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THE NAKAYAMA FUNCTOR AND ITS COMPLETION

FOR GORENSTEIN ALGEBRAS

by Srikanth B. Iyengar & Henning Krause

To Bill Crawley-Boevey on his 60th birthday.

Abstract. — Duality properties are studied for a Gorenstein algebra that is finite
and projective over its center. Using the homotopy category of injective modules, it is

proved that there is a local duality theorem for the subcategory of acyclic complexes

of such an algebra, akin to the local duality theorems of Grothendieck and Serre in
the context of commutative algebra and algebraic geometry. A key ingredient is the
Nakayama functor on the bounded derived category of a Gorenstein algebra and its
extension to the full homotopy category of injective modules.

Résumé (Le foncteur de Nakayama et sa complétion pour les algèbres de Gorenstein).
— Des propriétés de dualité sont étudiées pour une algèbre de Gorenstein finie et
projective sur son centre. En utilisant la catégorie homotopique des modules injectifs,
il est démontré qu’il existe un théorème de dualité locale pour la sous-catégorie des
objets acycliques d’une telle algèbre, semblable aux théorèmes de dualité locale de

Grothendieck et Serre dans le cadre de l’algèbre commutative et de la géométrie algé-
brique. Un ingrédient clé est le foncteur de Nakayama sur la catégorie dérivée bornée

d’une algèbre de Gorenstein, et son extension à toute la catégorie homotopique des

modules injectifs.
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348 S. B. IYENGAR & H. KRAUSE

1. Introduction

This work is a contribution to the representation theory of Gorenstein alge-
bras, both commutative and noncommutative, with a focus on duality phe-
nomena. The notion of a Gorenstein variety was introduced by Grothen-
dieck [26, 25, 29, 30] and grew out of his reinterpretation and extension of
Serre duality [43] for projective varieties. A local version of his duality is that
over a Cohen–Macaulay local algebra R of dimension d, with maximal ideal m,
and for complexes F, G with F perfect, there are natural isomorphisms

HomR(Exti
R(F, G), I(m)) ∼= Extd−i

R (G, RΓm(ωR ⊗
L
R F )),

where ωR is a dualizing module, and I(m) is the injective envelope of R/m. The
functor RΓm represents local cohomology at m. Serre duality concerns the case
where R is the local ring at the vertex of the affine cone of a projective variety.
The ring R (equivalently, the variety it represents) is said to be Gorenstein if,
in addition, the R-module ωR is projective. Serre observed that this property
is characterized by R having a finite self-injective dimension. This result ap-
pears in the work of Bass [4], who gave numerous other characterizations of
Gorenstein rings.

Iwanaga [31] launched the study of Noetherian rings, not necessarily com-
mutative, having finite self-injective dimension on both sides. Now known as
Iwanaga–Gorenstein rings, these form an integral part of the representation the-
ory of algebras. In that domain, the principal objects of interest are maximal
Cohen–Macaulay modules and the associated stable category. Auslander [1]
and Buchweitz [13] have proved duality theorems for the stable category of a
Gorenstein algebra with isolated singularities. The driving force behind our
work was to understand what duality phenomena can be observed for general
Gorenstein algebras. Theorem 1.2 below is what we found, following Grothen-
dieck’s footsteps.

We set the stage to present that result and begin with a crucial definition.

Definition 1.1. — Let R be a commutative Noetherian ring. An R-algebra
A is called Gorenstein if

(1) the R-module A is finitely generated and projective, and
(2) for each p in Spec R with Ap 6= 0 the ring Ap has finite injective dimen-

sion as a module over itself, on the left and on the right.

A Gorenstein R-algebra A itself need not be Iwanaga–Gorenstein. Indeed,
for A commutative and Gorenstein, the injective dimension of A is finite pre-
cisely when its Krull dimension is finite, and there exist rings locally of finite
injective dimension but of infinite Krull dimension. There are precedents to
the study of Gorenstein algebras, starting with [4] and more recently in the
work of Goto and Nishida [24]. Our work differs from theirs in its focus on
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GORENSTEIN ALGEBRAS 349

duality. We refer to [22] for a discussion of examples and natural constructions
preserving the Gorenstein property.

Let A be a Gorenstein R-algebra and ωA/R := HomR(A, R) the dualizing
bimodule. Unlike in the commutative case, ωA/R does not need to be projective
(neither on the left nor on the right), and the bimodule structure can be com-
plicated. Nevertheless, it is a tilting object in D(Mod A), the derived category
of A-modules, inducing a triangle equivalence

RHomA(ωA/R,−) : D(Mod A) ∼−−→ D(Mod A) ;

see Section 4. The representation theory of a Gorenstein algebra A is gov-
erned by its maximal Cohen–Macaulay modules, namely, finitely generated
A-modules M with Exti

A(M, A) = 0 for i ≥ 1. For our purposes, their infin-
itely generated counterparts are also important. Thus, we consider Gorenstein
projective A-modules (abbreviated to G-projective), which are by definition
A-modules occurring as syzygies in acyclic complexes of projective A-modules
[13, 19]. The G-projective modules form a Frobenius exact category, and so the
corresponding stable category, is triangulated. Its inclusion into the usual sta-
ble module category has a right adjoint, the Gorenstein approximation functor,
GP(−). The functor

S := GP(ωA/R ⊗A −) : GProjA −→ GProjA

is an equivalence of triangulated categories and plays the role of a Serre functor
on the subcategory of finitely generated G-projectives. This is spelled out in
the result below. Here, the Êxti

A(−,−) are the Tate cohomology modules,
which compute morphisms in GProjA.

Theorem 1.2. — Let A be a Gorenstein R-algebra and let M, N be G-projective
A-modules with M finitely generated. For each p ∈ Spec R, there is a natural
isomorphism

HomR(Êxti
A(M, N), I(p)) ∼= Êxt

d(p)−i
A (N, ΓpS(M)) ,

where d(p) = dim(Rp)− 1.

This is the duality theorem we seek; it is proved in Section 9. It is new even
for commutative rings. The parallel to Grothendieck’s duality theorem is clear.

In the following, we explain the strategy for proving this theorem and some
essential ingredients. The functor Γp is analogous to the local cohomology
functor encountered above. It is constructed in Section 7 following the recipe
in [7], using the natural R-action on GProjA. Even if N is finitely generated,
Γp(N) need not be, which is one reason we have to work with infinitely gen-
erated modules in the first place. If R is local with maximal ideal p, and A
has isolated singularities, Γp is the identity, and the duality statement above is
precisely the one discovered by Auslander and Buchweitz.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



350 S. B. IYENGAR & H. KRAUSE

For a Gorenstein algebra, the stable category of G-projective modules is
equivalent to Kac(Inj A), the homotopy category of acyclic complexes of in-
jective A-modules. This connection is explained in Section 6 and builds on
the results from [33, 35]. In fact, much of the work that goes into proving
Theorem 1.2 deals with K(Inj A), the full homotopy category of injective A-
modules; see Section 2. A key ingredient in all this is the Nakayama functor
on the category of A-modules:

N : Mod A −→ Mod A where N(M) = HomA(ωA/R, M).

As noted above, its derived functor induces an equivalence on D(Mod A). Fol-
lowing [35] we extend the Nakayama functor to all of K(Inj A), which one may
think of as a triangulated analogue of the ind-completion of Db(mod A). This
completion of the Nakayama functor is also an equivalence:

N̂A/R : K(Inj A) ∼−−→ K(Inj A) .

This is proved in Section 5, where we establish also that it restricts to an
equivalence on Kac(Inj A). The induced equivalence on the stable category of
G-projective modules is precisely the functor S in the statement of Theorem 1.2;
see Section 6 where the singularity category of A, in the sense of Buchweitz [13]
and Orlov [42] also appears. To make this identification, we need to extend
results of Auslander and Buchweitz concerning G-approximations; this is dealt
with in Appendix A.

Our debt to Grothendieck is evident. It ought to be clear by now that the
work of Auslander and Buchweitz also provides much inspiration for this paper.
Whatever new insight we bring is through the systematic use of the homotopy
category of injective modules and methods from abstract homotopy theory, es-
pecially the Brown representability theorem. To that end we need the structure
theory of injectives over finite R-algebras from Gabriel’s thesis [20]. Gabriel
also introduced the Nakayama functor in representation theory of Artin algebra
in his exposition of Auslander–Reiten duality; it is the categorical analogue of
the Nakayama automorphism that permutes the isomorphism classes of simple
modules over a self-injective algebra [21]. Moreover, it was Gabriel who pointed
out the parallel between derived equivalences induced by tilting modules and
the duality of Grothendieck and Roos [34].

2. Homotopy category of injectives

In this section, we describe certain functors on homotopy categories attached
to Noetherian rings. Our basic references for this material are [32, 35].

Throughout, A will be a ring that is Noetherian on both sides; that is to say,
A is Noetherian as a left and as a right A-module. In what follows, A-modules
will mean left A-modules, and Aop-modules are identified with right A-modules.
We write Mod A for the (abelian) category of A-modules and mod A for its full
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subcategory consisting of finitely generated modules. Also, Inj A and Proj A are
the full subcategories of Mod A consisting of injective and projective modules,
respectively.

For any additive category A ⊆ Mod A, like the ones in the last para-
graph, K(A) will denote the associated homotopy category, with its natural
structure as a triangulated category. Morphisms in this category are denoted
HomK(A)(−,−). An object X in K(A) is acyclic if H∗(X) = 0, and the full sub-
category of acyclic objects in K(A) is denoted Kac(A). A complex X ∈ K(A)
is said to be bounded above if Xi = 0 for i � 0, and bounded below if Xi = 0
for i� 0.

In the sequel our focus in mostly on K(Inj A), the homotopy category of
injective modules, and its various subcategories; the analogous categories of
projectives play a more subsidiary role. From work in [33, 35, 41], we know
that the triangulated categories K(Inj A) and K(Proj A) are compactly gen-
erated since the ring A is Noetherian on both sides; the compact objects in
these categories are described further below. Let D(Mod A) denote the (full)
derived category of A-modules and q : K(Mod A) → D(Mod A) the localiza-
tion functor; its kernel is Kac(Mod A). We write q also for its restriction to
the homotopy categories of injectives and projectives. These functors have
adjoints:

K(Inj A) D(Mod A)
q

i
and K(Proj A) D(Mod A) .

q

p

Our convention is to write the left adjoint above the corresponding right one. In
what follows, it is convenient to conflate i and p with i◦q and p◦q, respectively.
The images of i and p are the K-injectives and K-projectives, respectively.
Recall that an object X in K(Inj A) is K-injective if HomK(A)(W, X) = 0 for
any acyclic complex W in K(Mod A). We write Kinj(A) for the full subcategory
of K(Inj A) consisting of K-injective complexes. The subcategory Kproj(A) ⊆
K(Proj A) of K-projective complexes is defined similarly.

Compact objects. — Since A is Noetherian Inj A is closed under arbitrary di-
rect sums, and hence so is the subcategory K(Inj A) of K(Mod A). As in any
triangulated category with arbitrary direct sums, an object X in K(Inj A) is
compact if HomK(A)(X,−) commutes with direct sums. The compact objects
in K(Inj A) form a thick subcategory, denoted Kc(Inj A). The adjoint pair
(q, i) above restricts to an equivalence of triangulated categories

Kc(Inj A) Db(mod A) ,
q

i

∼

where Db(mod A) denotes the bounded derived category of mod A; see [35,
Proposition 2.3] for a proof of this assertion. The corresponding identification
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352 S. B. IYENGAR & H. KRAUSE

of the compact objects in K(Proj A) is a bit more involved and is due to Jør-
gensen [33, Theorem 3.2]. The assignment M 7→ HomAop(pM, A) induces an
equivalence

Db(mod Aop)
op ∼−−→ Kc(Proj A) .

