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Contributions. We tackle this memory challenge by mak-

ing two main contributions described below. The design and

evaluation of our solution are based on a wide range of pop-

ular vision DNNs, tasks, videos, and resource settings that

reflect workloads observed in both our own multi-city pilot

video analytics deployment and in prior studies (§2).

Our first contribution is model merging, a fundamentally

new approach to tackling GPU memory bottlenecks in edge

video analytics that is complementary to time/space-sharing

strategies (§4). With merging, we aim to share architec-

turally identical layers across the models in a workload such

that only one copy of each shared layer (i.e., one set of

weights) must be loaded into GPU memory for all models

that include it. In doing so, merging reduces both the number

of swaps required to run a workload (by reducing the overall

memory footprint) and the cost of each swap (by lowering

the amount of new data to load into GPU memory).

Our merging approach is motivated by our (surprising)

finding that vision DNNs share substantial numbers of lay-

ers that are architecturally (i.e., excluding weights) identical

(§4.1). Such commonalities arise not only between identi-

cal models (100% sharing), but also across model variants

in the same (up to 84.6%) and in different (up to 96.3%)

families. The reason is that, despite their (potentially) differ-

ent goals, vision DNNs ultimately employ traditional com-

puter vision (CV) operations (e.g., convolutions) [22, 64],

operate on unified input formats (e.g., raw frames), and per-

form object-centric tasks (e.g., detection, classification) that

rely on common features such as edges, corners, and mo-

tion [27, 31, 65, 66, 88, 106, 118, 119].

Our analysis reveals that exploiting these architectural

commonalities via merging has the potential to substantially

lower memory usage (17.9-86.4%) and boost accuracy (by

up to 50%) in practice. However, achieving those benefits

is complicated by the fact that edge vision models typically

use different weights for common layers due to training non-

linearities [62, 63] and variance in target tasks, objects, and

videos; and yet, merging requires using unified weights for

each shared layer. Digging deeper, we observe that there

exists an inverse relationship between the number of shared

layers and achieved accuracy during retraining. Intuitively,

this is because for shared layers to use unified weights, other

layers must adjust their weights accordingly during retrain-

ing; the more layers shared, the harder it is for (the fewer)

other layers to find weights to accommodate such constraints

and successfully learn the target functions [23, 70]. Worse,

determining the right layers to merge is further complicated

by the fact that (1) it is difficult to predict precisely how

many layers will be shareable before accuracy violations oc-

cur, and (2) each instance of retraining is costly.

Our second contribution is Gemel, an end-to-end system

that practically incorporates model merging into edge video

analytics by automatically finding and exploiting merg-

ing opportunities across user-registered vision DNNs (§5).

Gemel tackles the above challenges by leveraging two key

observations: (1) vision DNNs routinely exhibit power-law

distributions whereby a small percentage of layers, often to-

wards the end of a model, account for most of the model’s

memory usage, and (2) merging decisions are agnostic to

inter-layer dependencies, and accordingly, a layer’s merge-

ability does not improve if other layers are also shared.

Building on these observations, Gemel follows an incre-

mental merging process whereby it attempts to share one

additional layer during each iteration, and selects new lay-

ers in a memory-forward manner, i.e., prioritizing the (few)

memory-heavy layers. In essence, this approach aims to reap

most of the potential memory savings as quickly, and with

as few shared layers, as possible. Gemel further accelerates

the merging process by taking an adaptive approach to re-

training that detects and leverages signs of early successes

and failures. At the end of each successful iteration, Gemel

ships the resulting merged models to the appropriate edge

servers, and carefully alters the time/space-sharing scheduler

± a merging-aware variant of Nexus [94] in our implemen-

tation ± to maximize merging benefits, i.e., by organizing

merged models to reduce the number of swaps, and the de-

lay for each one. Importantly, Gemel verifies that merging

configurations meet accuracy targets prior to deployment at

the edge, and also periodically tracks data drift.

Results. We evaluated Gemel on a wide range of work-

loads and edge settings (§2, §6.3). Overall, Gemel re-

duces memory requirements by up to 60.7%, which is 5.9-

52.3% more than stem-sharing approaches that are funda-

mentally restricted to sharing contiguous layers from the

start of models (Mainstream [59]), and within 9.3-29.0%

of the theoretical maximum savings (that disregard layer

weights). These memory savings lead to 13-44% fewer

skipped frames and overall accuracy improvements of 8-

39% compared to space/time-sharing GPU schedulers alone

(Nexus [94]). Source code and datasets for Gemel are avail-

able at https://github.com/artpad6/gemel nsdi23.

2 Methodology & Pilot Study

We begin by describing the workloads used in this paper.

They were largely derived from our experience in deploy-

ing a pilot video analytics system in collaboration with two

major US cities (one per coast), for road traffic monitoring.

