
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.

April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the

20th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

Gemel: Model Merging for Memory-Efficient,
Real-Time Video Analytics at the Edge

Arthi Padmanabhan, UCLA; Neil Agarwal, Princeton University; Anand Iyer

and Ganesh Ananthanarayanan, Microsoft Research; Yuanchao Shu, Zhejiang

University; Nikolaos Karianakis, Microsoft Research; Guoqing Harry Xu, UCLA;

Ravi Netravali, Princeton University

https://www.usenix.org/conference/nsdi23/presentation/padmanabhan

Contributions. We tackle this memory challenge by mak-

ing two main contributions described below. The design and

evaluation of our solution are based on a wide range of pop-

ular vision DNNs, tasks, videos, and resource settings that

reflect workloads observed in both our own multi-city pilot

video analytics deployment and in prior studies (§2).

Our first contribution is model merging, a fundamentally

new approach to tackling GPU memory bottlenecks in edge

video analytics that is complementary to time/space-sharing

strategies (§4). With merging, we aim to share architec-

turally identical layers across the models in a workload such

that only one copy of each shared layer (i.e., one set of

weights) must be loaded into GPU memory for all models

that include it. In doing so, merging reduces both the number

of swaps required to run a workload (by reducing the overall

memory footprint) and the cost of each swap (by lowering

the amount of new data to load into GPU memory).

Our merging approach is motivated by our (surprising)

finding that vision DNNs share substantial numbers of lay-

ers that are architecturally (i.e., excluding weights) identical

(§4.1). Such commonalities arise not only between identi-

cal models (100% sharing), but also across model variants

in the same (up to 84.6%) and in different (up to 96.3%)

families. The reason is that, despite their (potentially) differ-

ent goals, vision DNNs ultimately employ traditional com-

puter vision (CV) operations (e.g., convolutions) [22, 64],

operate on unified input formats (e.g., raw frames), and per-

form object-centric tasks (e.g., detection, classification) that

rely on common features such as edges, corners, and mo-

tion [27, 31, 65, 66, 88, 106, 118, 119].

Our analysis reveals that exploiting these architectural

commonalities via merging has the potential to substantially

lower memory usage (17.9-86.4%) and boost accuracy (by

up to 50%) in practice. However, achieving those benefits

is complicated by the fact that edge vision models typically

use different weights for common layers due to training non-

linearities [62, 63] and variance in target tasks, objects, and

videos; and yet, merging requires using unified weights for

each shared layer. Digging deeper, we observe that there

exists an inverse relationship between the number of shared

layers and achieved accuracy during retraining. Intuitively,

this is because for shared layers to use unified weights, other

layers must adjust their weights accordingly during retrain-

ing; the more layers shared, the harder it is for (the fewer)

other layers to find weights to accommodate such constraints

and successfully learn the target functions [23, 70]. Worse,

determining the right layers to merge is further complicated

by the fact that (1) it is difficult to predict precisely how

many layers will be shareable before accuracy violations oc-

cur, and (2) each instance of retraining is costly.

Our second contribution is Gemel, an end-to-end system

that practically incorporates model merging into edge video

analytics by automatically finding and exploiting merg-

ing opportunities across user-registered vision DNNs (§5).

Gemel tackles the above challenges by leveraging two key

observations: (1) vision DNNs routinely exhibit power-law

distributions whereby a small percentage of layers, often to-

wards the end of a model, account for most of the model’s

memory usage, and (2) merging decisions are agnostic to

inter-layer dependencies, and accordingly, a layer’s merge-

ability does not improve if other layers are also shared.

Building on these observations, Gemel follows an incre-

mental merging process whereby it attempts to share one

additional layer during each iteration, and selects new lay-

ers in a memory-forward manner, i.e., prioritizing the (few)

memory-heavy layers. In essence, this approach aims to reap

most of the potential memory savings as quickly, and with

as few shared layers, as possible. Gemel further accelerates

the merging process by taking an adaptive approach to re-

training that detects and leverages signs of early successes

and failures. At the end of each successful iteration, Gemel

ships the resulting merged models to the appropriate edge

servers, and carefully alters the time/space-sharing scheduler

± a merging-aware variant of Nexus [94] in our implemen-

tation ± to maximize merging benefits, i.e., by organizing

merged models to reduce the number of swaps, and the de-

lay for each one. Importantly, Gemel verifies that merging

configurations meet accuracy targets prior to deployment at

the edge, and also periodically tracks data drift.

