1(x,0),...,fn+ν(x,0) given by formula (7.13). 
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If two matrices A,A˜ have the same ψn(x,0,z) and ψ˜
n(x,0,z), then the n + 

νdimensional space generated by the polynomials f1(x,0),...,fn+ν(x,0) coincides with the 

space generated by the polynomials f˜1(x,0),...,f˜n+ν(x,0). Hence A = 

GA˜ for suitable G.  

7.6. Periodicity constraint. Given spectral data A = (ak,j), the construction of 

Section 7.4 gives y0(x,t),...,yN(x,t) and ψ0(x,t,z),...,ψN(x,t,z). We say that these functions 

extend periodically if there exist sequences (yn(x,t))n∈Z and 

(ψn(x,t,z))n∈Z such that 

 yn+N(x,t) = yn(x,t), ψn+N(x,t,z) = zNψn(x,t,z), n ∈ Z, 

and the sequence (ψn(x,t,z))n∈Z satisfies equations (4.2) with (vn(x,t))n∈Z given by (4.3) 

in terms of (yn(x,t))n∈Z. 

It is clear that the periodic extension is possible if and only if 

(7.36) yN(x,t) = y0(x,t), ψN(x,t,z) = zNψ0(x,t,z). 

Our goal is to identify matrices A for which the periodicity equations (7.36) hold. 

7.7. Construction of matrices A. Given ν, let W be an (N +ν)×(N +ν) matrix such 

that its upper-right ν × ν corner U is nilpotent, 

(7.37)  and Ur = 0

 forsome r < ν . 

Using W we construct an (N +ν)×N(ν +1)-matrix A = A(W) in three steps. 

First using V and U we construct a ν × Nν matrix Q as follows. Let V = 

(v1,...,vN) be column vectors of V and Q = (q1,...,qNν) column vectors of Q. Define qj = vj 

for j = 1,...,N. Define qj for j > N recursively by the formula 

(7.38) qN+j = Uqj . 

Define an (N + ν) × N(ν + 1)-matrix P by the formula 

(7.39) , 

where E is the N × N unit matrix. Define the matrix A by the formula 

(7.40) A = WP . 

It is easy to see that the matrix A has the form 

(7.41)  
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7.8. Properties of the construction. 

Lemma 7.7. If a matrix A = A(W) is given by the construction of Section 7.7, then 

the functions y0(x,t),...,yN(x,t) and ψ0(x,t,z),...,ψN(x,t,z) extend periodically. 

Proof. The functions y0(x,t), ψ0(x,t,z) are determined by the first ν rows of A. That 

gives ν equations (7.20) for ψ0(x,t,z). The functions yN(x,t), ψN(x,t,z) are determined 

by the full matrix A. That gives N + ν equations (7.20) for ψN(x,t,z). The periodicity 

constraint (7.36) holds if the space of linear combinations of equations defining 

ψN(x,t,z) contains N equations ∂z(j)ψN(x,t,z)|z=0 = 0, j = 0,...,N − 1, andj ν equations (7.20) 

defining ψ0(x,t,z) in which the operaj N tors   are replaces with the 

operators . The relations (7.39), (7.40), (7.41) mean exactly that. 

The lemma is proved.  

Let A = (aij) be a nondegenerate (N + ν) × (D + 1)-matrix. Let y0(x,t),..., yN(x,t) and 

ψ0(x,t,z),...,ψN(x,t,z) be the associated functions. Let m be a positive integer. Define the 

(N +ν)×(D+1+m)-matrix Aˆ = (aˆij) by the formula 

 , j > D. 

We call Aˆ the m-extension of A. Let ˆy0(x,t),...,yˆN(x,t) and ψˆ
0(x,t,z),..., ψˆ

N(x,t,z) be the 
functions associated with Aˆ. Clearly, we have 

(7.42) yˆn(x,t) = yn(x,t), ψˆ
n(x,t,z) = ψn(x,t,z), n = 0,...,N. 

Let A = (aij) be a nondegenerate (N+ν)×(D+1)-matrix with associated functions 

y0(x,t),...,yN(x,t) and ψ0(x,t,z),...,ψN(x,t,z) which extend periodically Let Aˆ be the N-

extension of the matrix of A. According to (7.42) the matrix Aˆ has the same associated 

functions y0(x,t),...,yN(x,t) and ψ0(x,t,z),...,ψN(x,t,z) which extend periodically. 

Lemma 7.8. Under these assumptions the matrix Aˆ is given by the construction 

of Section 7.7, namely, we have Aˆ = Aˆ(Wˆ ) for a suitable Wˆ . 

Proof. We have ψN(x,0,z) = zNψ0(x,0,z) and the function ψN(x,0,z) is defined by the 

(N + ν) × (D + 1 + N)-matrix Aˆ. The same function ψN(x,0,z) is defined also by the (N 

+ ν) × (D + 1 + N)-matrix 

(7.43)  , 

where E is the N × N unit matrix and A(0) is the ν × (D + 1)-matrix formed by the first ν 

rows of the matrix A. By Theorem 7.6 this means that Aˆ = WPˆ for a suitable matrix 

Wˆ . It remains to show that the upper-right ν corner of Wˆ , denoted in (7.37) by U is 

nilpotent. As it was already noted above from equations (7.39), (7.40) and 7.41 it 
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follows that the columns qj of A(0) should satisfy equation (7.38). Since A(0) is of rank 

ν and qj = 0 for j > D we get that Ur = 0 for some r. If that holds for some r then r < ν. 

From the latter it follows that the integer D used in the construction in the N periodic 

case is bounded by .  

Theorem 7.9. If an N-periodic sequence of polynomials ( 

represents a solution of the Bethe ansatz equations (2.1), then there exists a matrix A 

= A(W) given by the construction of Section 7.7 such that the associated polynomials 

y0(x,t),...,yN(x,t) have the property: 

(7.44) yn(x,0) = yn0(x), n = 1,...,N. 

Proof. By Lemma 7.1 the function ψ0(x,z) corresponding to a sequence 

polynomials (yn(x))n∈Z representing a periodic solutions of the Bethe ansatz equation 

has the form 

(7.45)  

with  = 0. The integer  is the order of the pole of ψ0 at z = 0. By Theorem 

5.9 the function zm0ψ0(x,z) satisfies (5.48) for any g ∈ W0(u(0),γ(0)). The space 

W0(u(0),γ(0)0 ) is a k0-dimensional subspace of polynomials of degree 2k0 − 1. The 

function zk ψ0(x,z) has zero of order k0 − ν at z = 0. Then, by Lemma 5.11 

the polynomials 1 are in W0(u(0),γ(0)). 

Hence, the space W0(u(0),γ(0)) contains a ν- dimensional 

subspace W(0) ⊂ W0(u(0),γ(0)) of polynomials of degree k0 + ν − 1 such that the function 

(7.46)  

satisfies the 

equations 
ν 

(7.47) resW(0) . polynomials  

Choose a basis gk(z),k = 1,...ν, in the space W(0). The coefficients ak,j of these 

(7.48)  
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define a ν × (k0 + ν)-matrix A˜(0), which for any  1 can be trivially 

extended to a ν × (D + 1)-matrix A(0) by setting ak,j = 0,j  k0 + ν. Then equations (7.47) 

coincide with equations (7.20) defining the Baker-Akhiezer function ψ0(x,0,z |A(0)), 

where we have included in the notation the dependence of the Baker-Akhiezer 

function on the defining matrix A0, i.e. 

