


need for a framework that is robust against attacks and in-
formation leakage, and is computationally light and efficient. In
this work, we aim to prevent two important attacks: linkage
attack and replay/relay attack. In the linkage attack, we
consider valid tokens which are generated from the same de-
vice and may be broadcast at several places. The tokens of the
same client cannot be linked together by any participant. Most
BT‐based contact tracing systems are vulnerable to this attack.
For example, Seiskari [7] installed BLE‐sniffing devices to
different known physical locations and collected contact
tracing tokens. By keeping track of when and where they
received which tokens, authors in [7] can identify the travel
route of the individuals. To prevent the linkage attack, prior
work [8, 9] relies on private set intersection cardinality (PSI‐
CA), which is used to check how many tokens held by a user
match the tokens in a set stored on a server without the users
revealing their tokens. In this work, we propose a more effi-
cient PSI‐CA protocol, which can be integrated into a contact
tracing system to improve the system's performance.

To prevent the replay and relay attacks, prior work [5, 10]
propose delayed authentication so that the CT server uses
public verification to authenticate user tokens. However, their
authenticated system is not efficient, especially on the user's
device. In addition, the identity of COVID‐19 positive users
might be revealed during the authenticated process. To elimi-
nate the replay and relay attacks, we integrate the random to-
kens generation of the BT approach with GPS and time‐
stamps [11] such that the transformed token contains the
user's secret BT token and location only in an encrypted form.

1.1 | Our contribution

In this work, we make the following contributions:

� We propose a novel and deployment‐friendly PSI‐CA
protocol which relies only on symmetric‐key primitives
(e.g. AES).

� We design and implement a contact tracing system,
SecureCT, that can provide strong privacy guarantees. It
is able to eliminate replay and relay attack using GPS.

� We implement SecureCT and evaluate it on the client's
phone using Google Pixel 3. For the client set size n = 211,
without including the time spent waiting on the server's
response, the client requires a running time of 208 millisec-
onds and only 32 KBs of communication. The server
requires 35 s to perform CT for the server set size N = 109.

1.2 | Organisation

In Section 2, we begin with the related work of Contact
Tracing systems as well as the protocols of PSI‐CA. Then we
give the details of primitives for our design, security model, and
potential attacks in Section 3. The PSI‐CA is presented in
Section 4. The SecureCT contact tracing system is

demonstrated in Section 5. Finally, we present the details and
the result of our implementation in Section 6.

2 | RELATED WORK

In this section, we overview the state of the art in contact
tracing and PSI‐CA.

2.1 | Decentralised contact tracing

There are two main categories of CT approach: centralised and
decentralised. In a centralised approach, a trusted third party is
required. The TraceTogether app is a typical example that is
launched by the Singapore government. In TraceTogether, the
central authority (the government server) registers and stores
user details and unique identifiers, and assigns a set of contact
tokens to be broadcast at specific times. An infected user
shares all the received broadcast tokens with the central au-
thority, who then uses the tokens to identify and follow‐up
with users who have come in contact with him. This system
could be misused as a surveillance system, where the central
authority can learn graphs of user interaction.

In this work, we focus on decentralised contact tracing and
review two popular types of contact tracing systems.

2.1.1 | GPS‐based construction

It is very important for the patient to recall the place they
visited and the people they met before they tested positive.
Based on this information, the analyst can rebuild the trajec-
tory of the patient and make the corresponding plan to track
and contain the spread of the virus. A natural way to imple-
ment contact tracing digitally is to record the physical location
of the people and find the potential contact upon that.

In the GPS‐based construction, the location information
of the user is collected for contact tracing analysis. In reference
[12], the authors proposed a network‐centric WiFi sensing
approach for digital contact tracing. By collecting the Wifi logs
of device associations to access points within the network, a
graph structure capturing the user device trajectory can be
generated. The intersection of the trajectories can be gained by
using efficient time‐evolving graphs and algorithms.

Safe Paths [13], extended to Path Check, is one contact
tracing approach that is based on GPS location traces of users.
The app logs the user's GPS location periodically. The location
is quantised to a geographical area using Geohash [11]. The
app then uses a one‐way hash function to mask the Geohash
and timestamp. An infected user's hashes are shared to a
central server maintaining a public list. Other devices can
download this list and detect an exposure using set intersec-
tion. This approach may not be as effective as BT‐based
techniques and involves a large number of hashes to be
stored locally and downloaded from a server. It is susceptible
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to dictionary attacks [6], where a one‐way deterministic hash
used to mask private information can be potentially reversed.

2.1.2 | BLE‐based construction

Most of the current decentralised CT systems are based on
Bluetooth Low Energy (BLE). BLE is a radio specification for
short‐range communication and is well suited for proximity
detection due to its accuracy and feasibility. The BLE‐based
CT protocols are designed in a very similar way as follows:

1. Alice and Bob are two users of the contact tracing protocol.
They download and install the app on their smartphone.

2. When Alice and Bob meet each other, their phone will
generate and exchange the token.

3. Suppose Alice is tested positive for the disease. She will
upload all the tokens she generates to a third‐party server.

4. At the server, a list of tokens from the user who is tested
positive can be maintained and published or a query
mechanism can be provided to the user for checking their
contacts.

Google/Apple Exposure Notification (GAEN) solution
and Decentralised Privacy‐Preserving Proximity Tracing
(DP3T) [1] are built based on this idea of sharing tokens via
Bluetooth devices. As discussed in Section 1, the typical BLE‐

based CT approach remains susceptible to various attacks. For
example, in GAEN, when Alice is diagnosed with the disease,
her daily diagnosis keys (used to generate the tokens) are
uploaded to the server. Thus, Alice's anonymous identifier
tokens, as they are broadcast each day, can be linked to each
other. The tokens can also be linked across days if Alice
frequently appears at the same place. According to the calcu-
lation in [9], DP3T with Cuckoo filters requires the users to
download 110 MB each day for 40,000 new daily infections. It
costs each user $1/day using Google Fi network $10/GB. The
GAEN solution would cost $0.10/day although their design is
more vulnerable to linkage attacks than the DP3T. PSI‐CA was
introduced to prevent the linkage attack in the CT [8, 9, 14].
We review their PSI‐CA protocols in Section 2.2.

