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Abstract

With the development of deep representation learning, reinforcement learning (RL) has become a powerful framework
for automated driving tasks capable of learning complex policies in high-dimensional environments. However, one of the
most critical criteria to deploy learned policies in real-world tasks is generalizing to unseen situations at deployment time,
avoiding over-fitting to the training environments. Studying this is vital if we use the RL algorithms for decision-making
in real-world scenarios, where the environment will be diverse, dynamic, and unpredictable, like autonomous driving.
In this work, we propose a novel architecture that combines different information about the driving conditions and the
environment to inform the RL agent in the form of latent vectors. For instance, while the host vehicle is near a traffic sign,
it is desirable that the RL agent knows about the traffic, distance to the intersection, etc., to take appropriate actions. This
will allow us to develop a robust model by overparameterizing the policy network in a structured manner. Although the
use of latent representations for RL is quite common, the use of different latent representations and selectively combining
them using self-attention as proposed in this work is novel. The basic premise here is that different latent representations
provide parallel, complementary pathways that parameterize the actor/critic RL network. In essence, while the value
(critic) network tries to estimate Qθ(x, a) where (x, a) is the state-action pair, our network will try to estimate Qθ(ℓ, η, α, a)
where ℓ, η and α, are the additional latent variables representing different aspects of driving. Preliminary results show
the efficacy of using different latent vectors and combining them in a structured manner to derive a driving policy with
improved generalization.
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1 Motivation and Objective

Reinforcement Learning (RL) has been widely used for decision-making with great success over the past 20 years and
recently it is making its way to the domain of autonomous vehicles. State-of-the-art algorithms such as Deep Determin-
istic Policy Gradient (DDPG) and Soft Actor-Critic (SAC) are being applied to complex tasks such as robot control and
autonomous driving. The greatest success of RL algorithms has been mainly in game environments where the failure
to make good decisions does not usually incur a high cost. However, the same cannot be said for autonomous vehicles
where the decision’s generalizability and robustness are paramount in anomalous situations. By the latter, we mean the
ability of the system/agent to perform reasonably well even in cases of failures or unforeseeable situations that have
never been encountered before. For example, the performance should not drop dramatically when the car encounters
a new map (with possibly different weather conditions) where the RL agent has not been trained. In this direction, a
significant body of work has accumulated [11, 9] in the domain of supervised learning (e.g., MNIST, CIFAR10) studying
generalization in deep learning networks. However, the generalizability is less explored [12, 4] in reinforcement learning,
particularly for autonomous driving. In this regard, this work explores a popular empirical observation that suggests
that overparameterized neural networks improve both optimization and generalization [1], in the context of autonomous
driving using RL.

Deep learning (DL) has seen tremendous success in computer vision, speech recognition, natural language processing,
audio recognition, and bioinformatics [16]. Surprisingly, even though the number of parameters in Deep Learning (DL)
models is significantly more than the number of training examples, the models exhibit good generalization and lower
error rate in test cases [15, 10]. This empirical observation appears to contradict the traditional learning theory [2].
Consequently, a significant amount of effort has been devoted to investigating theoretical properties of the deep learning
models [2, 8]. Recently, Casper et al. [3] explored the emergence of prunable and redundant units in relation to the
generalization ability of the deep neural networks. The authors observed that the prunable and redundant units grow at
a rate outpacing the model size.

Inspired by these works that relate overparameterization and deep learning, we explore whether overparameterization
and redundancy can also improve the robustness in a reinforcement learning setting. This is particularly interesting
because most of the analysis on generalization is explored in the supervised domain. At the same time, there is no direct
way to convert RL problems into a supervised problem. However, there is a crucial difference in the proposed work.
While previous works [15, 2, 3] focus on the overparameterization by increasing the size of the learnable parameters
within the network, here the overparameterization arises in the form of redundancy in a structured manner. We also use
a self-attention mechanism to combine different information effectively.

2 Method

To study the effect of overparameterization in a structured way, we introduce a novel architecture with self-attention
that explicitly combines redundant information as shown in Figure 1 leading to overparameterization. The architecture
consists of five sub-networks: base network, future latent vector prediction network, network trained using auxiliary tasks, action
prediction network, and value network. The implementation details of each network are discussed in the subsequent text.
The future latent vector prediction network and network trained using auxiliary tasks are trained offline, and the weights
are frozen for RL training. Only the base network along with the action prediction network and value network (critique
network) are trained in the RL setting. All the three network receive a stack of 4 images (xt−3 . . . xt) at time instance t. The
base network compresses the input images to an embedding ηt through a series of convolution operations. The future
latent vector prediction network predicts the embedding ℓt+1, which signifies the future information. The structure
of the future latent vector prediction network is inspired by world models [6]. The rationale for incorporating future
latent vectors is to inform the policy network about the influence of present action and serve as a predictive model.
The network trained on the auxiliary tasks embeds the input images to αt through convolution operation. Additionally,
the network also uses auxiliary task information along with input images. The reasoning for using auxiliary tasks is to
provide rich information (e.g., traffic lights, crossings, obstacles) to learn the actions better. A self-attention mechanism
is used to combine the three embeddings (ℓt+1, ηt, and αt) together to form a feature vector which is used for by the
action network and value network.

