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Abstract. We consider the differential KZ equations over C in the case, when the 

hypergeometric solutions are one-dimensional hyperelliptic integrals of genus g. In 

this case the space of solutions of the differential KZ equations is a 2g-dimensional 

complex vector space. 
We also consider the same differential equations modulo ps, where p is an odd 

prime number and s is a positive integer, and over the field Qp of p-adic numbers. 
We describe a construction of polynomial solutions of the differential KZ 

equations modulo ps. These polynomial solutions have integer coefficients and are ps-

analogs of the hyperelliptic integrals. We call them the pshypergeometric solutions. 

We consider the space Mps of all ps-hypergeometric solutions, which is a module over 

the ring of polynomial quasi-constants modulo ps. We study basic properties of Mps, in 

particular its natural filtration, and the dependence of Mps on s. 

We show that the p-adic limit of Mps as s →∞ gives us a g-dimensional vector 

space of solutions of the differential KZ equations over the field Qp. The solutions over 

Qp are power series at a certain asymptotic zone of the KZ equations. 

In the appendix written jointly with Steven Sperber we consider all asymptotic 

zones of the KZ equations in the special case g = 1 of elliptic integrals. It turns out that 

in this case the p-adic limit of Mps as s →∞ gives us a one-dimensional space of 

solutions over Qp at every asymptotic zone. We apply Dwork’s theory of the classical 

hypergeometric function over Qp and show that our germs of solutions over Qp defined 

at different asymptotic zones analytically continue into a single global invariant line 

subbundle of the associated KZ connection. Notice that the corresponding KZ 

connection over C does not have proper nontrivial invariant subbundles, and 

therefore our invariant line subbundle is a new feature of the KZ equations over Qp. 
Also in the appendix we follow Dwork and describe the Frobenius 

transformations of solutions of the KZ equations for g = 1. Using these Frobenius 

transformations we recover the unit roots of the zeta functions of the elliptic curves 

defined by the affine equations y2 = β x(x − 1)(x − α) over the finite field Fp. Here 

= 1. Notice that the same elliptic curves considered over C are used to 

construct the complex holomorphic solutions of the KZ equations for g = 1. 
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1. Introduction 

1.1. The KZ equations were introduced in [KZ] as the differential equations 

satisfied by conformal blocks on sphere in the Wess-Zumino-Witten model of 

conformal field theory. The solutions of the KZ equations in the form of 

multidimensional hypergeometric integrals were constructed more than 30 years 

ago, see [SV1]. The KZ equations and the hypergeometric solutions are related to 

many subjects in algebra, representation theory, theory of integrable systems, 

enumerative geometry. 

The polynomial solutions of the KZ equations over the finite field Fp of a prime 

number p of elements were constructed relatively recently in [SV2], see also [V4]-

[V8], [RV1,RV2]. These solutions were called the Fp-hypergeometric solutions. The 

general problem is to understand relations between the hypergeometric solutions of 

the KZ equations over C and the Fp-hypergeometric solutions and observe how the 

remarkable properties of hypergeometric solutions are reflected in the properties of 

the Fp-hypergeometric solutions. For example, the Fp-hypergeometric solutions 

inherit some determinant properties of the hypergeometric solutions and some 

Selberg integral properties, see [V8,RV1,RV2]. 

This program is in the first stages, where we consider essential examples and 

study the corresponding Fp-hypergeometric solutions by direct methods. 

In this paper we consider the differential KZ equations over C in the case, when 

the hypergeometric solutions are one-dimensional hyperelliptic integrals of genus g. 

In this case the space of solutions of the differential KZ equations is a 2gdimensional 

complex vector space. We also consider the same differential equations modulo ps, 

where p is an odd prime number and s is a positive integer, and over the field Qp of p-

adic numbers. 
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We give a construction of polynomial solutions of the differential KZ equations 

modulo ps for positive integers s. We call such solutions the ps-hypergeometric 

solutions. This construction is a straightforward modification of the construction in 

[SV2] of polynomial solutions modulo p. 

In this paper we consider the space Mps of all ps-hypergeometric solutions, which 

is a module over the ring of polynomial quasi-constants modulo ps. We study basic 

properties of Mps, in particular its natural filtration, and dependence of Mps on s. 

We show that the p-adic limit of Mps as s → ∞ gives us a g-dimensional vector space 

of solutions of the differential KZ equations over the field Qp. The solutions over Qp 

are power series at a certain asymptotic zone of the KZ equations. This is the main 

result of the paper, see Lemma 9.5 and Theorem 10.7. 

1.2. In the appendix written jointly with Steven Sperber we consider all six 

asymptotic zones of the KZ equations in the special case g = 1 of elliptic integrals. It 

turns out that in this case the p-adic limit of Mps as s → ∞ gives us a onedimensional 

space of solutions over Qp at every asymptotic zone. We apply Dwork’s theory of the 

classical hypergeometric function over Qp and show that our germs of solutions over 

Qp defined at different asymptotic zones analytically continue into a single global 

invariant line subbundle of the associated KZ connection. Notice that the 

corresponding KZ connection over C does not have proper nontrivial invariant 

subbundles, and therefore our invariant line subbundle is a new feature of the KZ 

equations over Qp. 

Following Dwork we show that our line subbundle is spanned at any point of the 

base by the germs of all solutions of the KZ equations bounded in their discs of 

convergence. This statement gives a definition of the line subbundle independent of 

asymptotic zones and analytic continuation. 

Also in the appendix we follow Dwork and describe the Frobenius 

transformations of solutions of the KZ equations for g = 1. Using these Frobenius 

transformations we recover the unit roots of the zeta functions of the elliptic curves 

defined by the affine equations y2 = β x(x−1)(x−α) over the finite field Fp. Here 

= 1. Notice that the same elliptic curves considered over C are used 

to construct the complex holomorphic solutions of the KZ equations for g = 1. 

In the end of Section A.10 we argue that the KZ equations for g = 1 contain more 

arithmetic information than the associated hypergeometric differential equation 

(1.2) for the hypergeometric function I(z) in (1.1), studied in [Dw]. 

1.3. Our p-adic limit of Mps as s → ∞ is similar to the p-adic limit in the following 

classical example, see [Ig,Ma,Cl,BV1]. Consider the elliptic integral 

(1.1) . 

It satisfies the hypergeometric differential equation 

(1.2) . 
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The coefficients of the power series I(z) are p-adic integers and the power series I(z) 

converges p-adically for |z|p < 1, where |z|p is the p-adic norm of z ∈ Qp. One may show 

that for any positive integer s the polynomial 

(1.3)  

is a solution of the differential equation (1.2) modulo ps. Thus we get a sequence 

 of polynomials with integer coefficients, each of which is a solution 

of the differential equation (1.2) modulo ps, and the p-adic limit of the sequence, as s 

tends to ∞, is the p-adic power series solution I(z) of the differential equation 

(1. 2). 

The ps-hypergeometric solutions of our differential KZ equations are analogs of 

the polynomialsthe construction of theI(ps−1)p/2s-(hypergeometric solutions does not 

indicate the analogousz) with an analogous p-adic limit. The difference is that 

p-adic limiting solutions I(z), and the analogous limiting p-adic power series solutions 

I(z) can be discovered only after rewriting the ps-hypergeometric solutions in a 

suitable asymptotic zone of the differential KZ equations. 

In the simplest example of our differential KZ equations, the p-adic solution is the 

3-vector 

(1.4) , 

while the sequence (  of the ps-hypergeometric solutions modulo 

ps of the same equations is given by the formula 

 

see Section 9.7. 

The sum  in (1.5) is the truncation of the sum  in (1.4), similar to 

what happens in (1.1) and (1.3). A new feature appears when we compare the 

prefactor u−1 3/2 and the sequence of prefactors . As s → ∞ the sequence 

of prefactors   tends p-adically to the prefactor u−3/2 multiplied by a 

Teichmuller constant on a suitable domain in Zp, where Zp is the ring of p-adic integers, 

see Section 10.3 and Theorem 10.5. 

1.4. The paper is organized as follows. In Section 2 we define our system of KZ 

equations. In Section 3 we describe its complex solutions as hyperelliptic integrals. In 

Section 4 we describe the ps-hypergeometric solutions of our KZ equations modulo ps 
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and define the filtered module Mps of all ps-hypergeometric solutions. In Section 5 we 

prove the independence of the module Mps from some arithmetic data involved in its 

definition. In Section 6 we discuss the properties of the operator Mps → Mps of 

multiplication by p. In Section 7 we calculate the coefficients of the Taylor expansion 

of the ps-hypergeometric solutions. In Section 8 we relate the operator Mps → Mps of 

multiplication by p and the CartierManin matrix associated with the hyperelliptic 

curve defined by the affine equation y2 = (x − z1)···(x − zn). In Section 9 we consider 

one of the asymptotic zones of our KZ equations. Using the coordinates in that 

asymptotic zone we describe the p-adic limit of the ps-hypergeometric solutions in 

Section 10. In Appendix A we apply Dwork’s theory in [Dw] to the case g = 1. In 

Section A.12 we discuss open problems related to the case of an arbitrary g. 