(7.49) zνψ0(x,z) = ψ0(x,0,z |A(0)). 

Applying recurrently equation (4.2) we get that for   0 the solution of the linear 
generating problem has the form 

(7.50)  . 

Since zνψn(x,t) = zn+νψ(x,z |u(n),γ(n)), we a’priory know that the coefficients 

) are defined by a nondegenerate system of equations of the form (4.2) defined 

by an (n + ν) × (D + 1) matrix A(n) for sufficiently large D. From (4.2) it follows that 

zνψn+1(x,z) satisfies the system of (n+ν) linear equations defining zνψn(x,z). Hence, 

A(n+1) can be chosen such that its first (n + ν) rows coincides with the matrix A(n). Then 

we define A in the construction of Section 5 to be equal to 

A(N). Theorem 7.9 is proved.  

7.9. Remark on difference operators. In formula (7.35) we identified, roughly 

speaking, the Baker-Akhiezer function ψn(x,0,z) with the linear difference operator of 

order n + ν, whose kernel is spanned by the polynomials f1(x,0), ..., fn+ν(x,0). From that 

point of view, the Baker-Akhiezer function ψn+1(x,0) is identified with the linear 

difference operator of order n + ν + 1, whose kernel is spanned by the polynomials 

f1(x,0), ..., fn+ν(x,0) and one new polynomial fn+ν+1(x,0). The main formula of this paper, 

that is, formula (4.2), is the formula expressing the second of these difference 

operators in terms of the first one. The periodicity property of the functions ψ0(x,t,z), 

..., ψN(x,t,z) can be reformulated as a special relation between the kernels of the 

differential operators corresponding to ψ0(x,t,z) and ψN(x,t,z). That property is 

implicitly explained in Sections 7.6 – 7.8. A version of this point of view is developed 

in Section 10. 

7.10. Main theorem on commuting flows. By Theorem 7.9 any solution of the 

N-periodic Bethe ansatz equations is defined by some matrix A. Theorem 7.4 implies 

that the space of solutions of the N-periodic Bethe ansatz equations is invariant with 

respect to times t under the deformations defined by the BakerAkhiezer functions. 

For each n the corresponding function Ψn(x,t,z) is a particular case of the Baker-

Akhiezer function corresponding to the rational kn-particle rational RS system. Hence, 

by Theorem 6.4 the dependence of roots of the corresponding polynomial yn(x,t) is 

described by equations of the rational RS system. Therefore we have the following 

theorem. 
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Theorem 7.10. Let (yn(x))n∈Z be an N-periodic sequence of polynomials of degrees 

(kn) representing a solution of the N-periodic Bethe ansatz equations. Then the 

correspondence 

(7.51) ( , 

where ) is given by (4.4), is an embedding of the space of solutions 

of the Bethe ansatz equations into the product of N phase spaces of the kn-particle 

rational RS systems, n = 1,...,N. The image of this map is invariant under the hierarchy 

the rational RS systems (6.12), (6.13) acting diagonally on the product of the phase 

spaces. 

Consider the extension of the sequence y = (yn(x))n∈Z to the family y(t) = 

(yn(x,t))n∈Z, defined by Theorems 7.4 and 7.9. Then the correspondence in (7.51) 

sends the family y(t) to a solution of the rational RS hierarchy.  

8. Bethe ansatz equations and integrable hierarchies 

The existence of the one parameter family Ψ(z) of solutions of equations (4.2) 

having the form (4.7) reveals the connection of the Bethe ansatz equations (4.1) with 

basic hierarchies of the soliton theory. We begin this section with a brief review of the 

hierarchy, which is referred throughout the paper as the positive part of the 2D-Toda 

hierarchy. 

8.1. Pseudo-difference operators. We regard sequences g = (gn)n∈Z with gn ∈ C 

as elements of the ring of functions of the discrete variable n. In particular we have 

addition f + g and multiplication fg of sequences defined by the formulas (f +g)n = fn 

+gn, (fg)n = fngn. Let T be the shift operator acting on sequences g = (gn)n∈Z by the 

formula, where (Tg)n = gn+1. 

The space of pseudo-difference operators is the space F of Laurent polynomials 

in T−1, whose coefficients are functions of the variable n ∈ Z, i.e. 

(8.1) , 

for some integer M. Recall that the coefficient f0 in (8.1) is called the residue of F, 

(8.2) resT F := f0 . 

The ring structure on F is defined by the ring structure on the space of coefficients 

and the composition rule 

(8.3) T(fTm) := (Tf)Tm+1, where f is a sequence. 

In what follows we will apply the pseudo-differential operators to sequences ϕ(z) 

= (ϕn(z))n∈Z, whose elements are formal Laurent series in z of the form 
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(8.4) , 

where K is some integer. 

8.2. Positive part of the 2D Toda hierarchy. The difference analog of the KP 

hierarchy is defined almost verbatim to the definition in the continuous case, cf. [SW], 

[Di]. It leads us to the positive part of the 2D Toda hierarchy. 

Consider the affine space of monic pseudo-difference operators of degree 1, i.e., 

the space of pseudo-difference operators of the form 

(8.5) . 

The positive part of the 2D Toda hierarchy has time variables t = (t1,t2,...). The flow 

corresponding to the time variable tm is defined by the equation 

(8.6) , 

where  is the nonnegative part of the operator Lm, i.e. the difference operator such 

that  

The standard arguments show that (8.6) is a well-defined system of equations on 

the coefficients of the operator L. For that one needs to show that the right-hand side 

of (8.6) is a pseudo-difference operator of degree at most zero. That follows from the 

 +, , ] and the fact that  is a pseudo-equality [

difference operator of degree 

The flows commute. The proof of the commutativity of the flows, i.e. the proof 

that equations (8.6) imply the equations 

(8.7) [ , 

is standard and word by word follows its continuous variant, see [Di]. 

Remark. The hierarchy of commuting flows (8.6) is a part of the 2D Toda 

hierarchy. Recall that the full 2D Toda hierarchy is defined on the space of pairs of 

pseudo-difference operators, one of which is as in (8.5) and the other is a 

pseudodifference operator with respect to T, 

(8.8) . 

The full set of time variables of the 2D Toda hierarchy consists of the variables t = 

(t1,t2,...) as above and the variables t− = (t−1 ,t−2 ,...). We do not give further details, see 

[TU], since the second part of the 2D Toda hierarchy is not relevant for our purposes. 

For any pseudo-difference operator L of the form (8.5) there is a unique formal 

solution Ψ  of the equation 

(8.9) LΨw(z) = zΨw(z) 

of the form 
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∞ 

(8.10) Ψ, 

normalized by the condition 

(8.11) Ψ  . 

The solution Ψw(z) is called the wave solution. 

Let the pseudo-difference operator L depend on times, L = L(t). One can check 

that this pseudo-difference operator is a solution of the hierarchy equation (8.6) if 

and only if the following equations hold: 

(8.12) , 

where hm(t,z) is a scalar (not a sequence) Laurent series in z. The comparison of the 

right and left-hand sides shows that hm(t,z) has the form 

(8.13) hm(t,z) = zm + O(z−1). 

From equation (8.7) it follows that 

(8.14) . 

Hence, there is a unique Laurent series h(t,z) such that ∂mh(t,z) = hm(t,z) and 

normalized by the condition h(0,z) = 1. Then equation (8.13) implies that 

(8.15) . 

It is easy to see that the sequence Ψ(t,z) := Ψw(t,z)e−h(t,z) satisfies the equations 

(8.16) L(t)Ψ(t,z) = zΨ(t,z), . 

