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Notes on solutions of KZ equations modulo psand p-adic limit
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with an appendix by Steven Sperber and Alexander Varchenko

Abstract. We consider the differential KZ equations over C in the case, when the
hypergeometric solutions are one-dimensional hyperelliptic integrals of genus g. In
this case the space of solutions of the differential KZ equations is a 2g-dimensional
complex vector space.

We also consider the same differential equations modulo ps, where p is an odd
prime number and s is a positive integer, and over the field Q, of p-adic numbers.

We describe a construction of polynomial solutions of the differential KZ

equations modulo ps. These polynomial solutions have integer coefficients and are ps-
analogs of the hyperelliptic integrals. We call them the pshypergeometric solutions.
We consider the space Mpsof all ps-hypergeometric solutions, which is a module over
the ring of polynomial quasi-constants modulo ps. We study basic properties of Mps, in

particular its natural filtration, and the dependence of Mpson s.

We show that the p-adic limit of Mpsas s =0 gives us a g-dimensional vector
space of solutions of the differential KZ equations over the field Q,. The solutions over
Qpare power series at a certain asymptotic zone of the KZ equations.

In the appendix written jointly with Steven Sperber we consider all asymptotic
zones of the KZ equations in the special case g = 1 of elliptic integrals. It turns out that
in this case the p-adic limit of Mps as s - gives us a one-dimensional space of
solutions over Qp at every asymptotic zone. We apply Dwork’s theory of the classical
hypergeometric function over Qyand show that our germs of solutions over Q,defined
at different asymptotic zones analytically continue into a single global invariant line
subbundle of the associated KZ connection. Notice that the corresponding KZ
connection over C does not have proper nontrivial invariant subbundles, and
therefore our invariant line subbundle is a new feature of the KZ equations over Qp.

Also in the appendix we follow Dwork and describe the Frobenius
transformations of solutions of the KZ equations for g = 1. Using these Frobenius
transformations we recover the unit roots of the zeta functions of the elliptic curves
defined by the affine equations y2 = 8 x(x — 1)(x - a) over the finite field F,. Here

X
@, 8 € Fp', o /= 1 Notice that the same elliptic curves considered over C are used to
construct the complex holomorphic solutions of the KZ equations for g = 1.
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1. Introduction

1.1. The KZ equations were introduced in [KZ] as the differential equations
satisfied by conformal blocks on sphere in the Wess-Zumino-Witten model of
conformal field theory. The solutions of the KZ equations in the form of
multidimensional hypergeometric integrals were constructed more than 30 years
ago, see [SV1]. The KZ equations and the hypergeometric solutions are related to
many subjects in algebra, representation theory, theory of integrable systems,
enumerative geometry.

The polynomial solutions of the KZ equations over the finite field F, of a prime
number p of elements were constructed relatively recently in [SV2], see also [V4]-
[V8], [RV1,RV2]. These solutions were called the Fp-hypergeometric solutions. The
general problem is to understand relations between the hypergeometric solutions of
the KZ equations over C and the Fp-hypergeometric solutions and observe how the
remarkable properties of hypergeometric solutions are reflected in the properties of
the Fp-hypergeometric solutions. For example, the Fp-hypergeometric solutions
inherit some determinant properties of the hypergeometric solutions and some
Selberg integral properties, see [V8,RV1,RV2].

This program is in the first stages, where we consider essential examples and
study the corresponding Fy-hypergeometric solutions by direct methods.

In this paper we consider the differential KZ equations over C in the case, when
the hypergeometric solutions are one-dimensional hyperelliptic integrals of genus g.
In this case the space of solutions of the differential KZ equations is a 2gdimensional
complex vector space. We also consider the same differential equations modulo ps,
where p is an odd prime number and s is a positive integer, and over the field Qp of p-
adic numbers.
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We give a construction of polynomial solutions of the differential KZ equations
modulo ps for positive integers s. We call such solutions the ps-hypergeometric
solutions. This construction is a straightforward modification of the construction in
[SV2] of polynomial solutions modulo p.

In this paper we consider the space Mpsof all ps-hypergeometric solutions, which

is a module over the ring of polynomial quasi-constants modulo ps. We study basic
properties of Mp,, in particular its natural filtration, and dependence of Mpson s.

We show that the p-adic limit of Mpsas s — oo gives us a g-dimensional vector space
of solutions of the differential KZ equations over the field Qp. The solutions over Qp
are power series at a certain asymptotic zone of the KZ equations. This is the main

result of the paper, see Lemma 9.5 and Theorem 10.7.

1.2. In the appendix written jointly with Steven Sperber we consider all six
asymptotic zones of the KZ equations in the special case g = 1 of elliptic integrals. It
turns out that in this case the p-adic limit of Mpsas s — oo gives us a onedimensional
space of solutions over Qp at every asymptotic zone. We apply Dwork’s theory of the
classical hypergeometric function over Qp and show that our germs of solutions over
Qp defined at different asymptotic zones analytically continue into a single global
invariant line subbundle of the associated KZ connection. Notice that the
corresponding KZ connection over C does not have proper nontrivial invariant
subbundles, and therefore our invariant line subbundle is a new feature of the KZ
equations over Qp.

Following Dwork we show that our line subbundle is spanned at any point of the
base by the germs of all solutions of the KZ equations bounded in their discs of
convergence. This statement gives a definition of the line subbundle independent of
asymptotic zones and analytic continuation.

Also in the appendix we follow Dwork and describe the Frobenius
transformations of solutions of the KZ equations for g = 1. Using these Frobenius
transformations we recover the unit roots of the zeta functions of the elliptic curves
defined by the affine equations y2= f§ x(x-1)(x—a) over the finite field F,. Here

/- *
o, € B a0 /2 1 Notice that the same elliptic curves considered over C are used

to construct the complex holomorphic solutions of the KZ equations for g = 1.

In the end of Section A.10 we argue that the KZ equations for g = 1 contain more
arithmetic information than the associated hypergeometric differential equation
(1.2) for the hypergeometric function I(z) in (1.1), studied in [Dw].

1.3. Our p-adic limit of Mps;as s — oo is similar to the p-adic limit in the following

classical example, see [Ig,Ma,Cl,BV1]. Consider the elliptic integral

(1.1) 1= % [i \/’I(ﬁjﬁ ;( 1/2)

It satisfies the hypergeometric differential equation

(1.2) 2(1=2)"+ (1 =22)I" = (1/4)] =
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The coefficients of the power series I(z) are p-adic integers and the power series /(z)
converges p-adically for |z|p < 1, where |z|pis the p-adic norm of z € Qp. One may show

that for any positive integer s the polynomial

(p*—1)/2 2
(p*—1)/2
Iipe_12(2) = Z ( ke / 2+

(1.3) k=0
is a solution of the differential equation (1.2) modulo ps. Thus we get a sequence

(Lipe—1)/2(2)) 21 of polynomials with integer coefficients, each of which is a solution
of the differential equation (1.2) modulo ps, and the p-adic limit of the sequence, as s
tends to oo, is the p-adic power series solution I(z) of the differential equation

(1.2).
The ps-hypergeometric solutions of our differential KZ equations are analogs of

the polynomialsthe construction of thelps-1)p/2s-(hypergeometric solutions does not
indicate the analogousz) with an analogous p-adic limit. The difference is that

p-adiclimiting solutions I(z), and the analogous limiting p-adic power series solutions
I(z) can be discovered only after rewriting the ps-hypergeometric solutions in a
suitable asymptotic zone of the differential KZ equations.

In the simplest example of our differential KZ equations, the p-adic solution is the

3-vector
1/2 3/2 k41 —-1/2 &
Iug,u) = uy WZ( )( ‘ ) -1, (5
(1.4) — k+1 k (—]/2—!‘. —1/2—&)

while the sequence (I(P“f-‘i)/Q(ul »12))321 of the ps-hypergeometric solutions modulo
ps of the same equations is given by the formula

(p*—3)/2
5 )° —3) /2 (p* = 1)/2\ ((p* —3)/2
(1.5)  Lpe—gyo(ur,ug) = ! Z ( k+1 ) ( k

k=0

E+1 (p*—1)/2 :
% ((p “hz—kh (p"—l)/Q—A)uk

see Section 9.7.

(p®—3)/2 oo
The sum2_r—o in (1.5) is the truncation of the sum2_k—0in (1.4), similar to

what happens in (1.1) and (1.3). A new feature appears when we compare the

p°—3)/2
prefactor u~13/2and the sequence of prefactors (”1 )
L, (PF=3)/2y 00
of prefactors (u1 )-s=1 tends p-adically to the prefactor u-3/2 multiplied by a
Teichmuller constant on a suitable domain in Z,, where Z,is the ring of p-adic integers,

see Section 10.3 and Theorem 10.5.

s=1. As s = oo the sequence

1.4. The paper is organized as follows. In Section 2 we define our system of KZ
equations. In Section 3 we describe its complex solutions as hyperelliptic integrals. In

Section 4 we describe the ps-hypergeometric solutions of our KZ equations modulo p*
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and define the filtered module Mpsof all ps-hypergeometric solutions. In Section 5 we
prove the independence of the module Mpsfrom some arithmetic data involved in its
definition. In Section 6 we discuss the properties of the operator Mps - Mps of
multiplication by p. In Section 7 we calculate the coefficients of the Taylor expansion
of the ps-hypergeometric solutions. In Section 8 we relate the operator Mps— Mpsof
multiplication by p and the CartierManin matrix associated with the hyperelliptic
curve defined by the affine equation y? = (x - z1)--*(x — za). In Section 9 we consider
one of the asymptotic zones of our KZ equations. Using the coordinates in that
asymptotic zone we describe the p-adic limit of the ps-hypergeometric solutions in
Section 10. In Appendix A we apply Dwork’s theory in [Dw] to the case g = 1. In
Section A.12 we discuss open problems related to the case of an arbitrary g.
2. KZ equations

Let g be a simple Lie algebra with an invariant scalar product. The Casimir
element is

Q:Z.hi@)hi E g®g
where (hi) € g is an orthonormal basis. LetV = ®iL1Vibe a tensor product of g-

modules, k € C* a nonzero number. The differential KZ equations is the system of

differential equations on a V -valued function I(z1,...,zn),

or 1 O, ,
0z EZ.#,:—~]‘ i=1...m,

Zio Zj

where Q;;: V- Vis the Casimir operator acting in the ith and jth tensor factors, see
[KZ,EFK].

This system is a system of Fuchsian first order linear differential equations. The
equations are defined on the complement in C” to the union of all diagonal
hyperplanes.

The object of our discussion is the following particular case.

Let p be an odd prime number, n = 2g + 1 an odd positive integer,? > 1 2 2,
We study the system of equations for a column vector I(z) = (I1(2), ..., In(2)):

(‘)I ]. Qi.j . N -
0z 5}2#,2.,-;}-11 =1 ™ Li(z)+---+Tu(2) =0

’

(2.1)

where z = (z3,..,,Zn), the n x n-matrices (;have the form:

l oo

S S

-1 1

(2.2) Qi /
" _,,1---|||II|I,
RERERERYE
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and all other entries are zero. This joint system of differential and algebraic equations
will be called the system of KZ equations in this paper.
System (2.1) is the system of the differential KZ equations with parameter x = 2

associated with the Lie algebra slz and the subspace of singular vectors of weight 2g
- 1 of the tensor power (C2)®(29+1) of two-dimensional irreducible sl2-modules, up to
a gauge transformation, see this example in [V3, Section 1.1].

We consider system (2.1) over the field C. We also consider the same system of
equations modulo psand over the field Qp of p-adic numbers.
3. Complex solutions

Consider the master function

x,2) = H(:r —z,) "2
(31) CD( a=1

and the column n-vector of hyperelliptic integrals
1) = (I(2), . In(z), I = /
(3.2)

The integrals I;, are over an element y of the first homology group of the algebraic
curve with affine equation

(z,2) 4

T =z

V2= (x - z1)..(x - zn).

Starting from such y, chosen for given values {zi,..zs}, the vector [M(z) can be
analytically continued as a multivalued holomorphic function of z to the complement

in Cn of the union of the diagonal hyperplanes®i = %> iF ],
Theorem 3.1. The vector I)(Z) is a solution of system (2.1).