2. KZ equations 

Let g be a simple Lie algebra with an invariant scalar product. The Casimir 

element is 

, 

where (hi) ⊂ g is an orthonormal basis. Let   be a tensor product of g-

modules, κ ∈ C× a nonzero number. The differential KZ equations is the system of 

differential equations on a V -valued function I(z1,...,zn), 

− 

where Ωi,j : V → V is the Casimir operator acting in the ith and jth tensor factors, see 

[KZ,EFK]. 

This system is a system of Fuchsian first order linear differential equations. The 

equations are defined on the complement in Cn to the union of all diagonal 

hyperplanes. 

The object of our discussion is the following particular case. 

Let p be an odd prime number, n = 2g + 1 an odd positive integer, . 

We study the system of equations for a column vector I(z) = (I1(z), ..., In(z)): 

(2.1) , 

where z = (z1,...,zn), the n × n-matrices Ωij have the form: 

(2.2) Ωij 

⎛ 

= 

⎜⎜⎜⎜⎜⎜⎜⎝ji 

······ 

...i 

−1 

... 

1 

... 

··· 

··· 

...j 

1 

... 

−1 

... 

⎞ 

···⎟⎟⎟⎟⎟⎟⎟⎠, 
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··· 

and all other entries are zero. This joint system of differential and algebraic equations 

will be called the system of KZ equations in this paper. 

System (2.1) is the system of the differential KZ equations with parameter κ = 2 

associated with the Lie algebra sl2 and the subspace of singular vectors of weight 2g 

− 1 of the tensor power (C2)⊗(2g+1) of two-dimensional irreducible sl2-modules, up to 

a gauge transformation, see this example in [V3, Section 1.1]. 

We consider system (2.1) over the field C. We also consider the same system of 

equations modulo ps and over the field Qp of p-adic numbers. 

3. Complex solutions 

Consider the master function 

(3.1) Φ(  

and the column n-vector of hyperelliptic integrals 

(3.2)  

The integrals Ij, are over an element γ of the first homology group of the algebraic 

curve with affine equation 

y2 = (x − z1)...(x − zn). 

Starting from such γ, chosen for given values {z1,...,zn}, the vector I(γ)(z) can be 

analytically continued as a multivalued holomorphic function of z to the complement 

in Cn of the union of the diagonal hyperplanes . 

Theorem 3.1. The vector I(γ)(z) is a solution of system (2.1). 

Theorem 3.1 is a classical statement. Much more general algebraic and 

differential equations satisfied by analogous multidimensional hypergeometric 

integrals were considered in [SV1]. Theorem 3.1 is discussed as an example in [V3, 

Section 

1.1]. 

Proof. The theorem follows from Stokes’ theorem and the two identities: 
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(3.3) 

(3.4), 

where Ψi(x,z) is the column n-vector (0 0) with the 

nonzero element at the i-th place. 

Theorem 3.2 ([V1, Formula (1.3)]). All solutions of system (2.1) have this form. 

Namely, the complex vector space of solutions of the form (3.2) is n − 1dimensional. 

This theorem follows from the determinant formula for multidimensional 

hypergeometric integrals in [V1], in particular, from [V1, Formula (1.3)]. 

4. Solutions modulo ps 

4.1. Leading terms. For a ring R denote R[z] = R[z1,...,zn]. For a positive integer t 

denote  

Consider the lexicographical ordering of monomials , so we have z1 > 

··· > zn and so on. For a nonzero polynomial  

let fl(z) be the nonzero summand  with the largest monomial 

 . We call fl(z) the leading term of f(z), the coefficient ad1,...,dn – the leading 

coefficient, the monomial  – the leading monomial. 

Let s be a positive integer. An element a ∈ Z/psZ has a unique presentation a = a0 

+a1p+···+as−1ps−1, where ai ∈ {0,...,p−1}. An element a is invertible if and only if  

Denote Fp = Z/pZ. 

Let πs denote the homomorphisms Z → Z/psZ, Z[z] → (Z/psZ)[z], Z[z]n → 

(Z/psZ)[z]n and for t < s let πs,t denote the homomorphisms Z/psZ → Z/ptZ, (Z/psZ)[z] → 

(Z/ptZ)[z], (Z/psZ)[z]n → (Z/ptZ)[z]n. 

4.2. Quasi-constants. We say that a polynomial f(z) ∈ Z[z] is a quasiconstant 

modulo  . The quasi-constants modulo ps form a 

subring of Z[z] denoted by Z[z]ps. For example (z1 + z2)ps ∈ Z[z]ps. 

Lemma 4.1. As a Z-module, the ring Z[z]ps is spanned by the monomials ps−tz1d1 ...zndn, 

where t is the maximal integer such that t  s and pt divides every d1,...,dn. For example, 

zlps and ps−1zpzp2 are such monomials. 

 1 1 2 

Proof. Let . We show that each summand 
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 is a multiple of a monomial of Lemma 4.1. Indeed, let be the 

leading term of f(z). Then all first partial derivatives of it must lie in psZ[z] Hence cd0 

∈ ps−tZ, where t is the maximal integer such that t  s and pt 

divides every  . Subtracting the leading term from f(z) and repeating the 

reasoning we prove the lemma.  

Lemma 4.2. Let f(z) be a quasi-constant modulo ps and  . Then ptf(z) is a 
quasi-constant modulo pr for any 1  r  s + t. 

The rings of quasi-constants form a decreasing filtration, Z[z]p ⊃ Z[z]p2 ⊃ ... . 

4.3. Solutions of system (2.1) modulo ps. We say that a column n-vector I(z) ∈ 

Z[z]n of polynomials with integer coefficients is a solution of system (2.1) modulo ps, if 

πsI(z) ∈ (Z/psZ)[z]n satisfies system (2.1). 

Lemma 4.3. Let I(z) be a solution of system (2.1) modulo ps. 

(i) Let . Then ptI(z) is a solution of system (2.1) 

modulo pr for any 

 1 r s + t. 

(ii) Let f(z) be a quasi-constant modulo ps. Then f(z)I(z) is a solution of system (2.1) 

modulo ps.  and I(z) ∈ ptZ[z]n. Let f(z) be a quasi-constant modulo 

ps−t. Then f(z)I(z) is a solution of system (2.1) modulo ps. 

 

4.4. ps-Hypergeometric solutions. Let M be the least positive integers such that 

(4.1) 

We have 

. 

Introduce the master polynomial 

(4.2) Φ  . 

Let 

(4.3) , 

where Pps(x,z) is a column n-vector of polynomials in x,z1,...,zn and Ppi
s(z) are n-vectors 

of polynomials in z1,...,zn with coefficients in Z. For a positive integer l, denote 

. 

Theorem 4.4. For any positive integer l, the vector of polynomials Z[z]n 

is a solution of system (2.1) modulo ps. 

Proof. We have the following modifications of identities (3.3), (3.4): 
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(4.4) , 

(4.5) 
, 

where Ψips(x,z) is the column n-vector (0 0) with the 

nonzero − 

element at the i-th place. The theorem follows from identities (4.4), (4.5).  

Remark. In [SV2] it was explained on how to construct polynomial solutions 

modulo p of an arbitrary system differential KZ equations, associated with any 

KacMoody algebra and any tensor product of highest weight representations. The 

same construction gives polynomial solutions modulo ps. The details will be provided 

elsewhere. 

The range for the index l is defined by the inequalities 0 . 

Hence l = 1,...,g. The solutions Ip[lp
s 

s−1](z), l = 1,...,g, given by this construction, will be 

called the ps-hypergeometric solutions in Z[z]n. For t = 1,...,s − 1 and l = 1,...,g, the vector

) is a solution of system (2.1) modulo ps, see Lemma 4.3. Such solutions 

also will be called ps-hypergeometric solutions in Z[z]n. 

4.5. Modules. Consider the increasing filtration 

(4.6) 0 =  , 

where 

(4.7) , 

t = 1,...,s. We have Mps ⊂ (Z/psZ)[z]n. Every element of Mps is a polynomial solution of 

system (2.1) with coefficients in Z/psZ, see Lemma 4.3. The set Mps is a module over 

the ring Z[z]ps of quasi-constants modulo ps, where f(z) ∈ Z[z]ps acts by multiplication 

by πsf(z). Each  is an Z[z]ps-submodule of Mps. 

Each Mtps is also a module over the larger ring Z[z]pt of quasi-constants modulo pt, 

where f(z) ∈ Z[z]pt acts by multiplication by πsf(z). 