The elements Ψn(t,z) of the sequence Ψ(t,z) have the form 

(8.17) Ψ  . 

8.3. Discrete N mKdV hierarchy. Consider sequences of functions g = 

of(gnT(xis as above. The operator))n∈Z. There are two shift operators acting on them:Tx 

= e∂x is the shift in the xTvariable, (and Tx. The actionTxg)n(x) = 

gn(x + 1). 

Recall the generating equation (1.17), that can be written in the form 

(8.18) HΨ = 0, 

where 

(8.19) H = T − Tx + v , v = (vn(x))n∈Z , is a difference operator in x 

and n. 
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The hierarchy, which we call the discrete N mKdV hierarchy, is the compatibility 

condition of the positive part of the 2D Toda hierarchy, defined in (8.6), with the 

generating equation (8.18). More precisely, the full set of equations of the discrete N 

mKdV hierarchy are equations (8.6) and equations 

(8.20) [ , 

where Dm is some difference operator in x and n depending on m. 

Remark. The meaning of (8.20) is that the operators commute on 

the space of solutions of equation (8.18). In the theory of integrable systems this type 

of representation is called an L,A,B triple, see [DKN]. 

By division with remainder it is easy to see that any difference operator D in x and 

n of degree M has a unique presentation 

(8.21) D = DH + D1 , 

where D1 is a degree M difference operator in n only, i.e. D1 is a polynomial of degree 

M in T with coefficients that are sequences of functions (gn(x)). Equation (8.20) says 

that the corresponding operator D1 equals zero. Therefore, for any given monic 

difference operator B in n, 

(8.22) , 

the equation 

(8.23) [∂m − B,H] = DH 

with some D is a system of M+1 equations on M+1 unknown coefficients b1,...,bM and 

v. The first M of them are difference equations. Unlike in the differential case, where 

the corresponding equations allow us to express the coefficients b1,...,bM as the 

differential polynomials in v and get a well-defined system of equations for the 

coefficients of H only, in the difference case the reconstruction of b1,...,bM in terms of v 

requires some additional assumptions, see more on that below. 

Equations (8.6) and (8.20) is a system of equations on the coefficients of the 

pseudo-difference operator L and the sequence v. These equations can be written 

more explicitly following the argument identical to the one in the proof of equation 

(5.66) in [K8]. Namely, let 

(8.24) Fm := resT Lm, Fm = (Fm,n)n∈Z . 

Lemma 8.1. The system consisting of equations (8.6) and (8.20) is equivalent to 

the system consisting of equations (8.6) and equations 

(8.25) . 
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8.4. Remark. Notice again that the system of equations (8.25) is not a closed 

system with respect to v(x) since the right-hand sides are expressed in terms of the 

operator L. 

A possible approach to eliminate L from equations (8.25) is as follows. Having an 

arbitrary N-periodic v(x) determine a family of solutions ψ(x,z) of equation the Hψ = 

0. Then L is uniquely determined from the equation Lψ(x,z) = zψ(x,z). Put that L into 

(8.25) and obtain a system of equations on v(x) only. Such an approach works well in 

similar situations but not in this one since the desired family of solutions ψ(x,z) to 

equation Hψ = 0 is not unique. 

Below we explain a construction of ψ(x,z) from v(x) and indicate why ψ(x,z) is not 

unique. That fails this attempt to eliminate L from equations (8.25). The problem of 

elimination of L from (8.25) deserves further analysis. 

Lemma 8.2. Let v = (vn(x))n∈Z be any N-periodic sequence of functions, vn(x) = 

vn+N(x). Then there is a formal solution ψ = (ψn(x,z))n∈Z of equation 

(1.17), 

(8.26) Hψ = 0 

with ψn(x,z) of the form 

(8.27)  with periodic 

coefficients 

(8.28) ξn,s(x) = ξn+N,s(x). 

Proof. The substitution of (8.27) into (8.26) gives a system of equations for the 

unknown coefficients ξn,s(x) in (8.27) 

(8.29) (Tx − T)ξs+1 = −(v + Tx)ξs , i.e., 

(8.30) ξn,s+1(x+1)−ξn+1,s+1(x) = −vn(x)ξn,s(x)−ξn,s(x+1), s = 1,2,... . 

We prove the existence of N-periodic solutions of these equation by induction. 

The induction starts with ξ0 = (ξn,0)n∈Z and ξn,0 = 1 for all n. Suppose that ξs = (ξn,s) is 

known and is N-periodic. Let us apply the operator  to both 

sides of (8.29). Using the periodicity of ξs and v 

we get the equation 

(8.31) (TxN − 1)ξs+1 = TN(Txξs − v). 

Invert the operator TxN − 1, 
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(8.32) ( . 

Then the N-periodic solutions of (8.29) can be recurrently defined by the formula 

(8.33) . 

The lemma is proved.  

The choice of (TxN − 1)−1 is not unique. It can be replaced by 

(8.34) (  . 

It is easy to see that for any formal solution ψ(x,z) of (8.26) of the form (8.27) 

there is a unique pseudo-difference operator L such that 

(8.35) Lψ(x,z) = zψ(x,z). 

Hence any choice of such a ψ(x,z) makes the discrete N-periodic mKdV equations a 

well-defined system of equations for the functions (vn(x))n∈Z only. 

Notice that if a sequence (vn(x)) is not an arbitrary N-periodic sequence of 

functions, but a sequence defined by formula (4.3) with (yn(x)) satisfying the Bethe 

ansatz equations, then Theorem 4.2 gives us another way to construct the family of 

solutions ψ(x,z) to equation Hψ(x,z) = 0. In that case by constructing L from (8.35) we 

may eliminate L from (8.25) and then solve the resulting equations on (vn(x)) only. 

8.5. Solutions of the discrete N mKdV hierarchy from solutions of the Bethe 

ansatz equations. Let y = (yn(x)) be an N-periodic sequence of polynomials 

representing a solution of the Bethe ansatz equations. By Theorems 7.4 and 7.9 we 

can extend y to a family y(t) = (yn(x,t)). Consider the corresponding solution of the 

generating problem (Ψn(x,t,z)), 

(8.36) Ψ  . 

This solution satisfies the hierarchy of linear equations (6.5). Equations (6.4) identify 
the difference operators Dm in (6.5) with the operators  . Hence we have the 
following theorem. 

Theorem 8.3. The N-periodic sequence (vn(x,t)) defined in terms of y(t) by 

(4.3) is a solution the discrete N mKdV hierarchy.  

8.6. Remark on discrete Miura opers. Denote by L(z), V (x) the N ×Nmatrices 

(8.37) , 
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where v1(x),...,vN(x) are some given functions of x. The first order linear difference 

operator 

(8.38) T − L − V 

is called a discrete Miura oper, cf. [MV3]. Assume that (yn(x))n∈Z is an N-periodic 

sequence of polynomials representing a solution of the Bethe ansatz equations (2.1), 

yN+n(x) = yn(x). Consider the corresponding N-periodic sequence (vn(x)) defined by 

formula (4.3) and the N-periodic sequence of Baker-Akhieser functions 

(Ψn(x,z))n∈Z given by Theorem 4.2, ΨN+n(x,z) = zNΨn(x,z). Consider the N column vector 

Ψ(x,z) with coordinates Ψ1(x,z),...,ΨN(x,z). Then 

(8.39) (Tx − L(z) − V (x))Ψ(x,z) = 0. 