Results. We evaluated Gemel on a wide range of work-

loads and edge settings (§2, §6.3). Overall, Gemel re-

duces memory requirements by up to 60.7%, which is 5.9-

52.3% more than stem-sharing approaches that are funda-

mentally restricted to sharing contiguous layers from the

start of models (Mainstream [59]), and within 9.3-29.0%

of the theoretical maximum savings (that disregard layer

weights). These memory savings lead to 13-44% fewer

skipped frames and overall accuracy improvements of 8-

39% compared to space/time-sharing GPU schedulers alone

(Nexus [94]). Source code and datasets for Gemel are avail-

able at https://github.com/artpad6/gemel nsdi23.

2 Methodology & Pilot Study

We begin by describing the workloads used in this paper.

They were largely derived from our experience in deploy-

ing a pilot video analytics system in collaboration with two

major US cities (one per coast), for road traffic monitoring.

Models and tasks. In line with other video analytics frame-

works [16,24,38,54], users in our deployment provided pre-

trained models when registering queries to run on different

video feeds. Due to the complexity of model development,

we observe that users opt to leverage existing (popular) ar-

chitectures geared for their target task (e.g., YOLOv3 for ob-

ject detection), and train those models for specific object(s)

of interest and datasets (e.g., detecting vehicles at Main St.)

to generate a unique set of weights. Despite being allowed,

custom architectures were never provided in our deployment.

974 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Only Alone Only Alternate Both Neither

1 Each Side 1.1% 0.0% 97.6% 1.3%

2 Each Side 3.7% 0.0% 95.0% 1.3%

Random 8.5% 0.0% 90.2% 1.3%

Table 2: Sharing a layer alone vs. alternate approaches (shar-

ing a layer with one or two neighbors on each side, or with 3

random sets of 1-10 layers). Results are % of runs that meet

accuracy targets (aggregated across 80, 90, 95%), and list cases

where the layer alone met but an alternate did not, an alternate

met but the layer alone did not, both met, and neither met.

As shown, we never observe a case where a layer is unable

to meet an accuracy target on its own, but it is able to meet

the accuracy target when some other layers are also shared

(shaded row in Table 2). This is consistent with our finding

that sharing more layers leads to larger accuracy degrada-

tions (Figure 8) since additional constraints are placed on

the weights for those layers, and fewer (unconstrained) non-

shared layers exist to help satisfy the constraints. The impli-

cation is that layers can be considered independently during

merging without harming their potential merging success.

Takeaway. Collectively, these observations motivate an in-

cremental merging process (detailed in §5.3) that attempts

to share one new layer at a time, and prioritizes heavy-

hitter layers that consume the most memory (and are thus the

most fruitful to share). In this manner, memory-heavy layers

are considered in the most favorable settings (i.e., with the

fewest other shared layers), and each increment only mod-

estly adds to the likelihood of not meeting accuracy targets.

Note. Despite arising across our diverse workloads, these

observations are not guarantees. Importantly, violation of

these observations only results in merging delays (inefficien-

cies), but not accuracy breaches; accuracy is explicitly vetted

prior to shipping merged models to the edge for inference.

5.3 Merging Heuristic

Gemel begins by enumerating the layers that appear in a

workload, and annotating each with a listing of which mod-

els the layer appears in (and where) and the total memory it

consumes across the workload; we refer to all appearances

of a given layer as a ‘group.’ Gemel then sorts this list in

descending order of memory consumption, e.g., a 100 MB

layer that appears in 4 models would be earlier than a 120

MB layer that appears 3 times. Thus, memory-heavy groups,

or those that would yield the largest memory savings if suc-

cessfully merged, are towards the start of the list.

Gemel then maintains a running merging configuration,

and simultaneously merges and trains layers across models

in an incremental fashion. To begin, Gemel selects the first

group from the sorted list (i.e., the one that consumes the

most memory in the workload) and attempts to share it across

all of the models in which it appears; this group is added to

the running configuration. While a subset of models could be

considered instead, Gemel aggressively opts to first try shar-

ing across all models in the group, and then to selectively

remove appearances of the layer when the resulting accuracy

is insufficient. The reason is that we did not observe any

model clustering strategies (e.g., based on task) that identi-

fied models consistently unable to share layers.