2.2 | Server‐aided PSI‐cardinality

Private set intersection (PSI) allows two parties to compute the
intersection of their datasets without revealing any additional
information. The description of functionality is given in sec-
tion 3.5 Over the last several years PSI has become truly
practical with extremely fast cryptographically secure imple-
mentations [15, 16]. We refer the reader to [17] for additional
discussion and motivation of PSI. Recently, private contact
tracing applications related to COVID‐19 [6, 8, 9, 14] found
PSI‐CA as the ultimate cryptographic tool, allowing multiple
participants (users and healthcare providers) to privately match
contact information and notify users who may have been
infected. In this work, we mainly focus on a variant of PSI

problems, PSI‐CA. The functionality of PSI‐CA is to allow
parties to learn the size of the intersection and nothing else.
Particularly, this functionality can be achieved in a “server‐
aided” way in which there is a helping cloud server to do some
of the computation for the participants. Below we consider the
works most relevant to ours.

� DH‐based PSI‐CA [14]: Epione [14] is one of the first
works that applies PSI‐CA into CT to prevent the linkage
attack. Instead of using CT tokens (referring the token in
some of the earlier contact tracing schemes that do not hide
the identity of the corresponding user) for matching, their
protocol uses PRF values of these tokens. The PRF
computation is implemented via DH‐based OPRF [18]. To
make PSI‐CA efficient for a large server‐side database and a
small client‐side database, Epione relies on keyword‐PIR
[19, 20] which allows a client to check whether their PRF
is in the server's data, without revealing the PRF itself to the
server. As a result, their PSI‐CA protocol has communi-
cation complexity O(n log N) which is linear in the size of
the smaller set (n), and logarithmic in the larger set size N.
However, it requires each user to perform O(n) exponen-
tiations (public‐key operations) for DH‐based OPRF and O
(N) symmetric‐key operations for keyword PIR
computation.

� Delegated PSI‐CA [9]: Catalic, a delegated contact tracing
system proposed in [9], allows multiple untrusted cloud
servers to do the most of contact tracing computation so
that the efficiency of the PSI‐CA protocol on the client's
device can be improved. A set of non‐colluding cloud
servers take the secret shares of the token from the client
and jointly perform oblivious distributed key PRF (Odk‐

PRF) [9] with a backend server holding a set of tokens from
infected patients. In the end, only one cloud server learns
the PRF value of the client's token and nothing else. By
having these values, the cloud server can compute PSI‐CA
with less computation for the client. The client's computa-
tion and communication complexity of the PSI‐CA pro-
tocol in Catalic is linear in the size of the smaller set O(n),
and is independent of the larger set's size N. However,
Catalic system requires at least two non‐colluding cloud
servers with a heavy computation/communication cost of
Odk‐PRF. In addition, the underlying OPRF of Odk‐PRF is
based on Oblivious Transfer [21], which is not deployment‐
friendly.

� Function Secret Sharing (FSS) based PSI‐CA [8]:
Dittmer et al. [8] introduces a variant of PSI‐CA (so‐called
weighted PSI‐CA) in which each token of the client has an
associated secret weight. The weight indicates a proximity
estimate (e.g. “is there a wall between us?”) that enables a
more fine‐grained tracing response. The weighted PSI‐CA
is based on cheap FFS constructions [22, 23], thus it is
efficient on both the client's and server's sides. Concretely,
in the FSS‐based PSI‐CA, the computation complexity of
the client and server is O(n) and O(N), respectively.
The communication complexity is O(n). However, their
construction assumes that there exist two non‐colluding
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servers, each holding an identical set of infected tokens. This
assumption is not realistic in the context of contact tracing.

3 | PRELIMINARIES

In this section, we introduce the notation and the primitives
for our contact tracing system and the PSI‐CA protocol which
will be discussed in the later sections.

3.1 | Notations

In this work, the computational and statistical security pa-
rameters are denoted by κ, λ respectively. We use [.] notation to
refer to a set. For example, [m] implies the set {1, 2, …, m}.
Additionally, we use [i, j] to denote the set {i, i + 1, …, j}.
Other special notations for the data structure will be intro-
duced before the usage.

3.2 | Geohash

Geohashing [11] is a convenient geocoding system that can
encode a location latitude and longitude into a string of letters
and digits, with the length of encoding defining the precision.
It is a hierarchical spatial data structure that divides
geographical areas into the grid like buckets. A useful property
of a geohash is arbitrary precision, allowing one to gradually
remove characters from the end, and reducing the length while
losing precision. The longer the prefix of geohashes of the two
locations, the closer they are spatially.

A geohash from GPS coordinates is computed by inter-
leaving two binary strings, one each for the latitude and
longitude, with bits recursively splitting the grid into intervals.
The calculation of a geohash can be elucidated with an
example. The interval is between −90 and 90° for latitude and
between −180 and 180° for longitude. For example, the first
four bits of a GPS coordinate with latitude 19.5 is 1001. The
first bit is 1 for it lies in the second half of the first interval.
Then, 0 is noted for it lies in the first half of the interval 0–90,
followed by 0 for the interval 0–45, 1 for interval 0–22.5, and
so on recursively, until the desired accuracy is reached. The
interleaved binary strings for longitude and latitude are repre-
sented as letters and digits using the base‐32 encoding. In the
implementation of the BT plus GPS protocol proposed in this
work, geohash of length 8 is chosen, to accommodate for
reasonable accuracy of proximity detection.

3.3 | Oblivious Key‐Value Store (OKVS)

An OKVS [24] is a data structure in which a sender, holding a
set of key‐value mapping P = {(xi, yi), i ∈ [n]} with pseudo‐

random values yi, wishes to hand that mapping over to a
receiver who is able to evaluate the mapping on any input but

without revealing the keys xi. Formally, an Oblivious
Key‐Value Store consists of two algorithms:

� Encode(P ) → T: a randomised algorithm that takes as input
a set of n key‐value pairs P ¼ ki; við Þi∈½n�

n o

from the
key‐value domain K � V, and outputs an OKVS table T.

� Decode(x, T ) → y: a deterministic algorithm that takes as
input a table T, a key x and outputs a value y.

The correctness of the OKVS is that if for all key‐
value pairs A ⊆ K� V with distinct keys and pseudo‐

random values, Encode(A) = T and (k, v) ∈ A then Decode
(T, k) = v.

An OKVS is secure if the values vi are chosen uniformly
then the output of Encode hides the choice of the keys ki.

3.4 | Hash table data structures

3.4.1 | Cuckoo hashing

In the scheme of Cuckoo hashing, there is a hash table of β

bins denoted B[1…β]. k random hash functions h1, …, hk :
{0,1}⋆

→ [β] are chosen to generate the position index for the
input element. There is an additional storage called stash in
case some elements failed to find an empty bin. The client uses
a variant of Cuckoo hashing such that each item x ∈ X is
placed in exactly one of the β bins. Using the Cuckoo analysis
[20] based on the set size |X|, the parameters β, k are chosen
so that with high probability (1 − 2−λ) every bin contains at
most one item, and no item has to be placed in the stash during
the Cuckoo eviction (i.e. no stash is required) It is a scheme
with worst case constant lookup and deletion time, and
amortised constant insertion time. On inserting an item, it uses
the first hash function. If an item already exists there, the
current item replaces it, and the evicted item is re‐inserted
using the subsequent hash function. Repeat till the process
settles. If there is a cycle, a rehash is performed by choosing
new hash functions h1, …, hk : {0,1}⋆

→ [β].