Theorem 3.1 is a classical statement. Much more general algebraic and
differential equations satisfied by analogous multidimensional hypergeometric
integrals were considered in [SV1]. Theorem 3.1 is discussed as an example in [V3,
Section
1.1].

Proof. The theorem follows from Stokes’ theorem and the two identities:
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(3.3) 1 (e, z) o P(a2)y 0@,
2(3r—zl+ +:t’.—zn)_(‘3:r(l’&)"
(3.4), ", 2) P(x,2)y oV N
(du, 22 i )(z—zl"”’x—z”)i(').T(lw)
) ) 0 _ P(x,2) 0 .
where Wi(xz) is the column n-vector ***:* " z—=z > (0 0) with the

nonzero element at the i-th place.

Theorem 3.2 ([V1, Formula (1.3)]). All solutions of system (2.1) have this form.

Namely, the complex vector space of solutions of the form (3.2) is n - 1dimensional.

This theorem follows from the determinant formula for multidimensional
hypergeometric integrals in [V1], in particular, from [V1, Formula (1.3)].

4. Solutions modulo ps

4.1. Leading terms. For a ring R denote R[z] = R[z1,...,za]. For a positive integer t
t
denotel?[2” } R[’p co 2l

. . . . 3 ~dn
Consider the lexicographical ordering of monomials?i " - - - #x", so we have z1 >

(A — ~d1 s
-- > zzand so on. For a nonzero polynomialf(“) = Dodr o O a1 - - 2

g ln . .
let fi(z) be the nonzero summand Ady,....d, 21" - - - 2" with the largest monomial
1 sty . .. .
22, We call fi(z) the leading term of f(z), the coefficient aa,..q. - the leading

.. . 104 ~dn , ,
coefficient, the monomial®1’ - - - ?n" - the leading monomial.
Let s be a positive integer. An element a € Z/psZ has a unique presentation a = ao

+aip+--+as-1ps-1, where a; € {0,..,p-1}. An element a is invertible if and only ifto # 0.

Denote Fy=Z/pZ.
Let msdenote the homomorphisms Z - 7/p*Z, Z|z] — (Z/psZ)[z], Z|z]" =

(Z/ps2)[z]" and for t < s let 75 denote the homomorphisms 2/pZ —» 2/pz, (Z/psZ)[z] -
(Z/pD)[2), (2/pD)[2]" = (2/p2)[2]".

4.2. Quasi-constants. We say that a polynomial f(z) € Z|z] is a quasiconstant

QL

modulo P cif 5o €piLlz] fori=1,... . The quasi-constants modulo ps form a
subring of Z[z] denoted by Z[z]ps. For example (z1 + z2)Ps € Z[Z]ps

Lemma 4.1. As a Z-module, the ring Z[z]psis spanned by the monomials ps-tz191...zn%,

where t is the maximal integer such that t s and ptdivides every d.,..., dn. For example,

Zlpsand ps-1zpzpzare such monomials.

1 12

RS d it o
Proof. Let/(2) = 2_gca2i ... 25" € Z[2)ps, We show that each summand
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dy d ) dy,
€d21 - -+ %" is a multiple of a monomial of Lemma 4.1. Indeed, let ¢d°Z1" - - - Zn be the
leading term of f{z). Then all first partial derivatives of it must lie in psZ[z] Hence cao
€ ps-tZ, where t is the maximal integer such that t s and pt
divides everyd(l]~ e dy, Subtracting the leading term from f{z) and repeating the
reasoning we prove the lemma.

Lemma 4.2. Let f(z) be a quasi-constant modulo ps and! € Zz0, Then pf(z) is a
quasi-constant modulo p”forany 1 r s+ t.

The rings of quasi-constants form a decreasing filtration, Z[z], D Z[z]p:D ....

4.3. Solutions of system (2.1) modulo ps. We say that a column n-vector I(z) €
Z[z]" of polynomials with integer coefficients is a solution of system (2.1) modulo ps, if

1s1(z) € (2/psZ)[z]" satisfies system (2.1).

Lemma 4.3. Let I(z) be a solution of system (2.1) modulo p-.
te Z;n

< S

)] Let . Then ptl(z) is a solution of system (2.1)
modulo p' for any

1 r s+t
(i) Letf(z) be a quasi-constant modulo ps. Then f(z)I(z) is a solution of system (2.1)
modulo ps. (1l) Let 1 <t < s gnd [(2) € piz[z]" Let f{Z) be a quasi-constant modulo

pst. Then f(z)1(z) is a solution of system (2.1) modulo p®.

4.4. ps-Hypergeometric solutions. Let M be the least positive integers such that
1 8
(4.1) M= -3 (mod p).

We have

p®—1 p—1 sl
M = =—(1 ‘
. —(14p+- )

Introduce the master polynomial

(4.2) o i=1
Let

D, (2, 2) P (2, 2) . ;
P,s(x, 2 :( e A ): P(z)x!
(4.3) F ( ) r— z T — 2 Z T ( )
where Pps(x,z) is a column n-vector of polynomials in x,z1,...,z» and Py'i(z) are n-vectors

’

of polynomials in z,...,z» with coefficients in Z. For a positive integer /, denote
[tp®—1] _ plp®-1
11 1(2) = B (2)
L I e
Theorem 4.4. For any positive integer I, the vector of polynomials *v* <) =Z[z]
is a solution of system (2.1) modulo p».

Proof. We have the following modifications of identities (3.3), (3.4):
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M (—(D""h (z.2) 4t &y (2, 3)) = OT.T)P" (x,2)

(44‘) r—= T — ZzZp Or s
( 7] N Mz Q5 ) (Q?J,H (z,2) O, (2, z)) _ v, (2, 7)
{Zi j ,Z;—Z’; r—2 Y r— Zn ()? !
(4.5) i :
. 0 7@ ps (@,2) 0
where Wips(x,z) is the column n-vector -~ ™" 0 (0 0) with the
nonzero -

element at the i-th place. The theorem follows from identities (4.4), (4.5).

Remark. In [SV2] it was explained on how to construct polynomial solutions
modulo p of an arbitrary system differential KZ equations, associated with any
KacMoody algebra and any tensor product of highest weight representations. The
same construction gives polynomial solutions modulo ps. The details will be provided
elsewhere.

p’

The range for the index [ is defined by the inequalities 0< »° —1 < n

Hence I = 1,..,g. The solutions I,l;s-11(z), I = 1,..,g, given by this construction, will be
called the ps-hypergeometric solutions in Z[z]". For t=1,..,s - 1 and I = 1,...,g, the vector

s—t ['!P"*l] >,
p IP‘ (“) is a solution of system (2.1) modulo ps, see Lemma 4.3. Such solutions

also will be called ps-hypergeometric solutions in Z[z]".

—1
2 .,

4.5. Modules. Consider the increasing filtration
0 1 s—1 s
(4.6) 0=Mp: CM. C-o- CMET C M =M,

where
t 9 .
M, = {71'_5.(ZZ(’:,._E(z)ps*"I};{’ —11(3)) | era(2) € Z[z]p,}
(47) r=11=1 ,
t =1,.,s. We have MpsC (Z/psZ)[z]n. Every element of Mpsis a polynomial solution of
system (2.1) with coefficients in Z/psZ, see Lemma 4.3. The set Mpsis a module over

the ring Z[z]psof quasi-constants modulo ps, where f{z) € Z[z]psacts by multiplication

by msf(2). EachM;” is an Z[z]ps--submodule of Mps.
Each M¢is also a module over the larger ring Z[z]:of quasi-constants modulo pt,
where f(z) € Z[z]p:acts by multiplication by msf{z).
The elements of Mpswill be called the ps-hypergeometric solutions in (Z/psZ)[z]".
5. Independence of modules from the choice of M

5.1. More general construction of solutions. For i = 1,..,n, let M;be a positive
integer such that

M; = —= (mod p*)

B =

(5.1)
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DenoteM = (M, ..., I"fn). Consider the master polynomial
z, z, Jﬁ) = H(_}! — z,-)‘”" € Zx,z|
(5.2) ol i=1 ,

and the Taylor expansion

Pla. x0T = ((I)(;r,z,ﬂ[) ..... (I)(:r,z,ﬂ[)) _ ZP'( D)o

r—z Toxr— 2y

i ,
where ' (2, ﬂf) are n-vectors of polynomials in zi,..,z» with coefficients in Z. For a
positive integer I, denote
T =z M) = PP =1 (2, M)

THEOREM 5.1 L , ;
t =22 For any positive integers |, 1. 1 < S, the vector of polynomials I

-1(z,M) € Z[z]"is a solution of system (2.1) modulo p*.

Proof. The theorem follows from straightforward modifications of identities
(4.4), (4.5).

5.2. More modules. Consider the increasing filtration

53 0 = MO.(M) € ML(M) C - € M (M) € M. (M) = M, (M)
, where
M. () { (sz 2) pt T I, M}) | cra(2) € Z[2), }
(5.4) r=11>1 i

t=1,.,5. We haveMp= (M) c (Z/pZ)[2]", Every element of M (M) is a polynomial

solution of system (2.1) with coefficients in Z/psZ, see Lemma 4.3. The setMps (M )is
Z|z)ps

a module over the ring Z[z]psof quasi-constants modulo ps, where 1(z) € 2zl

to(AT s(M ).
by multiplication by msf{z). EachMp- (*M) is an Z[z]pssubmodule ofM”' (M)
Each M¢,s(M) is also a module over the larger ring Z[z] »-of quasi-constants modulo

-acts

pt, where f(z) € Z[z]p:acts by multiplication by msf{z).

Theorem 5.2. Filtration (5.3) does not depend on the choice of['L-_‘i‘r =(Mu,....Mn),
satisfying congruences (5.1). Moreover, filtration (5.3) coincides with filtration (4.6).

For s = 1 the statement is [SliV, Theorem 3.1].

Proof. First we show that- My (M - ) and filtration (5.3) do not
depend on the choice of M . Let M = (M,....M,), M" = (Mj,... :i”fi) be two

vectors satlsfylng congruences (5.1). We say that*’""lr = M if M] = Miforall i. The
p’=1 ¥ —1

vector ( T D ) is the minimal vector with respect to this partial order. To

show that Mp- (Mr) and filtration (5.3) do not depend on the choice of M it is enough

to show that the filtrations are the same for a vector M and for a vector

M' =M + 0,...,0, SUTERS '0), where the nonzero element stays at the j-th

position for some j. Then
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P’ 5 .
P(x,2,M') = P(a,2, M) - (x — 2)"" = P(x,2, M) (-1)""~ P ).’zr”‘zf." —a
a=0 .
Recall that P(, 2, M) = 32, P'(z2, M) a', P(z,2,M’) = 3, P'(2, N ') &', For any
r < s and ! we have

P’ - _ _ -
P(’Pr _1(27 _ﬂ__‘[") _ Z(_I)I,ﬂ_a (P z;;) —(ipl]} —a—l(z= lnur)
(5.5) a=0 @ .
We are interested in this formula, sinceﬂh) 71](31 M) = plr -1 (, M’) is a solution
of system (2.1) modulo pr.
Lemma 5.3. Let b,c € Z-0sbe such that bp® < p*, v |b. Then psc¢is the maximal
P
power of p dividing (Frp“).
Proof. For @ < P*we have , a(”) = p*(" 7)) » (")) and by
Lucas’ theorem, [Lu].
Lemma 5.4. Let® € 10,....p°}. a=bp°, p fb consider the vector

V=(-1r (p ).zj”"-P””'“‘(z, M)

a

appearing in (5.5). If Ip" < a, then V= 0. For lp > a, we write lp" - a = vp¥, where u =
min(r,c). Then

(5.6) V = d(z)p 1 Y (2, N,
_ ,,;Uﬂ*‘l _ p*—a ‘1)3 A —U
where®(?) =27 (=177 () /17" 5 4 quasi-constant modulo p*.
Proof. The lemma follows from Lemma 5.3.