To retrain and merge the current running configuration,

Gemel selects initial weights for the newly added group from

a random model that includes that layer. We tried selecting

weights from each model (including the one with the highest

accuracy) but found no difference in the # of epochs needed

to meet accuracy. We also tried default initialization tech-

niques (e.g., Kaiming [48]), which led to lower accuracy. Re-

training continues until the merged models each meet their

accuracy targets, or a preset time budget elapses (10 epochs

by default). If retraining is successful, Gemel adds the next

group in the sorted list to the running configuration, and re-

sumes retraining from the weights at the end of the previous

iteration. The generated merged models are sent to the edge

box and incorporated into edge inference (§5.4).

If retraining is not successful at the end of an iteration,

Gemel must decide whether to prune layers from the cur-

rent group and try again, or to discard the group altogether

and move on to the next one in the sorted list. To do this,

Gemel follows a strategy that aims to balance fast memory

savings and avoidance of unsuccessful training rounds, with

priority on the latter since failures can consume 3-10 epochs

(each up to 30 min) and provide no new memory savings.

Specifically, recall that each time a new group is considered,

the number of shared layers in the merging configuration

grows by the size of the group. To counter this ‘additive in-

crease,’ upon unsuccessful retraining, Gemel halves the cur-

rent group, eliminating half of the layer appearances. If the

resulting layer appearances consume more memory than the

next group, Gemel considers those layers; else, Gemel re-

moves the current group from the running policy, and moves

to the next one. In either case, retraining resumes from the

weights at the end of the last successful iteration. We com-

pare against alternate merging heuristics in §6.2.

Accelerating retraining. Each iteration requires Gemel to

run retraining over many epochs, and validate the results

accuracy-wise. To accelerate training and validation, Gemel

takes an adaptive approach. During validation, as per-model

accuracy values approach their targets, it is often unneces-

sary to train further on full epochs of data. Instead, Gemel

reduces the training data once the accuracy is within a pre-

defined threshold of the target. Specifically, Gemel reduces

the amount of data so it is inversely proportional to the gap in

accuracy normalized by the lift since the previous training.

Reducing data on such early success directly translates to

lower training times. Similarly, Gemel detects early failures

by looking at the validation results and removing models that

are not improving at the same pace as the others after some

time (3 epochs by default). We empirically observe that early

success and early failure detection drastically (28% on aver-

age) reduces retraining times.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 981

References

[1] Absolutely everywhere in beijing is now covered by

police video surveillance. https://qz.com/518874/.

[2] Are we ready for ai-powered security cameras? https:

/ / thenewstack . io / are - we - ready - for - ai - powered -

security-cameras/.

[3] AWS Outposts. https://aws.amazon.com/outposts/.

[4] Azure Stack Edge. https://azure.microsoft.com/en-

us/products/azure-stack/edge/.

[5] British transport police: Cctv. http : / / www.

btp.police.uk/advice and information/safety on and

near the railway/cctv.aspx.

[6] Can 30,000 cameras help solve chicago’s crime prob-

lem? https://www.nytimes.com/2018/05/26/us/

chicago-police-surveillance.html.

[7] Edge computing at chick-fil-a. https : / /medium.

com/@cfatechblog/edge-computing-at-chick-fil-a-

7d67242675e2.

[8] NVIDIA Jetson: The AI platform for edge comput-

ing. https://www.nvidia.com/en- us/autonomous-

machines/embedded-systems/.

[9] NVIDIA Multi-Instance GPU . https://www.nvidia.

com/en-us/technologies/multi-instance-gpu/.

[10] Paris hospitals to get 1,500 cctv cameras to combat

violence against staff. https://bit.ly/2OYiBz2.

[11] Powering the edge with ai in an iot world. https://

www.forbes.com/sites/forbestechcouncil/2020/04/06/

powering-the-edge-with-ai-in-an-iot-world/.

[12] Video analytics applications in retail - beyond secu-

rity. https://www.securityinformed.com/insights/co-

2603-ga-co-2214-ga-co-1880-ga.16620.html/.

[13] The vision zero initiative. http : / / www .

visionzeroinitiative.com/.

[14] Cuda multi-process service, April 2021.

[15] Live Video Analytics with Microsoft Rocket for re-

ducing edge compute costs, May 2021.

[16] Microsoft rocket video analytics platform, April 2021.

[17] NVIDIA TensorRT, April 2021.

[18] Pytorch, April 2021.

[19] Pytorch-yolov3. https://github.com/eriklindernoren/

PyTorch-YOLOv3, 2021.