See also [32], where these two equivalences are related. The formula below for
computing morphisms from compacts in K(Inj A) is useful in the sequel.

Lemma 2.1. — For C, X ∈ K(Inj A) with C compact, there is a natural iso-
morphism

HomK(A)(C, X) ∼= H0(HomA(pC, A)⊗A X) .

Proof. — Since C is compact its K-projective resolution pC is homotopy equiv-
alent to a complex that is bounded above and consists of finitely generated
projective A-modules. For each integer n, let X(n) be the subcomplex X>−n

of X. Since X(n) is K-injective, the quasi-isomorphism pC → C induces the
one on the left

HomA(C, X(n)) ∼−−→ HomA(pC, X(n)) ∼←−− HomA(pC, A)⊗A X(n) .

The one on the right is the standard one and holds because of the aforemen-
tioned properties of pC and the fact that X(n) is bounded below. One thus
gets a canonical isomorphism

HomK(A)(C, X(n)) ∼−−→ H0(HomA(pC, A)⊗A X(n)) .

It is compatible with the inclusions X(n) ⊆ X(n + 1), so induces the isomor-
phism in the bottom row of the following diagram.

HomK(A)(C, hocolimn>0 X(n)) H0(HomA(pC, A)⊗A hocolimn>0 X(n))

colimn>0 HomK(A)(C, X(n)) colimn>0 H0(HomA(pC, A)⊗A X(n)) .

o

∼

o

∼

The isomorphism on the left holds by the compactness of C, while the one on
the right holds because H0(−) commutes with homotopy colimits. It remains
to note that hocolimn>0 X(n) = X in K(Inj A). �

A recollement. — The functors Kac(Inj A)
incl
−−→ K(Inj A)

q
−→ D(Mod A) in-

duce a recollement of triangulated categories

(1) Kac(Inj A) K(Inj A) D(Mod A) .incl

r

s

q

i

j
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The functor i is the one discussed above; it embeds D(Mod A) as the homotopy
category of K-injective complexes. The functor r thus has a simple description:
there is an exact triangle

(2) rX −→ X −→ iX −→ ,

where the morphism X → iX is the canonical one. Indeed, rX is evidently
acyclic, and if W is in Kac(Inj A), the induced map HomK(A)(W, rX) →
HomK(A)(W, X) is an isomorphism, for one has HomK(A)(W, iX) = 0.

The functor j : D(Mod A) → K(Inj A) is fully faithful. The image of j
equals the kernel of s and identifies with Loc(iA), the localizing subcategory
of K(Inj A) generated by the injective resolution of A; see [35, Theorem 4.2].
One may think of j as the injective version of taking projective resolutions; see
Lemma 2.5. To justify this claim takes preparation.

Lemma 2.2. — Restricted to the subcategory Loc(iA) of K(Inj A) there is a
natural isomorphism of functors r ∼−→ Σ−1si.

Proof. — Consider anew the exact triangle (2), but for X in Loc(iA):

rX −→ X −→ iX −→ ΣrX .

Apply s and remember that its kernel is Loc(iA). �

Projective algebras. — In the remainder of this section, we assume that the
ring A (which hitherto has been Noetherian on both sides) is also projective, as
a module, over some central subring R. For the moment, the only role R plays
is to allow for constructions of bimodule resolutions with good properties. Set
Aev := A⊗R Aop, the enveloping algebra of the R-algebra A, and set

E := iAevA .

This is an injective resolution of A as a (left) module over Aev. Since E is a
complex of A-bimodules, for any complex X of A-modules, the right action of
A on E induces a left A-action on HomA(E, X). The structure map A→ E of
bimodules induces a morphism of A-complexes

(3) HomA(E, X) −→ HomA(A, X) ∼= X for X ∈ K(Mod A).

The computation below will be used often:

Lemma 2.3. — The morphism in (3) is a quasi-isomorphism for X ∈ K(Inj A).

Proof. — By considering the mapping cone of A → E, the desired statement
reduces to: For any complex W ∈ K(Mod A) that is acyclic and satisfies W i = 0
for i � 0, one has HomK(A)(W, X) = 0. Without loss of generality we can

assume W i = 0 for i < 0. Then one gets the first equality below

HomK(A)(W, X) = HomK(A)(W, X>−1) = 0,

and the second one holds because X>−1 is K-injective. �
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354 S. B. IYENGAR & H. KRAUSE

Since A is projective as an R-module, Aev is projective as an A-module both
on the left and on the right. The latter condition implies, by adjunction, that
as a complex of left A-modules E consists of injectives. In particular, for any
projective A-module P , the A-complex E ⊗A P consists of injective modules.
Thus, one has an exact functor

E ⊗A − : K(Proj A) −→ K(Inj A) .

For each X in K(Inj A), one has isomorphisms

HomK(A)(E ⊗A pX, X) ∼= HomK(A)(pX, HomA(E, X))

∼= HomK(A)(pX, X) .

The second isomorphism is a consequence of Lemma 2.3 and the K-projectivity
of pX. Thus, corresponding to the morphism pX → X, there is natural
morphism

(4) π(X) : E ⊗A pX −→ X

of complexes of A-modules.

Lemma 2.4. — The morphism π(X) in (4) is a quasi-isomorphism for each X.

Proof. — Let η : A → E and ε : pX → X denote the structure maps. These
fit in the commutative diagram

A⊗A pX pX

E ⊗A pX X .

η⊗ApX

∼

ε

π(X)

The map η ⊗A pX is a quasi-isomorphism as η is one and pX is K-projective.
Thus, π(X) is a quasi-isomorphism. �

The stabilization functor. — The functor s : K(Inj A) → Kac(Inj A) from (1)
admits the following description in terms of its kernel, which uses the natural
transformation π : E ⊗A p(−)→ id of functors on K(Inj A) from (4).

Lemma 2.5. — Each object X in K(Inj A) fits into an exact triangle

E ⊗A pX
π(X)
−−−−→ X −→ sX −→ ,

and this yields a natural isomorphism E ⊗A pX ∼−→ jX.

Proof. — Since π(X) is a quasi-isomorphism, by Lemma 2.4, the complex sX
is acyclic. In K(Proj A), the complex pX is in Loc(A), and hence in K(Inj A),
the complex E⊗A pX is in Loc(E). It remains to observe that if W ∈ K(Inj A)
is acyclic, then HomK(A)(E, W ) = 0 by Lemma 2.3. �
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3. The Nakayama functor and its completion

The Nakayama functor is a standard tool in representation theory of Artin
algebras. For instance, the functor interchanges projective and injective mod-
ules, thereby providing an efficient method to compute the Auslander–Reiten
translate of a finitely generated module [21]. In this section, we discuss the
extension of the Nakayama functor from modules to the homotopy category of
injectives.

Throughout the rest of this work, we say that a ring A is a finite R-algebra
if

(1) R is a commutative Noetherian ring;
(2) A is an R-algebra, that is to say, there is a map of rings R → A whose

image is in the center of A;
(3) A is finitely generated as an R-module.

These conditions imply that A is a Noetherian ring, finitely generated as a
module over its center, which is thus also Noetherian. Hence, A is a finite
algebra over its center. When A is a finite R-algebra, so is the opposite ring Aop.

Let A be a finite R-algebra. Following Buchweitz [13, §7.6], which in turn
is inspired by the terminology in commutative algebra, we call the A-bimodule

ωA/R := HomR(A, R)

the dualizing bimodule of the R-algebra A. It is finitely generated as an A-
module, on either side. Extending the terminology from the context of finite
dimensional algebras over fields we call

(5) NA/R := HomA(ωA/R,−) : Mod A −→ Mod A

the Nakayama functor of the R-algebra A. Sometimes, this name is used
for the functor ωA/R ⊗A −, which is left adjoint to NA/R, but in this work,
the one above plays a more central role, hence our choice of nomenclature.
When the algebra in question is clear, we drop the “A/R" from subscripts,
to write ω and N. In our applications, A will be projective as an R-module.
Then the left adjoint of NA/R is a Nakayama functor relative to the restriction
Mod A→ Mod R in the sense of Kvamme [37].

The Nakayama functor can be extended to D(Mod A), yielding the derived
Nakayama functor

RHomA(ω,−) : D(Mod A) −→ D(Mod A) .

This functor and its left adjoint has been considered by several authors; see
[27]. Here, we study the extension to K(Inj A), following [35, §6].

The Nakayama functor is evidently additive and, therefore, admits an exten-
sion to K(Inj A) as follows. Extend N to K(Mod A), by applying it term-wise;
denote this functor also N. Brown representability yields a left adjoint to the
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356 S. B. IYENGAR & H. KRAUSE

inclusion K(Inj A) ↪→ K(Mod A), say λ. Set

(6) N̂A/R : K(Inj A) −→ K(Inj A)

to be the composite of functors

K(Inj A) ↪→ K(Mod A)
N
−−→ K(Mod A)

λ
−−→ K(Inj A) .

Our notation is motivated by the fact that K(Inj A) can be viewed as a com-
pletion of Db(mod A), as is explained in [35, §2]. The next result is an-
other reason for this choice. Here, K+(Inj A) denotes the full subcategory
of K(Inj A) consisting of complexes W that are bounded below. Note that
K+(Inj A) ∼−→ D+(Mod A).

Lemma 3.1. — On the subcategory K+(Inj A), there is an isomorphism of
functors

N̂A/R
∼−→ i HomA(ωA/R,−) .

making the following diagram commutative:

Mod A D+(Mod A) K(Inj A)

Mod A D(Mod A) K(Inj A) .

N

incl

RHomA(ω,−)

i

N̂

incl i

The functor N̂A/R : K(Inj A) → K(Inj A) preserves arbitrary direct sums and
on compact objects N̂ identifies with the functor

RHomA(ωA/R,−) : Db(mod A) −→ D(Mod A) .

In general, the above square on the right will not be commutative, if one
replaces D+(Mod A) by D(Mod A); compare Theorem 5.1. We examine these
functors in greater detail in the next section.

Proof. — Fix X ∈ K+(Mod A). The key observation is the following.

Claim. — λX ∼−→ iX, the K-injective resolution of X.
Indeed, since X is bounded below one can assume that so is iX, and hence

also the mapping cone, say Z, of the morphism X → iX. Since Z is also acyclic,
arguing as in the proof of Lemma 2.3 one gets that HomK(A)(Z, Y ) = 0, for
any Y ∈ K(Inj A). Thus, the morphism X → iX induces an isomorphism

HomK(A)(iX, Y ) ∼−→ HomK(A)(X, Y ) ,

and this justifies the claim.

When X is bounded below, so is HomA(ω, X). Thus, the claim above yields

N̂(X) = λ HomA(ω, X) ∼= i HomA(ω, X) .
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Now fix X ∈ D+(Mod A). Again, one can assume iX is also bounded below,
and, therefore,

N̂(iX) = λ HomA(ω, iX) ∼= i HomA(ω, iX) = i RHomA(ω, X) .

This yields the commutativity of the right-hand square.
For the second part of the lemma, it remains to note that the functor N

preserves direct sums, as the A-module ω is finitely generated, and λ preserves
direct sums, as it is a left adjoint. �

4. Gorenstein algebras and their derived categories

In this section, we introduce Gorenstein algebras and characterize them in
terms of the derived Nakayama functor. This generalizes a well-known fact
for Artin algebras. In that case, the algebra is Gorenstein if and only if the
dualizing module is a tilting module, so that the derived Nakayama functor is
an equivalence.