Corollary 5.5. For any r = 1,...,s, we have M. (Mﬂ) C M. (H).
anyr=1,.,s we haveMp- (M) 5 M (lﬁ).
Proof. Let w be the greatest integer such that wp” < deg, P(¢, 2, lﬁ). Then
w’ = w+p* " s the greatest integer such that'p" degt £(f. 2, Mn). Comparing
the coefficients in (5.5) and using Lemma 5.5, we observe that for any I = 1,..,w we

have
(5.7) I[(H'ps_r)?’r_”(z, ﬂ’) = [“pr_”(z, Jﬁ)

Lemma 5.6. For

+ ()T (2, N + Crom(2) prE TP =11 (2 BT
m=1 k=1m2=1

e i(2) € Zlzl, _— . .
where (_) 121y . This triangular system of equations with respect to

[Up~1(z,M), I = 1,..,w, can be written as
(5.8)

r—1
100, )= 37 ¢ ()T (e, M)+ 30 37 ()7 P (5, 0
ml k=1m1 '

. _ 1=1.w, for suitable®.i (%) € Z[z]p,
=1 2om>1 Crom(2) pr R =Nz N Applying the previous reasoning to

s

the

k
sum), we obtain
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(5.9)

I[',T}"il](z?ﬂ._j): Z (‘; m( )I[mp 71] A[f +Z Z (A m r AI[m]J 71]( ﬂ_}.r)

7
ml k=1m1l

€ 72|

1=1,..,w, for suitable®i, J( ) p*, This proves the lemma.

5.7. The module M, (M)

Corollary- and filtration (5.3) do not depend on the
choice of M = (Ma,..,My), satisfying congruences (5.1).
min _ (p°—1 pt—1 Tmin
Lemma 5.8. LetM = (= 7). ThenMp= (M™") = M,

Proof. The proof of the lemma is a straightforward modification of the proof of

Corollary 5.5 and Lemma 5.6. Theorem 5.2 is proved.

6. Filtrations and homomorphisms

6.1. Reduction from modulo psto modulo ps-. If I(z) is a polynomial solution
of system (2.1) modulo ps, then I(z) is also a polynomial solution of system (2.1)
modulo ps—mfor any 1 m <s. This defines a map
(6.1)
pesem : Mys (M) = Mo (M)

T ZZ 2t (2) p T (2, M) | e Z S era(z)pr 1 =1 (2, M)

r=11>1 r=m-+1121

’

where M is a vector with coordinates satisfying congruences (5.1). See these sums in
(5 4). In the last sum we have

- arie _]]( M) *?"H_m_("_m)f[”Pm)pr_m_I](z‘- M)and a solution [Up-11(z,M)

[P = jﬁr) modulo prm,

For anylr =L....s H, the submodule’ (M) € My (ﬁ) is mapped by rss-m
to the submoduleM;j"’?’ (M )- The induced map
62) s P Mo (M) = M (M)

r—m

modulo pralso can be considered as a solution

is a homomorphism of Z[z],-modules. Thus the map (6.1) is a homomorphism of
filtered modules decreasing the index of filtration by m.

By Theorem 5.2 we have My« (M) = My Hence homomorphism (6.1) also can
be considered as a homomorphism of filtered modules,

(63] I's,s-m: Mps—> Mps-m,

decreasing the index of filtration by m.
It is rather nontrivial to write a formula for this map in terms of the generators
[Up—1](z) of these modules.
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6.2. Multiplication by p™. If I(z) is a polynomial solution of system (2.1) modulo
ps, then for any positive integer m the polynomial p™I(z) is a polynomial solution of

system (2.1) modulo ps*™. In particular, multiplication by p™defines a map
(6.4)p5:s+m M. — M.,, s

p*
t
[tpm—1 lpm—1
Tfa( E E C.,._I{?,’ - ’I P ]( )l—)7_5+m( E CT[ 3 S+m !Il,,rp ](3))
r=1l=1 r=11=1

forany t = 1,..,s. See these sums in (4.7). Clearly this map is an isomorphism of filtered
Z[z]p-modules.

6.3. The composition of homomorphisms. For m < s denote by csmthe
composition ps-mmrss-m,
(6.5) cs.m - M;n-‘ — Mp* ) I(Z) = me(Z)‘
t t—m
Forany t=1,...,s, this map induces a homomorphismM-p* = M of Zz]p

o = (€5 1)™ =0 fi = s.
We have csm= (cs1)™for m <sand ¢c*™ (ca1) ormzs. |
(}J}!_T Ii[ﬁ,? —1] (Z

‘modules.

As we know, the module My:is generated by the elements ™= ), r=

1,..,s1=1,.,g.Forl=1,.,9, we have

-1 g

L 71'_@([“"”“_1](2)) — Te(pl p*—1] (2) (ZZ(’ 2)p°~ ’]['l'p 71](3))
(6.6) nt

=1=1
for suitable coefficients cs:k(z) € Z[z]p-

The set of the coefficients (c!s;k(2))isrk determines the homomorphisms cs, for all
s,;m. In what follows we shall describe the coefficients css-1,k(z) for all [sk, see

Theorem 8.4.

6.4. Graded modules and homomorphisms. Denote

t — t t—1
(6.7) ngPs = @& gIMLS’ ngps = M. / M .

Lemma 6.1. For any t = 1,..,,s, the action of Z[z]y.on Myt makes grMéps an Fp[zP.]-

module. Multiplication by p on Mtsinduces a homomorphism
(6.8) grest: grMips— grvpt=st

of Fp[zP]-modules.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



322 ALEXANDER VARCHENKO
7. Coefficients of solutions
7.1. Homogeneous polynomials. For / = 1,..,g, the solution [l/s-1](z) =
( [F?’ —1] s [ps-1]
— ) is a homogeneous polynomial in z of degree

1
6,::(2g+1)pT —IpP=(g-1)p°+

)5{ —_ (_1)apg—1 +E

s

p’—1
2

(7.1)
Notice that (—

7.2. Formula for coefficients. Recall that M/ = Pr0]ect10n of this integer
to Z/psZ is invertible. Let

=10 Z i BT L U | L =¥/

dy,..., n n dy,..., dn

Lemma 7.1 ([V8, Lemma 3.1]). We have
_ s 1 (M dy d
-y (—1)'"]'[(1 )(1__,...‘1——'_')
(7.2) e mindi/ M M

The sum of coordinates of this vector is divisible by ps.

Lemma 7.2 (cf. [V8, Theorem 6.1]). For | = 1,..,g, the leading term of the ps-
hypergeometric solution IUrs-1](z) is

. p°—1 5 (M l ; ] M—
(7.3) I ](z)_(—l)"‘(l)(ﬂ ..... 0, ])zl"...z£(5_2,z£;7$i+l

where 0 is repeated 2g - 21 times and 1 is repeated 21 times.

7

Proof. The lemma follows from Lemma 7.1.
MY (MY
Lemma 7.3. The projections to Z/psZ of the integers ( 1 )»‘ ( )W are invertible.
M
Proof. The invertibility of( l )follows from Lucas’ theorem, [Lu].
8. Multiplication by p and Cartier-Manin matrix

8.1. Linear independence.

Lemma 8.1. The projections of the ps-hypergeometric solutions IlUrs-1](z) €

Z[z]" 1= 1,..,g, to Fy[z]" are linearly independent over Fp[z], that is, if
49
M a1 () e prf)”
(8.1) =1

for some ci(z) € Z[z], then all ci(z) € pZ|z].

Proof. Recall that the projectionz[‘?} = Byl is denoted by m1. By Lemma
7.3, the leading coefficient of mi(ci(2)IlP -11(z)) equals the product of the leading
coefficient of mi(ci(z)) and the leading coefficient of mi(Ilrs-1(z)), if mi(c(z)) is

nonzero. In that case the leading coefficient of m1(ci(z)IUrs-11(z)) is a nonzero multiple

((0,...,0,47.1, ..., 1)).

of the nonzero vector™!
If relation (8.1) holds and some of the coefficients ci(z) have nonzero projections

m1(ci(z)), then for several values of such indices / the sum of the corresponding leading
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coefficients has to be equal to zero, which is impossible due to the fact that the vectors

L
(0,0, 57,1, ’1)) are linear independent over F.

Corollary 8.2. The projections of the ps-hypergeometric solutions IUrs-11(z)€ Z[z]", |
=1,..,9, to Fp[z]" are linearly independent over Fy[zPs].

Denote by
(8.2) gre: Mips— grMéps

the natural projection. Then the elements gr:(ms(ps-tilr=11(2))), I = 1,..,g, generate the
Fp[zP]]-module grMéps.

Corollary 8.3. For t = 1,..,,s, the Fp|zP{]-module grMsis a free module of rank g with
a basis gre(ms(ps-tilir=1(2))), I = 1,.....

3
Denote the basis vectors of the Fp[zP]-module ngv'“ by
(8.3) vl o= gr (ma(p* T 1 (2))), I=1,....9.
8.2. Cartier-Manin matrices. Let

fx2z) = (x = z1)...(x = zn), n=2g+1
Consider the hyperelliptic curve X defined by the affine equation

y2=(x-2z1)..(x = zn).
T dr -
Consider the space Q!(X) of regular 1-forms on X with basis v 1.
Define the Cartier map C : Q1(X) - Q1(X) as follows. We have

d—1

el 2y lde 2 f(a) P/ 2de

y  yrly yr
Letm""—lf(:r. 2)(P=1/2 = > of(z):zf-f'Deﬁne

i1 g i1
' dr . a7 tdx
C: = Y dPT(z)
G=1

Y Y

’

see [AH]. The map C is identified with the g x g-matrix (C#(z))9ij=1,

j(2) = cip-1(2).
Ci i

8.3. Matrix of grcs 1. Recall that multiplication of solutions by p defines a map
. t y t—1
(84) ngs,l ) ngJJ"‘ — ngﬁ“‘ ,
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Mi!

where ngp“ is a free Fp[z”]-module with a basis (s )i tand gr’¥'e® is a free

Fp[zP+1]-module with a basis ("”s.r—l)::l, see (8.3). The map (8.4) is a homomorphism
of Fy[zP¢]-modules.

Theorem 8.4. The matrix of gres1 is the Cartier-Manin matrix C(zr+1),

. ) s ';t 1
(85) gres, 10 Ugy 7 le 1 m ).‘ {:lg
m -1
Proof. Theproblem s to express modulops-t+2Z[z]"
o s—t plipt=1] "
p-p IpA (2 the element »
f prHl ) m =1,
) in terms of the elements. In P '
[1p*—1] o [mpt—1t-1] - _
other words, we need to express‘lpf (“) in terms of Ip‘*l (2), m=1....9,

modulo pZ[z]".

[tp*~1]
By definition, the vector Ip‘ (2 ) is the coefficient of x=1 in the Taylor

expansion of the polynomial

n

t—1/, .
Pp(z,2) = l—)pt—l(l’,z)]:[(g; — )P =12
i=1 ,
[mp'~t—1] (?
while the vector r¢—* *)is the coefficient of xm-1-1in the Taylor expansion of the

polynomial Pyc1(x,2), see notations in Section 4.4. We have

n n

H(:‘.. )P /2 = H(mp‘ ! ,Z?‘*l)(p—l)/‘z

i=1 i=1 mod p.

[F]J —1] mp 1_q) pt=t
Hence »* (2) = Xmes ,u‘ ! (2) G (27 ) mod P Theorem 8.4 is proved.
: < o At t
Corollary 8.5. The matrix of &¢sim  8tMpe — grtMp " is the product of Cartier-
Manin matrices C(zr+1)C(zpP2)---C(zPe-m). Moreover, this statement, applied to the map
gres.s—1 © 8IMp. = oM. = M,

1p®—1
can be reformulated as follows. For any | = 1,..,g, the solutionI‘p“ (2) modulo ps of
system (2.1), projected to Fp[z]", equals the projection to Fp[z]“ of the solution
g

)R O G B C G C

T yenns me_1=1

modulo p of system (2.1).

See these sums in [V5, Section 8].

9. Change of variables

9.1. Change of the variable x. Change the variable x and set x = v + zn.
Then
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n—1

% -0/
Dy (v, 2) 1= Bpe (v + 25, 2) = ( [T(v— (=i - z,,,))) DR /e
©.1 = |
Let
(02)
Pye(v,2) i= Pps (v + 23, 2)
. (ﬁ (v, 2) é (1? z) ‘1'),.«(?4',2) B Bi () o
a (U (Zl - ZZ)’. ( zn.) ’ : v ) B Z_PPS(Q){

7

where P7(z) are n-vectors of polynomials in z with integer coefficients. For a positive
integer I, denote

1p°—1 n® —
93) 0¥ ) = B Ne)

tp® —1](

The polynomial “» I %) is nonzero if I = 1,..,g. Notice that every polynomial

Flip®—1]
IP” (z) is a function of differences zi— z,, i = 1,..,n - 1.