3.4.2 | Simple hashing

With simple hashing, items in the input set Y are inserted into
β bins using the same set of k Cuckoo hash functions (i.e. each
item y ∈ Y appears k times in the hash table). Using a standard
ball‐and‐bin analysis based on k, β, and the input size of the
client |X|, one can deduce an upper bound η such that no bin
contains more than η items with high probability.

3.5 | PSI‐CA

Private set intersection cardinality is a security protocol which
allows parties to learn the size of the intersection of their input
sets and nothing else. We consider two parties setting with a
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helping server. The description of its functionality is given by
Figure 1.

3.6 | Security models

The protocols in this work are scrutinised under specific se-
curity and adversarial models. Consider that multiple parties
agree to cooperatively compute a function f, and also agree to
share the evaluation result to a particular party. Two classical
security models are the colluding and non‐colluding models
[14]. In a colluding model, a subset of parties may be dishonest
and collude during the execution of the protocol. In a non‐

colluding model, the parties are independent and do not
collude.

There are two adversarial model definitions. In the honest
but curious model (semi‐honest model), the parties strictly
follow the protocol without deviation but may attempt to learn
extra information from the execution script apart from that
intended by the protocol. In the malicious model, the adversary
or dishonest party may attempt any polynomial time strategy
such as supplying invalid inputs, deviating and executing
different computation, so as to disrupt the protocol to leak
information.

In this work, the non‐colluding and semi‐honest setting is
considered, where the parties are assumed not to collude and
follow the protocol's description.

3.7 | Attacks

The aforementioned approaches introduced in Section 2 are all
vulnerable to some of the attacks including relay attacks,
linkage attacks by users or servers, and also false reporting by
users. We list and illustrate these possible attacks below.

� Linkage Attack: Linkage attack allows attacker to refer the
identity of anonymous data by linking it to some non‐

anonymous dataset. In the case of contact tracing, linkage
attack can be applied by both the server and the client. The
server can do it by observing the contact token it received.
In our proposed SecureCT, this is prevented by having all
the tokens randomly generated. For clients, all they will

receive from the protocol is the number of infected people
they have been in contact, they cannot apply linkage attack
to any arbitrary client.

� Social graph reconstruction: A determined malicious ad-
versary can learn a part of the social graph in a centralised
system. The server can learn the social subgraphs with
contacts between the diagnosed users and the people they
have come in contact with. A determined user can obtain
proof of encounter with a diagnosed person in a decen-
tralised system [10].

� Replay and relay attack—Identification of diagnosed users:
An adversary, whether an individual, group, or organisation,
can collect contact tokens, from the app or using strong
Bluetooth receivers, along with the time and place of
collection. In a decentralised system, the tokens of the
diagnosed users are public. The adversary can use this to a
posteriori identify the user that was diagnosed [10].

� False encounter and false reporting: An adversary may
install artificial broadcasters, and/or falsely report as posi-
tively diagnosed, to increase false positive exposure alerts.

In this work, our proposed SecureCT framework is
robust against all the attacks listed above.

4 | SIMPLEST SERVER‐AIDED PSI‐CA
In this section, we present the simplest server‐aided PSI‐CA in
which the computation utilises a third‐party non‐colluding
cloud server. Our proposed protocol does not require
OT‐based OPRF [25] or Odk‐PRF [9] (e.g. public‐key base‐
OT), thus, it relies only on symmetric‐key primitives. To the
best of our knowledge, this is the only construction with such a
property.

4.1 | Technical overview

Consider an untrusted cloud server C who helps to perform
PSI‐CA on behalf of the receiver R. Our protocol consists of
two main phases. In the first phase, the receiver R chooses a
random key k which is sent to the sender S. On the other
hand, R computes the PRF values x0i ← F k; xið Þ; ∀i ∈ ½n�, and
sends them to the cloud server C. One can consider this phase
as executing oblivious PRF where the sender S knows the PRF
key k and the cloud server C learns the PRF values F(k, xi)
without knowing the key k. However, different from traditional
OPRF, C learns nothing about the underlying values xi. Having
the PRF key k, the sender computes the PRF values
y0i ← F k; yið Þ;∀i ∈ ½N �.

Our second phase replies on OKVS and takes the PRF
values x0i; y

0
i as inputs. More precisely, the sender S encodes the

points P ¼ y01; v1
� �

;…; y0N ; vN
� �� �

into an OKVS table
T ← Encode(P) which is sent to the cloud server C. Here, the
set V = {v1, …, vN} is randomly chosen by the sender S. The
cloud server C knows a table T, so she decodes it on every x0i
and obtains a setW = {w1, …, wn}. According to the OKVS'sF I GURE 1 Functionality of private set intersection cardinality
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functionality, we have wi ∈ V if x0i was encoded in T, other-
wise, wi is random. In addition, the cloud server C cannot infer
any information from W due to the randomness property of
the OKVS. To allow the receiver R to learn only the inter-
section size, the sender S and the cloud server C respectively
send a set V and W to the receiver R in a randomly shuf-
fled order. At this point, the receiver can count how many
items are in the intersection by computing W ∩V as
jW ∩ V j ¼ j x0i

� �

i∈½n� ∩ y0i
� �

i∈½N �
j ¼ jX ∩ Y j. In addition, the

shuffling makes the receiver learn nothing about which specific
item was in common (i.e. which wi corresponds to the item
xj ∈ X ). Thus, the intersection set is not revealed which can
prevent the linkage attack in the contact tracing scenarios.

Garimella et al. [24] lists several OKVS constructions with
different encoding/decoding costs. The most efficient OKVS
scheme is based on a 3‐Hash Garbled Cuckoo Table (3H‐

GCT) in which: the encoding time for encoding N items in the
OKVS is O(Nλ); the decoding time for decoding n elements is
O(nλ); and the length of the OKVS table T is 1.27N + log
(N) + λ.

However, 3H‐GCT is not deployment‐friendly as it in-
volves complicated peeling/unpeeling processes. Thus, in the
implementation of SecureCT, we use a deployment‐friendly
OKVS variant, a polynomial‐based OKVS scheme, in which
the encoding and decoding algorithms are exactly polynomial
interpolation and evaluation. In polynomial‐based OKVS, the

encoding/decoding time takes O(N log(N)2) and the table's
length is N.