Commutative Gorenstein rings. — A commutative Noetherian ring R is Goren-
stein if for each prime (equivalently, maximal) ideal p, the local ring Rp has
finite injective dimension as a module over itself [4]. When the Krull dimen-
sion of R is finite, this condition is equivalent to R itself having finite injective
dimension; see [4, Theorem, §1] for details.

Gorenstein algebras. — We say that a ring A is a Gorenstein R-algebra if

(1) A is a finite R-algebra;
(2) A is projective as an R-module;
(3) Ap is Iwanaga–Gorenstein for each p ∈ Spec R with Ap 6= 0.

Condition (3) means Ap has finite injective dimension as a module over itself,
on the left and on the right; then the injective dimensions coincide; see [45,
Lemma A].

The following lemma provides a comparison between A and R with respect
to the Gorenstein property.

Lemma 4.1. — Let A be a Gorenstein R-algebra and p ∈ Spec R. Then the
ring Rp is Gorenstein whenever Ap 6= 0.

Proof. — As the R-module A is projective so is the Rp-module Ap, and hence
for each finitely generated Rp-module M one has the isomorphism below

Exti
Rp

(M, Rp)⊗Rp
Ap
∼= Exti

Ap
(M ⊗Rp

Ap, Ap) = 0 for i� 0.

The equality on the right holds because the injective dimension of Ap is finite.

We deduce from the computation above that Exti
Rp

(M, Rp) = 0 for i � 0,

since Ap 6= 0. Hence, Rp is Gorenstein; see [12, Proposition 3.1.14]. �
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Let A be a finite R-algebra that is projective as an R-module. Then R
admits a decomposition R′×R′′ such that Ap 6= 0 for all p ∈ Spec R′, and A is
finitely generated over R′. Thus, one may assume that A is faithful as an R-
module, and then the Gorenstein property for A implies that R is Gorenstein;
see [22] for details.

The preceding result also has a converse, but this plays no role in the sequel,
so we discuss this at the end of this section; see Theorem 4.6. The Gorenstein
condition is reflected also in the dualizing bimodule of the R-algebra A. To
discuss this, we recall some aspects of perfect complexes over finite algebras.

Let A be a finite R-algebra and M a complex of A-modules. Recall that
M is perfect if it is isomorphic in D(Mod A) to a bounded complex of finitely
generated projective A-modules; equivalently, M is compact, as an object in
the triangulated category D(Mod A); equivalently, M is in Thick(A); see [40,
Theorem 2.2].

The following criterion for detecting perfect complexes will be handy.

Lemma 4.2. — Let A be a finite R-algebra. For M ∈ Db(mod A), the following
conditions are equivalent.

(1) M is perfect in D(Mod A);
(2) Mm is perfect in D(Mod Am) for each maximal ideal m in R;
(3) TorA

i (L, M) = 0 for each L ∈ mod Aop and i� 0.

Proof. — The equivalence of (1) and (2) is due to Bass [5, Proposition III.6.6].
Evidently, (1) implies (3), and the reverse implication can be verified by an
argument akin to that for [2, Theorem A.1.2]. �

Remark 4.3. — We say that a complex M of A-bimodules is perfect on both
sides, if it is perfect both in D(Mod A) and in D(Mod Aop); said otherwise,
the restriction of M along either map A → Aev ← Aop is perfect, in the
corresponding category.

We note also that when M is a complex of A-bimodules, RHomA(M, A) has
a left A-action induced by the right A-action on M , and a right action induced
by the right A-action on A. In our context A is a projective R-module, so
one can realize RHomA(M, A) as a complex of bimodules, namely, the complex
HomA(M, iAevA).

Lemma 4.4. — Let A be a finite R-algebra and M a complex of A-bimodules
that is perfect on both sides. The following statements hold:

(1) There exists a quasi-isomorphism P → M of A-bimodules where P is
bounded, consisting of finitely generated A-bimodules that are projective
on both sides.

(2) When A is a Gorenstein R-algebra, RHomA(M, A) is perfect on both
sides.
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Proof. — (1) The hypothesis on M implies that the Aev-module H∗(M) is
finitely generated. There thus exists a projective Aev-resolution, say Q → M
with each Qi finitely generated and 0 for i� 0. Fix an integer

i ≥ max{proj dimA M, proj dimAop M} .

The morphism Q→M factors through the quotient complex

P := 0 −→ Coker(dQ
i+1) −→ Qi −→ Qi−1 −→ · · ·

Since A-modules Qi are projective on both sides, it follows by the choice of i

that so is the A-module Coker(dQ
i+1). Thus, P is the complex we seek.

(2) That RHomA(M, A) is perfect on the right is clear; for example, it is
equivalent to HomA(P, A) with P as above; this does not involve the Gorenstein
property.

As for the perfection on the left, by Lemma 4.2 it suffices to check the
perfection locally on Spec R. Thus, we can assume that the injective dimension
of A is finite. For any finitely generated Aop-module L, one has a natural
isomorphism

L⊗L
A RHomA(M, A) ∼−−→ RHomA(RHomAop(L, M), A) .

Since M is perfect over Aop, and A has finite injective dimension (on the right),
so does M , and, hence, H∗(RHomAop(L, M)) is bounded. Then the finiteness
of the injective dimension of A on the left implies that

H∗(RHomA(RHomAop(L, M), A))

is bounded. It thus follows from the quasi-isomorphism above that

TorA
i (L, RHomA(M, A)) = 0 for |i| � 0.

This implies RHomA(M, A) is perfect on the left; see Lemma 4.2. �

An equivalence of categories. — Let A be a Gorenstein R-algebra, ωA/R its
dualizing module, and NA/R the Nakayama functor; see (5). As for finite
dimensional algebras [28] the derived functor of the Nakayama functor is an
auto-equivalence of the bounded derived category. In other words, ωA/R is a
tilting complex for A.

Theorem 4.5. — Let A be a Gorenstein R-algebra. The A-bimodule ωA/R is
perfect on both sides and induces adjoint equivalences of triangulated categories

D(Mod A) D(Mod A) .
ωA/R⊗L

A−

RHomA(ωA/R,−)

∼

Moreover, these restrict to adjoint equivalences on Db(mod A).
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Proof. — The argument becomes a bit more transparent once we consider the
ring E := EndA(ω), and its natural left action on ω that is compatible with
the left A-module structure. We first verify the following properties of ω:

(1) The natural maps A → Eop and A → EndE(ω) of rings are isomor-
phisms.

(2) Exti
A(ω, ω) = 0 = Exti

E(ω, ω) for i ≥ 1.
(3) ω is compact both in D(Mod A) and in D(Mod E).

The first map in (1) is

A −→ EndA(ω)
op

where a 7→ (w 7→ wa) .

A routine computation reveals that this is, indeed, a map of rings. Its bijectivity
follows from the computation:

RHomA(ω, ω) ∼= RHomR(HomR(A, R), R)

∼= HomR(HomR(A, R), R)
∼= A ,

where the first isomorphism is an adjunction, and the others hold because the
R-module A is finite and projective. The computation above also establishes
that Exti

A(ω, ω) = 0 for i ≥ 1. This justifies the first parts of the (1) and (2).
Given that A ∼−→ Eop, applying the already established part of the result to
Aop completes the argument for (1) and (2).

It remains to verify (3), and again, given that E ∼= Aop as rings, it suffices to
check that ω is perfect in D(Mod A). Since the A-module ω is finitely generated
it suffices to prove that it has finite projective dimension as an A-module. By
Lemma 4.2 it suffices to verify that the Ap-module Mp has finite projective
dimension for each p ∈ Spec R. Since

HomRp
(Ap, Rp) ∼= HomR(A, R)p

as Ap-bimodules, and Ap is a Gorenstein Rp-algebra, replacing R and A by
their localizations at p we can assume that (R,m, k) is a local ring and A is
a Gorenstein R-algebra of finite injective dimension; the desired conclusion is
that the projective dimension of HomR(A, R) is finite. At this point, one can
invoke [13, Proposition 7.6.3(ii)] to complete the proof. The proof of op. cit.
uses the theory of Cohen–Macaulay approximations. Here is a direct argument:

Since R is Gorenstein, by Lemma 4.1, and local, it has finite injective di-
mension; choose a finite injective resolution R → iR. Choose also a finite
injective resolution A→ iA. Then HomR(iA, iR) is a bounded complex of flat
A-modules, quasi-isomorphic to HomR(A, R); thus the A-module HomR(A, R)
has finite flat dimension. Since it is also finitely generated, it follows that its
projective dimension is finite; see Lemma 4.2.

This completes the proofs of assertions (1)–(3).
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Next we verify the stated equivalence of (the full derived) categories. This
is a standard argument, given the properties of ω. Here is a sketch. To begin
with, given the isomorphism A ∼= Eop of rings, the stated adjunction can be
factored as

D(Mod A) D(Mod Eop) D(Mod A) .
RHomA(ω,−)

−⊗L
Eω

∼

It thus suffices to verify that the adjoint pair on the left are quasi-inverses
to each other, that is to say that their counit and unit of the adjunction are
isomorphisms. The counit is the evaluation map

ε(M) : RHomA(ω, M)⊗L
E ω −→M for M in D(Mod A).

The map above is an isomorphism, for it factors as the composition of isomor-
phisms

RHomA(ω, M)⊗L
E ω ∼−−→ RHomA(RHomE(ω, ω), M)

∼−−→ RHomA(A, M)
∼−−→M ,

where the first map is standard and is a quasi-isomorphism because ω is com-
pact in D(Mod E), by (3) above, and the second map is induced by the natural
map A→ RHomE(ω, ω) that is a quasi-isomorphism because of properties (1)
and (2). Similarly, the unit map

N −→ RHomA(ω, N ⊗L
E ω)

is a quasi-isomorphism, for all N in D(Mod A), for it factors as the composition

N ∼−−→ N ⊗E RHomA(ω, ω) ∼−−→ RHomA(ω, N ⊗E ω) ,

where the first map is induced by the isomorphism E ∼−→ RHomA(ω, ω), and
the second one is standard and is an isomorphism because ω is perfect in
D(Mod A).

This completes the proof that the stated adjoint pair of functors induce an
equivalence on D(Mod A). It remains to note that for each M in Db(mod A),
the A-complex RHomA(ω, M) and ω⊗L

A M are in Db(mod A) as well, because
ω is compact on both sides. Thus, they restrict to adjoint equivalences on
Db(mod A). �

We can now offer converses to Lemma 4.1; see Goto [23] for a similar state-
ment in commutative algebra. Regarding condition (3), it is noteworthy that
the injective dimension of A need not be finite; so there need not be a global
bound (independent of M) on the degree i beyond which Exti

A(M, A) is zero.
Indeed, there exist even commutative Gorenstein rings R that exhibit this phe-
nomenon; see [39, A1].
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Theorem 4.6. — Let R be a commutative Noetherian Gorenstein ring, and A
a finite, projective, R-algebra. The following conditions are equivalent.

(1) The R-algebra A is Gorenstein.
(2) The A-bimodule ωA/R is perfect on both sides.
(3) For each M ∈ mod A and N ∈ mod Aop, we have Exti

A(M, A) = 0 for
i� 0 and Exti

Aop(N, A) = 0 for i� 0.
(4) The functors RHomA(−, A) and RHomAop(−, A) induce triangle equiv-

alences

Db(mod A)
op

Db(mod Aop) .
RHomA(−,A)

RHomAop (−,A)

∼

Proof. — The proof that (1)⇒(2) is contained in Lemma 4.1 and Theorem 4.5.
(2)⇒(1) The hypotheses are local with respect to primes in Spec R, as is the

conclusion, by definition. We may thus assume that R is local and, hence, of
finite injective dimension. Then, since A is a projective R-module, it follows
from adjunction that the A-module ω = HomR(A, R) has finite injective di-
mension on both sides. For the same reason, one gets that the following natural
map is a quasi-isomorphism

A −→ RHomAop(ω, ω) ;

see the proof of Theorem 4.5. As ω is perfect on the right, it is in Thick(A) in
D(Mod Aop), and the quasi-isomorphism above implies that A is in Thick(ω) in
D(Mod A). In particular, since the injective dimension of ω as a left A-module
is finite, so is that of A. Similarly, we deduce that the injective dimension of
A is finite also on the right.