For example, if N = 3, then 

. 

Our study in this paper of periodic sequences of (yn(x))n∈Z, (Ψn(x,z))n∈Z is the study of 

the difference equation (8.39). 

The discrete Miura opers are discrete analogs of differential Miura opers, which 

are the first order differential operators of the form 

(8.40)  

These differential operators play an important role in the theory of the N mKdV 

hierarchy, see for example [DS,VWr]. 

9. Combinatorial data 

In this section we follow Section 6 in [VWr] and review some combinatorial data, 

which will be used in Section 10 to describe Baker-Akhieser functions of points of an 

infinite-dimensional Grassmannian. 

9.1. Subsets of virtual cardinal zero. By a partition we mean an infinite 
sequence of nonnegative integers  ) such that all except a finite 
number of the λi are zero. The number  will be called the weight of λ. 

Following [SW], we say that a subset S = {s0 < s1 < s2 < ...} ⊂ Z is of virtual cardinal 

zero, if sj = j for all sufficiently large j. If n is such that sj = j for all j > n, then we say that 

S is of depth n. 

If S is of depth n, then it is also of depth n + 1. 

Lemma 9.1 ([SW]). There is a one to one correspondence between elements of S 

and partitions, given by S ↔ λ where 
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λi = i − si . 

For a subset S = {s0 < s1 < s2 < ...} ⊂ Z and an integer k ∈ Z we denote by S + k the 

subset {s0 + k < s1 + k < s2 + k < ...} ⊂ Z. 

Let S be a subset of virtual cardinal zero. Let A = {a1,...,ak} ⊂ Z be a finite subset of 

distinct integers. 

Lemma 9.2 ([VWr]). If {a1,...,ak}∩(S +k) = ∅, then {a1,...,ak}∪(S +k) is a subset of 

virtual cardinal zero. 

9.2. KdV subsets. Fix an integer N > 1. We say that a subset S of virtual cardinal 

zero is a KdV subset if S + N ⊂ S. For example, for any N > 1, 

S∅ = {0,1,2,...} 

is a KdV subset. 

Lemma 9.3 ([VWr]). Let S be a KdV subset. Then there exists a unique N-element 

subset A = {a1 < ··· < aN} ⊂ Z such that S = A ∪ (S + N). 

The subset A of the Lemma 9.3 will be called the leading term of S. 

The leading term A uniquely determines the KdV subset S, since S is the union of 

N non-intersecting arithmetic progressions {ai,ai+N,ai+2N,...}, i = 1,...,N. Let S be a KdV 

subset with leading term A. For any a ∈ A the subset 

(9.1) S[a] = {a + 1 − N} ∪ (S + 1) 

is a KdV subset with leading term A[a] = (A + 1) ∪ {a + 1 − N} − {a + 1}. The subset S[a] 

will be called the mutation of the KdV subset S at a ∈ A. 

Lemma 9.4 ([VWr]). 

(i) Let S1 be a KdV subset with leading term A. Let S2 be a KdV subset such that 

S1 + 1 ⊂ S2. Then S2 is the mutation of S1 at some element a ∈ A. 

(ii) Any KdV subset S can be transformed to the KdV subset S∅ by a sequence of 

mutations. 

(iii) A subset A = {a1 < ··· < aN} is the leading term of a KdV subset if and only if 

equation 

(9.2)  

holds true and ai − aj is not divisible by N for any . 
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9.3. mKdV tuples of subsets. We say that an N-tuple S = (S1,...,SN) of KdV subsets 

is an mKdV tuple of subsets if Si +1 ⊂ Si+1 for all i, in particular, 

SN + 1 ⊂ S1. 

For example, for any N, the N-tuple 

S∅ = (S∅,...,S∅) 

is an mKdV tuple of subsets. 

If S = (S1,...,SN) is an mKdV tuple, then (Si,Si+1,...,SN, S1,S2,...,Si−1) is an mKdV tuple of 

subsets for any i. 

Let S be a KdV subset with leading term A = {a1 < ··· < aN}. Let σ be an element of 

the permutation group ΣN. Define an N-tuple SS,σ = (S1,...,SN), where 

(9.3) Si = {aσ(1) +i N,aσ(2) +i

 N,...,aσ(i) +i N}+(S +i),

 i = 1...,N. 

In particular, 

Lemma 9.5 ([VWr]). 

(i) The N-tuple SS,σ is an mKdV tuple. 

(ii) Every mKdV tuple is of the form SS,σ for some KdV subset S and some 

element σ ∈ ΣN. 

9.4. Mutations of mKdV tuples. 

Lemma 9.6 ([VWr]). Let S = (S1,...,SN) be an mKdV tuple. Then for any i = 1,...,N, 

there exists a unique mKdV tuple 

(9.4) S(i) = (S1,...,Si−1,S˜
i,Si+1,...,SN) which differs from S at the i-th 

position only. 

The mKdV tuple S(i) will be called the mutation of the mKdV tuple S at the i-th 
position. Denote by  the mutation map. 

Let  be the partitions corresponding to the KdV subsets Si, S˜i, respectively. 
The mutation  will be called degree decreasing if |λ˜i| < |λi|. 

Theorem 9.7 ([VWr]). Any mKdV tuple S can be transformed to the mKdV tuple S∅ 

= (S∅,...,S∅) by a sequence of degree decreasing mutations. 
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10. Tau-functions and Baker-Akhieser functions 

In this section we follow Section 7 in [VWr] although we define the taufunctions 

as discrete Wronskians while in [VWr] the standard Wronskians are used. The tau-

functions in this paper are different from the tau-functions in [VWr]. 

10.1. Remarks on the construction of Section 7.2. In Section 10 below we 

assign tau-functions and Baker-Akhieser functions to vector subspaces of an infinite 

dimensional vector space. The assignment is based on the construction of Section 7.2. 

We formulate two remarks on the construction. 

In Section 7.4 starting from an (ν + N) × (D + 1)-matrix 

 A = {ak,j}, k = 1,...,N + ν, j = 0,...,D, 

we constructed the functions yn(x,t), ψn(x,t,z) for n = 0,...,N. 

Choose n, 0  n  N. Consider the (n + ν) × D-matrix A(n) formed by the first n + ν rows 

of the matrix A. Then the functions yn(x,t) and ψn(x,t,z) are determined by formulas 

(7.26) and (7.28) in terms of the matrix A(n) only. 

Let B be a nondegenerate (n + ν) × (n + ν)-matrix. Let yn,B(x,t) and ψn,B(x,t,z) be the 

functions determined by formulas (7.26) and (7.28), respectively, in which the entries 

of the matrix A(n) are replaced with the corresponding entires of the matrix BA(n). Then 

yn,B(x,t) = yn(x,t) and ψn,B(x,t,z) = ψn(x,t,z). That is, the functions yn(x,t) and ψn(x,t,z) are 

determined by the (n + ν)-dimensional vector space spanned by the first n+ν rows of 

the matrix A and do not depend on the choice of a basis in that space. 

Consider the new (ν + N + 1) × (D + 2)-matrix 

A˜ = {a˜k,j}, 

defined by the formulas 

k = 0,...,N + ν, j = 0,...,D + 1, 

(10.1) a˜0,j = δ0,j , j = 0,...,D + 1, 

a˜k,0 = 0, k = 1,...,N + ν , 

a˜k,j = ak,j−1, j = 1,...,D + 1. 

Apply the construction of Section 7.4 to the matrix A˜ and construct the functions 

y˜n(x,t) and ψ˜
n(x,t,z) for n = 0,...,N. 