[20] Traffic Video Analytics ± Case Study Report, May

2021.

[21] R. B. , Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu,

N. Karianakis, K. Hsieh, V. Bahl, and I. Stoica. Ekya:

Continuous learning of video analytics models on

edge compute servers. In USENIX NSDI, April 2022.

[22] M. Alam, M. Samad, L. Vidyaratne, A. Glandon,

and K. Iftekharuddin. Survey on deep neural net-

works in speech and vision systems. Neurocomputing,

417:302±321, 2020.

[23] Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and gen-

eralization in overparameterized neural networks, go-

ing beyond two layers. CoRR, abs/1811.04918, 2018.

[24] Amazon. Rekognition. https://aws.amazon.com/

rekognition/.

[25] G. Ananthanarayanan, V. Bahl, L. Cox, A. Crown,

S. Nogbahi, and Y. Shu. Video analytics - killer

app for edge computing. In Proceedings of the 17th

Annual International Conference on Mobile Systems,

Applications, and Services, MobiSys ’19, pages 695±

696, New York, NY, USA, 2019. Association for

Computing Machinery.

[26] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin. Pipeswitch:

Fast pipelined context switching for deep learning ap-

plications. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages

499±514. USENIX Association, Nov. 2020.

[27] S. Brutzer, B. Hoferlin, and G. Heidemann. Evalu-

ation of background subtraction techniques for video

surveillance. In Proceedings of the 2011 IEEE Con-

ference on Computer Vision and Pattern Recognition,

CVPR ’11, pages 1937±1944, Washington, DC, USA,

2011. IEEE Computer Society.

[28] Z. Cai, M. Saberian, and N. Vasconcelos. Learning

complexity-aware cascades for deep pedestrian de-

tection. In Proceedings of the 2015 IEEE Interna-

tional Conference on Computer Vision (ICCV), ICCV

’15, pages 3361±3369, Washington, DC, USA, 2015.

IEEE Computer Society.

[29] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G.

Andersen, M. Kaminsky, and S. R. Dulloor. Scal-

ing video analytics on constrained edge nodes. In 2nd

SysML Conference, 2019.

[30] R. Caruana. Multitask learning. Machine learning,

28(1):41±75, 1997.

986 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[31] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and

H. Balakrishnan. Glimpse: Continuous, real-time ob-

ject recognition on mobile devices. In Proceedings of

the 13th ACM Conference on Embedded Networked

Sensor Systems, pages 155±168, 2015.

[32] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.

Wenisch. The mystery machine: End-to-end perfor-

mance analysis of large-scale internet services. OSDI,

2014.

[33] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.

Gonzalez, and I. Stoica. Clipper: A Low-Latency on-

line prediction serving system. In 14th USENIX Sym-

posium on Networked Systems Design and Implemen-

tation (NSDI 17), pages 613±627, Boston, MA, Mar.

2017. USENIX Association.

[34] S. R. E. Datondji, Y. Dupuis, P. Subirats, and

P. Vasseur. A survey of vision-based traffic monitoring

of road intersections. Trans. Intell. Transport. Sys.,

17(10):2681±2698, Oct. 2016.

[35] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang,

H. Hoffmann, and J. Jiang. Server-driven video

streaming for deep learning inference. In Proceed-

ings of the Annual Conference of the ACM Special

Interest Group on Data Communication on the Ap-

plications, Technologies, Architectures, and Protocols

for Computer Communication, SIGCOMM ’20, page

557±570, New York, NY, USA, 2020. Association for

Computing Machinery.

[36] M. Everingham, L. Gool, C. K. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes

(voc) challenge. Int. J. Comput. Vision, 88(2):303±

338, June 2010.

[37] Google. Google edge network. https://peering.google.

com/#/infrastructure, 2016.

[38] Google. Cloud vision api. https://cloud.google.com/

vision, 2021.

[39] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kauf-

mann, Y. Vigfusson, and J. Mace. Serving dnns like

clockwork: Performance predictability from the bot-

tom up. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages

443±462. USENIX Association, Nov. 2020.

[40] P. Guo, B. Hu, and W. Hu. Mistify: Automating DNN

model porting for on-device inference at the edge. In

18th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 21), pages 705±719.

USENIX Association, Apr. 2021.

[41] P. Guo, B. Hu, and W. Hu. Sommelier: Curating dnn

models for the masses. In Proceedings of the 2022

International Conference on Management of Data,

pages 1876±1890, 2022.