(1)⇒(3) Suppose A is a Gorenstein R-algebra and fix an M in mod A. Since

A is in Thick(ω) in Db(mod A), it suffices to verify that Exti
A(M, ω) for i� 0.

Adjunction yields

Exti
A(M, ω) = Exti

A(M, HomR(A, R)) ∼= Exti
R(M, R) .

As R is Gorenstein, by Lemma 4.1, the problem reduces to the commutative
case, where the result is due to Goto [23, Theorem 1]. The same argument
gives the result for N in mod Aop.

(3)⇒(1) For each prime p in Spec R and M in mod A, we have an isomor-
phism

Exti
A(M, A)p ∼= Exti

Ap
(Mp, Ap) (i ≥ 0) .

If this vanishes for each M and i � 0, then Ap has finite injective dimension
as a left Ap-module. Analogously, Ap has finite injective dimension as a right
Ap-module. Thus, A is Gorenstein.

(1)⇒(4) For each M ∈ Db(mod A), the Aop-complex RHomA(M, A) belongs
to Db(mod Aop), by the already verified implication (1)⇒(3), so it remains to
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verify that the natural biduality morphism

M −→ RHomA(RHomA(M, A), A)

is an isomorphism. Since RHomA(M, A) is in Db(mod Aop) this can be checked
locally on Spec R, where it holds for the injective dimension of A is locally finite.
The same argument gives the result for N in Db(mod Aop).

(4)⇒(3) Clear. �

Remark 4.7. — The argument in the proof of Theorem 4.6 raises the question:
When A is a Gorenstein R-algebra, is ωA/R generated by A in Db(mod Aev),
that is to say, is it in ThickAev(A)? By standard arguments, this question is
equivalent to: Is

RHomR(A⊗L
Aev A, R) ∼−→ RHomAev(A, ωA/R)

perfect as a dg module over E := RHomAev(A, A), the (derived) Hochschild
cohomology algebra? When this condition holds, it would follow from the
isomorphism above that if HHi(A/R) = 0 for i � 0, then also HHi(A/R) = 0
for i� 0.

This turns out not to be the case when A is finite dimensional and self-
injective over a field: Let k be a field, q ∈ k an element that is nonzero and
not a root of unity, and set

Λ :=
k〈x, y〉

(x2, xy + qyx, y2)
.

Then Buchweitz, Madsen, Green, and Solberg prove that rankk HH∗(A/k) = 5,
whereas HHi(A/k) is nonzero for each i ≥ 0 [14].

On the other hand, the question has, trivially, a positive answer when A
is a symmetric R-algebra, that is to say, when ωA/R

∼= A as an A-bimodule.
So this begs the question: If ωA/R is in ThickAev(A), is then A a symmetric
R-algebra?

5. Gorenstein algebras and their homotopy categories

Let A be a Gorenstein R-algebra. We study in this case the properties of
the Nakayama functor for the homotopy category of injectives K(Inj A).

The Nakayama functor. — As explained in Section 3, the Nakayama func-

tor admits a canonical extension to a functor N̂A/R : K(Inj A) → K(Inj A).
The following result discusses the compatibility of this functor with the rec-
ollement for K(Inj A) introduced in (1) and the equivalence on D(Mod A) in
Theorem 4.5.
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Theorem 5.1. — Let A be a Gorenstein R-algebra. The functor N̂A/R :
K(Inj A) → K(Inj A) is a triangle equivalence making the following square
commutative:

D(Mod A) K(Inj A)

D(Mod A) K(Inj A) .

RHomA(ω,−)

i

N̂

i

Moreover, N̂A/R restricts to an equivalence Kac(Inj A) ∼−→ Kac(Inj A).

The key step in the proof of the result is a “concrete" description of N̂; see
Lemma 5.2 below. To that end note that Lemma 4.4 applies to the dualizing
bimodule ωA/R; fix a complex P provided by that result and set ω̂A/R := P .
Thus,

ω̂A/R −→ ωA/R

is a finite resolution of ωA/R by finitely generated A-bimodules that are pro-
jective on either side. This implies, in particular, that when X is a complex
of injective A-modules, so is HomA(ω̂A/R, X); this follows from the standard
Hom-tensor adjunction and requires only that ω̂A/R consists of modules pro-
jective on the right. One thus has the induced exact functor

HomA(ω̂A/R,−) : K(Inj A)→ K(Inj A) .

Here is the vouched for description of the completion of the Nakayama functor.

Lemma 5.2. — The quasi-isomorphism ω̂A/R → ωA/R induces an isomorphism

N̂A/R
∼−→ HomA(ω̂A/R,−)

of functors on K(Inj A).

Proof. — For X ∈ K(Inj A), the morphism ω̂ → ω induces the morphism

HomA(ω, X) −→ HomA(ω̂, X)

of complexes of A-modules. Since HomA(ω̂, X) consists of injective modules,
one gets an induced morphism

N̂(X) = λ HomA(ω, X) −→ HomA(ω̂, X) .

This is the natural transformation in question. The functors N̂ and HomA(ω̂,−)
preserve arbitrary direct sums, the former by Lemma 3.1 and the latter because
ω̂ is a bounded complex of finitely generated modules, by choice. Thus, it suf-
fices to verify that the morphism above is an isomorphism when X is compact
in K(Inj A), that is to say, when it is of the form iM , for some M ∈ Db(mod A).
In this case, the morphism in question is the composite

N̂(iM) ∼−→ i HomA(ω, iM)→ HomA(ω̂, iM) ,
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where the isomorphism is taken from Lemma 3.1. The map above is a quasi-
isomorphism and its source and target are K-injective; the former by construc-
tion and the latter because ω̂ is a bounded complex of projectives. It remains
to observe that a quasi-isomorphism between K-injectives is an isomorphism in
K(Inj A). �

Proof of Theorem 5.1. — Given Lemma 5.2, a standard dévissage argument

shows that N̂ is a triangle equivalence: the functor preserves arbitrary direct
sums and identifies with RHomA(ω,−) when restricted to compacts, by Lem-
ma 3.1. It remains to note that RHomA(ω,−) is an equivalence on Db(mod A),
by Theorem 4.5.

For the commutativity of the square, fix a complex X ∈ D(Mod A). We
have already seen in Lemma 3.1 that

N̂(iX) ∼−→ i RHomA(ω, X) ,

when X is bounded below. An arbitrary complex in D(Mod A) is quasi-
isomorphic to a homotopy limit of complexes that are bounded below. Thus,
it remains to observe that both functors preserve homotopy limits.

It remains to verify that N̂ restricts to an equivalence between acyclic com-

plexes; equivalently that a complex X ∈ K(Inj A) is acyclic if and only if N̂(X)
is acyclic.

Since ω̂ is perfect on the left, N̂ preserves acyclic complexes. On the other
hand, since RHomA(ω, A) is in Thick(A) in Db(mod A) by Lemma 4.4, it fol-

lows that N̂(iA) is in Thick(iA). Using the isomorphism

Hn(X) ∼= HomK(iA, ΣnX) ∼= HomK(N̂(iA), ΣnN̂(X))

it follows that when N̂(X) is acyclic so is X. �

Remark 5.3. — One may turn Db(mod A) into a dg category such that

K(Inj A) identifies with its derived category; see [35, Appendix A]. Then N̂A/R

identifies with the lift of the Nakayama functor Db(mod A)→ Db(mod A).

Remark 5.4. — If X is a complex of projective A-modules, then so is the
A-complex ω̂A/R⊗A X; this is because ω̂ consists of modules projective on the
left. Thus, one gets an exact functor

ω̂A/R ⊗A − : K(Proj A) −→ K(Proj A) .

Arguing as in the proof of Theorem 5.1 one can verify that this is also an
equivalence of categories.

Since the Nakayama functor N̂A/R is an equivalence, it has a quasi-inverse.
This is described below.
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A quasi-inverse. — Set V := HomA(ω̂A/R, A); this is a bounded complex of
A-bimodules where the left action is through the right A-module structure on
ω̂A/R and the right action is through the right A-module structure of A.

Proposition 5.5. — The assignment X 7→ HomA(V, X) induces an exact
functor

HomA(V,−) : K(Inj A) −→ K(Inj A) .

This functor is a quasi-inverse of N̂A/R, and so an equivalence of categories.

Proof. — The complex ω̂ consists of modules projective on the left, and the
right A-action on V = HomA(ω̂, A) is through A, so V consists of modules that
are projective on the right. Given this it is easy to verify that HomA(V,−)
maps complexes of injectives to complexes of injectives and so induces an exact
functor on K(Inj A). For X ∈ K(Inj A), the natural morphism of complexes

V ⊗A X = HomA(ω̂, A)⊗A X −→ HomA(ω̂, X)

is an isomorphism because the complex ω̂ is a bounded complex of modules
projective on the left. This justifies the second isomorphism below:

HomK(A)(X, HomA(V, HomA(ω̂, X)))∼= HomK(A)(V ⊗A X, HomA(ω̂, X))

∼= HomK(A)(HomA(ω̂, X), HomA(ω̂, X)) .

The first one is adjunction. Thus, the identity on HomA(ω̂, X) induces a mor-
phism

η(X) : X −→ HomA(V, HomA(ω̂, X)) ,

which is natural in X. As functors of X, both the source and the target of η are
exact and preserves direct sums; thus, to verify that η(X) is an isomorphism
for each X it suffices to verify that this is so for compact objects in K(Inj A),
that is to say, for the induced natural transformation on Db(mod A). This is
the map

M 7→ RHomA(RHomA(ω, A), RHomA(ω, M)) .

Since ω and RHomA(ω, A) are perfect as complexes of left A-modules, by The-
orem 4.5 and Lemma 4.4, respectively, the map above can be obtained by
applying (−)⊗L

A M to the natural homothety morphism

A −→ RHomA(RHomA(ω, A), RHomA(ω, A)) .

Observe this a morphism in Db(mod Aev). It remains to note that the map
above is a quasi-isomorphism by, for example, Theorem 4.5. �
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Acyclicity versus total acyclicity. — Set E := iAevA, the injective resolution of
A as an A-bimodule, and consider adjoint functors

K(Proj A) K(FlatA) K(Inj A) ,
f

E⊗A−

HomA(E,−)

where f is the right adjoint to the inclusion. It exists because K(Proj A) is
a compactly generated triangulated category, and its inclusion in K(FlatA) is
compatible with coproducts; see [32, Proposition 2.4]. One thus gets an adjoint
pair

K(Proj A) K(Inj A) ,
t

h

where t := E ⊗A − and h := f ◦HomA(E,−).
Let A be an additive category. A complex X ∈ K(A) is called totally

acyclic if Hom(W, X) and Hom(X, W ) are acyclic complexes of abelian groups
for all W ∈ A. We denote by Ktac(A) the full subcategory of totally acyclic
complexes.

Theorem 5.6. — Let A be a Gorenstein R-algebra. The adjoint functors (t, h)
above are equivalences of categories, and they restrict to equivalences

Kac(Proj A) Kac(Inj A) .
t

h

∼

Moreover, there are equalities

Ktac(Proj A) = Kac(Proj A) and Ktac(Inj A) = Kac(Inj A) .