4.2 | Construction

Our server‐aided PSI‐CA protocol is presented in Figure 2. It
closely follows the technical overview described in Section 4.1.
Recall that the set V is pseudo‐random and known by both
parties, S and R. Thus, the set V can be generated from a
PRG seed known by these parties. In our construction, we
reuse the PRF key k as the PRG seed. Clearly, the outputs of
PRG and PRF are independent, and their distributions are
uniform.

4.2.1 | Correctness

To show correctness of our construction, we consider two
following cases based on whether xi ∈ X is in the intersection
of X and Y:

� Case 1: Suppose xi is an element in the set of Y, ∃yj ∈ Y,
such that yj = xi. Then we have x0i ¼ F k; xið Þ which equals
to y0j ¼ F k; yj

� �

. When decoding the OKVS table T using x0i,
the receiver obtains wi. Based on the correctness of OKVS,

F I GURE 2 Our server‐aided PSI‐CA construction
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wi = vj where vj is the corresponding value of y0j from the
encode process of OKVS. In other words, there is one‐to‐

one mapping from xi = yj to wi = vj. Thus, this gives a
contribution to |W ∩ V| so that the receiver R can learn.

� Case 2: Suppose xi is not an element in the set of Y. The
decode result of x0i ¼ F k; xið Þ is a random value since x0i was
never used in the encode process of OKVS. There is no
contribution to |W ∩ V| from xi.

4.2.2 | Security

We turn to show the security of our PSI‐CA construction by
the following theorem.

Theorem 1 Given the OKVS functionality described in Sec-
tion 3.3, the PSI‐CA construction of Figure 2 securely im-
plements the PSI‐CA functionality with the presence of an
untrusted semi-honest cloud server C, malicious sender S and
malicious receiver R.

Proof We exhibit simulators for simulating these three
following cases: corrupt sender S, corrupt receiver R, and
corrupt cloud server C. For the first two cases, we describe
simulation in both the semi‐honest and malicious settings. We
argue the indistinguishability of the produced transcript from
the real execution.

Simulating sender
The simulator is given the sender's input Y and obtains the
PRF key k from the honest receiver. Since the key k is
randomly chosen by the receiver, we can replace k with
random.

In the semi‐honest setting, the sender gives the set Y
and k to the ideal world and receives nothing. In the real world,
he receives an empty output. Therefore, the simulation is
perfect.

In the malicious setting, the simulator runs the sender
internally and might encode a malicious pair into the OKVS.
One can simulate this action as changing the sender's input,
thus, which trivially concludes the simulation.

Simulating receiver
The simulator is given the receiver's input X, the setW = {wπ
(1), …, wπ(n)} in a randomly permuted order π: ([n]) → ([n])
chosen by the cloud server combiner C, a set of V, and the
intersection size |X ∩ Y|.

In the semi‐honest setting, we consider two cases. For each
xi ∉ X ∩ Y, we can replace the term wi with an independently
random element due to the obliviousness property of the
OKVS table T. For each common item xi ∈ X ∩ Y, the value
wi ← Decode T ; x0i

� �

is equal to a value in the setV. We assume
that the receiver and C do not collude, thus the shuffle function
π is hidden from the simulator's view. Therefore, we can
replacewπ−1ðiÞ with a random element inV (i.e, the permutation
hides the common items). In other words, the simulator only
learns |X ∩ Y| and Y. The simulation is perfect.

In the malicious setting, the simulation is elementary as it is
similar to simulating the malicious sender. More precisely, any
malicious action can be considered as the receiver changes his
input.

Simulating cloud server
The simulator simulates the view of adversary A, which con-
sists of the PRF values x0i ¼ F k; xið Þ from the receiver, and an

OKVS table T ← Encode y0i; vi
� �� �

i∈½N �

� �

from the sender.
We consider two following cases:

� Security for the receiver R: In Step 1 of our protocol, the
receiver R randomly chooses the PRF key k and sends it to
the sender S. We assume that A does not collude with the
sender, thus the key k is unknown to A. Thanks to the
cryptographic guarantees of the underlying PRF protocol,
the PRF outputs can be replaced with randoms. In Step 5, A
evaluates Decode which also produces an output indistin-
guishable from the real world.

� Security for the sender S: In Step 2 of our protocol, S
encodes a set of key‐value pairs y0i; vi

� �� �

i∈½N �
via Encode

algorithm, where y0i ¼ F k; yið Þ is a PRF value on the item
yi ∈ Y with the key k unknown by A, and vi is generated
from the secret PRG seed. Because of the PRF property, we
replace y0i with random. In our protocol, the cloud server
does not know the PRG seed, we can also replace vi with
random. The Encode functionality takes a set of random
pairs, thus its distribution is uniform.

In summary, the output of A is indistinguishable from
the real execution.

4.2.3 | Complexity

We begin by the analysis of the computational complexity.
The sender requires to perform 2N AES calls to generate
the set V and compute N PRF values y0i. The sender also
encodes N items into an OKVS. Denote the computational
cost of encoding/decoding OKVS as jOKVSj which is
O(Nλ) or O(N log(N)2) depending on which OKVS variant
is used. The sender computational complexity is 2N þ
jOKVSj. The receiver requires to compute n + N AES calls.
The cloud server needs to decode n items, which costs
jOKVSj.

For the communication complexity, the sender sends an
OKVS table encoded with O(N) values to the cloud server.
The receiver sends an κ‐bit PRF key from the sender, sends n
PRF values to the cloud server, and receives nOKVS decoding
values from him. In summary, the communication complexity
of the sender, the receiver, and the cloud server is κ + |T|‐bit,
κ + n(κ + λ + log(N))‐bit, and |T| + n(λ + log(N))‐bit,
respectively. Here, T is the size of the OKVS table with O(N)
values.

Finally, we consider the round complexity. It is easy to see
that our protocol is 1‐round.
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4.3 | Optimisation: Unbalanced PSI‐CA
We present a server‐aided PSI‐CA protocol in the unbal-
anced setting where the receiver's set size n is much smaller
than the sender's set size N. The unbalanced PSI‐CA is a
good fit for our running application, contact tracing, where
the sender has million diagnosis tokens (e.g. N = 109) while
the receiver has a few thousand tokens (e.g. n = 103). Recall
that our primary goal aims to minimise the communication
and computation cost on the receiver's side. However, the
construction in Figure 2 requires the receiver compute
N + n AES executions. When N is larger, the computation
might be a bottleneck, especially on the resource‐constrained
devices, for example, the end‐user's phone or edge device.
In this section, we describe an optimisation based on
hashing to bins that enables large cost savings on the re-
ceiver's side. In particular, the receiver's computation
complexity of our optimised construction is linear in the
size of the smaller set O(n) and independent of the larger
set's size N.