Lemma 10.1. We have 

(10.2) y˜n(x,t) = yn(x,t), 

ψ˜
n(x,t,z) = z ψn(x,t,z), n = 0,...,N . 

 

Lemma 10.1 says that the functions yn(x,t) and ψn(x,t,z), determined by the (n + ν)-

dimensional vector space spanned by the first n + ν rows of the matrix A, do not change 

up to multiplication of ψn(x,t,z) by z, if the (n + ν)-dimensional vector space is extended 

to the (n + ν + 1)-dimensional vector space by formulas 
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(10. 1). 

10.2. Grassmannian Gr0(H). For a Laurent polynomial

, the number ord  will be called the order of v. 

Following [SW], let H be the Hilbert space L2(S1) with orthonormal basis 

{span ofzj}j∈Z. Let{zj}j<H0+. We have the orthogonal decompositionbe the closure of 

the span of H = H+the closure of the⊕ H−. 

We consider the set of all closed subspaces W ⊂ H such that 

10.3. zqH+ ⊂ W ⊂ z−qH+ 

for some q > 0. Such subspaces can be identified with subspaces W/zqH+ of z−qH+/zqH+. 

We say that W is of virtual dimension zero if dimW/zqH+ = q. Denote by Gr0(H) the set 

of all subspaces of virtual dimension zero. 

Any W ∈ Gr0(H) has a basis   consisting of Laurent polynomials. We may 

assume that the numbers sj = ord vj form a strictly increasing sequence SW 
= {s0 < s1 < s2 

< ...}. The assignment  is well-defined. The subset SW will be called the order 

subset of W. The order subset SW is of virtual cardinal zero. 

For W ∈ Gr0(H), a basis  is called special of depth n, if 

it consists of Laurent polynomials such that vj = zj for j > n and vj,i = 0 if 

. 

If  is a basis of depth n, then it is also a basis of depth n + 1. 

10.3. Points in Gr0(H) and finite-dimensional spaces of polynomials in x,t. 

Let S = {s0 < s1 < ...} be a set of virtual cardinal zero of depth n. For 

W ∈ Gr0(H) with order subset  be a special basis of depth 

n. 

Introduce the n + 1-dimensional complex vector space VW,n of polynomials in x,t as 

the space spanned by the polynomials fj,n(x,t),j = 0,...,n, where 

(10.4)  

We have degx fj(x,t) = n − sj. 

It is clear that the space VW,n does not depend on the choice of a special basis of W 

with depth n. 
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The same basis of depth n is also a basis of depth n+1. Then the space VW,n+1 is 

spanned by the polynomials 

(10.5)  

Therefore, the n + 2-dimensional space VW,n+1 consists of all linear combinations g(x,t) 

of polynomials χi(x,t) such that Δg(x,t) ∈ VW,n. 

The space VW,n+2 is related to the space VW,n+1 in a similar way, and so on. Thus, to a 

space W ∈ Gr0(H) we assigned a sequence of spaces VW,n, VW,n+1, ...related by formulas 

(10.4) and (10.5). 

The construction in the opposite direction goes as follows. Let S be a set of virtual 

cardinal zero. Let n be such that sj = j for all j > n. Let V be an n + 1dimensional complex 

vector space spanned by linear combinations of polynomials χi(x,t), such that V has a 

basis (  with degx fj(x,t) = n − sj. To this vector space V with such a basis 

(10.6)  

we assign WV ∈ Gr0(H) with special basis  of depth n, where 

(10.7) , for j = 0,...,n, 

and vj = zj for all j > n. The set S is the order subset of WV . We also have 

VWV ,n = V . 

For W ∈ Gr0(H) with order subset S = {s0 < s1 < ...} of depth n, we have W = WVW,n. 

10.4. Tau and Baker-Akhieser functions. Let W ∈ Gr0(H) have order subset S = 

{s0 < s1 < ...} of depth n. Let  be a special basis of W of depth n. 

Consider the polynomials (  defined in (10.4). Define the tau-function of W 

by the formula 

(10.8) , 

cf. [SW]. The tau-function is independent of the choice of n up to multiplication by a 

nonzero number, see Lemma 10.1. 

Let the order subset S = {s0 < s1 < ...} corresponds to a partition λ. Then 

(10.9) τW(x,t) = ax|λ| + (low order terms in x), 

where a is a nonzero number independent of x,t. 

Define the Baker-Akhieser function of W by the formula 
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(10.10) , 

where the matrix ) is defined as follows. 

First we define an (n + 1) × (n + 1)-matrix ) by the formula 

(10.11)  

cf. (7.24). Define an (n+2)×(n+2)-matrix  ), whose rows and columns are 

labeled by indices 0,...,n + 1 

and entries are given by the 

formulas: (10.12) 

, 

cf. formula (7.27). 

Lemma 10.2. 

(i) Let  be a special basis of W of depth n. Then the 

Baker-Akhieser function  ) does not depend on the choice of the 

special basis. 

(ii) If another number n is chosen such that sj = j for all , then 

(10.13) . 

 Proof. The lemma follows from Lemma 10.1.  

10.5. mKdV tuples of subspaces. Fix an integer N > 1. We say that a subspace W 

∈ Gr0(H) is a KdV subspace if zNW ⊂ W. 

For example, for any N the subspace H+ is a KdV subspace. 

Lemma 10.3 ([VWr]). Let W be a KdV subspace with order subset S. Then S is a 

KdV subset. 

We say that an N-tuple W = (W1,...,WN) of KdV subspaces is an mKdV tuple of 

subspaces if zWi ⊂ Wi+1 for all i, in particular, zWN ⊂ W1. Denote by GrmKdV the set of all 

mKdV tuples of subspaces. 

For example, for any N the tuple W∅ = (H+,...,H+) is an mKdV tuple. 

If W = (W1,...,WN) ∈ GrmKdV , then (Wi,Wi+1,...,WN, W1,W2,...,Wi−1) ∈ GrmKdV for any i. 

Let W = (W1,...,WN) ∈ GrmKdV . Let Si be the order subset of Wi and S = (S1,...,SN). Then 

S is an mKdV tuple of subsets. 
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Let W be a KdV subspace with order subset S. Let A = {a1 < ··· < aN} be the leading 

term of S. Let v = (v1,...,vN) be a tuple of elements of W such that ordvi = ai for all i. Let σ 

∈ ΣN. Define an N-tuple WW,v,σ = (W1,...,WN) of subspaces by the formula 

(10.14)  

in particular, WN = zNW + span . 

Theorem 10.4 ([VWr]). The N-tuple WW,v,σ is an mKdV tuple of subspaces. 

Moreover, every mKdV tuple of subspaces is of the form WW,v,σ for suitable W,v,σ. 

Here is another description of mKdV tuples of subspaces. 

Theorem 10.5 ([VWr]). Let W be a KdV subspace. Let zNW = V0 ⊂ V1 ⊂ V2 ⊂ ··· ⊂ 

VN−1 ⊂ VN = W be a complete flag of vector subspaces such that dimVi/Vi−1 = 1 for all i. 

Set 

(10.15) Wi = zi−NVi, i = 1,...,N. 

Then W = (W1,...,WN−1,WN = W) is an mKdV tuple of subspaces. Moreover, every mKdV 

tuple of subspaces is of this form. 

Let W be a KdV subspace. It follows from Theorem 10.5 that the set of mKdV tuples 

of subspaces with prescribed last term WN = W is identified with the set of complete 

flags in the N-dimensional complex vector space W/zNW. 