Proof. — It is clear that the functor t preserves direct sums. It also preserves
compact objects, as we now explain. We may assume that a compact object in
K(Proj A) is of the form HomA(pM, A) for some M ∈ mod Aop. This yields a
complex

E ⊗A HomAop(pM, A) ∼= HomAop(pM, E) ,

which is compact in K(Inj A) because it is bounded below with

Hi HomAop(pM, E) ∼= Exti
Aop(M, A) = 0

, for i � 0, by Theorem 4.6. In fact, the functor t restricted to compacts
identifies with

RHomAop(−, A) : Db(mod Aop) −→ Db(mod A)
op

,

and this is an equivalence, again by Theorem 4.6. Thus, t is an equivalence of
categories. Moreover, since h is its adjoint, the latter is the quasi-inverse to t.

For X ∈ K(Proj A), the equivalence of categories and Lemma 2.3 yield

Hn(X) = HomK(A)(A, ΣnX) ∼= HomK(A)(E, ΣntX) = Hn(tX) ,
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for each integer n. Thus, X is in Kac(Proj A) if and only tX is in Kac(Inj A).
Therefore, (t, h) induce an equivalence on the subcategory of acyclic complexes.

The key to verifying the remaining assertions is the following.

Claim. — Inj A ⊂ Loc(E), in K(Inj A).
Indeed, given the already established equivalence, it suffices to verify that

hI is in Loc(A) for any injective A-module I, since h identifies E with A. As
E is a complex of injective modules that are bounded below, HomA(E, I) is a
complex of flat modules that are bounded above, and it is quasi-isomorphic to
I, by Lemma 2.3. Therefore, hI = f HomA(E, I) is a projective resolution of
I; see [32, Theorem 2.7(2)]. Thus, hI is in Loc(A), as desired.

Fix Y ∈ Kac(Inj A). Then HomK(A)(E, ΣnY ) = 0 for each integer n, so the
claim yields HomK(A)(I, ΣnY ) = 0, for I ∈ Inj A and integers n, that is to say,
Y is totally acyclic. Thus, any acyclic complex of injective modules is totally
acyclic.

Fix an acyclic complex X in K(Proj A). We want to verify that X is totally
acyclic, that is to say, HomK(A)(X,−) = 0 on Add A. Since t is an equivalence
of categories, it suffices to verify that HomK(A)(tX,−) = 0 on Add tA, that
is to say, on Add E. However, tX is also acyclic, by the already established
part of the result, and any complex in Add E is bounded below, and hence
K-injective. This implies the desired result. �

6. Gorenstein projective modules

Let A be a Gorenstein R-algebra. An A-module M is Gorenstein projective
(abbreviated to G-projective) if M is a syzygy in a totally acyclic complex of
projective modules, that is, M ∼= Coker(d−1

X ), for some X in Ktac(Proj A).
Given Theorem 5.6, one can “totally" drop from the definition. We write
GProj A for the full subcategory of Mod A consisting of G-projectives, and
Gproj A for GProj A ∩mod A.

Starting from Theorem 5.6, and also the results below, one can develop the
theory of G-projective modules along the lines in [13], but we shall be content
with recording a few observations needed to prove the duality theorems in
Section 9. All these are well known when A is Iwanaga–Gorenstein.

Lemma 6.1. — Let M be a G-projective A-module. The following statements
hold.

(1) Mp is G-projective as an Ap-module for p ∈ Spec R.
(2) TorA

i (ωA/R, M) = 0 = Exti
A(ωA/R, M) for i ≥ 1.

Proof. — Evidently, the localization of an acyclic complex is acyclic, so (1)
follows.
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(2) Since an A-module is zero if it is zero locally on Spec R, given (1) and
the finite generation of ω, we can reduce the verification of (2) to the case when
R is local and so assume that the injective dimension of A is finite. Let I be
the injective hull of the residue field of R and set J := HomR(ω, I).

Claim. — The A-module J is a faithful injective and has finite projective di-
mension.

Indeed, as I is a faithful injective R-module, it follows by adjunction that
the A-module J is faithful and injective. Since R is a Gorenstein local ring
it has finite injective dimension, so I has finite projective dimension; that is
to say, I is in Thick(Add R) in D(Mod R). Since ω is a finite projective R-
module HomR(ω,−) is an exact functor on D(Mod A), so we deduce that J is in
Thick(Add HomR(ω, R)) in D(Mod A). Finally, observe that A ∼= HomR(ω, R)
as A-modules.

The claim and the hypothesis that M is G-projective justify the equality
below:

HomR(TorA
i (ω, M), I) ∼= Exti

A(M, J) = 0 for i ≥ 1;

see also (7). The isomorphism is a standard adjunction. Since I is a faithful

injective, it follows that TorA
i (ω, M) = 0 as desired.

A similar argument settles the claim about the vanishing of Ext-modules. �

When M is G-projective and X ∈ Kac(Proj A) is as above, the truncation
X>0 is a projective resolution of M , and the total acyclicity of X implies

(7) Exti
A(M, P ) = 0 for each projective module P and i ≥ 1.

Here is a partial converse.

Lemma 6.2. — A finitely generated A-module M satisfying Exti
A(M, A) = 0,

for i ≥ 1, is G-projective. Moreover, such a module is a syzygy in an acyclic
complex of finitely generated projective A-modules.

Proof. — It suffices to verify that Exti
Aop(M∗, A) = 0, for i ≥ 1, and that

the biduality map M → M∗∗ is bijective; given these, it is straightforward
to construct an acyclic complex with M as a syzygy. What is more, using
resolutions of M and M∗ by finitely generated projective modules, one can get
an acyclic complex consisting of finitely generated projective modules. Since
M is finitely generated, and A is a finite R-algebra, both the conditions in
question can be checked locally on Spec R. We may thus assume that A is
Iwananga–Gorenstein, in which case, the desired result is contained in [13,
Lemma 4.2.2(iii)]. �

With exact structure inherited from Mod A, the category GProj A is Frobe-
nius, with projective objects Proj A. Thus, the associated stable category,
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GProjA, is triangulated. It is also compactly generated, with compact ob-
jects GprojA; see, for example, [10, Proposition 2.10]. By the very definition,
G-projectives are related to acyclic complexes of projectives. To clarify this
connection, we recall from [32, §7.6] that there is an adjoint pair

Kac(Proj A) K(Proj A) ,
a

where the left adjoint is the inclusion. The next result is well known and can
be readily proved by adapting the argument for [13, Theorem 4.4.1].

Proposition 6.3. — The composition of functors a◦p : Mod A→ Kac(Proj A)
induces a triangle equivalence

ap : GProjA ∼−−→ Kac(Proj A) ,

with the quasi-inverse defined by the assignment X 7→ Coker(d−1
X ). �

The singularity category. — Let Dsg(A) be the singularity category of A in-
troduced by Buchweitz [13] as the stable derived category. It is Db(mod A)
modulo the perfect complexes. Any perfect complex is in the kernel of the
functor

si : Db(mod A)→ Kac(Inj A)
c

,

where the functors s and i are from (1). Hence, there is an induced exact
functor

Dsg(A)→ Kac(Inj A)
c

,

which we also denote si. On the other hand, the embedding Gproj A ↪→
Db(mod A) induces an exact functor

g : GprojA −→ Dsg(A) .

The result below was proved by Buchweitz [13, Theorem 4.4.1] when A is an
Iwanaga–Gorenstein ring.

Theorem 6.4. — Let A be a Gorenstein R-algebra. The functors g and si are
equivalences, up to direct summands, of triangulated categories:

Gproj(A) Dsg(A) Kac(Inj A)
c

.∼
g

∼

si

Proof. — The assertion about si is by [35, Corollary 5.4].
Let M, N be finitely generated G-projective A-modules. As noted in (7), one

has Exti
A(M, A) = 0 for i ≥ 1. Arguing as in the proof of [42, Proposition 1.21]

one gets that g induces a bijection:

HomA(M, N)
∼=
−→ HomDsg

(gM, gN) .

Thus, g is fully faithful. It remains to prove that it is essentially surjective.
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Fix X in Dsg(A); we can assume that X is a bounded-above complex of
finitely generated projective A-modules. Suppose Hi(X) = 0, for all i < n.
Truncating at n yields a morphism X → σ≤nX, which is an isomorphism in
Dsg(A) since its cone is perfect. Thus, X is isomorphic to a suspension of

M := Coker(dn−1
X ) in Dsg(A). Since Exti

A(M, A), for i � 0 by Theorem 4.6,
some syzygy of M is G-projective by Lemma 6.2, and we conclude that g is
essentially surjective. �

A standard dévissage argument yields the following consequence.

Corollary 6.5. — The composition of functor s ◦ i : Mod A → K(Inj A) in-
duces a triangle equivalence

si : GProjA ∼−−→ Kac(Inj A) .

Proof. — The triangulated categories GProjA and Kac(Inj) are both com-
pactly generated, and the functor si preserves coproducts. For the compact
generation of Kac(Inj), see [35, Corollary 5.4], and si preserves coproducts
since s is a left adjoint. Thus, the assertion follows from the fact that si is a
triangle equivalence when restricted to the subcategories of compact objects;
see Theorem 6.4. �

The Nakayama functor. — Via the equivalences of categories established above
the auto-equivalence of Kac(Inj A) given by Nakayama functor induces an auto-
equivalence on GProjA and on the singularity category. This is made explicit
in the next two results. The functor GP(−) that appears in the statements is
the G-projective approximation whose existence is established in Theorem A.1.
When A is a Gorenstein R-algebra, it follows from Theorem 4.5 that functor
ωA/R takes perfect complexes to perfect complexes, and hence induces a functor

on the quotient Dsg(A); we also denote that functor ωA/R ⊗
L
A (−).

Proposition 6.6. — Let A be a Gorenstein R-algebra. One has the following
diagram of equivalences of categories

Gproj(A) Dsg(A) Kac(Inj A)
c

Gproj(A) Dsg(A) Kac(Inj A)
c

∼GP(ωA/R⊗A(−))

∼
g

∼

si

∼ωA/R⊗L
A(−) N̂

−1

A/R
∼

∼
g

∼

si

,

where the squares commute up to an isomorphism of functors.

Proof. — The equivalences in the rows are from Theorem 6.4. We already

know that N̂ is an equivalence, so one has only to verify the commutativity of
the diagram.

The commutativity of the square on the left is tantamount to: For each
G-projective A-module M there is a natural isomorphism between ω⊗L

A M and

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



372 S. B. IYENGAR & H. KRAUSE

GP(ω ⊗A M), viewed as objects in Dsg(A). As noted in Lemma 6.2, finitely
generated G-projective modules are syzygies in acyclic complexes of finitely
generated projective modules. Thus, the proof of Theorem A.1 yields an exact
sequence of A-modules

0 −→ P −→ GP(ω ⊗A M) −→ ω ⊗A M −→ 0 ,

with GP(ω ⊗A M) a G-projective and P a finitely generated projective. This
gives the isomorphism on the left

GP(ω ⊗A M) ∼−−→ ω ⊗A M ∼←−− ω ⊗L
A M

in Dsg(A). The one on the right is by Lemma 6.1(2), for the latter is tantamount
to the statement that the natural morphism of complexes ω⊗L

A M → (ω⊗A M)
is an isomorphism in D(Mod A), and so also in DsgA.

For X ∈ Db(mod A), from Lemma 3.1 and Theorem 4.5 one gets isomor-
phisms

N̂i(ω ⊗L
A X) ∼= N̂(ω ⊗L

A iX) ∼= RHomA(ω, ω ⊗L
A iX) ∼= iX .