Consider the increasing filtration

(94) 0=M" Ops C M~ 1psC == C MNSp—sl [ M~sps= M Ds,
where
s g
- )T Ip©—1
05 My = {x (XD en@p I ) | enlz) € 2zl |
r=11=1

t q

©6) M, = {n(X J a0 TG | o) € 2 )

r=11=1

s

Fllp® —1] ~1
Theorem 9.1. For any I, the vector ofpolynomiglsfp‘* (2) € Z[2]

t t
M, = M,

is a solution of

system (2.1) modulo ps. For any t = 1,...,s we have

Proof. The proof is the same as the proof of Theorem 5.2 and the proof of [V5,
Lemma 5.2]. In the proof of Theorem 9.1 the following Lemma 9.2 is used instead of
Lemma 5.3.

mp" +Ip°—1
Lemma 9.2. Let r = 0,.,s — 1 and ™ /fp, then is ( !g;il ) divisible by

Ds-r.

(m.pr'+i"u“—1) . (mpT+."p"‘—1) _ Ip? (m.pr'+ip"’—‘l)
Proof. We have\ ip*—1 N mp” ~ompm A ompr—1

9.2. Change of variables z. We introduce the new variables us,..,un by the
formulas:

(9.7)
22 — Zn Zn—1— Zn
Uy = 21 — 2Zn, ‘UJ?:T: LR u'u,fl:f: Up = 21+ + 2y
~1 = ~n “n—2 T <n ;
orzi—zn=ui-u,i=1,.,n-1, Z1+ -+ Zn= Un.

For any [ s we denote u = (us,..., un-1),

(9.8) 107wy = 1P (2 ()
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Flip® —
Each!p* (“') is an n-vector of polynomials in u with coefficients in Z.
Each IApUPSS‘ll(u) is a solution of system (2.1) modulo ps, in which the change of
variables z = z(u) is performed.

9.3. Change of variables in the KZ equations. It is known that system (2.1) of
the differential KZ equations has suitable asymptotic zones with appropriate local
coordinates, in which the differential KZ equations have singularities only at the
coordinate hyperplanes. See a definition of the asymptotic zones, for example, in [V2].
The coordinates u defined in (9.7) are local coordinates in one of the asymptotic
zones. In these coordinates, system (2.1) takes the form,

Wu_o" 8_'.:,11 2( +R(.g())] i=1,....n—1
(99) Il + - +I‘n *0-, ’

where Qi = 2uighk<i<n i and Regi(u) is an n x n-matrix depending on u and regular
at the origin u = 0. The origin is a regular singular point of system (9.9) and one may
expand solutions at the origin in suitable series in the variables u.
Plip®—1]
Any polynomiales 5(?' ) is a solution of system (9.9) modulo ps. We will expand
the polynomial I",l;-11(u) at u = 0 and show that this expansion has a p-adic limit as s
— oo, In that way we will construct a g-dimensional space of p-adic solutions of system
(9.9), which is the same as the original system (2.1) of the differential KZ equations
up to the change of variables, z = z(u).

v’ —1]( u)
9.4. Taylor expansion of ' »* Denote
o ,. (p*=1)/2
éps(tv, u) 1= b (v, 2(u)) = H ('u - Huj) p(P =172
(9.10) i=1 =1 ,
| bpon) Gl b
(9-11) P (v,u) 1= ( v—uy U —Up Uy ) Z v

’

where P*pi(u) are n-vectors of polynomials in u with coefficients in Z. For a positive
integer I, we have

(9.12) P w) = LY )

7

where IApUPSS‘l][u) is defined in (9.8). For

I=1,.,g, denote
n—21

= (=) (g - unea) ] (uy - ;) T

(9.13) i=1 ,
or
A LA N 1.4 5 :zf’“(—l—ﬁul apiol_ g+l ol g4
ud® = (—1)° ﬂu g w97 = (—1){’9*1u1 ER (7 ! Ug 2 SR
‘ n—E—1_1 (n-3)2=Ll_1 ol g
ul‘é = (_1)01?“(1 ' u'g " o 'Un.fz

see (-1)%in (7.1). Denote
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p°—1
Ct-s=( p )(0,...,0, 5‘21 11)
(9.14) l Pl ’

where 0 is repeated 2g - 21 times and 1 is repeated 2[ times, cf. formula (7.3).

Theorem 9.3. For Il = 1,...,g, the polynomial IApUPsS‘l](u) has the following

form,

(915) f;[)l’!ﬁil](u) == l,ll,sTI,s(u),
Ts(u) = (Tus(u),..., Tubs(u)),

with coordinates Tj's defined as follows. Ifj = 1,..,n - 1, then

1 n—1
a1+ Ay = Apooip1 + o F a1+ —1,0f

. S~ n—1 s_1
\ l,s L. u P_
(916) T} = Ujp1 - Up—2] E ( azj H ;é

i=1,i#j
n—21—1 20—-1
X H (Uit - - Up—p)™ H (Un—i41 -+ - Un—gpqq) 200
i=1 i=1
where the summation is over all , 0 '2
l,s,j —1
> a,...,a <a <P T ezo . such
thatn 2I; and such that
ap+- o+ Qp- = n-gi1 ot a1+ ifn-20<j<n -1,
(9.17)
n—1 ,p5_1 n—21—1 2[—-1
l,s Ls.n 2 a; Ay — 2043
T f— “ " e Uy 9] 0 v Uy — -
T; Z H a H (UH»I Un QI) ‘ H(un 21+1 Unp 1) " *
i=1 ¢ i=1 i=1 )
l.smn . pi—=1
gy Oy 7Z,0<a; < .
where the > Leees@no1 €5, US40 S 57 o nmation
, a .
“ ot p—2 = p2il F o+ on-1 o isoverall,
such that The constant term of T"*(u) equals C*
ai+ a

Notice that the factor ujs1 - un-2in (9.16) equals 1 ifJ = 7 — 2{ Proof. Make the

change of variables v = wuz1 ---us-21in (9.11),

Poa(w,u) == 157,5(?1}%1 C Up o, U) = Z 13’; (u) (W -« up_gp)* = Z P;;";(u-) w'

Hence
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Alp _ —(lp*—1 o,lp®—
I.I[,.f 1](u) = (uy  un o) (w )IJ‘I)-“” H(u)

We transform the factors in the polynomial P,°s(w,u) as follows. For any positive

integers kand? < n — 2l we write
(9.18)

(Wi -+ Upy_op — Uy - -+ u,:)‘l“ = (uy -~ --u.,}k(wu,—+1 e Upy_o) — 1)*‘
A«

= ()t Y (1) (") (Wi -t a1)"

a=0 s

and ifi > n - 21, we write

(9.19)
(wuy -+ Up_gp —uy -~ u,,)k = (wuy - -- 'rt,,_g)'!"(l — Up_ajaq - -'u,:/'u,')}"

L‘
) k
= (wuy - -+ u”_g)* Z(—l)”’ (a) (Un—o141 -+ Ui fw)"

a=0
_pi-l _ p°-1
Notice that for factors in (9.11), we have k=Fork="5= - 1. This

explains the binomial coefficients in (9.16) and (9.17).
We prove formula (9.16) for j = 1, the proof for other values of j is similar. Our
goal is to calculate the first coordinate of the vector

—(lp—1 ns_
(ul . U-n—?) (ip ) ‘Pﬁ‘;f}) 1(’“)

That is we need to calculate the coefficient of wibs-1in
_(;pﬁ_l)l 1:-“'2—1_1 )51 s 1
U

(g« Up_2) (wug - tyop — 1) 2 Hugug) 2

Pl

(wug -+ Up_g — 1) 2

-1 pio1 p-1

oty - ) T (w0 — 1) 5T (wtn - tne2) T (1 = Ui f10) 5
o (wtg - t0)) T (L — g - Un 1 f0) T (W - tyg) T
which is the same as the coefficient of wi-1in
(9.20) ug -+ - Uy ubs (wug - Uy — 1)])5'7_]*1 (wug -ty o — I)IT_] e
co(w — I)P-!__l (1- ‘u.n,g;H/‘w)lih‘z__l o (1T —tpopyy - u,.,l,l/?t,!)yl__l

Expanding the binomials we obtain formula (9.16) for j = 1.
The constant term of T's(u) is given by the summands in (9.16) and (9.17),

corresponding to- @1= ++* = @n-21-1= an-21+1= ** = dn-1= 0 and j = n 2I....,n. Theorem 9.3
is proved.

9.5. Taylor expansion of holomorphic solutions. Recall the multivalued
holomorphic solutions of system (2.1) described in Section 3,

g = [ (B2 | Hedy,

r— 2z T -z,

We make the same changes of variables in the integrals /)(z) as we did in the previous
sections. Namely, first we change the integration variable x and set x = v + z,, then we
make the change of variables z and set z = z(u). The resulting

integral is
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i) () = l ('i’(vau},m, D(v, U))d@:

v — Uy v

d(v,u) = (H:’;l ('U - l‘[’}zl uj))_l/z v 1/2.

Forl=1,..,g, we change the integration variable v and set v = wuzi...un-2i. Then

where

n—21

D(wuy ..y, u) = eI (g, _gy) H (g --uy) "2
i=1

X ((l — Wy -+ Up—oy ) (1 — wug -+ Up_gp) -+ (1 — w)

—1/2
X (1= tp_oppr/w) - (1 — w91 - -’u..,,_q/’w)) wt.
Choose the integration cycle y = yi: to be the circle |w| = 1/2 oriented

counterclockwise. We assume that all the variables us,.., un-1lie inside the circle. We

fix the branch of the function
((1 —wug - Upy_9r) (1 —wuz - up_gf) -+ (1 —w)

—1/2
(9.21) X (1 — Up_91+1 /ur) e (1 — U9y Un.fl/’tt‘))

over the circle by choosing the argument of the function in (9.21) at w=1/2,uz ™ «+- =
un-1= 0 to be 0. We multiply the circle with the chosen branch of the integrand by

Qi /2

a7 . This finishes the description of y1. The resulting integral is
T (u)
enmi/2 f &’(’wul v Up—ap, 1) (i)(wm e U0y, U)
= - ( )Ul...?l,,_zgd’w.
21 lw|=1/2 N WU ... Un_2] — Uy WU ... Upy_9]

Denote

n—21
uli= (gt m) ™ ] ()72
(9.22) i=1

Theorem 9.4. Forl = 1,..,,g, the function IA(VI)(u) has the following form,
9.23) [0 () =u! THu),  T'(u) = (T(u),.... T (w)),

with coordinates Tj defined as follows. Ifj = 1,..,n — 1, then

3

. _ n—1 1
Li (== -5
oo % = w2 (3) T (2)

i=1,i#j i
n—21—1 2l—-1
X H (‘lj,j+1 e 'UJ,,,,Q,')“" H (u.,,‘,.z“r] e U‘-n.fgu,')”'”‘ﬂ“
i=1 i=1 ,
where the summation

Opoj1 + -+ a1 +1 -1, j <n-2 Zi'j is over all ay,...,a,—1 € Zxo
such that ai+-+-+an-21=

;and such that ai + -+ + an-21=
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p_oi41 + -+ an1 4+ ifn=20<j<n—1

(9.25) .
7
n—1 n—21—1 21—1
I.n @ P
E H H {uH—] Tt un—?l) ‘ H (UTI.—Q.!+1 e un—l) no 2t
i=1 i=1 ,
Zl.'ﬂ
where the summation+ +a  +1. isoverall™:---:n—1 € 220 sych that
A1+ +dn-21=

an-2The power seriesi+1 -+ n-1 Ti(u) converges in the polydisc {(uz2,...,un-1) € Cn-1| |ui| <1,
i=2,.,n-1}

Proof. We prove formula (9.16) for j = 1, the proof for other values of j is similar.