[42] P. Guo and W. Hu. Potluck: Cross-application approx-

imate deduplication for computation-intensive mobile

applications. SIGPLAN Not., 53(2):271±284, mar

2018.

[43] HAILO. Edge AI Box. https://hailo.ai/reference-

platform/edge-ai-box/, 2021.

[44] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. Mp-

dash: Adaptive video streaming over preference-

aware multipath. In Proceedings of the 12th In-

ternational on Conference on Emerging Networking

EXperiments and Technologies, CoNEXT ’16, pages

129±143, New York, NY, USA, 2016. ACM.

[45] S. Han, H. Shen, M. Philipose, S. Agarwal,

A. Wolman, and A. Krishnamurthy. Mcdnn: An

approximation-based execution framework for deep

stream processing under resource constraints. In Pro-

ceedings of the 14th Annual International Conference

on Mobile Systems, Applications, and Services, Mo-

biSys ’16, page 123±136, New York, NY, USA, 2016.

Association for Computing Machinery.

[46] K. He, G. Gkioxari, P. DollÂar, and R. B. Girshick.

Mask R-CNN. CoRR, abs/1703.06870, 2017.

[47] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual

learning for image recognition, 2015.

[48] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep

into rectifiers: Surpassing human-level performance

on imagenet classification. CoRR, abs/1502.01852,

2015.

[49] K. Hsieh, G. Ananthanarayanan, P. Bodik,

S. Venkataraman, P. Bahl, M. Philipose, P. B.

Gibbons, and O. Mutlu. Focus: Querying large

video datasets with low latency and low cost. In 13th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), pages 269±286,

Carlsbad, CA, Oct. 2018. USENIX Association.

[50] C.-C. Huang, G. Jin, and J. Li. Swapadvisor: Pushing

deep learning beyond the gpu memory limit via smart

swapping. In Proceedings of the Twenty-Fifth Interna-

tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, AS-

PLOS ’20, page 1341±1355, New York, NY, USA,

2020. Association for Computing Machinery.

[51] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Wein-

berger. Densely connected convolutional networks,

2016.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 987

[52] J. Hui. Object detection: speed and accuracy compar-

ison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet

and YOLOv3). https://jonathan-hui.medium.com/

object- detection- speed- and- accuracy- comparison-

faster - r - cnn - r - fcn - ssd - and - yolo - 5425656ae359,

2018.

[53] C. Hung, G. Ananthanarayanan, P. Bodik, L. Gol-

ubchik, M. Yu, P. Bahl, and M. Philipose. Videoedge:

Processing camera streams using hierarchical clusters.

In 2018 IEEE/ACM Symposium on Edge Computing

(SEC), pages 115±131, Oct 2018.

[54] IBM. Maximo remote monitoring. https://www.ibm.

com/products/maximo/remote-monitoring, 2021.

[55] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan,

J. Jiang, Y. Shu, V. Bahl, and J. Gonzalez. Spatula: Ef-

ficient cross-camera video analytics on large camera

networks. In ACM/IEEE Symposium on Edge Com-

puting (SEC 2020), November 2020.

[56] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,

W. Xiao, and F. Yang. Analysis of large-scale

multi-tenant GPU clusters for DNN training work-

loads. In 2019 USENIX Annual Technical Conference

(USENIX ATC 19), pages 947±960, Renton, WA, July

2019. USENIX Association.

[57] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee,

W. Xiao, and F. Yang. Multi-tenant gpu clusters for

deep learning workloads: Analysis and implications.

Technical report, Microsoft Research, 2018.

[58] H. Jia, H. Chen, J. Guan, A. S. Shamsabadi, and

N. Papernot. A zest of LIME: Towards architecture-

independent model distances. In International Con-

ference on Learning Representations, 2022.

[59] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang,

I. Misra, M. Kaminsky, M. A. Kozuch, P. Pillai,

D. G. Andersen, and G. R. Ganger. Mainstream: Dy-

namic stem-sharing for multi-tenant video process-

ing. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18), pages 29±42, Boston, MA, July

2018. USENIX Association.

[60] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and

I. Stoica. Chameleon: Scalable adaptation of video

analytics. In Proceedings of the 2018 Conference of

the ACM Special Interest Group on Data Communica-

tion, SIGCOMM ’18, page 253±266, New York, NY,

USA, 2018. Association for Computing Machinery.