Applying s to the composition and observing that N̂ commutes with s by
Theorem 5.1, yields the commutativity of the square on the right. �

The commutativity of the outer square in Proposition 6.6 lifts to the corre-
sponding “big" categories.

Proposition 6.7. — The functor GP(ωA/R ⊗A −) : GProjA→ GProjA is an
equivalence of triangulated categories, with quasi-inverse GP HomA(ωA/R,−).
Moreover, the diagram below commutes up to an isomorphism of functors:

GProjA Kac(Inj A)

GProjA Kac(Inj A) .

∼GPA(ωA/R⊗A−)

si
∼

N̂
−1

A/R
∼

si
∼

Proof. — The crucial observation is that the categories involved are compactly
generated, and all the functors involved commute with direct sums. Thus, the
desired result is a consequence of Proposition 6.6. �

7. Localization and torsion functors

As before, let A be a finite R-algebra. In what follows, we apply the theory
of local cohomology and localization from [7], with respect to the action of
the ring R on the homotopy category of injective A-modules. To that end we
recall some results concerning the structure of injective A-modules discovered
by Gabriel [20]; it extends the (by now well-known) theory for commutative
rings.
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To begin with, by the spectrum of A we mean the collection of two-sided
prime ideals of A, denoted Spec A. Since the map η : R → A is central and
finite, the induced map on spectra

Spec A −→ Spec R where q 7→ q ∩R for q ∈ Spec A,

is surjective onto Spec η(R), which is a closed subset of Spec R. Moreover,
the fibers of the map are discrete: if q′ ⊆ q are elements of Spec A such that
q′ ∩R = q ∩R, then q′ = q; see [20, Proposition V.11].

Torsion. — For each p in Spec R, there is a natural A-module structure of Mp

for which the canonical map M →Mp is A-linear.
A subset V ⊆ Spec R is specialization closed when it has the following prop-

erty: If p ⊆ p′ are prime ideals in R and p is in V , then p′ is in V ; equivalently,
that V contains the closure (in the Zariski) topology of its points. The follow-
ing specialization closed subsets play a central role: Given an ideal a ⊂ R, the
subset

V (a) := {p ∈ Spec R | p ⊇ a}

of Spec R, and given a prime p in Spec R, the subset

Z(p) := {p′ ∈ Spec R | p′ 6⊆ p} .

Observe that Z(p) equals Spec R \ Spec Rp.
Give a specialization closed subset V of Spec R, the V -torsion submodule of

an A-module M is defined by

ΓV M := Ker(M −→
∏

p6∈V

Mp) .

The assignment M 7→ ΓV M is an additive, left-exact, functor on Mod A. The
module M is called V -torsion if ΓV M = M .

It is easy to verify that when V := V (r) for an element r ∈ R, one has

ΓV (r)M = Ker(M −→Mr) ,

where Mr is the localization of M at the multiplicatively closed subset {rn}n>0,
and that when V := Z(p), for some p ∈ Spec R, one gets

ΓZ(p)M = Ker(M −→Mp) .

Injective modules. — Since A is Noetherian, Inj A, the full subcategory of
Mod A consisting of injective modules, is closed under arbitrary direct sums.
For a q in Spec A the injective hull of the A-module A/q decomposes into a finite
direct sum of copies of an indecomposable injective module, which we denote
by I(q). Since A is a finite R-algebra, the assignment q 7→ I(q) is a bijection
between Spec A and the isomorphism classes of indecomposable injective A-
modules, by [20, V.4]. Thus, each injective A-module is a direct sum of copies
of I(q), as q varies over Spec A.
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Lemma 7.1. — Let V ⊆ Spec R be specialization closed. For each injective
A-module I, the module ΓV I is a direct summand of I. Thus, for q in Spec A,
one has

ΓV I(q) =

{
I(q) when q ∩R ∈ V ,

0 otherwise.

Proof. — The functor ΓV provides a right adjoint for the inclusion of the lo-
calizing subcategory of A-modules that are V -torsion. This functor preserves
injectivity, since the localizing subcategory is stable under taking injective en-
velopes, by [20, Proposition V.12]. Thus, ΓV I is a direct summand of I for
every injective A-module I. In particular, we have ΓV I = I, or ΓV I = 0 when
I is indecomposable. �

Since ΓV is an additive functor, it induces a functor on the category of
A-complexes. For each complex X of injective A-modules set

LV X := Coker(ΓV X −→ X) .

Thus, one gets an exact sequence of A-complexes

0 −→ ΓV X −→ X −→ LV X −→ 0 .

By Lemma 7.1 the subcomplex ΓV X consists of injective A-modules so the
sequence above is degree-wise split exact, and hence induces in K(Inj A) an
exact triangle

(8) ΓV X −→ X −→ LV X −→ ΣΓV X .

The functor LV has an explicit description in a couple of cases.

Example 7.2. — Suppose V := V (r), for some r ∈ R. Then the map X → Xr

is surjective, by Lemma 7.1, so there is an exact sequence

0 −→ ΓV (r)X −→ X −→ Xr −→ 0

of A-complexes, and hence LV (r)X = Xr. By the same token, when V := Z(p)
for some prime p in Spec R, one gets an exact sequence

0 −→ ΓZ(p)X −→ X −→ Xp −→ 0

of A-complexes, so that LZ(p)X = Xp.

Localization and local cohomology. — The ring R acts on K(Mod A) and
hence on its subcategories discussed above, in the sense of [7]. We focus on
T = K(Inj A).

For any localizing subcategory C ⊆ T and object X ∈ T, we call an exact
triangle

ΓX −→ X −→ LX −→ ΣΓX
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a localization triangle provided that ΓX ∈ C and LX ∈ C⊥, where C⊥ ⊆ T

denotes the colocalizing subcategory consisting of objects Y such that
HomT(X, Y ) = 0, for all X ∈ C. If such a triangle exists for all objects
X ∈ T, then Γ yields a right adjoint for the inclusion C ↪→ T, and L yields a
left adjoint for the inclusion C⊥ ↪→ T.

Given a specialization closed subset V ⊆ Spec R, an object X in T is V -
torsion provided that HomT(C, X) is a V -torsion A-module for each compact
C ∈ T.

Lemma 7.3. — For a specialization closed subset V ⊆ Spec R, the triangle (8)
is the localization triangle associated to the localizing subcategory of V -torsion
objects in K(Inj A).

Proof. — Fix X ∈ K(Inj A). Then ΓV X is V -torsion by construction. More-
over, for every injective A-module I, it is easy to verify that

Hom(ΓV I, I/ΓV I) = 0 .

Thus, HomK(A)(X
′, LV X) = 0, for all V -torsion X ′ ∈ K(Inj A). �

Lemma 7.4. — For any p in Spec R and X in K(Inj A), we have LZ(p)X ∼= Xp.

Proof. — This follows from Example 7.2. �

For an object X in K(Inj A), we write Loc(X) for the smallest localizing
subcategory of K(Inj A) that contains X.

Lemma 7.5. — Let V ⊆ Spec R be specialization closed. For any X in K(Inj A),
the A-complexes ΓV X and LV X are in Loc(X).

Proof. — This follows from the local-to-global principle discussed in [8]. More
specifically, one combines [8, Theorem 3.1] with [44, Theorem 6.9]. �

Lemma 7.6. — Let V ⊆ Spec R be specialization closed. If an A-complex X of
injective A-modules is acyclic, then so are the complexes ΓV X and LV X.

Proof. — The subcategory Kac(Inj A) of K(Inj A) is localizing, hence when X
is acyclic, so are the complexes in Loc(X). It remains to recall Lemma 7.5. �

For an object X in K(Inj A) and p ∈ Spec R the local cohomology at p is

ΓpX := ΓV (p)(Xp) .

The following observation will be useful.

Lemma 7.7. — For any X in K(Inj A), the complex ΓpX is a subquotient of
X. In particular, if Xi = 0 for some i ∈ Z, then (ΓpX)i = 0 as well. �
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Remark 7.8. — The triangulated category Kac(Inj A) is compactly generated
and R-linear, so has its own localization functors for a specialization closed
subset V of Spec R. It follows from Lemma 7.6 that these are just restrictions
of the corresponding functors on K(Inj A).

The triangulated category D(Mod A) is also compactly generated and R-
linear. However, the embedding i : D(Mod A) → K(Inj A) is not compatible
with the localization functors; in other words, for a K-injective complex X,
the complex ΓV X need not be K-injective; see [16]. On the other hand, it is
easy to verify that these functors are compatible with the restriction functor
D(Mod A)→ D(Mod R).

Remark 7.9. — Fix a p in Spec R and consider the diagram of exact functors.

Kac(Inj A) K(Inj A)

Kac(Inj Ap) K(Inj Ap)

incl

(−)p

s

(−)p

incl

res

sp

res

It is clear that the two compositions of right adjoints, from the bottom left to
the top right, coincide. It follows that the composition of the corresponding
left adjoint functors are isomorphic: (sX)p ∼= sp(Xp) for X in K(Inj A).

Support. — Let T be K(Inj A) or Kac(Inj A). Specializing the definition from
[7] to our context, we introduce the support of an object X in T to be the subset

suppR X := {p ∈ Spec R | ΓpX 6= 0} .

It follows from Remark 7.8 that the support an object in Kac(Inj A) is the same
as its support when we view it as an object in K(Inj A).

The support of T is the subset of Spec R defined by

suppR T :=
⋃

X∈Tc

suppR X .

Here are some alternative characterizations of support for acyclic complexes.

Proposition 7.10. — Let A be a finite R-algebra, fix X ∈ Kac(Inj A) and p

in Spec R. The following conditions are equivalent:

(1) The prime p is not in suppR X.
(2) The complex ΓpX is contractible.
(3) The A-module Γp(Ωi(X)) is injective for each (equivalently, some) inte-

ger i.

Proof. — An acyclic complex of injective modules is zero in K(Inj A) if and
only if it is contractible, if and only if each, equivalently, one of its syzygy
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modules is injective. From this, we get that (1)⇔(2) and also that these con-
ditions are equivalent to Ωi(ΓpX) injective for each, equivalently, some, i. It
remains to note that since the functor Γp is left-exact and preserves acyclicity
of complexes in K(Inj A), one gets

Ωi(ΓpX) ∼= ΓpΩi(X) for each integer i.

This completes the proof. �

The following observation concerning generators for Kac(Inj A) is well known.

Lemma 7.11. — The compact objects in Kac(Inj A) are direct summands of
objects of the form sC, where C is a compact object in K(Inj A).

Proof. — The functor s is left adjoint to the inclusion Kac(Inj A) ⊂ K(Inj A),
so it is essentially surjective; it also preserves compactness for the inclusion
preserves direct sums. It follows that up to direct summands all compact
objects of Kac(Inj A) are in the image of s; see [40, Theorem 2.1]. �

A Noetherian ring A is regular if each M ∈ mod A has finite projective
dimension; equivalently, each M in Db(mod A) is perfect. We say that A is
singular to mean that it is not regular. When A is a finite R-algebra its regular
locus will mean the collection of primes p ∈ Spec R such that Ap is regular. Its
complement in Spec R is the singular locus.

Corollary 7.12. — The singular locus of A equals suppR Kac(Inj A).

Proof. — By Lemma 7.11 the support of Kac(Inj A) is the union of the supports
of s(iM), for M ∈ Db(mod A). For any p ∈ Spec R, one has isomorphisms

s(iM)p ∼= sp((iM)p) ∼= sp(i(Mp))

in K(Inj Ap), where the first one is by Remark 7.9, and the second one is
standard. Thus, s(iM)p ∼= 0 if and only if Mp is perfect in D(Mod Ap). Con-
sequently, if p is in the regular locus of A, then s(iM)p = 0, for each M in
Db(mod A), and hence p is not in the support of Kac(Inj A).