The elements of Mpswill be called the ps-hypergeometric solutions in (Z/psZ)[z]n. 

5. Independence of modules from the choice of M 

5.1. More general construction of solutions. For i = 1,...,n, let Mi be a positive 

integer such that 

(5.1) . 
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Denote ). Consider the master polynomial 

(5.2) Φ(  , 

and the Taylor expansion 

, 

where  ) are n-vectors of polynomials in z1,...,zn with coefficients in Z. For a 

positive integer l, denote 

. 

 . For any positive integers  , the vector of polynomials I[lp 

−1](z,M) ∈ Z[z]n is a solution of system (2.1) modulo pt. 

Proof. The theorem follows from straightforward modifications of identities 

(4.4), (4.5).  

5.2. More modules. Consider the increasing filtration 

(5.3) 0 =

 , where 

(5.4) , 

t = 1,...,s. We have . Every element of ) is a polynomial 

solution of system (2.1) with coefficients in Z/psZ, see Lemma 4.3. The set ) is 

a module over the ring Z[z]ps of quasi-constants modulo ps, where acts 

by multiplication by πsf(z). Each ) is an Z[z]pssubmodule of  

Each Mtps(M) is also a module over the larger ring Z[z]pt of quasi-constants modulo 

pt, where f(z) ∈ Z[z]pt acts by multiplication by πsf(z). 

Theorem 5.2. Filtration (5.3) does not depend on the choice of  (M1,...,Mn), 
satisfying congruences (5.1). Moreover, filtration (5.3) coincides with filtration (4.6). 

For s = 1 the statement is [SliV, Theorem 3.1]. 

Proof. First we show that   ) and filtration (5.3) do not 

depend on the choice of M . Let  ) be two 

vectors satisfying congruences (5.1). We say that  for all i. The 

vector (  ) is the minimal vector with respect to this partial order. To 

show that ) and filtration (5.3) do not depend on the choice of M it is enough 

to show that the filtrations are the same for a vector M and for a vector 

0), where the nonzero element stays at the j-th 

position for some j. Then 
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. 

Recall that , For any 

 we have 

(5.5) . 

We are interested in this formula, since ) is a solution 

of system (2.1) modulo pr. 

Lemma 5.3. Let b,c ∈ Z>0s be such that  b. Then ps−c is the maximal 

power of p dividing . 

Proof. For   we have , and by 

Lucas’ theorem, [Lu]. 

Lemma 5.4. Let . Consider the vector 

 
appearing in , then V = 0. For lpr > a, we write lpr − a = vpu, where u = 

min(r,c). Then 

(5.6) , 

where  is a quasi-constant modulo pu. 

 Proof. The lemma follows from Lemma 5.3.  

Corollary 5.5. For any r = 1,...,s, we have .  Lemma 5.6. For 

any r = 1,...,s, we have . 

Proof. Let w be the greatest integer such that  ). Then 

 is the greatest integer such that  deg ). Comparing 

the coefficients in (5.5) and using Lemma 5.5, we observe that for any l = 1,...,w we 

have 

 , 

where . This triangular system of equations with respect to 

I[lpr−1](z,M), l = 1,...,w, can be written as 

, 
 m1 k=1 m1 

l = 1,...,w, for suitable  . 

Applying the previous reasoning to 

the 
k 

sum), we obtain 
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, 
 m1 k=1 m1 

l = 1,...,w, for suitable . This proves the lemma.  

Corollary  and filtration (5.3) do not depend on the 
choice of M = (M1,...,Mn), satisfying congruences (5.1).  

Lemma 5.8. Let . Then . 

Proof. The proof of the lemma is a straightforward modification of the proof of 

Corollary 5.5 and Lemma 5.6.  Theorem 5.2 is proved.  

6. Filtrations and homomorphisms 

6.1. Reduction from modulo ps to modulo ps−m. If I(z) is a polynomial solution 

of system (2.1) modulo ps, then I(z) is also a polynomial solution of system (2.1) 

modulo ps−m for any 1  m < s. This defines a map 

(6.1) 

r , 

, 

where M is a vector with coordinates satisfying congruences (5.1). See these sums in 

(5.4). In the last sum we have 

 and a solution I[lpr−1](z,M) 

modulo pr also can be considered as a solution ) modulo pr−m. 

 For any , the submodule ) is mapped by rs,s−m 

to the submodule ). The induced map 

(6.2) r  

is a homomorphism of Z[z]pr-modules. Thus the map (6.1) is a homomorphism of 

filtered modules decreasing the index of filtration by m. 

By Theorem 5.2 we have . Hence homomorphism (6.1) also can 

be considered as a homomorphism of filtered modules, 

(6.3) rs,s−m : Mps → Mps−m , 

decreasing the index of filtration by m. 

It is rather nontrivial to write a formula for this map in terms of the generators 

I[lpr−1](z) of these modules. 
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6.2. Multiplication by pm. If I(z) is a polynomial solution of system (2.1) modulo 

ps, then for any positive integer m the polynomial pmI(z) is a polynomial solution of 

system (2.1) modulo ps+m. In particular, multiplication by pm defines a map 

 

for any t = 1,...,s. See these sums in (4.7). Clearly this map is an isomorphism of filtered 

Z[z]pt-modules. 

6.3. The composition of homomorphisms. For m < s denote by cs,m the 

composition ps−m,mrs,s−m, 

(6.5) c . 

For any t = 1,...,s, this map induces a homomorphism modules. 

We have cs,m = (cs,1)m for m < s and c  

As we know, the module Mps is generated by the elements )), r = 

1,...,s, l = 1,..., g. For l = 1,...,g, we have 

(6.6) 
s 

cs, 
=1 =1 

for suitable coefficients cl,sr,k(z) ∈ Z[z]pr. 

The set of the coefficients (cl,sr,k(z))l,s,r,k determines the homomorphisms cs,m for all 

s,m. In what follows we shall describe the coefficients cl,ss−1,k(z) for all l,s,k, see 

Theorem 8.4. 

6.4. Graded modules and homomorphisms. Denote 

(6.7) gr , gr  . 

Lemma 6.1. For any t = 1,...,s, the action of Z[z]pt on Mpts makes grMtps an Fp[zpt]-

module. Multiplication by p on Mtps induces a homomorphism 

(6.8) grcs,1 : grMtps → grMpt−s 1 

of Fp[zpt]-modules.  
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7. Coefficients of solutions 

7.1. Homogeneous polynomials. For l = 1,...,g, the solution I[lps−1](z) = 

 s [lps−1] 

 , ..., In ) is a homogeneous polynomial in z of degree 

(7.1)  

Notice that (  

7.2. Formula for coefficients. Recall that . Projection of this integer 

to Z/psZ is invertible. Let 

. 

Lemma 7.1 ([V8, Lemma 3.1]). We have 

(7.2) . 

The sum of coordinates of this vector is divisible by ps.  

Lemma 7.2 (cf. [V8, Theorem 6.1]). For l = 1,...,g, the leading term of the ps-
hypergeometric solution I[lps−1](z) is 

 , 

where 0 is repeated 2g − 2l times and 1 is repeated 2l times. 

 Proof. The lemma follows from Lemma 7.1.  

Lemma 7.3. The projections to Z/psZ of the integers  are invertible. 

 Proof. The invertibility of  follows from Lucas’ theorem, [Lu].  

8. Multiplication by p and Cartier-Manin matrix 

8.1. Linear independence. 

Lemma 8.1. The projections of the ps-hypergeometric solutions I[lps−1](z) ∈ 

Z[z]n, l = 1,...,g, to Fp[z]n are linearly independent over Fp[z], that is, if 

(8.1)  

for some cl(z) ∈ Z[z], then all cl(z) ∈ pZ[z]. 

Proof. Recall that the projection is denoted by π1. By Lemma 

7.3, the leading coefficient of π1(cl(z)I[lp −1](z)) equals the product of the leading 

coefficient of π1(cl(z)) and the leading coefficient of π1(I[lps−1](z)), if π1(cl(z)) is 

nonzero. In that case the leading coefficient of π1(cl(z)I[lps−1](z)) is a nonzero multiple 

of the nonzero vector  

If relation (8.1) holds and some of the coefficients cl(z) have nonzero projections 

π1(cl(z)), then for several values of such indices l the sum of the corresponding leading 
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coefficients has to be equal to zero, which is impossible due to the fact that the vectors 

1)) are linear independent over Fp.  

Corollary 8.2. The projections of the ps-hypergeometric solutions I[lps−1](z)∈ Z[z]n, l 

= 1,...,g, to Fp[z]n are linearly independent over Fp[zps]. 