[61] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and

M. Zaharia. Noscope: Optimizing neural network

queries over video at scale. Proc. VLDB Endow.,

10(11):1586±1597, Aug. 2017.

[62] K. Kawaguchi, J. Huang, and L. P. Kaelbling. Every

local minimum value is the global minimum value of

induced model in nonconvex machine learning. Neu-

ral Computation, 31(12):2293±2323, Dec 2019.

[63] K. Kawaguchi and L. P. Kaelbling. Elimination

of all bad local minima in deep learning. CoRR,

abs/1901.00279, 2019.

[64] S. H. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S.

Khan, and M. Shah. Transformers in vision: A survey.

CoRR, abs/2101.01169, 2021.

[65] H. Kim, S. Leutenegger, and A. J. Davison. Real-

time 3D reconstruction and 6-DoF tracking with an

event camera. In Computer Vision - ECCV 2016 -

14th European Conference, Amsterdam, The Nether-

lands, October 11-14, 2016, Proceedings, Part VI,

pages 349±364, 2016.

[66] B. Kueng, E. Mueggler, G. Gallego, and D. Scara-

muzza. Low-latency visual odometry using event-

based feature tracks. In 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

pages 16±23, Oct 2016.

[67] A. Kumar, A. Balasubramanian, S. Venkataraman,

and A. Akella. Accelerating deep learning inference

via freezing. In 11th USENIX Workshop on Hot Top-

ics in Cloud Computing (HotCloud 19), Renton, WA,

July 2019. USENIX Association.

[68] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio,

M. Weimer, and M. Interlandi. PRETZEL: Opening

the black box of machine learning prediction serving

systems. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages

611±626, Carlsbad, CA, Oct. 2018. USENIX Associ-

ation.

[69] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A

convolutional neural network cascade for face detec-

tion. In 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 5325±5334,

June 2015.

[70] Y. Li and Y. Liang. Learning overparameterized neu-

ral networks via stochastic gradient descent on struc-

tured data. In Proceedings of the 32nd International

Conference on Neural Information Processing Sys-

tems, NIPS’18, page 8168±8177, Red Hook, NY,

USA, 2018. Curran Associates Inc.

988 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[71] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu,

and R. Netravali. Reducto: On-camera filtering for

resource-efficient real-time video analytics. In Pro-

ceedings of the Annual Conference of the ACM Spe-

cial Interest Group on Data Communication on the

Applications, Technologies, Architectures, and Proto-

cols for Computer Communication, SIGCOMM ’20,

page 359±376, New York, NY, USA, 2020. Associa-

tion for Computing Machinery.

[72] Y. Li, Z. Zhang, B. Liu, Z. Yang, and Y. Liu. Mod-

elDiff: testing-based DNN similarity comparison for

model reuse detection. In Proceedings of the 30th

ACM SIGSOFT International Symposium on Software

Testing and Analysis. ACM, jul 2021.

[73] Z. Li, Y. Shu, G. Ananthanarayanan, L. Shang-

guan, K. Jamieson, and V. Bahl. Spider: A multi-

hop millimeter-wave network for live video analyt-

ics. In ACM/IEEE Symposium on Edge Computing.

ACM/IEEE, December 2021.

[74] T. Lin, P. DollÂar, R. Girshick, K. He, B. Hariharan,

and S. Belongie. Feature pyramid networks for ob-

ject detection. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 936±

944, July 2017.

[75] H. Liu, K. Simonyan, and Y. Yang. DARTS: differ-

entiable architecture search. CoRR, abs/1806.09055,

2018.

[76] X. Liu, P. Ghosh, O. Ulutan, B. S. Manjunath,

K. Chan, and R. Govindan. Caesar: Cross-camera

complex activity recognition. In Proceedings of the

17th Conference on Embedded Networked Sensor Sys-

tems, SenSys ’19, page 232±244. Association for

Computing Machinery, 2019.

[77] Microsoft. Enabling Data Residency and Data Pro-

tection in Microsoft Azure Regions. https://azure.

microsoft.com/en-us/resources/achieving-compliant-

data-residency-and-security-with-azure/, 2021.

[78] S. A. Noghabi, L. Cox, S. Agarwal, and G. Anantha-

narayanan. The emerging landscape of edge com-

puting. GetMobile: Mobile Comp. and Comm.,

23(4):11±20, May 2020.

[79] E. Nygren, R. K. Sitaraman, and J. Sun. The aka-

mai network: A platform for high-performance inter-

net applications. SIGOPS, 2010.