Conversely, if Ap is not regular, then there exists an M ∈ mod A such that
Mp is not perfect; one can choose M to be V (p)-torsion. Then Γps(iM) ∼=
s(iM)p is nonzero, so p is in the support of Kac(Inj A). �

8. Matlis duality and Gorenstein categories

This section is about avatars of Matlis duality in various homotopy cate-
gories we have been dealing with. To set the stage for the discussion, it helps
to consider a general, compactly generated, triangulated category T with the
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action of a commutative Noetherian ring R, in the sense of [7]. Fix an injective
R-module I. For each compact object C in T, the functor

X 7−→ HomR(HomT(C, X), I) ,

from T to Mod R, is homological and takes coproducts to products. The Brown
representability theorem implies that it is representable: There is an object,
say TI(C), in T and an isomorphism of functors

HomR(HomT(C,−), I) ∼= HomT(−, TI(C)) .

In this way, the assignment C × I 7→ TI(C) yields a functor

T : Tc × Inj R −→ T .

Borrowing terminology from [18] we call the functor TI(−) the Matlis lift of
I to T. In what follows, for p in Spec R, we write Tp(−) for TI(p)(−), where
I(p) is the injective hull of the R-module R/p.

Now, let A be a finite R-algebra as before. The description of the Matlis lifts
of injective R-modules to the R-linear category D(Mod A) is straightforward.

Proposition 8.1. — The Matlis lift to D(Mod A) of an injective R-module I
is given by the functor C 7→ RHomR(A, I)⊗L

A C.

Proof. — Given objects X ∈ D(Mod A) and a finitely generated projective
A-module P , there are natural isomorphisms

HomR(HomA(P, X), I) ∼= HomR(X, I)⊗A P

∼= HomA(X, HomR(A, I))⊗A P

∼= HomA(X, HomR(A, I)⊗A P ) .

It remains to observe that any compact object in D(Mod A) is isomorphic to
a bounded complex of finitely generated projective A-modules. �

The Matlis lifts of injective R-modules to the R-linear category K(Inj A) is
described in the next result, which is modeled on [36, Theorem 3.4]; the proof
we give is somewhat different.

Theorem 8.2. — Let A be a finite R-algebra. The Matlis lift to K(Inj A) of
an injective R-module I is given by

C 7−→ HomR(A, I)⊗A pC .
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Proof. — Fix objects C, X in K(Inj A) with C compact. The key input is
Lemma 2.1 that yields the first isomorphism below

HomR(HomK(A)(C, X), I) ∼= HomR(H0(HomA(pC, A)⊗A X), I)

∼= H0(HomR(HomA(pC, A)⊗A X, I))

∼= H0(HomA(X, HomR(HomA(pC, A), I))

∼= H0(HomA(X, HomR(A, I)⊗A pC))

∼= HomK(A)(X, HomR(A, I)⊗A pC) .

The second one holds because I is injective. The rest are standard. �

The next result describes Matlis lifts to Kac(Inj A), using the functors
from (1). In Lemma 7.11 we described the compact objects in that category.

Corollary 8.3. — For a compact object in Kac(Inj A) of the form sC, given
by a compact object C in K(Inj A), the Matlis lift of an injective R-module I
is the complex

TI(sC) ∼= r(TIC) ∼= r(HomR(A, I)⊗A pC) .

Proof. — For any acyclic complex X of injective R-modules, one has

HomK(A)(X, r(TI(C)) ∼= HomK(A)(X, TI(C))

∼= HomR(HomK(A)(C, X), I)

∼= HomR(HomK(A)(sC, X), I)

∼= HomK(A)(X, TI(sC)) .

This justifies the first isomorphism. For the second one, see Theorem 8.2. �

Remark 8.4. — There is a notion of purity for compactly generated triangu-
lated categories, analogous to the classical concept of purity for module cat-
egories; see Crawley-Boevey’s survey [17]. It follows from the construction
that any Matlis lift is a pure-injective object. In particular, we obtain from a
Matlis lift a pure-injective module when an acyclic complex is identified with
an A-module.

Gorenstein categories. — Let T be an R-linear category. Following [9] we say
that T is Gorenstein if there is an R-linear triangle equivalence

F : Tc ∼−−→ Tc

such that for each p in suppR T, there is an integer d(p) and a natural isomor-
phism

Γp ◦F ∼= Σ−d(p) ◦ Tp
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of functors Tc → T. The functor F plays the role of a global Serre functor
because it induces a Serre functor, in the sense of Bondal and Kapranov [11],
on the subcategory of compacts objects in Tp, the p-local p-torsion objects in
T, for p in Spec R. More precisely, localizing with respect to p yields a functor
Fp : Tc

p
∼−→ Tc

p and a natural isomorphism

HomR(HomT(X, Y ), I(p)) ∼= HomT(Y, Σd(p)FpX) ,

for objects X, Y ∈ Tp such that X is compact and suppR X = {p}. This is
explained in [9, §7]. In what follows we focus on the following special case.

Proposition 8.5. — Let T be a compactly generated R-linear category that is
Gorenstein, with global Serre functor F . Fix a maximal ideal m in R. For any
X ∈ Tc and Y ∈ T with suppR X = {m}, there is a natural isomorphism

HomR(HomT(X, Y ), I(m)) ∼= HomT(Y, Σd(m)FX) .

In particular, if suppR T = {m}, then Σd(m)F is a Serre functor on Tc.

Proof. — Since m is maximal, any object supported on m is already m-local.
Thus, the desired isomorphism is a special case of [9, Proposition 7.3]. �

Gorenstein rings. — Let R be a commutative Gorenstein ring. For p in Spec R,
set h(p) = dim Rp; this is the height of p. The Gorenstein property for R is
equivalent to the condition that the minimal injective resolution I of R satisfies

In =
⊕

h(p)=n

I(p) for each n.

This translates to the condition that in K(Inj R), there are isomorphisms

(9) Γp(iR) ∼= Σ−h(p)I(p) for each p ∈ Spec R.

This result is due to Grothendieck, cf. [12, Proposition 3.5.4].

Proposition 8.6. — Let A be a finite R-algebra that is projective as an R-
module. The following conditions are equivalent:

(1) The R-algebra A is Gorenstein.
(2) The R-linear category D(Mod A) is Gorenstein.

When they hold the global Serre functor is ωA/R ⊗
L
A −, and d(p) = dim Rp.

Proof. — (1)⇒(2) As the R-algebra A is Gorenstein, the functor F := ω⊗L
A− is

an equivalence on D(Mod A) and hence restricts to an equivalence D(Mod A)
c

the subcategory of perfect complexes; see Theorem 4.5. With d(p) as in the

tome 150 – 2022 – no 2



GORENSTEIN ALGEBRAS 381

statement, for any perfect complex C, from Proposition 8.1 one gets the equal-
ity below

Tp(C) = RHomR(A, I(p))⊗L
A C

∼= I(p)⊗L
R HomR(A, R)⊗L

A C

∼= Σd(p)Γp(iR)⊗L
R FC

∼= Σd(p)Γp(iR⊗L
R FC)

∼= Σd(p)ΓpFC .

The third isomorphism is from (9), and the rest are standard. Thus, D(Mod A)
is Gorenstein, with the prescribed global Serre functor and shift d(p).

(2)⇒(1) It suffices to verify that the injective dimension of Am is finite for
any maximal ideal m in R. For this, it suffices to verify that M ∈ mod(A/mA)
satisfy

Exti
A(M, A) = 0 for i� 0.

For then an argument along the lines of the proof of [2, Proposition A.1.5]
yields that Am has finite injective dimension over itself.

Let F : Db(mod A)
c
→ Db(mod A)

c
be a global Serre functor and F −1 its

quasi-inverse. Since M is m-torsion from Proposition 8.5 we get the isomor-
phism below

HomD(A)(M, ΣiA) ∼= HomR(HomD(A)(F
−1A, Σd(m)−iM), I(m)) .

It remains to note that since F −1A is perfect one has

HomD(A)(F
−1A, Σj(−)) = 0 on Mod A,

for all |j| � 0. This implies the desired result. �

Here is the analogue of the preceding result dealing with homotopy cate-
gories.

Proposition 8.7. — Let A be a finite R-algebra that is projective as an R-
module. The R-linear category K(Inj A) is Gorenstein if and only if A is reg-
ular.

Proof. — When A is regular, the canonical functor K(Inj A) → D(Mod A) is
an equivalence and D(Mod A) is Gorenstein, by Proposition 8.6. As to the
converse, it suffices check that Am is regular for each maximal ideal m in R.

Arguing as in the proof of (2)⇒(1) in Proposition 8.6 one deduces that for
each M ∈ mod(A/mA) and N ∈ mod A, one has

Exti
A(M, N) = 0 for i� 0.

This implies that Am is regular. �
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The preceding results concern the Gorenstein property for the derived cat-
egory and the homotopy category of injectives for two of the three categories
that appear in the recollement (1). That of the last one is dealt with in the
next section.

9. Grothendieck duality for Kac(Inj A)

This section is dedicated to the proof of the following result. As explained
in the Introduction, this has been the guiding light for the results presented in
this work.

Theorem 9.1. — Let A be a Gorenstein R-algebra. For each compact object X
in Kac(Inj A) and p in the singular locus of A, there is a natural isomorphism

ΓpX ∼= Σ−d(p)Tp(N̂A/RX) ,

where d(p) = dim(Rp) − 1. In particular, the R-linear category Kac(Inj A) is
Gorenstein, with the global Serre functor the quasi-inverse of N̂A/R.

The proof is given further below. Theorem 1.2 from the Introduction is an
immediate consequence.

Corollary 9.2. — Let A be a Gorenstein R-algebra and let M, N be G-
projective A-modules with M finitely generated. For each p ∈ Spec R, there
is a natural isomorphism

HomR(Êxti
A(M, N), I(p)) ∼= Êxt

d(p)−i
A (N, ΓpS(M)).

Proof. — The assertion is a direct translation of Theorem 9.1, given the equiv-
alence GProjA ∼−→ Kac(Inj A) from Proposition 6.7. �

We continue with a consequence concerning duality for the category of com-
pact objects. The statements are simpler, and perhaps more striking, when
specialized to the case of local isolated singularities, and that is what we do.

Isolated singularities. — Let (R,m, k) be a commutative Noetherian local ring
and A a finite projective R-algebra. We say that A has an isolated singularity
if its singular locus is {m}; that is to say, if the ring Ap is regular for each
non-maximal ideal p in Spec R; see the discussion around Corollary 7.12.

Corollary 9.3. — Let R be a commutative Noetherian local ring of Krull
dimension d. If A is a Gorenstein R-algebra with an isolated singularity, then
the assignment

X 7→ Σd−1N̂−1(X)

is a Serre functor on the R-linear category Kac(Inj A)
c.
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Proof. — Since A has an isolated singularity, the R-linear category Kac(Inj A)
is supported at m, the maximal ideal of R; see Corollary 7.12. Thus, Theo-
rem 9.1 and Proposition 8.5 yield the desired result. �

Given the equivalences in Theorem 6.4 one can recast the duality statement
above in terms of the singularity category and the stable category of Gorenstein
projective modules. Here, too, we are following Buchweitz’s footsteps [13],
except that he does not require A to be projective over a central subalgebra;
on the other hand, he considers only rings of finite injective dimension. We can
get away with local finiteness of injective dimension, thanks to Theorem 4.6.

Corollary 9.4. — For R and A as in Corollary 9.3, the singularity category
Dsg(A) has Serre duality, with Serre functor Σd−1ωA/R ⊗

L
A (−).