The function (“) equals

?m“ jlwl 12 u® (wug U9y — 1)%(11111)) 7 (wug Uy o — 1)77I

=1

-1
Uy U _) T 5 (w—1)7 ( Wy - Up—91) T (1 — ty_opp1 /w)Z -
1 -1
s (wug - Upy—o) T (1= Upmpq e Uy W) T
X ('wul <o U.n_gj)_Tl U+ - Up—921 dw

n—21[

— ﬂ ul 1(&',1 .--u-,,_Oj)_t+l H (ul
27i } P
x / (1—wup - p_y) ((1 —wuz - Un—gr) - (1~ w)
Jlw|=1/2
=+ dw
X (1 —p—ger/w) -+ (1 — tp_op41 - "un,—l/w)) wl

Expanding the binomials we obtain formula (9.24) for j = 1.

The convergence property is clear.

9.6. Formal solutions over Qp and truncation. For [ = 1,..,g, the formal series
I"d)(u) is a formal solution of system (2.1), in which the change of variables z = z(u) is
performed and which is considered over the field Qp of p-adic numbers.

Lemma 9.5. The formal series IA(W)(u), 1=1,..,g, are linear independent over the field

Q.

Proof. The proof follows from the fact that the monomials u/, I = 1,..,n, are linear

independent over Qp. 9.7. Example n = 3. In this case we have
g=1,u; = 21 — 23, U)—: ;;

(9.26)

o0 3 1 1 3 1 1
e =32 () () () () () ()
= a a a+1 a a+1 a

oo 1 3
L —3/2 -3\ (3 a+l —1/2 ) o
=1 Z(LL«Fl)((L)(l/?LL.]‘l/QQ 2

a=0
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(9.27)
I[p' —1] ('lL] s UQ) =

. — p*=3 p°—1 pi—1 p°=3 pi—1 p°—1
= (—1) T U =N E ( 2 2 2 2 2 2 ) s
= 21 5 3 "2
i a a a+1 a a—+1 a
a=

p 1

s

=D W T ) (ail)( o )((p‘*—1-;/12—@’]’(p’(’p—l)z/ia)ug

a=0

10. p-Adic convergence
Consider the field Qy with the standard p-adic norm |[t]|p, t € Qp. In this section we
consider the polynomial solutions ((— )T (4))3Z1 and the formal solutions

I ) (u) as functions on Q1.

Recall that Z, € Qp denotes the ring of p-adic integers.

10.1. Teichmuller representatives. For t € Z, there exists the unique solution
w(t) € Zpof the equation w(t)? = w(t) that is congruent to t modulo p. The element w(t)
is called the Teichmuller representative. It also can be defined by w(t) = lims—ew t?s. The
Teichmuller character is the homomorphism

Fy —Zy, a— w(a), aeclFy

a €y, r >0, define the disc
For

Dar={t€Z| |t - w(Q)|p<r}.

The space Z, is the disjoint union of the discs Dq1, @ € Fp. The function w : Z, -

Lip; t w(f), is a locally constant function equal to w(a) on the disc Dq1. For a subset
S € Zpand a function f: S = Z, define the norm

I fll= t;gglf(f)lp

Lemma 10.1. For any a € Fpthe sequence of polynomial functions (a? )giluniformb/
converges on Dq1to the constant function w(a).

Proof. We use the “fundamental inequality” from [Ro, 11.4.3]: if [t]p <1, then
|(L+8)" — 1], < [t]p - max([t]p, 1/p)° Now let t € De1.Thentr-1=1 + ty,
|t1]p < 1/P. We have ‘tp” —t7 |y = [t [t PTIPT 1, < |(1420)P 1], < 1/pF,

For positive integers s1,52and t € Dg1 we have

s1+1 s )
|tps1+s2_ tps1|p: |tpsl+32_ R ' — tP ! |p g 1/})"'14_1

epiyoo
tPassz1 + tPas21+ . Hence the sequence (4 JZiisa Cauchy sequence.

For ¢ € Do, . . 8 w41 e have
|ﬂ)”| < l/p‘“ ‘tlp < 1/]) Iti — 15 "P = ‘(1 +t)" - 1|:ﬂ < l/p
Colp =, For

ti,ty € Daj, @ /=0 we have t1/tz2= 1+t withand. The lemma is proved.
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*=1)/2)00

For a € F, consider the sequence of polynomial functions (m =1on

De,1. This sequence uniformly converges to 0 on the disc Do,1.
Let alb-1/2=1. Let B € Fpbe such that 2= a. The function Dg1— Dag,

t — t2isan analytic diffeomorphism. The inverse function Ds1 — Dg1 will be denoted
by x1/2. There are two square roots +x/2. The root x%/2 corresponds to the chosen 8 €

Fpand the root —x1/2 corresponds to —f§ € Fp.

We change the variable x, set x = y2, and lift the sequence (-T“ 1)/2) =1to the
sequence (’UP Ziof polynomial functions on Dg1.

Lemma 10.2. The sequence of polynomial functions ("1, uniformly converges
on Dg1 to the function w(f)/y. In other words, the sequence of polynomial functions

(2P =D/2), uniformly converges on Da1 to the function w(f)x /2
Proof. The lemma follows from Lemma 10.1.
Let ap-1)/2 = -1. Then w(a)ps-1)/2 = (—1)1+p+-+ps1 = (-1)s and the sequence (

—1)/2
2 =/ et 1has no limit on Dg1.

M»—

).()

10.2. Approximation of binomial coefficients. It is known that(
(S for a € =07 Z.

Lemma 10.3. Let 110 l2 = O pe integers. Then there .
exists an integer E—=—li 2lh+a20
so 2 U, such that for any integers 2 Soand any integer a with we have
(10.1)

\<\ l/pﬁfrifﬁ.
P , where d=hL+L-1/2

—l—n’*l Io+a
2 = k) —1
(lg-l-a) (- 2)’”‘“ (la + a)! H ht )

p°—1 _1 1 la+a
2 ) = 2l + k) —1—
( ly +a ) (=2)2ta(ly + a)! JI[l 1+ k) P°)
—1-0y s, = -
The p-adic norm of Ciira ) 5 <1 The difference ( 344 ) — ( foa Vis the sum of
1 f2+a(2(11 +k)—
products (—2)"2*(la+a)! 11k=1 1) in each of which at least one of the

factors 2(I1 +k)-1 is replaced with —ps. We prove that even one such replacement
implies that this summand of the difference has p-

adic norm Lh+k)y—-1<2(li+l+a)—1
g I/I).‘;+'I/2—Il—lz—!:- 1= bpr,:) P /ﬂ)

Pty _ Indeed, bt < 2y — 2 1 g let 2(11 +k). We have 2(
2(h +1 Hence. Hence for any s, large enough, we have¢ < s, and the

replacement of 2(11 + k) — 1 with —psmakes the norm of that summand 1/ps-<.

c c
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We also have 0P° < 2(li+la+a)—1 Hence® <P <% < Eg_ G‘HI‘H?_l

This shows that each summand has the p-adic norm 1/<p7°< 1/p*Ht/a=h—ta=a

The lemma is proved.
10.3. Example n = 3, continuation. Consider the formal power series

R D 1] O T NS [ ) B

(9.26) and the sequence of polynomials

po-1

2 p°=3 p =1 p°—1 p°=3 p°—1 p°—=1
10.¢ Tls () — 2 2 2 2 2 2 2
(103) T7(@) = ”Z:“ (( a )( a )7(a+1)( a )’(aJrl)( a ))q

in (9.27) as functions on Zp.

Proposition 10.4. The power series T(x) uniformly convergence on Doa. The

sequence of polynomial functions (T (2))22, uniformly converges on Do to the
function T(x).

“1y -3
Proof. The fact that the binomials ( .*): (7.7) are P_adic integers implies the
uniform convergence of the power series T1(x) on Do,1.

l 1,s 1.
Let us writel =Yaco Ty and T () = Za 0 Tu i’"’“”, where T, Tqbs €

T( ) qu Zu f—lTl‘T +Zu =0 a Tl q)

Z3p. Then Clearly the p-

p -1
adic norm of the first sum is l/p * .ByLemma10.3ifsisbig s ‘
—TE) 8, <1 p
enough, then for each summand of the second sum and ¢t €

Do,1 we have |(Tq! for some d independent of s and of the summand. This proves the
proposition.

Consider the formal series
(10.4)

o) =3 (1) () (2 () (8 ()

and the sequence of polynomials
(10.5) (=)= 17" U (uy,up) =

P
pio3 2 p*=3 pi—1 p°—1 p*—=3 p°—1 p°—=1
—u E:( ) 2 3 2 3 3 )fu“
— Uy y ) "2
‘ a a a-+1 a a-+1 a
a=

as functions on Dg1 x Doi, where a = 2 for some B € Fp. Then the function
ull?

t Dai = Dsoiis well-defined and the series IA(Vl)(uLuz) is a well-defined

function on Dg1 % Doj1.
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4 M 5 .
TI[EOREM 10.5. The sequence of polynomial
o0
((— “(ug, ug )) _
uniformly converges on Da1 x Do,1to

functionsw(d)—’("")(ul u)
the function

Proof. The theorem follows from Lemma 10.2 and Proposition 10.4
10.4. p-Adic convergence for arbitrary n. Given!, 1 <! < g, consider the

sequence of polynomials (-1)%",lP;s-11(u) and the series I")(u). Here u =
21

uWe multiply the polynomials and the
znp-)11).and study the

Ip®—1
(1 - - o) (=) I ((uznn,
series by the same factor (2
convergence of the sequence of polynomialsui :+-unj-1s)i:== ) to the series J':= (u1
un-21)'I"¥(u). Introduce
new variables:
n—21 i n—21
Znp—21 “n,
rp = H Hujf H ~n Tog = U - Up_2 = s
21 — Zn
i=1 j=1 i=1
L _ Zp—21 — Zn ) o _ Zp—21 — Zn
Tz =U3 - Up—_2 = ) e Tpo = Up20 = T
22— 2p Zn—2l—1 — Zn
- o o Zp—214+1 — 2Zn o _ Zn—2142 — Zn
Tp-2041=Up-2[4+1 =" Tp-0i42=Up2041Un—2142= """
Zn—21 — Zn Zn—2l — Zn
_ Zn—1 Zn
Tp—1 = Up— 2041 ° TUp—1 =
~n—21 <
7
Let x = (x1,..,.xn-1). Then
1
L) — - 1} - -2 ! - MW (e e
J'(z) =2y 3 Q (z2,...,2n_1) =2 2(Q1(z2, ..., Tp1),. ... Q) (2o, .. .,1‘,,,,1))’
n -1, then

with coordinates Qjdefined as follows. Ifj = 1,...,

10.6
( ) 1j -3 n—1 —1 n—21 n—1
Qf,:rJHZ () H ( ) HL"“ H . j=1,...,n—21—1
i/ i N i=n—21+1
L -3 n—1 -1 n—21 n—1
Q_T,ZZ'(Q) H (2) HT?%—J H zi, j=n-2,...,n—1
U/ 1igg N/ i i=n—2141 )
an—1 € Z20 such that ai+-++an-21=
“+ An-2/=

g
where the summationy_ "is over all®1:
et a, g+l —1,if 5 <n—20 ; and such that a1 + -

n*rr—2i+1 + t 3
1+ ifn—-20<j< n—1;

Ap—21+1 JF e
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n—1 n—21 n—1
Ln i1 g
=S (Z) e I1 =

(10.7) i=1 i=2 i=n—20+1

I.n . X c Z
where the . summation is over all @1;::-,n—1 20 such that
A1+-++An-21= An-2141  + e+ dn-1+.

We also have
pS—1
l,s = Ais
JE(x)y=2,2 Q" (x2,...,2n_2)
1:“—1
. s, . Ly -
= 2 ( 1 (.I.Q,...,.L,,__Q),..., q(.[Q.. .,.L,,_g))’

with coordinates Q's;(x) defined as follows. If j = 1,..,n - 1, then

(10.8)
1 ¥ —3 n—1 s_ 1~ n—21 n—1
ls 5 p] 2 (11 .
Q= (*—a_ ) 1I (P—) T« T = d=1-on—21-1,
J i=1,i#] ' i=2 i=n— z:+1
fi n—1 pi—1 n—21 n—1
l,s 9 Wil . ,
@ xt, j=n-=2l,....n—1
o=y (7)) I (7)) M= 11 ==,
i=1,i#j i=2 i=n—20+41 ,
where the summation a.,...,a _
a a a_, . . a [
0% s over all w 1€ 2,0 < ap < B guep
that 1+ s+ p-21= n21 + =+ + p-1 + — 1, if j n - 2L, and such that

ap+-+apo=ap 41+ t+a, 1 +Lifn-20<j<n—1q,

P 1 ,_1 n—21 n—1
ai—1 P>
YT e I
7

(10.9) i=1 i=2 i=n—20+1

l,s,n p°—1
where the 2 summation is over all ai,....an-1 € 2’ 0a; < 2, such
a

thatai+ -+ + an-21=n-21+1+ =+ + an-1+ L.