Our main idea is that the receiver and sender use hashing
to partition their items into m = O(n) buckets. Each bucket
contains a smaller fraction of inputs, which allows all partici-
pants to perform computation bin‐by‐bin. Concretely, we use
the Cuckoo‐and‐Simple hashing scheme [26] such that each
bin of the R consists of at most one item. Thus, the sender is
allowed to use only one value vi for all items in the ith bin. The
amount of data the sender has to touch per query is now only
the items that were mapped to the same bin as the receiver
query. Thus, it is much more efficient computationally on the
sender's side. In addition, the receiver only needs to generate
O(n) values V = {v1, …, vm} before computing V ∩ W. Thus,
the receiver's computation complexity reduces to O(n) from
O(N + n). Note that variants of this idea have appeared in
previous work [26].

We now discuss concrete hashing schemes and present
a formal description of our unbalanced PSI‐CA in
Figure 3. In this construction, the receiver uses Cuckoo
hashing with h hash functions and inserts her set of size n
into m buckets. The sender maps his set of size N into m
buckets using the same set of h hash functions, so‐called
simple hashing. With the high probability, each of the
sender's items appears h times across all over bins. Using a
standard ball‐and‐bin analysis [26] based on h, m, and n,
one can deduce an upper bound β such that no sender
bin contains more than β items with high probability p.
Let BS[i] and BR[i] denote the items in the sender's and
receiver's ith bucket, respectively.

The receiver R computes a PRF x0 ← F(k, x) for an item
x ∈ BR[i] bucket, or chooses a dummy value for the empty
bin. He then sends all the PRF values to the cloud server
C in order. Since each C's bucket contains exactly one item, it
allows C and S to execute OKVS bin‐by‐bin with a partic-
ular default value v. That is, the vi values must be assigned
bin‐wise, instead of item‐wise as before in Figure 2. By
doing so, the receiver only needs to generate m values vi

from the PRG seeds, which speeds up the receiver's
computation cost.

However, all values in the OKVS data structure should be
pseudorandom. In the unbalanced PSI‐CA, the sender com-
putes encodes a set of points y0i;H y0i

� �

⊕ vb
� �

into OKVS.
Here, y0i ¼ F k; yið Þ for each item yi in the bth bucket, vb is
assigned for that bin, and H is an one‐way hash function.
Upon receiving an OKVS table, the cloud server C decodes it
using the PRF value x0 corresponding to that bin, and then
removes the mask H(x0). We observe that this modification
does not impact any of our applications, since the cloud server
C can learn either vb or random, and all vb values are different
across over bins.

4.3.1 | Correctness and security proofs

Our unbalanced PSI‐CA construction is correct by observa-
tion, except with the negligible probability of Cuckoo hashing
failure. In particular, our constructions fail to be correct if the
receiver is unable to hash its items into m bucket. However, we
note that we can set parameters so that the probability of such
failures is negligible.

The security of our unbalanced PSI‐CA construction
follows straightforwardly from the security of PSI‐CA con-
struction described in Figure 2. Thus, we omit the proof of the
following theorem.

Theorem 2 Given the OKVS functionality described in
Section 3.3 and Cuckoo hashing scheme described in
Section 3.4, the unbalanced PSI‐CA construction of Figure 3
securely implements the PSI‐CA functionality with the pres-
ence of an untrusted semi-honest cloud server C, semi-honest
sender S, and malicious receiver R.

Note that our unbalanced PSI‐CA approach is not
secure against a malicious sender. The sender may map yi
only to a subset of the required bins instead of all of them.
For example, if the sender puts the point y0i;H y0i

� �

⊕ vb
� �

only in one bin BS[b] and the receiver indeed counted y into
the intersection size X ∩ Y. It means that the cloud service
(so is the receiver) puts its query xi in bin BS[b]. This leaks
the information related to other queries that could have been
put in that bin.

4.3.2 | Complexity

We first discuss the computation complexity of our server‐
aided unbalanced PSI‐CA construction.

� The receiver first hashed its n elements into m = O(n) bins
via the Cuckoo hashing scheme with complexity O(nh). The
receiver also needs to runm = O(n) AES to generate the set
of V and compute n PRF values of x0. The receiver
computational complexity is O((h + 1)n)
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� Sender also needs to generate the set of V which costs
m = O(n) AES calls and compute N PRF values y0. The
sender has to hash all its N elements into the same m bins
using those h hash functions, so basicall there are h ⋅ N AES
calls. After the hashing, the sender needs to encode the
items into an OKVS for each of m bins with a cost of
m ⋅ jOKVSj. It should be noted that the computational cost
of encoding/decoding OKVS is much smaller than that
without the hash scheme. The sender computational
complexity is m þ ðh þ 1ÞN þm ⋅ jOKVSj.

� The cloud sever decodes all the OKVS values of x0 with the
cost of m ⋅ jOKVSj

For the communication complexity, the sender sends the
cloud server m OKVS tables, each encodes with O(N/n)
values on average. The receiver receives a κ‐bit PRF key from
the sender, sends m PRF values to the cloud server, and re-
ceives n decoded values from him.

Finally, it is easy to see that our server‐aided unbalanced
PSI‐CA construction is 1‐round.

F I GURE 3 Our server‐aided unbalanced private set intersection cardinality construction
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5 | SecureCT SYSTEM

In this section, we describe the SecureCT system in detail.
The PSI‐CA protocol is used in the query CT process. We also
propose an enhancement for token generation in Section 5.3,
which allows SecureCT to eliminate the replay and relay
attacks.

5.1 | System's overview

We build a digital CT system aiming to identify and alert per-
sons potentially exposed to an infected user. The framework of
our SecureCT system is shown in Figure 4. Bluetooth low
energy (BLE) is used here to detect whether people were in
close proximity. The contact tracing systems comprise apps
running on users' mobile devices, a cloud server, a backend
server, and a health provider. We design this system following
the idea described in Section 2.1.2. The working flow of the
system goes like this. Users' apps use BLE to broadcast and
receive anonymous tokens. Suppose there are two users, Alice
and Bob, in close proximity. Alice stores the token broadcasted
by Bob and vice versa. In this way, each user's app stores a list
of tokens it has received from other users who have been in
close proximity. When Bob is infected and tested positive, he
uploads the seed used to generate the tokens, or all the tokens,
to the backend server. Other users make the query through the
cloud server to determine if they have come in contact with an
infected user. The query is done by running the PSI‐CA
protocol shown in Figure 3 between the cloud server and

backend server. Since Alice was in contact with Bob, she will
be alerted because the intersection between the set of tokens
she has received from other users and the set of tokens of
infected users maintained by the server is non‐zero.