Proof. — This is a direct translation of Corollary 9.3, made using Theorem 6.6.
�

Moreover, here is Corollary 9.3 transported to the world of G-projective
modules.

Corollary 9.5. — For R and A as in Corollary 9.3, the functor

M 7→ Ω1−d GP(ωA/R ⊗A M)

is a Serre functor on the triangulated category GprojA. �

Remark 9.6. — Set S := Ω1−d GP(ω⊗A (−)); the Serre functor on Gproj(A).
Theorem 9.5 translates to the statement that there is an R-linear trace map

HomA(M, SM)
τ
−−→ I(m)

such that the bilinear pairing

HomA(N, SM)×HomA(M, N)
−◦−
−−−−→ HomA(M, SM))

τ
−−→ I(m) ,

where −◦− is the obvious composition, is non-degenerate. Murfet [38] describes
the trace map in the case when A = R, that is to say, in the case of commutative
rings; this involves the theory of residues and differentials forms. It would be
interesting to extend his work to the present context.

We now prepare for the proof of Theorem 9.1.

Lemma 9.7. — Let A be a finite R-algebra. For each X in Loc(iA) for which
iX is in K+(Inj A), the isomorphism (2.2) induces isomorphisms

Σ−1Γps(iX) ∼−−→ rΓpX for each p ∈ Spec R.
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Proof. — Since X is in Loc(iA), from (2) and Lemma 2.2, we get an exact
triangle

Σ−1s(iX) −→ X −→ iX −→

Applying Γp to this yields the exact triangle

Σ−1Γp(s(iX)) −→ ΓpX −→ Γp(iX) −→ .

Since s(iX) is acyclic so is the complex Γp(Σ−1s(iX)), by Lemma 7.6. Hence,
r(−) is (isomorphic to) the identity on this complex. On the other hand, since
iX is bounded below, so is Γp(iX), by Lemma 7.7, and hence r(−) vanishes on
this complex. Keeping these observations in mind and applying the functor r
to the exact triangle above yields the stated isomorphism. �

Proof of Theorem 9.1. — It suffices to establish the result for objects of the
form s(C), where C ∈ K(Inj A) is a compact object; we can assume that C is
bounded below. Set D := HomR(A, iR). We shall be interested in the complex
of injective A-modules

X := D ⊗A p(N̂C) .

We claim that this complex satisfies the hypotheses of Lemma 9.7.

Claim. — X is in Loc(iA) and iX ∼−→ C and, in particular, it is bounded
below.

Indeed, the complex D consists of A-bimodules that are injective on either
side, and the map R→ iR induces a quasi-isomorphism

ω = HomR(A, R) −→ HomR(A, iR) = D

of A-bimodules. Thus, D is an injective resolution of ω on both sides. It follows
that in D(Mod A) there are natural isomorphisms

D ⊗A p(N̂C) ∼= ω ⊗L
A RHomA(ω, C) ∼= C ,

where the second one is by Theorem 4.5. Therefore, in K(Inj A), one gets that

iX = i(D ⊗A p(N̂C)) ∼−−→ C.

As to the first part of the claim, p(N̂C) is in Loc(A) ⊆ K(Proj A), hence X
is in Loc(D) in K(Inj A). However, D is an injective resolution of ω, and the
latter is perfect, as an object of D(Mod A), so D is in Thick(iA). It follows
that X is in Loc(iA), as claimed.

From the claim and Lemma 9.7, we deduce that

Σ−1Γps(iX) ∼= rΓpX for each p ∈ Spec R.
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This justifies the penultimate isomorphism below, where h stands for dim Rp:

Tp(N̂(sC)) ∼= Tp(s(N̂C))

∼= r(HomR(A, I(p))⊗A p(N̂C)))

∼= r(HomR(A, ΣhΓpiR)⊗A p(N̂C)))

∼= ΣhrΓp(HomR(A, iR)⊗A p(N̂C))

= ΣhrΓp(X)

∼= Σh−1Γps(iX)

∼= Σh−1Γps(C) .

The first isomorphism is by Theorem 5.1; the second is by Corollary 8.3; the
third is from (9), which applies as R is Gorenstein, by Lemma 4.1. The last
isomorphism is again by the claim above. This finishes the proof. �

In contrast with Proposition 8.6 and Proposition 8.7, we do not know if the
Gorenstein property of Kac(Inj A) characterizes Gorenstein algebras; except
when A is commutative.

Theorem 9.8. — Let R be a commutative Noetherian ring. The R-linear
category Kac(Inj R) is Gorenstein if and only if the ring R is Gorenstein.

Proof. — The reverse implication is contained in Theorem 9.1.
Suppose Kac(Inj R) is Gorenstein as an R-linear category, with global Serre

functor F . Let m be a maximal ideal of R, and k := R/m its residue field. The
object sik in Kac(Inj A) is compact and m-torsion so Proposition 8.5 yields

HomK(A)(sik, sik)∨∨ ∼= HomK(A)(sik, Σd(m)F (sik))∨

∼= HomK(A)(Σ
d(m)F (sik), Σd(m)F (sik))

∼= HomK(A)(sik, sik) .

Thus, one gets an isomorphism of Tate cohomology modules

Êxt0
R(k, k) ∼= Êxt0

R(k, k)∨∨ for each i ∈ N.

These modules are annihilated by m, and so are k-vector spaces. The isomor-
phism above implies that each of them has finite rank over k. It remains to
recall the result of Avramov and Veliche [3, Theorem 6.4] that the finiteness of
the rank of Êxti

R(k, k) for some i already implies that Rm is Gorenstein. �

The proof of the preceding result does not go through for non-commutative
rings, for there exist finite dimensional algebras A over a field k that are not
Gorenstein, and yet Êxti

A(M, N) is finite dimensional over k for each i, and fi-
nite dimensional A-modules M, N ; see, for example, [15, Example 4.3, (1), (2)].
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Appendix A. Gorenstein approximations

Let A be an additive category. Recall that a complex X ∈ K(A) is called
totally acyclic if the complexes of abelian groups Hom(W, X) and Hom(X, W )
are acyclic for all W ∈ A. When A is abelian, and C ⊆ A is a class of objects,
we set

⊥C = {X ∈ A | Extn(X, Y ) = 0 for all Y ∈ C, n > 0}

C⊥ = {Y ∈ A | Extn(X, Y ) = 0 for all X ∈ C, n > 0}.

A pair (X,Y) of full subcategories of A is a (hereditary and complete) cotorsion
pair for A if

X⊥ = Y and X = ⊥Y ,

and every object M ∈ A fits into exact approximation sequences

0 −→ YM −→ XM −→M −→ 0 and 0 −→M −→ Y M −→ XM −→ 0 ,

with XM , XM ∈ X and YM , Y M ∈ Y.

Gorenstein algebras. — Fix a ring A. Recall that an A-module is G-projective,
if it is of the form

C0(X) := Coker(X−1 d−1

−−→ X0) ,

for a totally acyclic X ∈ K(Proj A). The G-injective modules are those of the
form

Z0(X) := Ker(X0 d0

−→ X1) ,

for some totally acyclic X ∈ K(Inj A). We write GProj A for the full subcat-
egory of all G-projective modules and GInj A for the full subcategory of all
G-injective modules. The theorem below provides Gorenstein approximations
for all modules over a Gorenstein algebra.

Let Fin A be the full subcategory of A-modules having finite projective and
finite injective dimension. When A is a finite R-algebra, we consider the cate-
gory

Fin(A/R) := {M ∈ Mod A |Mp ∈ Fin(Ap) for all p ∈ Spec R}.

Observe that when the R-algebra A is Gorenstein, Fin(Ap/R) is the category of
Ap-modules of finite projective—equivalently, finite injective—dimension. One
of the consequences of the result below is that, at least for Gorenstein algebras,
Fin(A/R) is independent of the ring R.

Theorem A.1. — Let A be a Gorenstein R-algebra. Then there are equalities

(GProj A)⊥ = Fin(A/R) = ⊥(GInj A) .

Also, (GProj A, Fin(A/R)) and (Fin(A/R), GInj A) are cotorsion pairs for
Mod A.
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The map XM → M for X = GProj A is called the G-projective approxima-
tion; we set GP(M) = XM . This module is unique up to morphisms that factor
through a projective module. Analogously, the map M → Y M for Y = GInj A
is called G-injective approximation, and we set GI(M) = Y M ; it is unique up
to morphisms that factor through an injective module.

Proof. — First, observe that any acyclic complex of projective or injective A-
modules is totally acyclic by Theorem 5.6. This means that G-projective and
G-injective modules are obtained from acyclic complexes.

We begin with the construction of G-injective approximations, using the
recollement (1) as follows. Set Y = GInj A and X = ⊥Y. Fix an A-module M .
Then an injective resolution iM fits into an exact triangle

jq(iM) −→ iM −→ s(iM) −→

given by an exact sequence of complexes

0 −→ iM −→ s(iM) −→ Σ(jq(iM)) −→ 0 ,

which is split-exact in each degree. Thus Z0(−) gives an exact sequence

0 −→M −→ Y M −→ XM −→ 0 ,

with XM ∈ X and Y M ∈ Y. The other sequence 0 → YM → XM → M → 0
is obtained by rotating this triangle. This justifies the claim that (X,Y) is a
cotorsion pair; see [35, Theorem 7.12] for details.

It remains to identify X, the left orthogonal to GInj A. A standard argument
yields the equality X = Fin A when A is Iwanaga–Gorenstein. For a Gorenstein
algebra A, the equality X = Fin(A/R) follows once we can show that for
each p ∈ Spec R, the p-localization of an approximation sequence for M ∈
Mod A yields an approximation sequence for Mp in Mod Ap. It follows from
the discussion in Remark 7.9 that for any A-module M , one has isomorphisms

(s(iM))p ∼= sp((iM)p) ∼= sp(ipMp) .

This implies (XM )p ∼= XMp and (XM )p ∼= XMp
. Thus, both modules have fi-

nite projective and finite injective dimension. We conclude that X = Fin(A/R).
Next, we consider G-projective approximations using the analogue of the

recollement (1) for K(Proj A). The proof that (GProj A, (GProj A)⊥) is a
cotorsion pair is similar to that for GInj A, for it uses the right adjoint of
the inclusion Kac(Proj A) ↪→ K(Proj A); we omit the details. The equality
(GProj A)⊥ = Fin(A/R) can be verified as follows. Recall from Theorem 5.6
that there is an adjoint pair of triangle equivalences

Kac(Proj A) Kac(Inj A)
E⊗A−

h

∼ .
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Consider the exact triangle

E ⊗A pM −→ iM −→ s(iM) −→

from Lemma 2.5, which we used for constructing a G-injective approximation
of M . Applying the equivalence h and rotating yields an exact triangle

Σ−1hs(iM) −→ pM −→ h(iM) −→

which provides us with the G-projective approximation of M . We claim that
for each p ∈ Spec R, the p-localization of this triangle yields the Gorenstein-
projective approximation of Mp. To this end consider the following diagram of
exact functors.

K(Proj A) K(Inj A)

K(Proj Ap) K(Inj Ap)

E⊗A−

(−)p

h

(−)p

Ep⊗Ap
−

res

hp

res

It is easily checked that for each A-module M , one has isomorphisms

(hs(iM))p ∼= hp((s(iM))p) ∼= hpsp(ipMp) .

This implies that (Y M )p ∼= Y Mp and (YM )p ∼= YMp
. Thus, both modules have

finite projective and finite injective dimension, so (GProj A)⊥ = Fin(A/R). �

Remark A.2. — The above theorem shows that Gorenstein algebras are vir-
tually Gorenstein in the sense of Beligiannis and Reiten [6], which means that
the classes (GProj A)⊥ and ⊥(GInj A) coincide.
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