Proposition 10.6. The power series Q!(xz,...,xn-1) uniformly convergens on 0. 1 . The

. . 1,8( . ) n—2
sequence of polynomial functions (@ (2, .., wn-1))32 uniformly converges on Dyg;

to the function Q!(xz,...,Xn-1).

Proof. The fact that the binomials ( «*)> (%) are P_aqdic integers implies the

. . n—2
uniform convergence of the power seriesQ (x2,...,2@n-1) on Dy7~ The proof of the
uniform convergence of (Q'5(xz,...,Xn-1))*s=1t0 Q'(Xz,...,.Xr-1) follows from

Lemma 10.3 in the same way as the uniform convergence in the proof of Proposition
10.4.

1
. ) JHx) = 2,2 QYxa, ... 20
Consider the formal series - () = 2,7 Qe n—1 ) and the
Ls () — 25 O, - .
sequence of polynomials Jot (@) =2 2 Q.. a0 ) as functions on
n—2 , /2
Do x Dy , where a = 82 for some 8 € Fp. Then the function T1° - Doy = Dajis

2
well-defined and the series J/(x) is a well-defined function onDa1 X 0 .
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[s.9]

71,8 (
Theorem 10.7. The sequence of polynomial functions ("r (J'))H=1 uniformly

n—2
converges on Dot x D51 g the function w(f)J'(x).

Proof. The theorem follows from Lemma 10.2 and Proposition 10.6.

Appendix A. The case n = 3 and Dwork’s theory

by Steven Sperber and Alexander Varchenko

In this appendix we consider only the special case n = 3 of previous
considerations and show how this special case is related to Dwork’s theory in the
classical paper [Dw].

A.1. Dwork on Legendre family.
A.1.1. Consider the Legendre family of elliptic curves E(A) defined by the affine
equation

yi=x(x-1)(x-A).

Let y = ¥(A) be a family of 1-cycles on the curves E(A) flat under the Gauss-Manin
connection. Then the function

R (\) = d_:c
(A1) Jv Y satisfies the hypergeometric
differential equation
(A2) ML —=XNh"4+ (1 =2X)h" = (1/4)h =0
All solutions of this equation are obtained in this way. One of the solutions h(61(Q), for

a suitable 61, equals
11 00 _1/2 2 '
FW:M@Emg=Z(J)M
(A?)) k=0 : )

where 2F1 is the classical hypergeometric function.
A.1.2.If h(A) is the elliptic integral in (A.1), then its derivative is

1 dx
W=z ——
(A4) 21@—”3

A.1.3. Equation (A.2) can be written as a system of first order linear differential
equations for column 2-vectors! = (h, h’),

1 0 1
S~ B, mn_( i »1)
dA INI-A) A=A/,

(A.5)
A.1.4.In [Dw] Dwork considers equation (A.2) over the field Qp of p-adic numbers
and studies analytic properties of the solution F(1). We remind these properties
below.
A.1.5. Let D € Qpbe an open subset. A function f: D — Qpis called analytic at a €
D if f can be presented by a power seriesziio (A —a)* with nonzero radius of
convergence.
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A function f: D = Qpis called analytic on D if fis the uniform limit on D of a
sequence of rational function regular on D. In that case fis analytic at every point of
D.
Fori=1,.,Nletfi: Di— Qpbe an analytic function on some domain D:.

Assume that Di N Diy1 #Qfori=1,... . N -1 and fi = fis1 on Di NDis1, then we say

that the collection of functions f;defines an analytic element onUi i D
Cf. [Dw, Section 0].
A.1.6. Igusa noted in [Ig] that modulo p the polynomial (A.6)

(p—1)/2 2
g()\) = Z (_ 17/2> )\,j
Jj=0 '

is the unique polynomial solution of equation (A.2) of degree less than p up to
multiplication by a constant. Define

Di={A€Z||gN)|p=1}, D2={A|A-1e Dy}, D =D1U D2
Notice that D1, D2are open and D1 ND2 # 0, More precisely, D1n D2
={A€Z||gMN)|p=1 |Alp=1}.

A.1.7. Dwork considers the functions
F(A)
) ==+5 1\ =
(A7) F(Ar)

defined in a neighborhood of 0 € D1 as ratios of the corresponding convergent power

series expansions.

Dwork proves that f{A) can be analytically continued to the domain D1. For that,
he indicates a sequence of regular rational functions on D1, that sequence uniformly
converges on D1, and its limit equals F(A)/F(A?) in a neighborhood of 0, see [Dw,
Lemma 3.4].

From that Dwork deduces that 1(A) has analytic continuation to the domain D1in
the same sense, see [Dw, Lemma 3.1].

Since n(A) is analytic on D1, the function n(1/4) is analytic on D2.

Using the properties of equation (A.2) Dwork shows that (1 - ) = -n(A) on D1

and shows that n(A) = -n(1/4)/A?2 - 1/(21) on D1 N D2. Hence the function n(A) on D1
and the function -n(1/4)/A2-1/(22) on Dz define an analytic element on D.
We will use the formulas

(A8) n(1-2)=-n) n(1/A) = -A*n(4) - A/2,

in Section A.5.

A.1.8. For a € Qplet Vo be the space of germs at a of holomorphic solutions of
equation (A.2). For & # 0.1 we have dimVe= 2 and for a = 0,1 we have dimV.= 1.

For a € D1 let Usbe the space of germs at a of analytic functions defined by the

equation
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du
— =7p(Mu
(A.9) o~ 1A
By [Dw, Lemma 3.2], U.is a subspace of V.. We have Ux= Vafor a = 0,1.

For® € D2 let U], pe the space of germs at a of analytic functions defined by

the equation
du

— = (=n(1/A)/N2 = 1/(2\))u.
A10) = (=n(/ N/ = 1 (2A)u
By [Dw, Lemma 3.2], Usisa subspace of V.. For « € D1ND2we havela = U,
A.19. By [Dw, Lemma 4.2], for « € D the subspace U. € Vs also can be

characterized as the subspace of germs at a of holomorphic functions bounded in

their disc of convergence.

More precisely, let Cp be the metric completion of the algebraic closure O‘_p of the

field Qp. Let a € D. Lett(A) = Y020 k(A — @)* e an element of V.
Consider u(A) as a germ at a € Qp € Cp of an analytic function on Cp. The germ u(A4) is

called bounded on its disc of convergence if u(A4) is bounded on its disc of convergence
in Cp.

Let r be the radius of convergence oft(A) = 22720 k(A= a)* pefine [u(A)|o =
supk |ck|rk. Then u(A) is bounded in its disc of convergence if and only if |u(A)|o < co.

A.1.10. The function F(A) is a holomorphic solution of equation (A.2) on the disc
Do,1. A second solution of (A.5) is of the form G(A) = F(A)logA+H(A), where the function
H(A) is holomorphic on Do1. Dwork specifies H(A) by [Dw, Equation (4.19)]. Then

F G
FN=(5 =
(A11) ) (F G)

is a fundamental matrix of solutions of equation (A.5).
In [Dw] Dwork introduces a 2 x 2-matrix function A(A), and then proves the

formula

_1)(p—1)/2 )
(A12) A\ =FA\) MFOP)L, M_(( 1)0 (_1)(;1)%)

where b is a suitable number, see [Dw, Lemma 6.2] and formulas on page 72 in
[Dw]. Dwork shows that A(A) extends to an analytic function on the domain

D3 U D4, where

(A13)Ds={A€ | | = |z 1Ap=1,
A sUDs={AeZy|e<|Ap <1, [A—1]p =1} 1p=1}, Da
=(1€z e<Ap<1),

D

Here ¢ is some explicit number, 0 < € < 1. See the bottom of page 62 in [Dw] and the
first sentence of the proof of Theorem 6 in [Dw]. Formula (A.12) immediately implies
that
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(A14) AMF@A?) =FA)M
on Da The matrix A(A) is called the matrix of the Frobenius transformation of

solutions of equation (A.5) relative to the fundamental matrix F(A). It follows from

formula (A.14) that

F(’\p) — (_ (p—l)/? F(/\)
(A.15) AY) (F,(’\p)) 1) (F,(/\))on D4. This can

be reformulated as the relation

(A.16) AX) <’7(}‘”)) = CDPTR (n(l)\))

on D4. By the already formulated analytic properties of (1) and A(A), relation (A.16)

can be analytically continued to the domain D1 N Ds.

Equation (A.16) implies that for any @ € ¥ — {1} such that w(a) € Dy, the

vector (1,n(w(a))) is an eigenvector of the Frobenius matrix A(w(a)) with eigenvalue

DV flo(a)),

LY Cyo-022 pa 1
(a17) AR (gafa) = 02160 (o)

It is known that the zeta function of the elliptic curve defined over F, by the
equation y? = x(x - 1)(x - a) has two zeros, which are 1/((-1)¢-V2flw(a))),
(-1D)-V2f[{w(a))/p. Itis also known that |f{lw(a))|p= 1. The number (-1)P-V/2f[w(a))

is called the unit root. See [Dw] and also (A.53).

A.2. KZ equations. The KZ equations (2.1) for n = 3 is the following system of
differential and algebraic equations for a column 3-vector I = (I3,12,[3) depending on
variables z = (z1,22,23):

al 17 Qo M3 al 1/ Qxn Qag

- = — I. ( )Iq

or 1 ( Q31 + Q39 )I.
Z Z9

822 2

21— R 21— 23 -2 Zg — 23

0=1 + 1+ I,

D29 2

3 2 23

where Q= Qjiand
-1 1 0 -1 0 1 0 0 0
Q=11 =1 0, Q3=10 0 0], Q=10 -1 1
0O 0 0 1 0 -1 0 1 -1

We introduce new variables

22 — 23

up = 21 — 23, Uy = 3 Uz = 21 + 22 + 23
(Alg) Z1 — 23 ,
see (9.7). Then system (A.18) takes the form
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(A.QU) '(()_I _ EQIQ +Ql3+ﬂ?31. ‘({)_Izi( ng + Qgg)f’
duq 2 Uq Jug 2 \ug — 1 [
2L 0= I+ 1 +1s
Juy

The variables in system (A.20) are separated, cf. (9.9).

Denote W™ = {(I1,12,13) | 1 + I+ Is= 0}. Then

(A.21) (Qaz2+ Qa3 + Q23)|w=-31d.

Hence all solutions of system (A.20) have the form

(A.22) I =u132(J1(u2),J2(uz2),/3(u2)), Ji+]2+]3=0,

where the column vector J(uz) is a solution of the differential equation
aJ 17 Qs Qg
= —( + —) J.
Us — 1 Uo

(A23) duy 2
A.3. Solutions over C. Any solution of system (A.18) has the form

I(’v)(z) _ j ( 1 ’ 1 . 1 ) dx
(A.24) 4 ME— 2 X — 2 X — 23 \/(2 —z1)(x — 2)(r — 23)
where y is a flat family of 1-cycles on the elliptic curves of our family of curves.
We change x and z in this integral by setting x = (z1 -z3)w +z3and z = z(u) as in

(A.19). Then integral (A.24) takes the form

. 1 1 1 dw
(A.25) I (ug, us) = uy Wf (— ,—) -
chw—=1"w—uy w \/(?1: D(w  wus)w

We take y = y1to be the circle |[w| = 1/2 oriented counter-clockwise. We assume

that uzlies in this circle. We fix the branch of—ever—t—he—emele—b&ig‘flaog%ﬁ/tﬁelﬂpﬁﬁment

w- Dw-u2))watw=1 /2, u
of = 0 to be /2. We multiply the circle with the cliosen branch of the mtegrand by_n_

This finishes the description of y1. See the definition of cycles y:in Section 9.5. We

expand the integral [0)(u1,uz) as a power series in uz and obtain
(A.26)

o= 3 () )

1 3
—3/2 -3 -3 CL+1 *1/2 a
=u, Z(aJrl)(a)(l_/Za’l’l/Qa)ug’

a=0
see Theorem (9.4). Denote

(A.27)

_ _ 3 a+1 —1/2 2o — 23\ @
I I—h) i/zz(a+1)( 2) 1/2704’1’ *1/27(1)(2’172’3)
3
2

a=0

A - urmi(aﬁ)(—:)( e

a=0

This series is a solution of system (A.18).
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Remark. Formulas (A.25) and (A.26) imply that
(A.29)

1 3 1 3 3 1 1 3
I{uy,us) = uy 5/)( F1(§ 3 1L Uz) §2F1(§,§§2;U2)=—§ 2F1(§,§22:‘152))

where 2F1(a,b;c;A) is the classical hypergeometric function.