The potential vulnerabilities associated with solely BLE‐

based contact tracing systems, including linkage and replay
attacks, identification of diagnosed users, false reporting and
false encounters, are covered in Section 3.7. Hence we propose
the SecureCT system which is a secure, scalable, and effi-
cient contact tracing system with strong privacy guarantees
which is robust against these vulnerabilities. The framework
takes a step further to aid in the prevention of contacts be-
tween the users and infected users. We also propose a token
generation method containing the GPS information and
timestamps to eliminate the replay and relay attack.

5.2 | End‐to‐end framework

Now we describe our SecureCT system design in detail.
There is an app on the users' mobile devices to broadcast and
receive the token. The cloud server and backend server can be
assumed untrustworthy. The healthcare provider is needed for
diagnosis and certification. There are mainly five phases for
computing as follows:

1. Initialisation: During this phase, the cloud server
randomly chooses a permutation function Π : [N] → [N],
and provides it to the healthcare provider. The healthcare
provider randomly chooses N certificates Ci and gives the

F I GURE 4 Our SecureCT framework. (a) At contact (b) At test (c) Diagnosis token collection (d) User’s query
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backend server Π(Ci) in order. This can be done by
randomly choosing a PRG seed c for generating valid
certificates. The healthcare provider sends the seed to the
backend server, which can locally compute the certificate
Ci ← PRG(c‖i). The backend server generates a public‐
private key pair (pk, sk) and sends the public key to
every user. Each user/phone ui randomly chooses a PRG
seed si which is used to generate the Bluetooth tokens. As
long as the server's configuration does not change, this
phase does not need to be run more than once. Whenever
a new user registers, they only need to generate their own
PRG seed and receive the public key from the backend
server.

2. At Contact: The BLE device is used to exchange tokens
whenever users are in close proximity. The user can
generate the τ tokens per day to be broadcast by using a
PRG as ti,1‖…‖ti,τ = PRG(si‖d), where si is the user's se-
cret PRG seed, d is the current day, τ is an upper bound on
the number of tokens needed for that day. Figure 4a illus-
trates this phase of token exchange and storage. In Sec-
tion 5.3, we propose a method to add GPS information into
the token and, here, we can consider the token is generated
via a PRG function and a corresponding seed.

3. At Test: When a user ui is diagnosed by the healthcare
provider, the healthcare provider computes a certificate
Ci ← PRG(c‖i) using their own secret PRG seed, and gives
it to the user ui. The certificate validates that this user tested
positive for the disease and is used to detect false‐positive
claims if any. Note that before adding the user's tokens to
the infected tokens database, the backend server checks
whether the certificate is valid. If not, the backend server
has permission to ask the cloud server to reveal the identity
(e.g. the IP address) of this nefarious user.

4. Token Collection: Figure 4c describes the process of
collecting diagnosis tokens, which involves the computation
and communication of every user, the cloud server, and the
backend server. The goal is to have the backend server
collect all diagnostic tokens in a privacy‐preserving manner.
This phase contains three steps as follows:
a) At the beginning of the phase, every ith diagnosed user

encrypts their PRG seed si together with their received
certificate Ci using the public key pk of the backend
server as Enc(pk, si‖Ci) and sends it to the cloud server.

b) After receiving the encrypted values from the diagnosed
users, the cloud server permutes and then forwards
them to the backend server.

c) Using its secret key, the backend server decrypts ci-
phertexts to obtain plaintexts as si‖Ci. First, the back-
end server verifies whether Ci is valid. This can be done
as follows. The backend server uses the PRG seed c of
the healthcare provider, generates all possible certifi-
cates as C¼ Ci ← PRGðckiÞ;∀i ∈ ½N �f g, and checks
whether Ci ∈ C. If so, the backend server computes all
diagnosis tokens as ti,1‖…‖ti,n = PRG(si‖d), for every
d in the infection period, and adds them to the list of
diagnosis tokens T. Otherwise, a false‐positive claim is
easily detected. A nefarious actor has been caught by

communicating with the cloud server and could be held
accountable to the law.
The privacy of diagnosed users can be enhanced by
allowingevery user, including those who have not tested
positive yet,to send an encrypted zero value and an
“empty” certificate as Enc(pk, 0‖⊥) to the cloud server
in Step a. Then, at Step c, thebackend server decrypts
ciphertexts and removes all zero values,which belong to
non‐diagnosed users. By doing so, the cloudserver will
not know whether a message it receives has comefrom a
diagnosed user. We only require a random subset of
thenon‐diagnosed users, as large as the set of diagnosed
users, tobe involved.

5. Model Compute and Release: Finally, the backend server
holds the uploaded tokens from infected users T while the
ith user holds the received tokens Ti

�

obtained from the
“contact” phase. The ith user canmake the query by invoking
the unbalanced PSI‐CA protocol described in Figure 3 with
the backend server with the help of the cloud server. The user
plays the role of the receiver R with the input of the token
from other users during the collection phase, the backend
server plays the role of the sender S with the input of tokens
T. If there is a match, the ith user was in close proximity to a
user that has been diagnosed with the disease.

5.3 | Resilient SecureCT with GPS

In this section, we describe a method to modify the
SecureCT system with tokens containing GPS and time-
stamp information. The proposed decentralised BLE‐based
contact tracing scheme in Section 5.2 is used as a baseline. It
becomes robust against a variety of attacks by utilising the GPS
location and timestamp data. As mentioned in Section 3.7,
linkage attacks exploit the fact that tokens broadcast by user
devices can be captured and linked, to reveal the seed used to
generate the tokens and thereby track a diagnosed user retro-
actively when the list of infected users' tokens is available. Also,
replay and relay attack can be prevented.

Rather than only using tokens generated by a PRG with
a seed, GPS and timestamp are also stored in a list when
users are in contact. The app on the user's device continu-
ously broadcasts anonymous tokens TB that are rotated
periodically. The app also listens for any tokens received TR
from other users within a valid range. In addition, the app
logs the location loc and timestamp t of the user periodically.
Suppose Alice and Bob are two users and they are in close
proximity. Alice broadcasts TAlice and Bob broadcasts TBob.
They are at location loc at time t. Both Alice and Bob do the
following:

1. Store H(TR + loc + t) in list LR, where TR is the received
token, H is a public hash function and LR is the list/table of
tokens received. Alice stores H(TBob + loc + t) and Bob
stores H(TAlice + loc + t) in their respective LR.