10.6. Relations between Baker-Akhieser functions. Let (W1,...,WN) 

∈ GrmKdV . Let (τW1(x,t),...,τWN(x,t)) and (ψW1(x,t,z),...,ψWN(x,t,z)) be the corresponding tau 

and Baker-Akhieser functions. 

Recall that each Baker-Akhieser function τWi(x,t) is defined up to multiplication by 

a monomial zm, see Lemma 10.2. A Baker-Akhieser function with a choice of this factor 

will be called a graded Baker-Akhieser function of Wi. 

Theorem 10.6. There exist graded Baker-Akhieser functions ψW1(x,t,z), ..., ψWN(x,t,z) 

such that 

(10.16) 

, 

for i = 2,...,N, and 

(10.17) 

. 
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Denote yn(x,t) := τWN−n+1(x,t), n = 1,...,N, and extend this sequence by periodicity, 

yN+n(x,t) = yn(x,t) for all values of n ∈ Z. Denote ψn(x,t,z) := ψWN−n+1(x,t,z), n = 1,...,N, and 

extend this sequence by periodicity, ψN+n(x,t,z) = zNψn(x,t,z) for all values of n ∈ Z. 

Introduce the sequence (vn(x,t))n∈Z by formula 

(10.18) , 

see (4.3). 

 Corollary 10.7. For any fixed t, the functions (vn(x,t))n∈Z and 

(ψn(x,t,z))n∈Z satisfy relations (4.2).  

Proof of Theorem 10.6. Since the tuple (W2,W3,...,WN, W1) is also an mKdV tuple, it is 

enough to prove (10.16) for i = N only. 

By Theorem 10.4 the pair WN−1, WN has the following form. Let S = {s0 < s1 < ...} be 

the order subset of WN. Let A = {a1 < ··· < aN} be the leading term of S. Choose one 

element a ∈ A. 

Let S be of depth n. Let  be a special basis of W of depth n. 

Let be the element of the basis with ordw = a. Then WN−1 is the space with 

basis . This basis of WN−1 is a basis of depth n + 1. 

The tau and Baker-Akhieser functions of WN are defined in terms of the basis 

 of depth n by polynomials fj,n(x,t), j = 0,...,n, see formula (10.4). 

The tau and Baker-Akhieser functions of WN−1 are defined in terms of its basis 

 of depth n+1 by the same polynomials fj,n(x,t), j = 0,...,n, 

and one additional polynomial fn+1(x,t) corresponding to the basis element z1−Nw, 

. 

Now the functions τWN−1,τWN−1, ψWN−1,ψWN−1 satisfy (10.16) for i = N by Theorem 7.4.  

10.7. Generation of new mKdV tuples of subspaces. Let W = (W1,..., 

...WN) ∈ GrmKdV . By Theorem 10.5, the tuple W is determined by a flag 

zNWN = V0 ⊂ V1 ⊂ V2 ⊂ ··· ⊂ VN−1 ⊂ WN. 
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The quotient V2/V0 is two-dimensional. Any line V˜
1/V0 in V2/V0 determines a an mKdV 

tupleflag zNWN = V0 W⊂ V˜1 ⊂ V2 ⊂ ··· ⊂ VN−1 ⊂ WN, which in its turn determines˜ = 

z1−NV˜1. Thus we get 

(1) = (W˜1,W2,...,WN) with W1 

a family of mKdV tuples of subspaces parameterized by points of the projective line 

P(V2/V0). The new tuples are parametrized by points of the affine line A = P(V2/V0) − 

{V1/V0}. We get a map X(1) : A → GrmKdV which sends a ∈ A to the corresponding mKdV 

tuple W(1)(a) = (W˜1(a),W2,...,WN). This map will be called the generation of mKdV tuples 

from the tuple W in the first direction. 

Similarly, for any i = 2,...,N, we construct a map X(i) : A → GrmKdV , where 

tupleA = PW(Vi+1/Vi−1) − {Vi/V˜i−(a1}),...,Wwhich sendsN). This map will be called thea 

∈ A to the corresponding mKdVgeneration 

(i)(a) = (W1,...,Wi of mKdV tuples of subspaces from the tuple W 

in the i-th direction. 

We say that the generation in the i-th direction is degree increasing if for any a ∈ 

A, we have degx τW(i)(a)(x,t) > degx τW(x,t). 

The tau-function τW˜i(a) depends on a linearly in the following sense. Let  

be a basis of Vi−1. Let v0 ∈ Vi be such that  is a basis of Vi. Let v˜0 ∈ Vi+1 be such that 

{v˜0,v0,v1,v2,...} is a basis of Vi+1. Then the points of A = 

Presponds to the line generated by the subspace(Vi+1/Vi−1)−{Vi/Vi−1} are parametrized 

by complex numbersV˜i(c) with basis {v˜c0. A number+cv0,v1,v2c...cor-}. 

This c is an affine coordinate on A. Calculating the tau-function of the subspace W˜i(c) 

= zi−NV˜i(c) with respect to the basis {zi−N(v˜0 + cv0),zi−Nv1,zi−Nv2 ...} we get the formula 

(10.19) τ
W˜i(c) = τW˜i(0) + cτWi. 

Theorem 10.8. For the generation in the i-th direction, the tau-functions of the 

subspaces W˜
i(c),Wi,Wi−1,Wi+1 satisfy the equation 

)) = const τWi−1(x,t)τWi+1(x + 1,t), 

x,t. 
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Proof. The proof of this theorem is word by word the same as the proof of 

Theorems 6.10 and 7.10 in [VWr], see also the proof of Theorem 10.6.  Define an 

infinite N-periodic sequence of polynomials (yn(x,t))n∈Z by the formula 

(10.21) yn(x,t) := τW−n(x,t). 

Corollary 10.9. For any mKdV tuple W = (W1,...,WN) and any fixed t, the sequence 

(yn(x,t))n∈Z of polynomials in x is fertile.  

Remark. Theorem 10.8 says that the generation of mKdV tuples in the i-th 

direction from the tuple W corresponds to the generation of tuples of polynomials in 

the i-th direction from the tuple (τW1(x,t),...,τWN(x,t)), where the latter generation 

procedure is described in Section 3.2. In other words, the two generation procedure 

and the functor, which assigns to a point of Gr0(H) its tau-function, commute. 

10.8. Transitivity of the generation procedure. 

Theorem 10.10 ([VWr]). Any mKdV tuple W ∈ GrmKdV can be obtained from the 

mKdV tuple W∅ = (H+,...,H+) by a sequence of degree increasing generations. 

Combining this theorem and Theorem 3.4 we obtain the following corollary. 

Corollary 10.11. If a tuple (y1(x),...,yN(x)) represents a solution of the Bethe ansatz 

equations (2.1), then there exists an mKdV tuple of subspaces 

(W1,...,...WN) such that 

(10.22) (y1(x),...,yN(x)) = (τW1(x,0),...,τWN(x,0)). 

In particular, the tuple (y1(x),...,yN(x)) can included into the family (τW1(x,t), ..., τWN(x,t)) 

of tuples depending on t, and then extended to the sequences of functions (vn(x,t))n∈Z 

and (ψn(x,t,z))n∈Z, as explained in Corollary 10.7, and those sequences (vn(x,t))n∈Z and 

(ψn(x,t,z))n∈Z give a solution of the generating linear problem equation (4.2) depending 

on t as stated in Corollary 10.7. 