A.4. Solutions as vectors of first derivatives. Introduce the function

(A.30) ]\/T q*22)( —23)
Then

ar et ety
(A31) ( 8~1 622 ’ 623 )

Changing the variable x = w(z1 - z3) + z3 we write

J 2! (2) =

. dw
(N (z) = (21— 23)7 2
P L\/('m'l)( _ @)y,

Z1—23
= (gl — 23)_1/2h("1)(u)
Z1 — 23

(A32) = uy PR (ug), ,

where h(V(A) is the elliptic integral in (A.1) and h)(A) is a solution of equation (A.2).
Denote h(A) := h®)(A). Then

(A.33)
Im _ (21 _ Z:j)_;;/g(_h(z'z - 23)_2}1_,(22 *a%) 29 7z§12h'(32 *2’3)‘]1(22 - 23)
21— 23 Z1—27 21— 2 21— 23 21— 23
1pE2 T R34y 22 — 21
o (F—2) =22
(21*23)21 *?«’3)
(A.34)

= uy P (=h(ug) — 20 (ug)ug, 20’ (us), h(ug) + 2k (ug)(ug — 1)).
Formula (A.34) relates solutions of system (A.5) and solutions of system (A.20). If
(h, h"] is a solution of system (A.5), then equation

Il (Ul 5 u.2) ‘ -1 *21.',2

Iy(uy,ug) | = 'uf“vQ 0 9 (h’(uz))

Iy(us, uz) 1 ouy —2) \(u2)
(A.35) (w1, ug "

gives a solution (I,12,13) of system (A.20). Conversely, if (I1,I2,13) is a solution of system
(A.20) then formula

I (uy, u

huz)\ _ W12 -1 —uy 0 I;EE 13

' (us) ! 0 1/2 0/ \; (u ’u_)

(A36) T

gives a solution (h, h') of system (A.5). Using
the cycle y1 we can evaluate

(A.37)g(71) = (21— zg)_l/QF(f? : za)
oo 11
= ufl/QF(?J«Q)-, where F@)=2h (5’ 2 b /\).
Denote
: I 2,00 ot ot
({:: E(’n). = = = - _—
(A.38) i z 4 14 (821 Ozo Oz )’
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where [ is defined in (A.27). Formulas (A.33) and (A.34) imply

(A39) T= o (1 —2m(222) 222, oan(222), 1+ 29(222) 222)
(A.40) = a(— 1 —2n(ug)us, 2n(us), 14 2n(us)(us — 1)) ,

s

where the function n(A) is defined in (A.7).

A.5. Six coordinate systems. System (A.18) of KZ equations has 6 distinguished
coordinate systems (asymptotic zones). They are labeled by permutations o = (i,j,k) €
S3. The coordinate system u? = (uf,ug, u s) is defined by the formulas

R
N N ,.'.; ke

o
’u'l = 2i — Rk, u,zz =

uy =21 + 2 + 23
(A41) '

For the identity element id = (1,2,3) the corresponding coordinate system is defined
in (A.19).

Having one of these coordinate systems we repeat the constructions of Sections
A.3-A.4 and construct a scalar functionfg{z) and vector-valued functions [°(z), I°(z),
such thatZ? (%) = Ig(z)/fg(z). For the identity element id = (1,2,3) these functions
aref(2), 1(2), Z(2) in (A.37), (A.27), (A.39). Notice that the functions
3(2) and I(z) are defined as integrals over y1, and that y1 is defined with the help of

coordinates us,uz,us.

For any o the function [°(z) is a power series solution of system (A.18) in the

< — <k

chart with coordinates u°, see (A.26) and (A.27). Below we list the functions I°:

(A.42)
7123 _ z]i”(_ 1—271(:f_:f)if:?3 2n(= = :2;) 1+ n(2 m) fl;)
7321 _ zJ_ — (1 +2n(;j_;i)i§*j}’, QW(Ej_fi)t -1 —277(;1::)2:2)
7213 _ 221z3 (2.,,(%} 1—217(2 :;‘)2:2 1+27/(2 2)2:2;)
T2 = L (1 _p(asa)asm |4 op(aza)asa gp(aza)),
1231:,2%1 (L 2n(2=2) 222, -1 - 2(2=2) 222, 2n(222),
T2 = L (y(2=22), 1 4 2p(2=22) A ) —gp(2=22) 2k

Theorem A.1. For (ij,k) € S3 consider the three functions 17k 14 lik Then ¥ is
transformed to 19k by application of formula n(1 - A) = -n(A) and Vikis transformed to

ik by application of formula n(1/A) = -A2n(A) - A/2.

Proof. The proofis straightforward. For example we check the statement for (i,j,k)
=(1,2,3). In this case the functions [123, I321, [13Z gre

(=1 —2n(ug)ua, 2n(ua), 1+ 2n(ug)(uz — 1)),
L (=1 +2n(1 —ug)us, —2n(1 —u2), 1+ 2n(1 —ua)(1 — us))

wy
“11u2 (2?7(112) -1 - 27}(“2) ug I+ 2”( ) ﬂ; ) ’

where ug,uz are defined in (A.19). Then formula n(1-uz) = -n(uz) transforms the
—u3n(us) —u2/2 transforms

7

second function to the first and the formula 7(1/uz2)
the third function to the first.
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Define
po = {(21,22.23) € Q) | 2 # 2; Vi #j}
For any o = (ij k) € S3define

1= {(31722323) €D, | 4 —ten, 9( i A:)‘ = 1}
2 ~k P zZ Z

D“’ J—
Zi Zk ‘Z Z,
a
zZ,2,2 €
D~ { ’ 2= ‘ (1 | 2 3)
0, Dz — 2%k c *a} o Ty
D~ | 2= %k =D1 2,
-y
D~ ogESs

’

where the function g is defined in (A.6).

For any any (ij k) € S3the functions 17, I¥i, ik define an analytic element on D~ o,
see Section A.1.7 and [Dw]. Theorem A.1 implies the following corollary.

Corollary A.2. The functions (Iijk)(i,j,k)ESa define an analytic element on

Remark. Dwork’s formulas (A.8) present the Ss-symmetries of the analytic
element (n(4), -n(1 - A), -n(1/4)/A% - 1/(21)). Dwork’s S3-symmetries reformulated

as Ss-symmetries of the analytic element (17%)(;kes:look even more well-rounded.

A.6. Subbundle. Denote W™ = {(I1,I2,13) € Q3| I1 + I2+ I3 = 0}. System

(A.18) of KZ equations defines a flat connection on the trivial bundle W~ xD™ ¢ — D" 0.
The flat sections of that bundle are solutions of system (A.18) of KZ equations.

For any @ € D" such that & € D™ the vector [(a) spans a one-dimensional subspace
U «c W . That subspace does not depend on o such that @ € D™ 2. The union of these
subspaces defines a one-dimensional subbundle U -~ D" of the trivial bundle W~ x D~
- D"

Theorem A.3. The subbundle U ~"D is invariant with respect to the KZ connection

onW xD" - D"
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Proof. For any o € S3the subbundle U =~ D™ is generated by the flat section /[ near

the points where u3= 0. Hence the subbundle U =~ D" is generated by a flat section
near any point ofD~, see Section A.1.8 and [Dw, Lemma 3.1].

Remark. For any o € Ssthe flat section [° generates the subbundle U -~ D" near the
points where u3= 0. The power series I° considered over C is the expansion of an
integral over a cycle vanishing at the points where ug= 0. The analytic continuation
over C of that integral over that vanishing cycle could not generate a one-dimensional
subbundle of the trivial bundle W~ x D™ — D" since the monodromy representation of
the complex KZ equations in this case is irreducible. In contrast with this fact over C,
the p-adic power series solutions 19, o € S3, defined at different points glue together
into a single line bundle U -~ D". This line bundle is what Dwork calls a p-adic cycle.
This p-adic phenomenon was stressed by Dwork in [Dw] who titled his paper P-adic
Cycles.

Remark. The invariant subbundles of the KZ connection over C usually are related
to some additional conformal block constructions, see [FSV1,FSV2,SV2, V7].
Apparently the subbundle U -~ D™ is of a different p-adic nature, cf. [V7].

A.7. Boundedness. Let 0 € Sz3and a € D™ 2. For w € W let I(z;w) be the germ at a
of the solution of the KZ equations with initial condition I(a,w) = w. By formula (A.34),
the coordinates of I(z;w) have the form
(u) ™32 (—h(ug) — 2K (u)u3), () 3220 (ug)
(uf) 2 (h(ug) + 2 (ug) (u§ — 1)),
where h is the germ at the point“g = '”g(”') of a solution of equation (A.2). We say

that the germ I(z;w) is bounded if each of the germs —h(ug) =2h'(ug)ug, 21’ (“g),
h(ug) + 2h' (ug ) (ug —1) is bounded in its disc of convergence.

’

Theorem A.4. The germ I(z;w) is bounded if and only if w € Ue
Proof. Let w € U «. Then the germ h belongs to the corresponding subspace Uuzs(a)

defined in Section A.1.8. By [Dw, Lemma 4.2] the germ h is bounded in

its disc of convergence, see Section A.1.9. Hence each of the three germs —h(ug) -
2”(“5)“87 20" (ug3), h(ug) + 2h'(ug)(u3 - 1) is bounded in its disc of convergence.
if w & U, h €U, then /' ugia), By [Dw, Lemma 4.2] the
germ h is unbounded in its disc of convergence. Then at least —h(ug) — one of the
three germs 2R (ug Jug,
20" (u3 ), h(ug) + 2R (ug)(ug 1) is unbounded in its disc of convergence.

A.8. More domains. Denote
(A43)
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= 22 — 23 Z3 — 23 22 — 23
g =1(z1,20.23) €D e Z,, =1, — =1
o= lEmmed | 22 er, |222) <1 1222 ) =y
~4:{(21,22.33}€©0 | 2= EZ.I_,. €<‘/‘2_&3| <1}
D z —2z z —z P )
where ¢ is the same number as in (A.13).| 103 by 5!

A.9. Frobenius map on solutions of KZ equations. Formula (A.14) describes
the Frobenius map on solutions of equation (A.5). Solutions of equation (A.5) are
identified with solutions of the KZ system (A.20) by formulas (A.35) and (A.36). That
allows us to define the Frobenius map on solutions of the KZ system (A.20).

Denote

1 0 1 0 0

B(uy, ua)C(uq, us) = (0 1)._ Cluq, ue)B(ug,us) = | 0 1 0

' 1 1 0

4o [ —1 e 0 5/ -1 —Q’ILQ
(A44) B(ug,ug) = “'1/ ( 0 1 /22 0) . Clug,ug) = u;'/ 0 2
; 1 2us —2
we have. The

second matrix defines the identity operator on the space W~ ={(I,I215) €

Q3| 1+ 2+ 13=0}.
Recall the matrix F(uz) defined in (A.11). By formula (A.35) the matrix

F (uy,u2) = C(us,u2)F(uz)
is a fundamental matrix of solutions of system (A.20). Recall the matrices A(A), M in

(A.12). Denote

(A.45) A™(uz,u2) = Cu,uz) A(u2) B((u1)p, (u2)P).
This is a 3x3 matrix valued function, whose values preserve the subspace W™ c Q3,.
Theorem A.5. We have

(A.46) A~(U1,uz) F~((U1)P,[uz)l’) = F(uyu)M.

The matrix A”(u1,uz2) extends to an analytic function on the domain D" 3U D™ 4.

Proof. The theorem is a corollary of formula (A.14) and Dwork’s statements listed
in Section A.1.10.
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We call A"(us,uz) the matrix of the Frobenius transformation of solutions of
system (A.20) relative to the fundamental matrix F(u1,uz) on the domain D™ 3UD" 4.