[80] OfCom. Residential landline and fixed broadband

services. https://www.ofcom.org.uk/ data/assets/

pdf file/0015/113640/landline-broadband.pdf, 2017.

[81] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao,

F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke.

Tensorflow-serving: Flexible, high-performance ml

serving, 2017.

[82] A. Padmanabhan, N. Agarwal, A. Iyer, G. Anantha-

narayanan, Y. Shu, N. Karianakis, G. H. Xu, and

R. Netravali. Gemel: Model merging for memory-

efficient, real-time video analytics at the edge, 2022.

[83] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong,

F. Yang, and X. Qian. Capuchin: Tensor-based gpu

memory management for deep learning. In Proceed-

ings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’20, page 891±905.

Association for Computing Machinery, 2020.

[84] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and

J. Dean. Efficient neural architecture search via pa-

rameter sharing. CoRR, abs/1802.03268, 2018.

[85] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos,

and R. A. Popa. Visor: Privacy-preserving video an-

alytics as a cloud service. In 29th USENIX Security

Symposium (USENIX Security 20), pages 1039±1056.

USENIX Association, Aug. 2020.

[86] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith,

and Y. He. Zero-infinity: Breaking the GPU mem-

ory wall for extreme scale deep learning. CoRR,

abs/2104.07857, 2021.

[87] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen.

Deepdecision: A mobile deep learning framework

for edge video analytics. In IEEE INFOCOM 2018

- IEEE Conference on Computer Communications,

pages 1421±1429, 2018.

[88] H. Rebecq, T. Horstschaefer, and D. Scaramuzza.

Real-time visual-inertial odometry for event cam-

eras using keyframe-based nonlinear optimization.

In British Machine Vision Conference 2017, BMVC

2017, London, UK, September 4-7, 2017, 2017.

[89] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis.

INFaaS: Automated model-less inference serving.

In 2021 USENIX Annual Technical Conference

(USENIX ATC 21), pages 397±411. USENIX Asso-

ciation, July 2021.

[90] O. Russakovsky, J. Deng, H. Su, J. Krause,

S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-

Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision

(IJCV), 115(3):211±252, 2015.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 989

[91] S. S. Sarwar, A. Ankit, and K. Roy. Incremental

learning in deep convolutional neural networks using

partial network sharing. IEEE Access, 8:4615±4628,

2019.

[92] J. Sevilla, P. Villalobos, and J. CerÂon. Pa-

rameter counts in Machine Learning. https : / /

www.lesswrong.com/posts/GzoWcYibWYwJva8aL/

parameter-counts-in-machine-learning, 2021.

[93] A. Shah, C. Wu, J. Mohan, V. Chidambaram, and

P. KrÈahenbÈuhl. Memory optimization for deep net-

works. CoRR, abs/2010.14501, 2020.

[94] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-

pose, A. Krishnamurthy, and R. Sundaram. Nexus:

A gpu cluster engine for accelerating dnn-based video

analysis. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles, SOSP ’19, pages

322±337, New York, NY, USA, 2019. Association for

Computing Machinery.

[95] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge

computing: Vision and challenges. IEEE internet of

things journal, 3(5):637±646, 2016.

[96] K. Simonyan and A. Zisserman. Very deep convo-

lutional networks for large-scale image recognition,

2014.

[97] Sony. REA-C1000 Edge Analytics Appliance. https:

//pro.sony/ue US/products/ptz-cameras/rea-c1000-

edge-analytics-appliance, 2021.

[98] F. Sultana, A. Sufian, and P. Dutta. Evolution of

image segmentation using deep convolutional neural

network: A survey. Knowledge-Based Systems, 201-

202:106062, 2020.

[99] X. Sun, R. Panda, R. Feris, and K. Saenko. Adashare:

Learning what to share for efficient deep multi-task

learning. arXiv preprint arXiv:1911.12423, 2019.

[100] A. Suprem, J. Arulraj, C. Pu, and J. Ferreira. Odin:

Automated drift detection and recovery in video ana-

lytics. Proc. VLDB Endow., 13(12):2453±2465, July

2020.

[101] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions, 2014.

[102] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and

Z. Wojna. Rethinking the inception architecture for

computer vision, 2015.

[103] S. Vandenhende, S. Georgoulis, B. De Braban-

dere, and L. Van Gool. Branched multi-task net-

works: deciding what layers to share. arXiv preprint

arXiv:1904.02920, 2019.