Denote by 

(8.2) grt : Mtps → grMtps 

the natural projection. Then the elements grt(πs(ps−tI[lpt−1](z))), l = 1,...,g, generate the 

Fp[zpt]-module grMtps. 

Corollary 8.3. For t = 1,...,s, the Fp[zpt]-module grMtps is a free module of rank g with 

a basis grt(πs(ps−tI[lpt−1](z))), l = 1,...,g.  

Denote the basis vectors of the Fp[zpt]-module gr  by 

(8.3)  

8.2. Cartier-Manin matrices. Let 

 f(x,z) = (x − z1)...(x − zn), n = 2g + 1. 

Consider the hyperelliptic curve X defined by the affine equation 

y2 = (x − z1)...(x − zn). 

Consider the space Ω1(X) of regular 1-forms on X with basis  . 

Define the Cartier map C : Ω1(X) → Ω1(X) as follows. We have 

 . 

Let  . Define 

 , 

see [AH]. The map C is identified with the g × g-matrix (Cij(z))gi,j=1 , 

j(z) = cjp−1(z). 

 Ci i 

8.3. Matrix of grcs,1. Recall that multiplication of solutions by p defines a map 

(8.4) grcs,  , 
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where gr   is a free Fp[zpt]-module with a basis (   and gr   is a free 

Fp[zpt−1]-module with a basis ( , see (8.3). The map (8.4) is a homomorphism 

of Fp[zpt]-modules. 

Theorem 8.4. The matrix of grcs,1 is the Cartier-Manin matrix C(zpt−1), 

g 

(8.5) grcs, 
=1 

 Proof. Theproblem is to express modulops−t+2Z[z]n

 the element 
t 

) in terms of the elements. In 

other words, we need to express  ) in terms of 

modulo pZ[z]n. 

By definition, the vector  ) is the coefficient of xlpt−1 in the Taylor 

expansion of the polynomial 

 , 

while the vector ) is the coefficient of xmpt−1−1 in the Taylor expansion of the 

polynomial Ppt−1(x,z), see notations in Section 4.4. We have 

  mod p. 

Hence . Theorem 8.4 is proved. 

 

Corollary 8.5. The matrix of  is the product of Cartier-

Manin matrices C(zpt−1)C(zpt−2)···C(zpt−m). Moreover, this statement, applied to the map 

grc  , 

can be reformulated as follows. For any l = 1,...,g, the solution   modulo ps of 
system (2.1), projected to Fp[z]n, equals the projection to Fp[z]n of the solution 

 

modulo p of system (2.1).  

See these sums in [V5, Section 8]. 

9. Change of variables 

9.1. Change of the variable x. Change the variable x and set x = v + zn. 

Then 
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(9.1)  . 

Let 

, 

where P˜pi
s(z) are n-vectors of polynomials in z with integer coefficients. For a positive 

integer l, denote 

(9.3) . 

The polynomial ) is nonzero if l = 1,...,g. Notice that every polynomial

) is a function of differences zi − zn, i = 1,...,n − 1. 

Consider the increasing filtration 

(9.4) 0 = M˜ 0ps ⊂ M˜ 1ps ⊂ ··· ⊂ M˜ sp−s 1 ⊂ M˜ sps = M˜ ps , 

where 

, 

Theorem 9.1. For any l, the vector of polynomials  is a solution of 

system (2.1) modulo ps. For any t = 1,...,s we have . 

Proof. The proof is the same as the proof of Theorem 5.2 and the proof of [V5, 

Lemma 5.2]. In the proof of Theorem 9.1 the following Lemma 9.2 is used instead of 

Lemma 5.3.  

Lemma 9.2. Let r = 0,...,s − 1 and  , then is divisible by 
ps−r. 

 Proof. We have .  

9.2. Change of variables z. We introduce the new variables u1,...,un by the 

formulas: 

, 

or zi − zn = u1 ···ui, i = 1,...,n − 1, z1 + ··· + zn = un . 

For any l,s we denote u = (u1,...,un−1), 

(9.8) . 
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Each ) is an n-vector of polynomials in u with coefficients in Zn. 

Each Iˆp[lp
s 

s−1](u) is a solution of system (2.1) modulo ps, in which the change of 

variables z = z(u) is performed. 

9.3. Change of variables in the KZ equations. It is known that system (2.1) of 

the differential KZ equations has suitable asymptotic zones with appropriate local 

coordinates, in which the differential KZ equations have singularities only at the 

coordinate hyperplanes. See a definition of the asymptotic zones, for example, in [V2]. 

The coordinates u defined in (9.7) are local coordinates in one of the asymptotic 

zones. In these coordinates, system (2.1) takes the form, 

(9.9) , 

where Ω  and Regi(u) is an n × n-matrix depending on u and regular 

at the origin u = 0. The origin is a regular singular point of system (9.9) and one may 

expand solutions at the origin in suitable series in the variables u. 

Any polynomial ) is a solution of system (9.9) modulo ps. We will expand 

the polynomial Iˆp[lp
s 

−1](u) at u = 0 and show that this expansion has a p-adic limit as s 

→ ∞. In that way we will construct a g-dimensional space of p-adic solutions of system 

(9.9), which is the same as the original system (2.1) of the differential KZ equations 

up to the change of variables, z = z(u). 

9.4. Taylor expansion of . Denote 

(9.10) , 

, 

where Pˆpi
s(u) are n-vectors of polynomials in u with coefficients in Z. For a positive 

integer l, we have 

(9.12) , 

where Iˆp[lp
s s

−1](u) is defined in (9.8). For 

l = 1,...,g, denote 

(9.13)  , 

or 

 

see (−1)δl in (7.1). Denote 
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(9.14) , 

where 0 is repeated 2g − 2l times and 1 is repeated 2l times, cf. formula (7.3). 

Theorem 9.3. For l = 1,...,g, the polynomial Iˆ
p[lp

s s
−1](u) has the following 

form,    

(9.15) 
 
= ul,sTl,s(u), 

 Tl,s(u) = (T1l,s(u),...,Tnl,s(u)), 

with coordinates Tjl,s defined as follows. If j = 1,...,n − 1, then 

∈ Z − , such 

thatn 2l; and such that 

; 

, 

where the summation
is over all , 

such that 

a1 + a 

. 

Notice that the factor uj+1 ···un−2l in (9.16) equals 1 if . Proof. Make the 

change of variables v = wu1 ···un−2l in (9.11), 

. 

Hence 
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 ···− 
. 

We transform the factors in the polynomial Pp◦
s(w,u) as follows. For any positive 

integers k and  we write 

, 

and if i > n − 2l, we write 

. 

Notice that for factors in (9.11), we have  1. This 

explains the binomial coefficients in (9.16) and (9.17). 

We prove formula (9.16) for j = 1, the proof for other values of j is similar. Our 

goal is to calculate the first coordinate of the vector 

. 

That is we need to calculate the coefficient of wlps−1 in 

 
which is the same as the coefficient of wl−1 in 

 . 

Expanding the binomials we obtain formula (9.16) for j = 1. 

The constant term of Tl,s(u) is given by the summands in (9.16) and (9.17), 

corresponding to− a1 = ··· = an−2l−1 = an−2l+1 = ··· = an−1 = 0 and j = n 2l,...,n. Theorem 9.3 

is proved. 

9.5. Taylor expansion of holomorphic solutions. Recall the multivalued 

holomorphic solutions of system (2.1) described in Section 3, 

 

We make the same changes of variables in the integrals I(γ)(z) as we did in the previous 

sections. Namely, first we change the integration variable x and set x = v + zn, then we 

make the change of variables z and set z = z(u). The resulting 

integral is 
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where  

For l = 1,...,g, we change the integration variable v and set v = wu1 ...un−2l. Then 

 

Choose the integration cycle γ = γl to be the circle |w| = 1/2 oriented 

counterclockwise. We assume that all the variables u2,...,un−1 lie inside the circle. We 

fix the branch of the function 

(9.21)  

over the circle by choosing the argument of the function in (9.21) at w = 1/2, u2 
= ··· = 

un−1 = 0 to be 0. We multiply the circle with the chosen branch of the integrand by 

. This finishes the description of γ1. The resulting integral is 

 

Denote 

(9.22)  . 

Theorem 9.4. For l = 1,...,g, the function Iˆ(γl)(u) has the following form, 

(9.23) , 

with coordinates Tjl defined as follows. If j = 1,...,n − 1, then 

, 

where the summation

 
such that a1+···+an−2l = 

; and such that a1 + ··· + an−2l = 
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; 

, 

where the summation is over all  such that 
a1+···+an−2l = 

an−2The power seriesl+1 ··· n−1 Tl(u) converges in the polydisc {(u2,...,un−1) ∈ Cn−1 | |ui| < 1, 

i = 2,...,n − 1}. 

Proof. We prove formula (9.16) for j = 1, the proof for other values of j is similar. 