Further, to support goal-oriented actions, we introduce a gating unit that selects different branches of the action network
depending on the global routing commands [7]. The sub-networks in the action network are regular multi-layer networks
whose output are continuous throttle, steer, and brake commands. Similarly, the value network receives the augmented
feature vector, action, and the global planner command to provide the value approximation.

2.1 Base Network

The base network consists of general convolution neural network architecture without any fully-connected layers. Given
the expert driving action ht at the state xt and the routing command ct, we can pre-train the policy network shown in
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Figure 1: The architecture consists of five sub-networks: base network, future latent vector prediction network, network trained using
auxiliary tasks, action prediction network, and value network. The future latent vector prediction network and network trained using
auxiliary tasks are trained offline, and the parameters are frozen during RL training. The embeddings from the base network, future
latent vector prediction network, and network trained using auxiliary tasks are augmented together with self-attention to form the
input for the action prediction network. The network uses the routing commands from a global path-planner to select a sub-network
in action prediction. The output of these sub-networks is the throttle, steer, and brake.

Figure 1 via basic imitation learning [7] to mimic an expert driver. Note that, for imitation learning, only the base network
in Figure 1 will be trained. The future latent vector prediction network and the auxiliary tasks network will be trained
separately and augmented with the base network for reinforcement learning. The control command ct is introduced to
handle goal-oriented behavior starting from an initial location to reach the final destination (similar to [7]). The command
ct is a categorical variable that controls the selective branch activation via the gating function G(ct), where ct can be one
of four different commands, i.e., follow the lane (Follow), drive straight at the next intersection (Straight), turn left at
the next intersection (TurnLeft), and turn right at the next intersection (TurnRight). Four policy branches are specifically
learned to encode the distinct hidden knowledge for each case and thus selectively used for action prediction. For loss
function, we can directly use mean squared error between predicted and expert actions given as:

L(ĥt, ht) = ∥ŝt − st∥2 + ∥ât − at∥2 + ∥b̂t − bt∥2, (1)

where the loss function L is the weighted (here for simplicity taken as 1) summations of L2 losses for three predicted ac-
tions ĥt. The notion of re-training the pre-trained model in a reinforcement learning setting can be considered analogous
to residual policy learning [13]. Here, we start with a fixed policy, and then learn a residual policy to modify the fixed
policy for a more complex situation.

2.2 Future Latent Vector Prediction Network
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Figure 2: (a) Future latent vector prediction network. A sequence of traffic states is first encoded into latent space, propagated through
the recurrent network and outputs the estimate of the latent space at time step tn+1. (b) A Network trained to predict auxiliary tasks
such as traffic light state, distance to the front vehicle.

We propose a novel neural architecture to learn the environment dynamics/world model from expert demonstra-
tions (Figure 2a). By “environment” here we mean a succinct description of the interaction between the autonomous
(host) vehicle and the surrounding vehicles in traffic. The proposed combined architecture for future latent vec-
tor prediction is shown in Figure 2. Given a history of states x0, . . . , xn, their latent representations ℓ0, . . . , ℓn, and
the corresponding sensor data s0, . . . , sn (e.g., radar or Lidar scans, images from on-board cameras, IMU measure-
ments, etc.), we wish to predict xn+1, ℓn+1 and sn+1. In other words, the network learns the probability distribution
P (xn+1, ℓn+1, sn+1 | x0:n, ℓ0:n, s0:n). Here, instead of the sensor readings s0:n, we can also use the human-driver actions
a0:n. As shown in Figure 2, the state xi is encoded into the latent space ℓi = E(xi), where E is the encoder. Note that the
encoder/decoder can be any architecture of a typical convolutional neural network or a recurrent neural network. The
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encoded vector ℓi is used as an input for the gated recurrent unit (GRU) block, whose output is the next time step latent
space vector ℓi+1|i. The predicted latent state ℓi+1|i is used as a hidden state for the next time step, as well as an input
for reconstructing the next time step state xi+1 = D(ℓi+1|i), where D is a decoder. Thus, the predicted latent vector ℓi+1

at time step i+ 1 not only depends on ℓi, but also on ℓi−1. The overall loss function for the single-step prediction can be
broken down into three terms given by equation (2) below