2. Store H(TB + loc + t) in list LB, where TB is the broadcast
token,H is a hash function and LB is the list/table of tokens
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broadcast. Alice stores H(TAlice + loc + t) and Bob stores
H(TBob + loc + t) in their respective LB.

Suppose Bob is positively diagnosed with the disease. He
will follow the protocol to certificate the test result and upload
all tokens in his list LB to the backend server. Note that these
tokens are the hash of broadcasted Bluetooth token, location,
and timestamp combined so Bob has to upload the entire list
rather than a single seed as mentioned in the SecureCT to-
ken collection phase. The list LB may be prepared in two ways:

� Store H(TB + loc + t) in LB with periodicity of location logs.
� Store {loc, t} entries in a separate table. Compute hash of
TB and {loc, t} entries and prepare LB only when the user is
positively diagnosed.

In the query phase, Alice can invoke the PSI‐CA protocol
to securely match tokens in her list LR with the tokens stored
by the backend server, and receive the number of her potential
exposures.

The list of tokens can be maintained for a certain time
period and then deleted, depending on the infectious period of
the pathogen.

5.3.1 | Security discussion

The fact that location and timestamp features are incorporated
along with the tokens makes it impossible for an adversary,
whether the untrusted server or external, to capture and link

broadcast Bluetooth tokens and attempt to track an infected
user. Replay attacks by attempting to rebroadcast a captured
Bluetooth token at another location to cause false exposure
events are avoided as well since the location mismatch would
result in an entirely different token that would not be uploaded
to the backend server.

5.4 | Hotspots histogram computation

In addition, we proposed a protocol for secure histogram
computation. This protocol determines geographical areas
which are visited at least a threshold number of times by
infected users. With the knowledge of such hotspots, users can
avoid such areas to limit the spread through exposure pre-
vention. The complete protocol specification is described in
Figure 5. The protocol involves three parties—a client, cloud
server, and backend server. The protocol involves each user's
device maintaining a count vector V representing the number
of times a user visited a location. The vector V associates each
index with a predetermined location of interest. Additive secret
sharing is used to distribute shares of V to the servers. The
servers then aggregate the shares received from multiple users.

5.4.1 | Security discussion

From each server's view, it obtains a share of the count vector
from each client. The share reveals nothing about the count
vector, and hence, the server cannot learn an individual user's

F I GURE 5 Hotspots histogram construction
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location trace or visits. The aggregates of shares received from
multiple users are uniformly random. The recombination of
aggregate shares results in the correct aggregate of count
vectors, the intended result of the protocol, available to the
servers and clients. Neither the client nor the servers can
deduce anything more than the histogram of hotspots, as the
aggregate does not reveal the count vector of an individual or
subset of clients.

6 | IMPLEMENTATION AND
EVALUATION

We implement our contact tracing framework SecureCT and
estimate the cost of PSI‐CA based on the cost of polynomial
operations. In this section, we begin with discussing relevant
implementation considerations, algorithm choices, and
parameter values for the protocols described in Sections 5.1.
We then evaluate our SecureCT and report its performance
in Section 6.2.

6.1 | Implementation details

The SecureCT system and the enhancement with GPS
described in Sections 5.2 and 5.3 mainly involve three parties—
client app on the mobile device, the cloud server, and the
backend server. The client functionality for the protocols is
developed in Java as an Android mobile application. The cloud
server and the backend server are implemented in Java using
the Spring framework.

6.1.1 | SecureCT system

We implement our SecureCT for testing and evaluation. The
GPS enhancement is used for the implementation. The
implementation builds on the legacy DP3T [1] Android app
and the server whose code is available on Github.1 The loca-
tion module is inspired with ideas from the Safe Paths
approach [6], whose code is also available on Github.2

In the implementation of SecureCT, the client applica-
tion involves the following major modules:

� Bluetooth server—to broadcast rotating proximity identi-
fiers/tokens, register handshakes.

� Bluetooth client—to scan for nearby devices, receive
rotating proximity identifiers/tokens, and store associated
metadata like signal strength, duration of the handshake.

� Sync—to sync with backend server periodically to get
exposure alerts, either through a download of infected users’
tokens, or using PSI‐CA protocol, as well as to upload
tokens when positively diagnosed with the disease.

� Cryptography—to help with key generation, rotation,
pseudorandom generation (PRG), encryption and hashing.

� Database—to assist in creating, reading, and deleting data in
relevant tables including tokens broadcast, tokens received,
infected users’ tokens, and associated metadata.

� Location—module to periodically log users’ location and get
associated geohashes.

Similar to the Safe Paths approach [6], when a user is at
a given set of coordinates, there is a radius r within which
another user is said to be in close proximity. Points in the
circle of radius r may lie in a neighbouring geohash. Hence,
for a given location, the geohash of the exact coordinates, as
well as a set of neighbouring geohashes covering the circle
of proximity, are determined. This is done by considering
the set of nearby points at a distance r along the cardinal
and ordinal directions and determining the geohash of these
points as well.

The broadcast Bluetooth tokens are rotated every 15 min.
Location logs are recorded every 5 min. When storing the hash
of the received token with geohash and timestamp, AES is
chosen for its efficiency. The resulting hash has 128 bits. The
app syncs with the backend server every 2 h to receive the
tokens of infected users (legacy approach). The app can instead
invoke the PSI‐CA protocol to securely match tokens and
receive exposure alerts. The app deletes tokens broadcast and
receives those that are older than 14 days, which is the infec-
tious period of COVID‐19.

The backend server exposes API endpoints, handling user
requests to fetch and upload infected users' tokens. It main-
tains a database to store tokens, where tokens older than
14 days are deleted.

6.1.2 | Server‐aided PSI‐CA implementation

Amongst different OKVS constructions [24], we choose the
polynomial‐based construction for SecureCT as it is easy to
deploy. We integrate the polynomial‐based OKVS to our
server‐aided PSI‐CA protocol.

Both cloud and backend servers are implemented in Java
using the Spring framework. These servers expose RESTful
APIs to communicate and consume services. The Cloud
server exposes a getMatches API, used by the client device
to provide its list of received tokens and to get count of
matches/exposures in return. The backend server exposes a
getPolynomials API used by the cloud server to provide the
CHT hash functions and get the polynomial coefficients for
each bin of the hash tables. The tokens are 128 bits long.
To support polynomial interpolation and evaluation for such
large data, the Java library implementations for polynomial
interpolation using the Lagrange's algorithm, and polynomial
evaluation using the Neville's algorithm, are modified and
extended to support the Java BigDecimal data type. The
Cuckoo hashing implementation utilises two hash functions
to insert the user uploaded tokens into bins such that there
is at the most one item per bin. The same two hash

1
http://github.com/dp‐3T/dp3t‐sdk‐backend and http://github.com/DP‐3T/dp3t‐sdk‐

android
2
https://github.com/Path‐Check/safeplaces‐dct‐app
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functions are used by the backend server to insert infected
tokens into the simple hash table. AES is used as the hash
function algorithm.