The function ) equals 

 

Expanding the binomials we obtain formula (9.24) for j = 1. 

 The convergence property is clear.  

9.6. Formal solutions over Qp and truncation. For l = 1,...,g, the formal series 

Iˆ(γl)(u) is a formal solution of system (2.1), in which the change of variables z = z(u) is 

performed and which is considered over the field Qp of p-adic numbers. 

Lemma 9.5. The formal series Iˆ(γl)(u), l = 1,...,g, are linear independent over the field 

Qp. 

Proof. The proof follows from the fact that the monomials ul, l = 1,...,n, are linear 

independent over Qp.  9.7. Example n = 3. In this case we have

, 
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10. p-Adic convergence 

Consider the field Qp with the standard p-adic norm |t|p, t ∈ Qp. In this section we 

consider the polynomial solutions ((  and the formal solutions 

Iˆ(γl)(u) as functions on Qnp−1. 

Recall that Zp ⊂ Qp denotes the ring of p-adic integers. 

10.1. Teichmuller representatives. For t ∈ Zp there exists the unique solution 

ω(t) ∈ Zp of the equation ω(t)p = ω(t) that is congruent to t modulo p. The element ω(t) 

is called the Teichmuller representative. It also can be defined by ω(t) = lims→∞ tps. The 

Teichmuller character is the homomorphism 

. 

For 

Dα,r = {t ∈ Zp | |t − ω(α)|p < r}. 

The space Zp is the disjoint union of the discs Dα,1, α ∈ Fp. The function ω : Zp → 

), is a locally constant function equal to ω(α) on the disc Dα,1. For a subset 

S ⊂ Zp and a function f : S → Zp define the norm 

. 

Lemma 10.1. For any α ∈ Fp the sequence of polynomial functions uniformly 

converges on Dα,1 to the constant function ω(α). 

Proof. We use the “fundamental inequality” from [Ro, II.4.3]: if  1, then 

. Now let t ∈ Dα,1 . Then tp−1 = 1 + t1, 

. We have . 

For positive integers s1,s2 and t ∈ Dα,1 we have 

|tps1+s2 − tps1|p = |tps1+s2 − 

tps1+s2−1 + tps1+s2−1 + . Hence the sequence ( is a Cauchy sequence. 

For t ∈ D0,1, we have 

 . For 

= 0, we have t1/t2 = 1+t withand. The lemma is proved. 
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For α ∈ Fp consider the sequence of polynomial functions (  on 

Dα,1. This sequence uniformly converges to 0 on the disc D0,1. 

Let α(p−1)/2 = 1. Let β ∈ Fp be such that β2 = α. The function Dβ,1 → Dα,1, 

, is an analytic diffeomorphism. The inverse function Dα,1 → Dβ,1 will be denoted 

by x1/2. There are two square roots ±x1/2. The root x1/2 corresponds to the chosen β ∈ 

Fp and the root −x1/2 corresponds to −β ∈ Fp. 

We change the variable x, set x = y2, and lift the sequence (  to the 

sequence (  of polynomial functions on Dβ,1. 

Lemma 10.2. The sequence of polynomial functions  uniformly converges 
on Dβ,1 to the function ω(β)/y. In other words, the sequence of polynomial functions 

 uniformly converges on Dα,1 to the function ω(β)x−1/2. 

 Proof. The lemma follows from Lemma 10.1.  

Let α(p−1)/2 = −1. Then ω(α)(ps−1)/2 = (−1)1+p+···+ps−1 = (−1)s and the sequence (

 has no limit on Dα,1. 

10.2. Approximation of binomial coefficients. It is known that  

Z Z . 

 Lemma 10.3. Let l1  be integers. Then there 
exists an integer 

, such that for any integer  and any integer a with we have 

, where d = l1 + l2 − 1/2. 

Proof. We have 

. 

The p-adic norm of  1. The difference   is the sum of 

products  1) in each of which at least one of the 

factors 2(l1 +k)−1 is replaced with −ps. We prove that even one such replacement 

implies that this summand of the difference has p-

adic norm 

. 

Indeed, let 2(l1 +k). We have 2( 
s 

2(l1 +1. Hence. Hence for any s, large enough, we have , and the 

replacement of 2(l1 + k) − 1 with −ps makes the norm of that summand  1/ps−c.
 c c 
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 We also have 1. Hence . 

This shows that each summand has the p-adic norm 1 . 

The lemma is proved.  

10.3. Example n = 3, continuation. Consider the formal power series 

(10.2)  in 

(9.26) and the sequence of polynomials 

 

in (9.27) as functions on Zp. 

Proposition 10.4. The power series T1(x) uniformly convergence on D0,1. The 

sequence of polynomial functions   uniformly converges on D0,1 to the 
function T1(x). 

Proof. The fact that the binomials  -adic integers implies the 

uniform convergence of the power series T1(x) on D0,1. 
s 

Let us write  , where Ta1,Ta1,s ∈ 

Z3p. Then . Clearly the p- 

adic norm of the first sum is . By Lemma 10.3 if s is big 

enough, then for each summand of the second sum and t ∈ 

D0,1 we have |(Ta1d for some d independent of s and of the summand. This proves the 

proposition. 

Consider the formal series 

 

and the sequence of polynomials 

 

as functions on Dα,1 × D0,1, where α = β2 for some β ∈ Fp. Then the function 

 is well-defined and the series Iˆ(γ1)(u1,u2) is a well-defined 

function on Dα,1 × D0,1. 
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 The sequence of polynomial

 functions  uniformly converges on Dα,1 × D0,1 to 

the function 

 Proof. The theorem follows from Lemma 10.2 and Proposition 10.4 .  

10.4. p-Adic convergence for arbitrary n. Given  , consider the 

sequence of polynomials (−1)δlIˆp[lp
s 

s−1](u) and the series Iˆ(γl)(u). Here u = 

2l 

((uzn1−,...,uWe multiply the polynomials and the 

series by the same factor (2l − znn−)1l).and study the 

convergence of the sequence of polynomialsu1 ···unJ−l,s)l:== ) to the series Jl := (u1 

···un−2l)lIˆ(γl)(u). Introduce 

new variables: 

, 

− 

Let x = (x1,...,xn−1). Then 

, 

with coordinates Qlj defined as follows. If j = 1,...,n − 1, then 

, 

where the summation is over all  such that a1+···+an−2l = 

; and such that a1 + ··· + an−2l = 

1; 
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, (10.7)

summation is over all   such that where the 

a1+···+an−2l = an−2l+1 + ··· + an−1 + . 

We also have 

, 

with coordinates Ql,sj (x) defined as follows. If j = 1,...,n − 1, then 

, 

, such 

that 1 + ··· + n−2l = n−2l+1 + ··· + n−1 + − 1, if j  n − 2l; and such that 

1; 

(10.9) , 

summation is over all a1,...,an−1 ∈ Z, 0 , such where the 

that a1 + ··· + an−2l = n−2l+1 + ··· + an−1 + l. 

Proposition 10.6. The power series Ql(x2,...,xn−1) uniformly convergens on . The 

sequence of polynomial functions  uniformly converges on  
to the function Ql(x2,...,xn−1). 

Proof. The fact that the binomials  -adic integers implies the 

uniform convergence of the power series . The proof of the 

uniform convergence of (Ql,s(x2,...,xn−1))∞s=1 to Ql(x2,...,xn−1) follows from 

Lemma 10.3 in the same way as the uniform convergence in the proof of Proposition 

10.4.  

Consider the formal series   ) and the 

sequence of polynomials  ) as functions on

, where α = β2 for some β ∈ Fp. Then the function  is 

well-defined and the series Jl(x) is a well-defined function on . 
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Theorem 10.7. The sequence of polynomial functions   uniformly 

converges on  to the function ω(β)Jl(x). 

 Proof. The theorem follows from Lemma 10.2 and Proposition 10.6.  

Appendix A. The case n = 3 and Dwork’s theory 

by Steven Sperber and Alexander Varchenko 

In this appendix we consider only the special case n = 3 of previous 

considerations and show how this special case is related to Dwork’s theory in the 

classical paper [Dw]. 

A.1. Dwork on Legendre family. 

A.1.1. Consider the Legendre family of elliptic curves E(λ) defined by the affine 

equation 

y2 = x(x − 1)(x − λ). 

Let γ = γ(λ) be a family of 1-cycles on the curves E(λ) flat under the Gauss-Manin 

connection. Then the function 

(A.1)  satisfies the hypergeometric 

differential equation 

(A.2) . 

All solutions of this equation are obtained in this way. One of the solutions h(δ1)(λ), for 

a suitable δ1, equals 

(A.3) , 

where 2F1 is the classical hypergeometric function. 

A.1.2. If h(λ) is the elliptic integral in (A.1), then its derivative is 

(A.4) . 