Ltotal = L2(x0:n+1, x̂0:n+1)︸ ︷︷ ︸
State Prediction

+L2(ℓn+1|n, ℓn)︸ ︷︷ ︸
Latent prediction

+L2(sn+1|n, sn)︸ ︷︷ ︸
Sensor prediction

,
(2)

where ℓn, ℓn+1|n denote the encoded latent variable at step n and the conditioned latent prediction one step further, xn, x̂n

are the source and reconstructed states, respectively, and sn, sn+1|n are the current and predicted sensor measurements.
Note that if the states include images, we can use image-relevant loss functions [14]. The intuition behind combining
and training the Autoencoder (AE) and Recurrent Neural Network (RNN) simultaneously stems from the ability to
incorporate additional continuity constraints in the latent vector during learning, which enables a smooth transition
between latent vectors. Additionally, sharing reduces the number of trainable parameters, thus facilitating faster training
times while using less computational resources.

2.3 Auxiliary Task Prediction Network

In a sophisticated task such as autonomous driving, end-to-end learning often fails to train good policies. Clearly, hu-
mans instinctively use a much richer and hierarchical task decomposition when driving. Rather than directly thinking
about the final throttle and steering values, humans try first to keep the car within the lanes, maintain the same distance
from the front vehicle, and gradually reduce their speed when they see a red light. We attempt to employ the same
pipeline for learning an autonomous driving policy. Using auxiliary tasks, which are human-designed intermediate
objectives for achieving the end-goal, we obtain an immensely feature-rich latent vector used to train the policy.

Our model is shown in Figure 2b, which is trained to do semantic segmentation of the driving scene and predict auxiliary
tasks such as the estimated distance to the front vehicle and the status of a traffic light. The loss function used for
training is a weighted summation of all the cross-entropy losses used for the individual tasks. We train the driving
policy consisting of the pre-trained backbone Convolutional Neural Network (CNN) with frozen weights and a small
subsequent Multilayer perceptron (MLP) to map the latent vector to discretized driving actions.

3 Preliminary Results and Discussion

This section provides preliminary results two sub-networks: future latent vector prediction network and network trained using
auxiliary tasks. We validate the efficacy of the proposed models through imitation learning. In the experiments, we use
CARLA [5] simulation platform. For imitation learning, given N expert driving sequences EDi, i ∈ (1, . . . , N) with
corresponding observation frames Ii,t, we learn a deterministic policy using a network parameterized by θ to mimic
the expert actions. The action space Ai,t contains two continuous actions: steering angle and acceleration. However,
for imitation learning, we discretized the continuous values into three levels. The steering angle assumes the values
[−0.2, 0.0, 0.2] rad and acceleration assumes the values [−3, 0.0, 3] m/s2 values. Imitation learning using future latent
vectors is set up as a classification problem with 9 classes resulting from different combinations of the previous discrete
steering and acceleration values. However, for imitation learning using latent vectors trained on the auxiliary tasks,
we discretized the steering and acceleration more finely resulting in 20 classes. For training, we have used mean cross-
entropy loss between the predicted class and the autopilot class. Training was performed on a single machine equipped
with a GeForce RTX3090 GPU, Ryzen 5950x CPU, and 16GB of RAM. A total of 500K time steps were generated using
random roll-outs of the internal CARLA vehicle autopilot module. Also, the 500K time-steps are split into 70% training,
15% validation, and 15% testing data.

The imitation classification results with future latent vector and the baseline model (World Models (WM) [6]) are shown
in Table 1. The results show that the proposed model performs better than the baseline model while having signifi-
cantly less number of trainable parameters. Table 2 shows the preliminary results of imitation learning validated on

Table 1: Imitation learning results using predicted future
latent vectors.

Model Classification Accuracy%

World Models 71.37 ± 0.52

Proposed Model 77.08 ± 0.51

Table 2: Imitation learning results using latent vector
trained on auxiliary tasks.

Auxiliary Tasks Classification Accuracy%

Not Included 62.6

Included 68.6

unseen conditions (different weather condition) using the network trained on auxiliary tasks. The results show a ≈6%
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Figure 3: (a) Imitation learning using the latent vector predicted by future latent vector prediction model. (b) Imitation learning using
the latent vector trained on auxiliary tasks. Note for both imitation learning experiments only a small MLP is trained while freezing
the weights of latent vector extraction networks.

improvement when using auxiliary tasks. Note that this is a significant gain, as most of the performance improvement
corresponds to hard driving scenarios where auxiliary tasks become relevant (i.e., intersections and close-proximity to
the front vehicle). Finally, the training of overall architecture with all the combined latent vector with self-attention is
still a work in progress. However, the initial results provides an efficacy of using latent vector capturing different aspects
of driving.
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