6.2 | Performance

The performance of BT plus GPS‐based contact tracing when
carried out using the legacy approach to determine matches by
downloading infected tokens from the backend server is
shown. The major costs involve storage of tokens, upload and
download of tokens, and time taken for matching tokens to get
exposure alerts.

Parameters: If a user generates a new token every
15 min and runs the proximity tracing process for
approximately 18 h a day, then each user sends 72 distinct,
128‐bit tokens per day. Assuming that the user meets people
and receives the same number of tokens, then each user
device has a total of n = 1008 ≈ 1000 tokens over a 14‐day
period. With 1000 new cases per day, the backend
server will receive N ≈ 1000 � 1000 = 106 new tokens per
day.

Token storage: Storing both broadcast and received
tokens for a 14‐day period requires ≈31 KB on the client
device. Assuming the server stores tokens for 15 days to
accommodate offline clients, the total storage needed is
≈0.25 GB for 1000 daily new cases and ≈1.25 GB for 5000
daily new cases. If the client uses the legacy approach to
download new infected tokens uploaded for that day and
match with received tokens on the device, the client incurs
the download and storage costs.

Testing platform configuration: The client application is
installed as a Java Android app on a Google Pixel 3 device with
Snapdragon 845 processor, 4 GB RAM, and 64 GB storage.
The backend server and cloud server are deployed on an AWS
m5.2�large instance with 8 vCPUs, 32 GB memory, and upto
10 Gbps network bandwidth.

The SecureCT system performance is compared with
other works, including the Google Apple approach, DP3T

[1], PACT [27], Epione [14], Catalic [9], and PSI‐WCA
protocol in [8] with respect to security and privacy guaran-
tees, infrastructure requirements and client side cost in terms
of computation and communication. The comparison is
presented in Table 1. The method of evaluation followed is
as explained in [9], and outlined briefly here. The Google
Apple approach, DP3T, and PACT publicly release tokens of
the diagnosed users, and hence they are all vulnerable to the
identification of the diagnosed user. In the Google Apple
approach, keys or seeds used to generate the tokens are
publicly available, hence allowing an adversary to learn the
travel route of an infected user. Similar to Epione and Catalic,
SecureCT keeps the tokens private and hence secure
against these vulnerabilities.

Each user has k = 144 new tokens per day and receives a
total of n = 211 tokens approximately over the 14‐day infection
window, according to the Google Apple approach. Also, with
K = 215 = 32,768 new cases per day, N = 226 new tokens are
added daily.

In the Google Apple approach, the client device down-
loads 14 K keys per day. Each key is 128 bits long, resulting in
7.34 MB of communication cost. The device needs to compute
14K k = 66, 060, 288 AES operations, taking 0.33 s to com-
plete the contact tracing query on a phone with a 1.99 GHz
processor.

The DP3T approach utilises a Cuckoo filter to share the
tokens of the diagnosed users. They store a 56‐bit fingerprint
with each item. With N = 226 new diagnosed tokens, the
client incurs a communication cost which is 226 � 56
= 469.76 MB when downloading the Cuckoo filter. For
computation, the device computes 2n AES hash functions,
taking 0.02 ms.

For the PACT approach, the client device downloads
226 � 128 (bits) = 1073.74 MB for N = 226 new diagnosis
tokens. Its running time is considered negligible as it does not
carry out any cryptographic operations.

In Epione, private set intersection using Private Informa-
tion Retrieval is used, for which the client device incurs
1.79 MB and takes 394 ms. For Catalic, with 1 backend and 2

TABLE 1 Contact tracing system comparison: Comparison of SecureCT system with other contact tracing systems, in terms of privacy, infrastructure
requirements, runtime and communication cost

Protocols

Linkage attack System req. Client

Travel route Infection status #Rounds #Servers Runtime (ms) Comm.Cost (MB)

Google Apple Yes Yes 1/2 1 331.96 7.34

DP3T No Yes 1/2 1 0.02 469.76

PACT No Yes 1/2 1 Neg 1073.74

Epione No No 2 2 394.01 1.27

Catalic No No 1 3 0.86 0.095

PSI‐WCA No No 1 2 0.064 2.048

SecureCT No No 1 2 208 0.032

Note: #Rounds is the number of interaction rounds between the client and server. Travel route refers to learning the travel route of the diagnosed user, while infection status refers to the
identification of the diagnosed user. Each user has 211 tokens. neg refers to negligible cost.
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cloud servers, each running with a single thread, the protocol
requires 0.86 ms 96 KB.

For the contact tracing system built upon the function
secret sharing the PSI‐WCA protocol in [8], the computation
on the users’ side is from generation n secret sharing point
functions of the cost nλ AES where λ is the security parameter.
The communication cost is nλ|AES|. The estimation runtime
and communication cost are 0.064 ms and 2.048 MB as shown
in Table 1 with λ = 128.

For our SecureCT system using one cloud server and
backend server, the client device has 1 round of interaction
with the cloud server and backend server and is required to
download n results from the cloud server. Thus the commu-
nication cost is 0.032 MB. The client device computes n AES
hash functions to encrypt the tokens and generates β = n
secret values, where β is the number of bins, taking a total of
208 ms.

For the server performance, the major cost for the
servers is the polynomial interpolation. We implement the
polynomial‐based OKVS structure in Java to estimate the
performance of SecureCT if using our PSI‐CA protocol.
Table 2 summarises the time taken by the backend server,
deployed on AWS m5.2� large instance, to generate the
polynomials for all bins, which is the major computation
involved in the PSI‐CA protocol. The polynomial interpo-
lation for separate bins can be parallelised on more threads,
resulting in a speedup for the performance. The code has
been parallelised to run the polynomial interpolation on 7
threads. With 2 hash functions, the number of tokens in the
hash table is doubled. The number of tokens per bin varies
as per the hash function distribution. The performance is
compromised because of the programming language, other
languages like C++ may give a much faster result. A very
similar implementation in C++ is given in Table 2 of [9]. We
use the polynomial‐based OKVS as the pack & unpack al-
gorithm. The concrete running performance for the OKVS
can be found in Appendix A of [24].

Overall, our SecureCT shows the best communication
cost for clients among all the other contact tracing systems
while still having a reasonable runtime on the clients' device.
As for the server, our protocol has a similar performance with
the state‐of‐the‐art Catalic [9] system while their work requires
at least two non‐colluding cloud servers which is a much
stronger system requirement.
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