A.1.3. Equation (A.2) can be written as a system of first order linear differential 

equations for column 2-vectors ), 

(A.5)  . 

A.1.4. In [Dw] Dwork considers equation (A.2) over the field Qp of p-adic numbers 

and studies analytic properties of the solution F(λ). We remind these properties 

below. 

A.1.5. Let D ⊂ Qp be an open subset. A function f : D → Qp is called analytic at α ∈ 

D if f can be presented by a power series   with nonzero radius of 

convergence. 
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A function f : D → Qp is called analytic on D if f is the uniform limit on D of a 

sequence of rational function regular on D. In that case f is analytic at every point of 

D. 

For i = 1,...,N let fi : Di → Qp be an analytic function on some domain Di. 

Assume that 1, and fi = fi+1 on Di ∩Di+1, then we say 

that the collection of functions fi defines an analytic element on . 

Cf. [Dw, Section 0]. 

A.1.6. Igusa noted in [Ig] that modulo p the polynomial (A.6)

  

is the unique polynomial solution of equation (A.2) of degree less than p up to 

multiplication by a constant. Define 

 D1 = {λ ∈ Zp | |g(λ)|p = 1}, D2 = {λ | λ−1 ∈ D1}, D = D1 ∪ D2. 

Notice that D1, D2 are open and D . More precisely, D1 ∩ D2 

= {λ ∈ Zp | |g(λ)|p = 1, |λ|p = 1}. 

A.1.7. Dwork considers the functions 

(A.7) , 

defined in a neighborhood of 0 ∈ D1 as ratios of the corresponding convergent power 

series expansions. 

Dwork proves that f(λ) can be analytically continued to the domain D1. For that, 

he indicates a sequence of regular rational functions on D1, that sequence uniformly 

converges on D1, and its limit equals F(λ)/F(λp) in a neighborhood of 0, see [Dw, 

Lemma 3.4]. 

From that Dwork deduces that η(λ) has analytic continuation to the domain D1 in 

the same sense, see [Dw, Lemma 3.1]. 

Since η(λ) is analytic on D1, the function η(1/λ) is analytic on D2. 

Using the properties of equation (A.2) Dwork shows that η(1 − λ) = −η(λ) on D1 

and shows that η(λ) = −η(1/λ)/λ2 − 1/(2λ) on D1 ∩ D2. Hence the function η(λ) on D1 

and the function −η(1/λ)/λ2 −1/(2λ) on D2 define an analytic element on D. 

We will use the formulas 

(A.8) η(1 − λ) = −η(λ), η(1/λ) = −λ2η(λ) − λ/2, 

in Section A.5. 

A.1.8. For α ∈ Qp let Vα be the space of germs at α of holomorphic solutions of 

equation (A.2). For 1 we have dimVα = 2 and for α = 0,1 we have dimVα = 1. 

For α ∈ D1 let Uα be the space of germs at α of analytic functions defined by the 

equation 
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(A.9)  

By [Dw, Lemma 3.2], Uα is a subspace of Vα. We have Uα = Vα for α = 0,1. 

For  be the space of germs at α of analytic functions defined by 

the equation 

(A.10)  

By [Dw, Lemma 3.2],  is a subspace of Vα. For α ∈ D1 ∩D2 we have . 

A.1.9. By [Dw, Lemma 4.2], for α ∈ D the subspace Uα ⊂ Vα also can be 

characterized as the subspace of germs at α of holomorphic functions bounded in 

their disc of convergence. 

More precisely, let Cp be the metric completion of the algebraic closure 
Q¯

p of the 

field Qp. Let α ∈ D. Let  be an element of Vα. 

Consider u(λ) as a germ at α ∈ Qp ⊂ Cp of an analytic function on Cp. The germ u(λ) is 

called bounded on its disc of convergence if u(λ) is bounded on its disc of convergence 

in Cp. 

Let r be the radius of convergence of  . Define |u(λ)|0 = 

supk |ck|rk. Then u(λ) is bounded in its disc of convergence if and only if |u(λ)|0 < ∞. 

A.1.10. The function F(λ) is a holomorphic solution of equation (A.2) on the disc 

D0,1. A second solution of (A.5) is of the form G(λ) = F(λ)logλ+H(λ), where the function 

H(λ) is holomorphic on D0,1. Dwork specifies H(λ) by [Dw, Equation (4.19)]. Then 

(A.11)  

is a fundamental matrix of solutions of equation (A.5). 

In [Dw] Dwork introduces a 2 × 2-matrix function A(λ), and then proves the 

formula 

 , 

where b is a suitable number, see [Dw, Lemma 6.2] and formulas on page 72 in 

[Dw]. Dwork shows that A(λ) extends to an analytic function on the domain 

D3 ∪ D4, where 

Zp | |λ p = 1, (A.13) D3 = {λ ∈ 

λ 1 p = 1}, D4 

= {λ ∈ Zp ε < λ|p < 1}, 

D 

Here ε is some explicit number, 0 < ε < 1. See the bottom of page 62 in [Dw] and the 

first sentence of the proof of Theorem 6 in [Dw]. Formula (A.12) immediately implies 

that 
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(A.14) A(λ)F(λp) = F(λ)M 

on D4. The matrix A(λ) is called the matrix of the Frobenius transformation of 

solutions of equation (A.5) relative to the fundamental matrix F(λ). It follows from 

formula (A.14) that 

(A.15)  on D4. This can 

be reformulated as the relation 

(A.16)  

on D4. By the already formulated analytic properties of η(λ) and A(λ), relation (A.16) 

can be analytically continued to the domain D1 ∩ D3. 

Equation (A.16) implies that for any   such that ω(α) ∈ D1, the 

vector (1,η(ω(α))) is an eigenvector of the Frobenius matrix A(ω(α)) with eigenvalue 

(−1)(p−1)/2f(ω(α)), 

(A.17) . 

It is known that the zeta function of the elliptic curve defined over Fp by the 

equation y2 = x(x − 1)(x − α) has two zeros, which are 1/((−1)(p−1)/2f(ω(α))), 

(−1)(p−1)/2f(ω(α))/p. It is also known that |f(ω(α))|p = 1. The number (−1)(p−1)/2f(ω(α)) 

is called the unit root. See [Dw] and also (A.53). 

A.2. KZ equations. The KZ equations (2.1) for n = 3 is the following system of 

differential and algebraic equations for a column 3-vector I = (I1,I2,I3) depending on 

variables z = (z1,z2,z3): 

(A.18) 

 −

 − 

where Ωij = Ωji and 

 . 

We introduce new variables 

(A.19) , 

see (9.7). Then system (A.18) takes the form 
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 ( w − 1)( w − u 2 ) w 
 ( w − 1)( w − u 2 ) w at w =1 / , 2 u 2 

− 1 
2 π 

 

The variables in system (A.20) are separated, cf. (9.9). 

Denote W˜ = {(I1,I2,I3) | I1 + I2 + I3 = 0}. Then 

(A.21) (Ω12 + Ω13 + Ω23)|W˜ = −3Id . 

Hence all solutions of system (A.20) have the form 

(A.22) I = u−1 3/2(J1(u2),J2(u2),J3(u2)), J1 + J2 + J3 = 0, 

where the column vector J(u2) is a solution of the differential equation 

(A.23)  

A.3. Solutions over C. Any solution of system (A.18) has the form 

(A.24)  . 

where γ is a flat family of 1-cycles on the elliptic curves of our family of curves. 

We change x and z in this integral by setting x = (z1 −z3)w +z3 and z = z(u) as in 

(A.19). Then integral (A.24) takes the form 

. 

 − − 

We take γ = γ1 to be the circle |w| = 1/2 oriented counter-clockwise. We assume 

that u2 lies in this circle. We fix the branch of over the circle by choosing the argument 

of = 0 to be π/2. We multiply the circle with the chosen branch of the integrand by . 

This finishes the description of γ1. See the definition of cycles γl in Section 9.5. We 

expand the integral I(γ1)(u1,u2) as a power series in u2 and obtain 

 

see Theorem (9.4). Denote 

(A.27) 

 

This series is a solution of system (A.18). 
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Remark. Formulas (A.25) and (A.26) imply that 

, 

where 2F1(a,b;c;λ) is the classical hypergeometric function. 

A.4. Solutions as vectors of first derivatives. Introduce the function 

(A.30)  . 

Then 

(A.31)  

Changing the variable x = w(z1 − z3) + z3 we write 

(A.32)  , 

where h(γ)(λ) is the elliptic integral in (A.1) and h(γ)(λ) is a solution of equation (A.2). 