[104] L. M. Vaquero and L. Rodero-Merino. Finding your

way in the fog: Towards a comprehensive definition

of fog computing. CCR, 44(5):27±32, Oct. 2014.

[105] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-

wal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,

S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,

B. Reed, and E. Baldeschwieler. Apache hadoop yarn:

Yet another resource negotiator. In Proceedings of the

4th Annual Symposium on Cloud Computing, SOCC

’13, New York, NY, USA, 2013. Association for Com-

puting Machinery.

[106] A. R. Vidal, H. Rebecq, T. Horstschaefer, and

D. Scaramuzza. Ultimate slam? combining events,

images, and IMU for robust visual SLAM in HDR and

high-speed scenarios. IEEE Robotics and Automation

Letters, 3(2):994±1001, 2018.

[107] J. Wang, Z. Feng, S. George, R. Iyengar, P. Pillai, and

M. Satyanarayanan. Towards scalable edge-native ap-

plications. In Proceedings of the 4th ACM/IEEE Sym-

posium on Edge Computing, SEC ’19, page 152±165,

New York, NY, USA, 2019. Association for Comput-

ing Machinery.

[108] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin,

and Y. Jia. Characterizing deep learning training

workloads on alibaba-pai, 2019.

[109] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen.

Bridging the edge-cloud barrier for real-time ad-

vanced vision analytics. In 11th USENIX Workshop

on Hot Topics in Cloud Computing (HotCloud 19),

Renton, WA, July 2019. USENIX Association.

[110] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li,

Y. Feng, W. Lin, and Y. Jia. Antman: Dynamic scaling

on GPU clusters for deep learning. In 14th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 20), pages 533±548, 2020.

[111] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm:

Simple linux utility for resource management. In

JSSPP, 2003.

[112] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How

transferable are features in deep neural networks? In

Proceedings of the 27th International Conference on

Neural Information Processing Systems - Volume 2,

NIPS’14, page 3320±3328, Cambridge, MA, USA,

2014. MIT Press.

990 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[113] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala,

F. Jalali, A. Niakanlahiji, J. Kong, and J. P. Jue. All

one needs to know about fog computing and related

edge computing paradigms: A complete survey. Jour-

nal of Systems Architecture, 98:289±330, 2019.

[114] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri,

O. Rana, A. Anjum, and M. Parashar. Deadline con-

strained video analysis via in-transit computational

environments. IEEE Transactions on Services Com-

puting, 13(1):59±72, 2020.

[115] X. Zeng, B. Fang, H. Shen, and M. Zhang. Dis-

tream: Scaling live video analytics with workload-

adaptive distributed edge intelligence. In Proceedings

of the 18th Conference on Embedded Networked Sen-

sor Systems, SenSys ’20, page 409±421, New York,

NY, USA, 2020. Association for Computing Machin-

ery.

[116] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Phili-

pose, P. Bahl, and M. J. Freedman. Live video analyt-

ics at scale with approximation and delay-tolerance.

In 14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 17), pages 377±

392, Boston, MA, Mar. 2017. USENIX Association.

[117] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson,

and S. Banerjee. The design and implementation of

a wireless video surveillance system. In Proceed-

ings of the 21st Annual International Conference on

Mobile Computing and Networking, MobiCom ’15,

pages 426±438, New York, NY, USA, 2015. ACM.

[118] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-

based feature tracking with probabilistic data asso-

ciation. In 2017 IEEE International Conference on

Robotics and Automation, ICRA 2017, Singapore,

Singapore, May 29 - June 3, 2017, pages 4465±4470,

2017.

[119] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-

based visual inertial odometry. In 2017 IEEE Con-

ference on Computer Vision and Pattern Recognition

(CVPR), pages 5816±5824, July 2017.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 991

	Introduction
	Methodology & Pilot Study
	Motivation
	Memory Pressure in Edge Video Analytics
	Limitations of Existing GPU Memory Management

	Our Approach: Model Merging
	Opportunities
	Challenges

	Gemel Design
	Overview
	Guiding Observations
	Merging Heuristic
	Edge Inference

	Evaluation
	Overall Performance
	Analyzing Gemel
	Generalization Study

	Additional Related Work
	Conclusion
	Appendix
	Implementation Details
	Generalization Workload Query Knobs
	Workload Memory Settings
	Additional Figures