10.9. Commuting flows on Gr0(H). For a subspace W ∈ Gr0(H), the subspace 

(10.23)  

is a well-defined subspace in Gr0(H). Given W, the space W(t) depends only on finitely 

many of t1,t2,.... This construction gives us a family of commuting flows on Gr0(H) with 

times t1,t2,.... We will call them the discrete mKdV flows. 

The discrete mKdV flows on Gr0(H) induce a family of commuting flows on the 

space of N-tuples (τW1(x,0),...,yWN(x,0)), representing solutions of the Bethe ansatz 

equations (2.1). The construction goes as follows. 

Let (W1,...,WN) ∈ Gr0(H). Let (τW1(x,t),...,yWN(x,t)) be the collection of tau-functions 

assigned to (W1,...,WN) in Section 10.4. The collection of polynomials (τW1(x,0), ..., 
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τWN(x,0)) in x will be called the tuple of reduced tau-functions of (W1,...,WN). When the 

tuple (W1,...,WN) becomes dependent on t we obtain a family of tuples of reduced tau-

functions (τW1(t)(x,0),...,τWN(t)(x,0)). Thus we obtain a family of commuting flows on the 

space of tuples of reduced tau-functions, which will also be called the discrete mKdV 

flows. 

Lemma 10.12. For any (W1,...,WN) ∈ Gr0(H) we have 

(10.24) (τW1(t)(x,0),...,τWN(t)(x,0)) = (τW1(x,t),...,τWN(x,t)). 

 

11. Appendix 

After this article had been finished, the authors decided, for the sake of 

completeness, to revisit the results of the work [VWr] and present them in a new form, 

analogous to Theorem 7.10. 

Recall, that in [VWr] a family of commuting flows acting on the space of 

constructed and identified with the flows of the N mKdV integrable hierarchy. 

solutions of the Bethe ansatz equations (1.1) for the affine Lie algebra slN was 

In terms of the theory of finite dimensional integrable systems of particles the 

corresponding result is as follows. 

Theorem 11.1. Let (yn(x))n∈Z be an N-periodic sequence of polynomials of degrees 

(kn) representing a solution of the Bethe ansatz equations (1.1) for the affine Lie 

algebra slN. Then the correspondence 

(11.1) ( , where 

, 

is an embedding of the space of solutions of the Bethe ansatz equations into the 

product of N phase spaces of the kn-particle CM systems, n = 1,...,N. 

The image of this map is invariant under the hierarchy of the CM systems, acting 

diagonally on the product of the phase spaces. 

The proof of the theorem goes along the same lines as the proof of Theorem 7.10. 

Its starting point is the following linear generating problem (compare it with Theorem 

4.2). 

Test 

Theorem 11.2. The equations 

(11.2) ∂xψn(x) = ψn+1(x) + vn(x)ψn(x), n ∈ Z, with the potential 
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(11.3)  

have a meromorphic in x solution ψn(x), with simple poles at zeros at yn−1(x), if and 

only if equations (1.1) hold. Moreover, if (1.1) hold, then there exists a family of 

solutions Ψn(x,z), z ∈ C, of (11.2) of the form 

(11.4) Ψ  , 

where ) are rational functions in x such that all the functions are 
holomorphic in x. 

References 
[AL] A. V. Litvinov, On spectrum of ILW hierarchy in conformal field theory, J. High Energy 

Phys. 11 (2013), 155, front matter+13, DOI 10.1007/JHEP11(2013)155. MR3132164 
[AMM] H. Airault, H. P. McKean, and J. Moser, Rational and elliptic solutions of the Kortewegde Vries 

equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), no. 1, 95–148, 

DOI 10.1002/cpa.3160300106. MR649926 
[DS] V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type (Russian), 

Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk 
SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81–180. MR760998 

[Di] L. A. Dickey, Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, 

vol. 12, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. 
MR1147643 

[DKN] B. A. Dubrovin, Igor Moiseevich Krichever, and S. P. Novikov, The Schr¨odinger equation in a 

periodic field and Riemann surfaces (Russian), Dokl. Akad. Nauk SSSR 229 (1976), no. 1, 15–18. 

MR0410067 
[I] Plamen Iliev, Rational Ruijsenaars-Schneider hierarchy and bispectral difference operators, Phys. 

D 229 (2007), no. 2, 184–190, DOI 10.1016/j.physd.2007.03.017. MR2341159 
[K1] Igor Moiseevich Krichever, An algebraic-geometric construction of the Zaharov-Sabatˇ equations 

and their periodic solutions (Russian), Dokl. Akad. Nauk SSSR 227 (1976), no. 2, 291–294. 

MR0413178 
[K2] Igor Moiseevich Krichever, Methods of algebraic geometry in the theory of nonlinear equations 

(Russian), Uspehi Mat. Nauk 32 (1977), no. 6(198), 183–208, 287. MR0516323 
[K3] Igor Moiseevich Krichever, Rational solutions of the Kadomcev-Petviaˇsvili equation and the 

integrable systems of N particles on a line (Russian), Funkcional. Anal. i Priloˇzen. 
12 (1978), no. 1, 76–78. MR0488139 

[K4] B. A. Dubrovin, Theta-functions and nonlinear equations (Russian), Uspekhi Mat. Nauk 
36 (1981), no. 2(218), 11–80. With an appendix by I. M. Krichever. MR616797 

[K5] Igor Moiseevich Krichever, On the rational solutions of the Zaharov-Sabat equations andˇ 

completely integrable systems of N particles on the line (Russian, with English summary), Zap. 

Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 84 (1979), 117–130, 312, 318. 

Boundary value problems of mathematical physics and related questions in the theory of 

functions, 11. MR557031 
[K6] I. Krichever, Elliptic solutions to difference nonlinear equations and nested Bethe ansatz equations, 

Calogero-Moser-Sutherland models (Montr´eal, QC, 1997), CRM Ser. Math. 
Phys., Springer, New York, 2000, pp. 249–271. MR1843575 

[K7] I. Krichever, Integrable linear equations and the Riemann-Schottky problem, Algebraic geometry 

and number theory, Progr. Math., vol. 253, Birkh¨auser Boston, Boston, MA, 
2006, pp. 497–514, DOI 10.1007/978-0-8176-4532-8 8. MR2263198 

[K8] Igor Krichever, Characterizing Jacobians via trisecants of the Kummer variety, Ann. of 
Math. (2) 172 (2010), no. 1, 485–516, DOI 10.4007/annals.2010.172.485. MR2680424 

[KLWZ] I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, Quantum integrable models and discrete 

classical Hirota equations, Comm. Math. Phys. 188 (1997), no. 2, 267–304, DOI 

https://www.ams.org/mathscinet-getitem?mr=3132164
https://www.ams.org/mathscinet-getitem?mr=649926
https://www.ams.org/mathscinet-getitem?mr=760998
https://www.ams.org/mathscinet-getitem?mr=1147643
https://www.ams.org/mathscinet-getitem?mr=0410067
https://www.ams.org/mathscinet-getitem?mr=2341159
https://www.ams.org/mathscinet-getitem?mr=0413178
https://www.ams.org/mathscinet-getitem?mr=0516323
https://www.ams.org/mathscinet-getitem?mr=0488139
https://www.ams.org/mathscinet-getitem?mr=616797
https://www.ams.org/mathscinet-getitem?mr=557031
https://www.ams.org/mathscinet-getitem?mr=1843575
https://www.ams.org/mathscinet-getitem?mr=2263198
https://www.ams.org/mathscinet-getitem?mr=2680424