Denote h(λ) := h(γ)(λ). Then 

 
Formula (A.34) relates solutions of system (A.5) and solutions of system (A.20). If 

) is a solution of system (A.5), then equation 

(A.35)  

gives a solution (I1,I2,I3) of system (A.20). Conversely, if (I1,I2,I3) is a solution of system 

(A.20) then formula 

(A.36)  

gives a solution ( ) of system (A.5). Using 

the cycle γ1 we can evaluate 

 where . 

Denote 

(A.38) , 
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where I is defined in (A.27). Formulas (A.33) and (A.34) imply 

, 

where the function η(λ) is defined in (A.7). 

A.5. Six coordinate systems. System (A.18) of KZ equations has 6 distinguished 

coordinate systems (asymptotic zones). They are labeled by permutations σ = (i,j,k) ∈ 

S3. The coordinate system ) is defined by the formulas 

(A.41) . 

For the identity element id = (1,2,3) the corresponding coordinate system is defined 

in (A.19). 

Having one of these coordinate systems we repeat the constructions of Sections 

A.3-A.4 and construct a scalar function ) and vector-valued functions Iσ(z), Iσ(z), 

such that ). For the identity element id = (1,2,3) these functions 

are ) in (A.37), (A.27), (A.39). Notice that the functions 

) and I(z) are defined as integrals over γ1, and that γ1 is defined with the help of 

coordinates u1,u2,u3. 

For any σ the function Iσ(z) is a power series solution of system (A.18) in the 

chart with coordinates uσ, see (A.26) and (A.27). Below we list the functions Iσ : 

. 

Theorem A.1. For (i,j,k) ∈ S3 consider the three functions Iijk, Ikji, Ijik. Then Ikji is 

transformed to Iijk by application of formula η(1 − λ) = −η(λ) and Ijik is transformed to 

Iijk by application of formula η(1/λ) = −λ2η(λ) − λ/2. 

Proof. The proof is straightforward. For example we check the statement for (i,j,k) 

= (1,2,3). In this case the functions I123, I321, I132 are 

, 

where u1,u2 are defined in (A.19). Then formula η(1−u2) = −η(u2) transforms the 

second function to the first and the formula 2 transforms 

the third function to the first. 
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Define 

D˜ . 

For any σ = (i,j,k) ∈ S3 define 

 D˜ z z

 z z , 

 D˜  2 = ( 1 2 3)

D˜ = D1 2,

 D˜ , 

where the function g is defined in (A.6). 

For any any (i,j,k) ∈ S3 the functions Iijk, Ikji, Ijik define an analytic element on D˜ σ, 

see Section A.1.7 and [Dw]. Theorem A.1 implies the following corollary. 

Corollary A.2. The functions (Iijk)(i,j,k)∈S3 define an analytic element on 

D˜.  

Remark. Dwork’s formulas (A.8) present the S3-symmetries of the analytic 

element (η(λ), −η(1 − λ), −η(1/λ)/λ2 − 1/(2λ)). Dwork’s S3-symmetries reformulated 

as S3-symmetries of the analytic element (Iijk)(i,j,k)∈S3 look even more well-rounded. 

A.6. Subbundle. Denote W˜ = {(I1,I2,I3) ∈ Q3p | I1 + I2 + I3 = 0}. System 

(A.18) of KZ equations defines a flat connection on the trivial bundle W˜ ×D˜ 0 → D˜ 0. 

The flat sections of that bundle are solutions of system (A.18) of KZ equations. 

For any α ∈ D˜ such that α ∈ D˜σ the vector Iσ(α) spans a one-dimensional subspace 

U˜α ⊂ W˜ . That subspace does not depend on σ such that α ∈ D˜ σ. The union of these 

subspaces defines a one-dimensional subbundle U →˜ D˜ of the trivial bundle W˜ × D˜ 

→ D˜. 

Theorem A.3. The subbundle U →˜ D˜ is invariant with respect to the KZ connection 

on W˜ × D˜ → D˜. 
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Proof. For any σ ∈ S3 the subbundle U →˜ D˜ is generated by the flat section Iσ near 

the points where = 0. Hence the subbundle U →˜ D˜ is generated by a flat section 

near any point of D˜, see Section A.1.8 and [Dw, Lemma 3.1].  

Remark. For any σ ∈ S3 the flat section Iσ generates the subbundle U →˜ D˜ near the 

points where  = 0. The power series Iσ considered over C is the expansion of an 

integral over a cycle vanishing at the points where = 0. The analytic continuation 

over C of that integral over that vanishing cycle could not generate a one-dimensional 

subbundle of the trivial bundle W˜ × D˜ → D˜ since the monodromy representation of 

the complex KZ equations in this case is irreducible. In contrast with this fact over C, 

the p-adic power series solutions Iσ, σ ∈ S3, defined at different points glue together 

into a single line bundle U →˜ D˜. This line bundle is what Dwork calls a p-adic cycle. 

This p-adic phenomenon was stressed by Dwork in [Dw] who titled his paper P-adic 

Cycles. 

Remark. The invariant subbundles of the KZ connection over C usually are related 

to some additional conformal block constructions, see [FSV1,FSV2,SV2, V7]. 

Apparently the subbundle U →˜ D˜ is of a different p-adic nature, cf. [V7]. 

A.7. Boundedness. Let σ ∈ S3 and α ∈ D˜ σ. For w ∈ W let I(z;w) be the germ at α 

of the solution of the KZ equations with initial condition I(α,w) = w. By formula (A.34), 

the coordinates of I(z;w) have the form 

, 

where h is the germ at the point ) of a solution of equation (A.2). We say 

that the germ I(z;w) is bounded if each of the germs ), 

1) is bounded in its disc of convergence. 

Theorem A.4. The germ I(z;w) is bounded if and only if w ∈ U˜
α. 

Proof. Let w ∈ U˜
α. Then the germ h belongs to the corresponding subspace Uu2σ(α) 

defined in Section A.1.8. By [Dw, Lemma 4.2] the germ h is bounded in 

its disc of convergence, see Section A.1.9. Hence each of the three germs  

) − 1) is bounded in its disc of convergence. 

If  , then  . By [Dw, Lemma 4.2] the 

germ h is unbounded in its disc of convergence. Then at least one of the 

three germs , 

1) is unbounded in its disc of convergence.  

A.8. More domains. Denote 

(A.43) 
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D˜ , 

D˜ , 

where ε is the same number as in (A.13).  

A.9. Frobenius map on solutions of KZ equations. Formula (A.14) describes 

the Frobenius map on solutions of equation (A.5). Solutions of equation (A.5) are 

identified with solutions of the KZ system (A.20) by formulas (A.35) and (A.36). That 

allows us to define the Frobenius map on solutions of the KZ system (A.20). 

Denote 

 . 

we have. The 

 − − 

second matrix defines the identity operator on the space W˜ = {(I1,I2,I3) ∈ 

Q3p | I1 + I2 + I3 = 0}. 

Recall the matrix F(u2) defined in (A.11). By formula (A.35) the matrix 

F˜(u1,u2) = C(u1,u2)F(u2) 

is a fundamental matrix of solutions of system (A.20). Recall the matrices A(λ), M in 

(A.12). Denote 

(A.45) A˜(u1,u2) = C(u1,u2)A(u2)B((u1)p,(u2)p). 

This is a 3×3 matrix valued function, whose values preserve the subspace W˜ ⊂ Q3p. 

Theorem A.5. We have 

(A.46) A˜(u1,u2
)F˜((u1)p,(u2)p) = F˜(u1,u2)M. 

The matrix A˜(u1,u2) extends to an analytic function on the domain D˜ 3 ∪ D˜ 4. 

Proof. The theorem is a corollary of formula (A.14) and Dwork’s statements listed 

in Section A.1.10.  
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We call A˜(u1,u2) the matrix of the Frobenius transformation of solutions of 

system (A.20) relative to the fundamental matrix F˜(u1,u2) on the domain D˜ 3∪D˜ 4. 

Recall the distinguished solution 

 
of system (A.20) defined near the points where u2 = 0, see (A.34). By (A.15) we have 

(A.48) A˜(u1,u2)I((u1)p,(u2)p) = (−1)(p−1)/2 I(u1,u2) 

on D˜ 
4. Recall ) in (A.37). Dividing both sides in (A.47) by 

) we can reformulate (A.48) as 

 

on D˜ 4, see I(u1,u2) in (A.40) and f(u2) in (A.7). As in Section A.1.10 we conclude with 

Dwork that relation (A.49) can be analytically continued to the domain 

D˜ . 

Equation (A.49) implies that for any α ∈ F×p −{1}, β ∈ F×p such that ω(α) ∈ D1, the 

vector I(ω(β),ω(α)) is an eigenvector of the Frobenius matrix A˜(ω(β),ω(α)) with 

eigenvalue ω(β(p−1)/2)(−1)(p−1)/2f(ω(α)), 

(A.50) 

A˜(ω(β),ω(α))I(ω(β),ω(α)) = ω(β(p−1)/2)(−1)(p−1)/2f(ω(α))I(ω(β),ω(α)). 