Recall the distinguished solution

(AA7) I{ug,us) = ufﬂ/g(fF(’ug) —2F" (ug)ug, 2F" (ug), Fug) +2F" (us)(us — 1))
of system (A.20) defined near the points where uz= 0, see (A.34). By (A.15) we have

(A.48) A" (ur,u2)I((u1)P, (u2)P) = (-1)P-172[(u1,uz)

~ ) , C1/2 gy,
onD 4. Recall/(t, us) = uy /2 F (42) in (A.37). Dividing both sides in (A.47) by
€((u)?, (“2)p) we can reformulate (A.48) as
(AA49) A(uy,ug) T((ug)?, (ug)?) = (=1)P~D/2uP"D72 p010) Tuy , uy)
on D74, see I(u1,uz) in (A.40) and f{uz) in (A.7). As in Section A.1.10 we conclude with
Dwork that relation (A.49) can be analytically continued to the domain
DJLLM) A 53.

Equation (A.49) implies that for any a € F*, —{1}, 8 € F*, such that w(a) € D1, the

vector [(w(B),w(a)) is an eigenvector of the Frobenius matrix A™(w(f),w(a)) with
eigenvalue w(fr-1/2)(-1)-12f[w(a)),

(A.50)
A(w(B)w(@)(w(B)w(a)) = w(Br-12)(-1) -V 2flw(a))[(w(B),w(a)).

In this Section A.9 we described the matrix A™(us,uz) of the Frobenius
transformation of solutions of system (A.18) written in coordinates u1,uz, us3
corresponding to the chart labeled by the identify permutation (1,2,3) € S3, In the
same way we may start with the chart corresponding to any permutation ¢ € S3and
describe the matrix of the Frobenius transformation of solutions of system (A.18)

. . . T 0, T T
written in coordinates1, 42, U3,

A.10. Eigenvalue w(p(r-1/2)(-1)r-0/2f[w(a)).

Theorem A.6. The number w(fr-1/2)(-1)r-1/2f[w(a)) is the unit root of the elliptic
curve E(a,[5) defined over F, by the affine equation
(A.51) w2=gBv(v-1)(v-a)

Proof. Assume that § € Fpis a square, § = y2for some y € Fp. Then on the one hand
the change of the variable "w = w/y makes E(a,f) isomorphic to E(a,1). On the other
hand ﬁ(ﬂ-l)/Z =1and w(ﬁ(ﬂ—l)/zj (—1)(P—1)/2ﬂw(a)) =

(—1)P=12 f(w(a
E(cr, 1) by [Dw]. )), where the last number is the unit root of the elliptic curve
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Assume that € F*pis not a square. Denote by Nisthe number of points on E(a,f5).

Then

(A.52) Ni1+ Nip=4+4+2(p-3)=2p+2.

Indeed the number 4+4 corresponds to the points (0,0), (0,1), (0,«), « on E(a,f) and
on E(a,1). The number 2(p-3) corresponds to p-3 elements of F,—{0,1,a}. Namely if
vo € F,—{0,1,a}, then exactly one of the two elements Bvo(vo-1)(vo - a), vo(vo- 1)(vo -
a) is a square in Fpand exactly one of the two elliptic curves has two points over v =
vo, while the other curve does not have points over vo. It is known that the zeta

function of the curve E(a,f) has the form

( S Nos ) = =B~ /R

e (D= T 1-T)(1-—p)

(A.53) s=1

Here Nspis the number points on E(a,) considered over the field Fp, while the
number Rghas |Rg|p = 1 and is called the unit root, for example see [Mo]. Equation
(A.53) implies that for any s we have Nsg=1 + ps— R~ (p/Rp)*. In particular for s = 1
we have

(A.54) Nig=1+p-Rpg-p/Rs.

From (A.52) and (A.54) we obtain
0=Rp+p/Rg+ Ri+p/Ri1=(Rpg+ R1)(1 + p/RgR1).
Since the second factor is nonzero we conclude that Rg= —R1. By [Dw] we have R1 =

(-1D)-12f[w(a)). Hence
Rp=-(-1)e-v/2flw(a)) = w(Ber-1/2) (-1) - 1)/2fw(a)).

The theorem is proved.

The relation between the eigenvector I(w(f),w(a)) and the elliptic curve E(a,f3),
indicated in Theorem A.6, can be explained as follows. Over C the vector I is given by
integrals over cycles on elliptic curves with equation y? = (x-z1)(x-z2)(x-z3). After the

change of variables

r= (21 —2m)w+z3, w =2 —2, U=
the equation takes the form

(A.55) vZ=ui(w - 1)(w - uz2)w.

The eigenvector I(w(f),w(a)) corresponds to the curve in (A.55) with (uyu2) =

(w(B) w(a)), and (w(B),w(a)) = (B,a) mod p.
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It is more surprising that system (A.18) of KZ equations gives a bit more
arithmetic information than the hypergeometric equation (A.5), despite the fact
system (A.18) and equation (A.5) are equivalent by (A.35) and (A.36). Indeed Dwork’s
eigenvectors in (A.16) give unit roots of elliptic curves E(a,1) while the eigenvectors
in (A.50) coming from the KZ equations give unit roots of more general elliptic curves

E(a,p).

A.11. Approximation of analytic element (I"i") (ijkes; by rational functions. Let

s be a positive integer.

A11.1. LetM = (p° = 1)/2, ®pe(z,2) = l_L 1(1‘—2)‘”

Do (2,2) Dpe(,2) P
P(z,2) = ( L , —E )
F (J ) r—z1 T —2s ’ L—x.,g Z
I[I"‘—U(N) _ pﬁf—l(a, .
Denote“r* ~ p*  \¥). The functions
p® —1 R | s— e —1 g— —
10, pr ), p s ), e )

are solutions of system (A.18) modulo psby Theorem 4.4.
Let ppe (2.2) = 322, 1. (2)27 panote
(A.56) bpe(2) = .71 (2),
A11.2.Fork=1,2,3let
Pr e (v,2) = Ppe(v+ 21, 2) = Z Pi e (2)1
i

~1
Denote Il e ) =Py pe (2). The functions
p® —1] -1 s— < —1 u n—1
IfElp“ (/")1 pI}[‘{‘Pﬁ—l ](Z)‘ sy D QII‘IFZ ]( ) II}Eip ](Z)’

are solutions of system (A.18) modulo psby Theorem 9.1.

Let @k (V:2) 7= $pe (v + 20, 2) = 3 B} pe (20 v Denote

p°—1 p®—1

(A.57) () =@ 2)

A.11.3. Recall the homomorphisms Z = Z/psZ, Z[z] = (2/ps2)[z], Z[z]® =
(Z/p*2)[z]? denoted by ms. Recall the subring Z[z],-C Z[z] of quasi-constants modulo p.

A.11.4. Define the filtration (A. 58)

0=M,.CM,. C =My,

t §— " —1]
M, = {m (X, en(2) pf ’II[,’.\ (@) len(z) €2zl bt =1,.. 5
where. Every element of Mpsis a polynomial solution of system (A.18) with

Mﬂs lCMﬂ

e

coefficients in Z/psZ. Define the filtration
0=M] . CMj . C-o- CMiLC M 0= My e,

Lo = Am (Xl e () I 7 (2)) | erl2) € Zlelpr ), t = 1,008
(A.59)

where.
Every element of Mpsis a polynomial solution of system (A.18) with coefficients in

Z/pZ by Theorem 9.1.
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By Theorem 9.1 filtrations (A.58) and (A.59) coincide, M¢ys= M sfor any k,t.

A.11.5. Define the filtration (A.60)
0=L)L.CLL.C--CL CLy =Ly,

t —rapT—1
Lo = {m(Xis e (2)p () | en(z) €22l bt = 1,008
where.
Define the filtration
0=LY 0 CLL,s T CLLLC LY o = Lipe s

L = {m( S e (@) p 0 (2) L enlz) € ey}t =1, s
(A.61)

where.

t _ pt
It is easy to see that filtrations (A.60) and (A.61) coincide,ﬁp‘“ - ﬁk.p-‘ for any kit.
A.11.6. Let u = (u,uz,us3) be the coordinates in the chart corresponding to

[P*—1] ¢, [p*—1]
(1,2,3) € S3, see (A.19). Consider the functions I3 (2) € My, £3 e (2) €
Lps. Denote
(A62) TP U(u) = 1 7Y (2(u)) 0 N () = 0 7 (2(u))

’  M3,pE
We have

(A.63) |

s_ s pS—: 72_1 ] ®—1 p®—1 " —3 n® —1 n®—1
(1)25 -1 = 25 > ( SN (N (T Jus

a=(0 a a ‘ (L+ 1 a i a+ 1 a
pf—1
o I T2 e DN

A.64 ) ER -1 3 a
(A.64) (—1) ™ UZ:U > ) g,

see formula (A.63) and (10.5).

it L |

Notice that?=a=0 ( 2 ) “$is a solution of eqution (A.2) modulo ps.
(—1)==" [l =1)>
As s — oo the sequence s=1 of vector-valued polynomials

uniformly converges to the series I in (A.28) near the points where uz2 =0, see

s
-3

Theorem 10.5. Similarly as s — o the sequence ((-1) LI

? - )s:l of scalar  polynomials ¢ uniformly
converges to the series in (A.37) near the points where uz2= 0.

T

Corollary A.7. As s — oo the sequence ( s=1 of vectorvalued

rational functions uniformly converges to the function I in (A.40) near the points where
uz= 0.

A117. Let 7= (13:k) €55 .. Similarly to Section A.11.6

[p —1],, p =1l
consider the coordinates u° and the functions Ikm'“ (2) € Mp:. hzws (2) € f”’”.

Denote
Flo,p®— oy . p®—1 o Mo p® — . s _ >
aes) 17N =0T GEw) B w) = 1T ()

Similarly to Section A.11.6 we obtain the following corollary.
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_ j’[rr.p'“'fl]/[?[rr.p” —1] )"C

Corollary A.8. As s — oo the sequence ( s=1 of vectorvalued

rational functions uniformly converges to the function 1°in (A.40) near the points where
ug =0

A.11.8. This Appendix A is devoted to the relation between the analytic element
(I7) j1essand Dwork’s theory in [Dw].

As additional information, for any - o = (i,5,k) 6 53 , Corollary A.8

p =1, p =1,
indicates the sequence of polynomialsIk-;rr‘ (2) € My, Ek-r'* (2) € Lp:

ratio padically tends to the function I/ near the points"s = 0 where the function Iikis
initially defined.

whose

A.12. Further directions. In Sections 2-10 we considered system (2.1) of KZ
equations with parameter n = 2g + 1 and constructed polynomial solutions of system
(2.1) modulo ps. We defined the module Mp;of the constructed solutions and studied
the limit of Mpsas s — co. Namely we considered a special coordinate system u = u(z)
in (9.7) associated with one of the asymptotic zones of the KZ equations and showed
thatin this coordinate system the limit of Mpsas s — oo produces a g-dimensional space
of solutions of system (2.1) over p-adic numbers Qpin the neighborhood of the point
u=0.

Constructions in this appendix for g = 1 and Dwork’s theory in [Dw] suggest the
following project. Consider all asymptotic zones of system (2.1), see their definition
for example in [V2]. The asymptotic zones are labeled by suitable trees T. These trees
are analogs of the elements o € S3 in the appendix. Each asymptotic zone has a
distinguished system of coordinates u”. Probably, for every asymptotic zone the limit
of Mpsas s = o produces a g-dimensional space Vr of solutions of system (2.1)
considered over Qpin a neighborhood of the point u”= 0. Probably the spaces Vrof p-
adic solutions, defined at different places u” = 0, analytically continue into a single
global invariant g-dimensional vector subbundle of the associated KZ connection on
the trivial vector bundle of rank 2g. Following Dwork and Theorem A.4 we may expect
that this subbundle is spanned at any point of the base by the germs of all solutions
of the KZ equations bounded in their polydiscs of convergence. This subbundle would
give a generalization of the line subbundle generated by the analytic element
(1% i keSs 5 constructed in this appendix. Probably, that
g-dimensional v =1lima (e -2 subbundle will determine the set of unit
roots of the curves with equation) over the field Fp, similarly to how it is done in
Sections A.9 and A.10 for the elliptic curves.

n
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