 XXX  BETHE ANSATZ EQUATIONS AND INTEGRABLE HIERARCHIES 303 

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 

10.1007/s002200050165. MR1471815 
[KZ] Igor Moiseevich Krichever and A. Zabrodin, Spin generalization of the RuijsenaarsSchneider 

model, the nonabelian two-dimensionalized Toda lattice, and representations of the Sklyanin 

algebra (Russian), Uspekhi Mat. Nauk 50 (1995), no. 6(306), 3–56, DOI 

10.1070/RM1995v050n06ABEH002632; English transl., Russian Math. Surveys 50 
(1995), no. 6, 1101–1150. MR1379076 

[MV1] E. Mukhin and A. Varchenko, Solutions to the XXX type Bethe ansatz equations and flag varieties, 

Cent. Eur. J. Math. 1 (2003), no. 2, 238–271, DOI 10.2478/BF02476011. 
MR1993451 

[MV3] E. Mukhin and A. Varchenko, Populations of solutions of the XXX Bethe equations associated to Kac-

Moody algebras, Infinite-dimensional aspects of representation theory and applications, 

Contemp. Math., vol. 392, Amer. Math. Soc., Providence, RI, 2005, pp. 95–102, DOI 

10.1090/conm/392/07356. MR2189873 
[MV4] Evgeny Mukhin and Alexander Varchenko, Discrete Miura opers and solutions of the Bethe ansatz 

equations, Comm. Math. Phys. 256 (2005), no. 3, 565–588, DOI 
10.1007/s00220-005-1288-7. MR2161271 

[MV5] Evgeny Mukhin and Alexander Varchenko, On the number of populations of criti- 
cal points of master functions, J. Singul. 8 (2014), 31–38, DOI 10.5427/jsing.2014.8c. MR3193226 

[MSTV] E. Mukhin, V. Schechtman, V. Tarasov, and A. Varchenko, On a new form of Bethe ansatz equations 

and separation of variables in the sl3 Gaudin model, Tr. Mat. Inst. 
 Steklova 258 (2007), no. Anal. i Osob. Ch. 1, 162–184, DOI 10.1134/S0081543807030121; 

English transl., Proc. Steklov Inst. Math. 258 (2007), no. 1, 155–177. MR2400529 
[NRK] F. W. Nijhoff, O. Ragnisco, and V. B. Kuznetsov, Integrable time-discretisation of the Ruijsenaars-

Schneider model, Comm. Math. Phys. 176 (1996), no. 3, 681–700. 
MR1376437 

[OW] E. Ogievetsky and P. Wiegmann, Factorized S-matrix and the Bethe ansatz for simple 
Lie groups, Phys. Lett. B 168 (1986), no. 4, 360–366, DOI 10.1016/0370-2693(86)916448. 

MR831897 
[RS] S. N. M. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, 

Ann. Physics 170 (1986), no. 2, 370–405, DOI 10.1016/0003-4916(86)90097-7. 
MR851627 

[S] Takahiro Shiota, Calogero-Moser hierarchy and KP hierarchy, J. Math. Phys. 35 (1994), no. 11, 

5844–5849, DOI 10.1063/1.530713. MR1299922 
[Su] Yuri B. Suris, The problem of integrable discretization: Hamiltonian approach, Progress in 

Mathematics, vol. 219, Birkh¨auser Verlag, Basel, 2003. MR1993935 
[SW] Graeme Segal and George Wilson, Loop groups and equations of KdV type, Inst. Hautes 

Etudes Sci. Publ. Math.´ 61 (1985), 5–65. MR783348 
[TU] Kimio Ueno and Kanehisa Takasaki, Toda lattice hierarchy, Group representations and systems of 

differential equations (Tokyo, 1982), Adv. Stud. Pure Math., vol. 4, North- 
Holland, Amsterdam, 1984, pp. 1–95, DOI 10.2969/aspm/00410001. MR810623 

[VW1] Alexander Varchenko and Tyler Woodruff, Critical points of master functions and mKdV 

hierarchy of type  , Representations of Lie algebras, quantum groups and related topics, 

Contemp. Math., vol. 713, Amer. Math. Soc., Providence, RI, 2018, pp. 205–233, DOI 

10.1090/conm/713/14318. MR3845916 
[VW2] Alexander Varchenko and Tyler Woodruff, Critical points of master functions and mKdV hierarchy of 

type , Representations of Lie algebras, quantum groups and related topics, Contemp. Math., 

vol. 713, Amer. Math. Soc., Providence, RI, 2018, pp. 205–233, DOI 10.1090/conm/713/14318. 

MR3845916 
[VWr] A. Varchenko and D. Wright, Critical points of master functions and integrable hierarchies, Adv. Math. 

263 (2014), 178–229, DOI 10.1016/j.aim.2014.06.014. MR3239138 
[VWW] A. Varchenko, T. Woodruff, and D. Wright, Critical points of master functions and the mKdV hierarchy 

of type , Bridging algebra, geometry, and topology, Springer Proc. Math. Stat., vol. 96, Springer, 

Cham, 2014, pp. 167–195, DOI 10.1007/978-3-319-091860 11. MR3297115 

https://www.ams.org/mathscinet-getitem?mr=1471815
https://www.ams.org/mathscinet-getitem?mr=1379076
https://www.ams.org/mathscinet-getitem?mr=1993451
https://www.ams.org/mathscinet-getitem?mr=2189873
https://www.ams.org/mathscinet-getitem?mr=2161271
https://www.ams.org/mathscinet-getitem?mr=3193226
https://www.ams.org/mathscinet-getitem?mr=2400529
https://www.ams.org/mathscinet-getitem?mr=1376437
https://www.ams.org/mathscinet-getitem?mr=831897
https://www.ams.org/mathscinet-getitem?mr=851627
https://www.ams.org/mathscinet-getitem?mr=1299922
https://www.ams.org/mathscinet-getitem?mr=1993935
https://www.ams.org/mathscinet-getitem?mr=783348
https://www.ams.org/mathscinet-getitem?mr=810623
https://www.ams.org/mathscinet-getitem?mr=3845916
https://www.ams.org/mathscinet-getitem?mr=3845916
https://www.ams.org/mathscinet-getitem?mr=3239138
https://www.ams.org/mathscinet-getitem?mr=3297115


304 IGOR KRICHEVER AND ALEXANDER VARCHENKO 

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 

[W] George Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 

(1998), no. 1, 1–41, DOI 10.1007/s002220050237. With an appendix by I. G. Macdonald. 

MR1626461 
[Z] Anton Zabrodin, The master T-operator for inhomogeneous XXX spin chain and mKP hierarchy, 

SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 006, 
18, DOI 10.3842/SIGMA.2014.006. MR3210629 

Columbia University, 2990 Broadway, New York, NY 10027, USA 

Skolkovo Institute for Science and Technology,3 Nobelya, Moscow, 121205, Russia National Research 

University Higher School of Economics, Usacheva 6, Moskva, 
117312, Russia 

Email address: krichev@math.columbia.edu 

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, 

USA 

Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, 
Leninskiye Gory 1, 119991 Moscow GSP-1, Russia 

Moscow Center of Fundamental and Applied Mathematics, Leninskiye Gory 1, 119991 
Moscow GSP-1, Russia 

Email address: anv@email.unc.edu 

https://www.ams.org/mathscinet-getitem?mr=1626461
https://www.ams.org/mathscinet-getitem?mr=3210629