In this Section A.9 we described the matrix A˜(u1,u2) of the Frobenius 

transformation of solutions of system (A.18) written in coordinates u1,u2,u3 

corresponding to the chart labeled by the identify permutation (1,2,3) ∈ S3, In the 

same way we may start with the chart corresponding to any permutation σ ∈ S3 and 

describe the matrix of the Frobenius transformation of solutions of system (A.18) 

written in coordinates . 

A.10. Eigenvalue ω(β(p−1)/2)(−1)(p−1)/2f(ω(α)). 

Theorem A.6. The number ω(β(p−1)/2)(−1)(p−1)/2f(ω(α)) is the unit root of the elliptic 

curve E(α,β) defined over Fp by the affine equation 

(A.51) w2 = β v(v − 1)(v − α). 

Proof. Assume that β ∈ F×p is a square, β = γ2 for some γ ∈ Fp. Then on the one hand 

the change of the variable ˜w = w/γ makes E(α,β) isomorphic to E(α,1). On the other 

hand β(p−1)/2 = 1 and ω(β(p−1)/2)(−1)(p−1)/2f(ω(α)) = 

)), where the last number is the unit root of the elliptic curve 
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Assume that β ∈ F×p is not a square. Denote by N1,β the number of points on E(α,β). 

Then 

(A.52) N1,1 + N1,β = 4 + 4 + 2(p − 3) = 2p + 2. 

Indeed the number 4+4 corresponds to the points (0,0), (0,1), (0,α), ∞ on E(α,β) and 

on E(α,1). The number 2(p−3) corresponds to p−3 elements of Fp−{0,1,α}. Namely if 

v0 ∈ Fp −{0,1,α}, then exactly one of the two elements βv0(v0 −1)(v0 − α), v0(v0 − 1)(v0 − 

α) is a square in Fp and exactly one of the two elliptic curves has two points over v = 

v0, while the other curve does not have points over v0. It is known that the zeta 

function of the curve E(α,β) has the form 

(A.53) . 

Here Ns,β is the number points on E(α,β) considered over the field Fps, while the 

number Rβ has |Rβ|p = 1 and is called the unit root, for example see [Mo]. Equation 

(A.53) implies that for any s we have Ns,β = 1 + ps − Rβs − (p/Rβ)s. In particular for s = 1 

we have 

(A.54) N1,β = 1 + p − Rβ − p/Rβ. 

From (A.52) and (A.54) we obtain 

0 = Rβ + p/Rβ + R1 + p/R1 = (Rβ + R1)(1 + p/RβR1). 

Since the second factor is nonzero we conclude that Rβ = −R1. By [Dw] we have R1 = 

(−1)(p−1)/2f(ω(α)). Hence 

Rβ = −(−1)(p−1)/2f(ω(α)) = ω(β(p−1)/2)(−1)(p−1)/2f(ω(α)). 

The theorem is proved.  

The relation between the eigenvector I(ω(β),ω(α)) and the elliptic curve E(α,β), 

indicated in Theorem A.6, can be explained as follows. Over C the vector I is given by 

integrals over cycles on elliptic curves with equation y2 = (x−z1)(x−z2)(x−z3). After the 

change of variables 

 
the equation takes the form 

(A.55) v2 = u1(w − 1)(w − u2)w. 

The eigenvector I(ω(β),ω(α)) corresponds to the curve in (A.55) with (u1,u2) = 

(ω(β),ω(α)), and (ω(β),ω(α)) ≡ (β,α) mod p. 
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It is more surprising that system (A.18) of KZ equations gives a bit more 

arithmetic information than the hypergeometric equation (A.5), despite the fact 

system (A.18) and equation (A.5) are equivalent by (A.35) and (A.36). Indeed Dwork’s 

eigenvectors in (A.16) give unit roots of elliptic curves E(α,1) while the eigenvectors 

in (A.50) coming from the KZ equations give unit roots of more general elliptic curves 

E(α,β). 

A.11. Approximation of analytic element (Iijk)(i,j,k)∈S3 by rational functions. Let 

s be a positive integer. 

A.11.1. Let , 

. 

Denote ). The functions 

, 

are solutions of system (A.18) modulo ps by Theorem 4.4. 

Let Φ . Denote 

(A.56) . 

A.11.2. For k = 1,2,3 let 

. 

Denote ). The functions 

, 

are solutions of system (A.18) modulo ps by Theorem 9.1. 

Let Φ . Denote 

(A.57) . 

A.11.3. Recall the homomorphisms Z → Z/psZ, Z[z] → (Z/psZ)[z], Z[z]3 → 

(Z/psZ)[z]3 denoted by πs. Recall the subring Z[z]pr ⊂ Z[z] of quasi-constants modulo pr. 

A.11.4. Define the filtration (A.58) 

where. Every element of Mps is a polynomial solution of system (A.18) with 

coefficients in Z/psZ. Define the filtration 

(A.59) 

where. 

Every element of Mps is a polynomial solution of system (A.18) with coefficients in 

Z/psZ by Theorem 9.1. 
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By Theorem 9.1 filtrations (A.58) and (A.59) coincide, Mtps = Mtk,ps for any k,t. 

A.11.5. Define the filtration (A.60) 

where. 

Define the filtration 

(A.61) 

where. 

It is easy to see that filtrations (A.60) and (A.61) coincide,  for any k,t. 

A.11.6. Let u = (u1,u2,u3) be the coordinates in the chart corresponding to 

(1,2,3) ∈ S3, see (A.19). Consider the functions  

Lps. Denote 

, . 

We have 

(A.63) 

, 

see formula (A.63) and (10.5). 

Notice that  is a solution of eqution (A.2) modulo ps. 

As s → ∞ the sequence   of vector-valued polynomials 

uniformly converges to the series I in (A.28) near the points where u2 = 0, see 
s 

Theorem 10.5. Similarly as s → ∞ the sequence 

  of scalar polynomials uniformly 

converges to the series in (A.37) near the points where u2 = 0. 

Corollary A.7. As s → ∞ the sequence   of vectorvalued 

rational functions uniformly converges to the function I in (A.40) near the points where 

u2 = 0. 

A.11.7. Let  . Similarly to Section A.11.6 

consider the coordinates uσ and the functions  . 

Denote 

(A.65) , . 

Similarly to Section A.11.6 we obtain the following corollary. 
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Corollary A.8. As s → ∞ the sequence   of vectorvalued 

rational functions uniformly converges to the function Iσ in (A.40) near the points where

. 

A.11.8. This Appendix A is devoted to the relation between the analytic element 

(Iijk)(i,j,k)∈S3 and Dwork’s theory in [Dw]. 

As additional information, for any   , Corollary A.8 

indicates the sequence of polynomials   whose 

ratio padically tends to the function Iijk near the points  = 0 where the function Iijk is 

initially defined. 

A.12. Further directions. In Sections 2–10 we considered system (2.1) of KZ 

equations with parameter n = 2g + 1 and constructed polynomial solutions of system 

(2.1) modulo ps. We defined the module Mps of the constructed solutions and studied 

the limit of Mps as s → ∞. Namely we considered a special coordinate system u = u(z) 

in (9.7) associated with one of the asymptotic zones of the KZ equations and showed 

that in this coordinate system the limit of Mps as s → ∞ produces a g-dimensional space 

of solutions of system (2.1) over p-adic numbers Qp in the neighborhood of the point 

u = 0. 

Constructions in this appendix for g = 1 and Dwork’s theory in [Dw] suggest the 

following project. Consider all asymptotic zones of system (2.1), see their definition 

for example in [V2]. The asymptotic zones are labeled by suitable trees T. These trees 

are analogs of the elements σ ∈ S3 in the appendix. Each asymptotic zone has a 

distinguished system of coordinates uT. Probably, for every asymptotic zone the limit 

of Mps as s → ∞ produces a g-dimensional space VT of solutions of system (2.1) 

considered over Qp in a neighborhood of the point uT = 0. Probably the spaces VT of p-

adic solutions, defined at different places uT = 0, analytically continue into a single 

global invariant g-dimensional vector subbundle of the associated KZ connection on 

the trivial vector bundle of rank 2g. Following Dwork and Theorem A.4 we may expect 

that this subbundle is spanned at any point of the base by the germs of all solutions 

of the KZ equations bounded in their polydiscs of convergence. This subbundle would 

give a generalization of the line subbundle generated by the analytic element 

(Iijk)(i,j,k)∈S3 constructed in this appendix. Probably, that 

g-dimensional subbundle will determine the set of unit 

roots of the curves with equation) over the field Fp similarly to how it is done in 

Sections A.9 and A.10 for the elliptic curves. 
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