Models and tasks. In line with other video analytics frame-

works [16,24,38,54], users in our deployment provided pre-

trained models when registering queries to run on different

video feeds. Due to the complexity of model development,

we observe that users opt to leverage existing (popular) ar-

chitectures geared for their target task (e.g., YOLOv3 for ob-

ject detection), and train those models for specific object(s)

of interest and datasets (e.g., detecting vehicles at Main St.)

to generate a unique set of weights. Despite being allowed,

custom architectures were never provided in our deployment.
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Only Alone Only Alternate Both Neither

1 Each Side 1.1% 0.0% 97.6% 1.3%

2 Each Side 3.7% 0.0% 95.0% 1.3%

Random 8.5% 0.0% 90.2% 1.3%

Table 2: Sharing a layer alone vs. alternate approaches (shar-

ing a layer with one or two neighbors on each side, or with 3

random sets of 1-10 layers). Results are % of runs that meet

accuracy targets (aggregated across 80, 90, 95%), and list cases

where the layer alone met but an alternate did not, an alternate

met but the layer alone did not, both met, and neither met.

As shown, we never observe a case where a layer is unable

to meet an accuracy target on its own, but it is able to meet

the accuracy target when some other layers are also shared

(shaded row in Table 2). This is consistent with our finding

that sharing more layers leads to larger accuracy degrada-

tions (Figure 8) since additional constraints are placed on

the weights for those layers, and fewer (unconstrained) non-

shared layers exist to help satisfy the constraints. The impli-

cation is that layers can be considered independently during

merging without harming their potential merging success.

Takeaway. Collectively, these observations motivate an in-

cremental merging process (detailed in §5.3) that attempts

to share one new layer at a time, and prioritizes heavy-

hitter layers that consume the most memory (and are thus the

most fruitful to share). In this manner, memory-heavy layers

are considered in the most favorable settings (i.e., with the

fewest other shared layers), and each increment only mod-

estly adds to the likelihood of not meeting accuracy targets.

Note. Despite arising across our diverse workloads, these

observations are not guarantees. Importantly, violation of

these observations only results in merging delays (inefficien-

cies), but not accuracy breaches; accuracy is explicitly vetted

prior to shipping merged models to the edge for inference.

5.3 Merging Heuristic

Gemel begins by enumerating the layers that appear in a

workload, and annotating each with a listing of which mod-

els the layer appears in (and where) and the total memory it

consumes across the workload; we refer to all appearances

of a given layer as a ‘group.’ Gemel then sorts this list in

descending order of memory consumption, e.g., a 100 MB

layer that appears in 4 models would be earlier than a 120

MB layer that appears 3 times. Thus, memory-heavy groups,

or those that would yield the largest memory savings if suc-

cessfully merged, are towards the start of the list.

Gemel then maintains a running merging configuration,

and simultaneously merges and trains layers across models

in an incremental fashion. To begin, Gemel selects the first

group from the sorted list (i.e., the one that consumes the

most memory in the workload) and attempts to share it across

all of the models in which it appears; this group is added to

the running configuration. While a subset of models could be

considered instead, Gemel aggressively opts to first try shar-

ing across all models in the group, and then to selectively

remove appearances of the layer when the resulting accuracy

is insufficient. The reason is that we did not observe any

model clustering strategies (e.g., based on task) that identi-

fied models consistently unable to share layers.

To retrain and merge the current running configuration,

Gemel selects initial weights for the newly added group from

a random model that includes that layer. We tried selecting

weights from each model (including the one with the highest

accuracy) but found no difference in the # of epochs needed

to meet accuracy. We also tried default initialization tech-

niques (e.g., Kaiming [48]), which led to lower accuracy. Re-

training continues until the merged models each meet their

accuracy targets, or a preset time budget elapses (10 epochs

by default). If retraining is successful, Gemel adds the next

group in the sorted list to the running configuration, and re-

sumes retraining from the weights at the end of the previous

iteration. The generated merged models are sent to the edge

box and incorporated into edge inference (§5.4).

If retraining is not successful at the end of an iteration,

Gemel must decide whether to prune layers from the cur-

rent group and try again, or to discard the group altogether

and move on to the next one in the sorted list. To do this,

Gemel follows a strategy that aims to balance fast memory

savings and avoidance of unsuccessful training rounds, with

priority on the latter since failures can consume 3-10 epochs

(each up to 30 min) and provide no new memory savings.

Specifically, recall that each time a new group is considered,

the number of shared layers in the merging configuration

grows by the size of the group. To counter this ‘additive in-

crease,’ upon unsuccessful retraining, Gemel halves the cur-

rent group, eliminating half of the layer appearances. If the

resulting layer appearances consume more memory than the

next group, Gemel considers those layers; else, Gemel re-

moves the current group from the running policy, and moves

to the next one. In either case, retraining resumes from the

weights at the end of the last successful iteration. We com-

pare against alternate merging heuristics in §6.2.

Accelerating retraining. Each iteration requires Gemel to

run retraining over many epochs, and validate the results

accuracy-wise. To accelerate training and validation, Gemel

takes an adaptive approach. During validation, as per-model

accuracy values approach their targets, it is often unneces-

sary to train further on full epochs of data. Instead, Gemel

reduces the training data once the accuracy is within a pre-

defined threshold of the target. Specifically, Gemel reduces

the amount of data so it is inversely proportional to the gap in

accuracy normalized by the lift since the previous training.

Reducing data on such early success directly translates to

lower training times. Similarly, Gemel detects early failures

by looking at the validation results and removing models that

are not improving at the same pace as the others after some

time (3 epochs by default). We empirically observe that early

success and early failure detection drastically (28% on aver-

age) reduces retraining times.
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