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ABSTRACT

The development of fully autonomous artificial pancreas systems
(APS) that independently regulate the glucose levels of patients
with Type 1 diabetes has been a long-standing goal of diabetes
research. A significant barrier to progress is the difficulty of testing
new control algorithms and safety features, since clinical trials are
time- and resource-intensive. To facilitate ease of validation, we
propose an open-source APS testbed that can integrate state-of-
the-art APS controllers and glucose simulators with a novel fault
injection engine. The testbed is used to reproduce the blood glucose
trajectories of real patients from a clinical trial conducted over six
months. We evaluate the performance of two closed-loop control
algorithms (OpenAPS and Basal Bolus) using the testbed and find
that these control algorithms are able to keep blood glucose in a
safe region 93.49% and 79.46% of the time on average, compared
with 66.18% of the time for the clinical trial. The fault injection
engine simulates the real recalls and adverse events reported to
the U.S. Food and Drug Administration (FDA) and demonstrates
the resilience of the controller in hazardous conditions. We use
the testbed to generate 2.5 years of synthetic data representing
20 different patient profiles with realistic adverse event scenarios,
which would have been expensive and risky to collect in a clinical
trial.
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1 INTRODUCTION

Medical cyber-physical systems (MCPS) apply computational al-
gorithms to regulate and control complex processes in the human
body. By nature, these are safety-critical systems that directly affect
the health of those who use them, so safety assurance is crucial.
Developing high-fidelity simulators that can capture a variety of pa-
tient profiles and physiological dynamics as well as react to changes
in environment and activity is very important, as it allows consid-
erable research on the safety assurance of MCPS to be performed
at an accelerated rate while avoiding unnecessary risks to patients.
Another essential need is the ability to simulate unexpected events
such as accidental faults, human errors, and attacks that lead to
adverse events. Such closed-loop testbeds can enable verification
of control algorithms and safety features before the additional cost
of clinical trials and reduce the possibility of harm to patients.

Progress has been made in developing these closed-loop testbeds
in many vital areas of MCPS, such as a virtual heart model for pace-
maker verification [73], simulation platforms for robot-assisted
surgery [21, 22], and joint simulation of the cardiovascular system
and pharmacokinetic interactions [8, 18]. Further, validation for not
just medical controllers but also medical protocols for treatment
such as cardiac arrest [37] has proven effective at verifying experi-
mental treatments before it ever reaches actual patients. However,
few closed-loop testbeds for artificial pancreas systems (APS) are
found in the literature [68, 69], not considering variety of patient
profiles and adverse event scenarios.

The APS is a good example of a promising MCPS that the U.S.
Food and Drug Administration (FDA) approved through clinical
trials. Much work has been done in the literature to develop realistic
diabetes simulators [12, 42, 45], design advanced control algorithms
to maintain glucose concentration at healthy levels [4, 63], and con-
duct large-scale clinical trials [15, 32, 43]. However, to the best of
our knowledge, none of these works considered closed-loop inte-
gration of simulators, controllers, and safety mechanisms or the
simulation of adverse events. Control software must be tested in
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a broad spectrum of environments and with a variety of patient
profiles and physiological dynamics in order to be fully verified.
However, it is challenging to identify and tune simulator parameters
that characterize the patient profiles and physiological dynamics
(e.g., meals and physical activity) and generate realistic and repre-
sentative adverse event scenarios.

To fill this gap, this paper presents the design and validation
of an open-source, closed-loop testbed for APS that can integrate
state-of-the-art Type 1 diabetes glucose simulators (e.g., Glucosym
[66] or UVA-Padova [12]) and insulin delivery control software
(e.g., OpenAPS or Basal-Bolus) together with an adverse events
simulator that simulates the typical adverse events reported to the
FDA. We assess the validity of the proposed testbed by comparing
the simulator outputs, controller outputs, and closed-loop outcomes
with the data collected from a clinical trial. An optimization method
is also proposed to reconstruct the blood glucose (BG) traces from
a real-world clinical trial by estimating the patient profiles.

Experimental results show that the integrated glucose simulators
can well reproduce the BG traces in the clinical trial, given the
exact insulin dosages in the trial, and the integrated (open-loop)
controllers keep a low mean squared error with the actual pump
outputs in the clinical trial. The closed-loop simulations can keep
blood glucose in a safe region 93.49% and 79.46% of the time on
average, compared with 66.18% of the time for the clinical trial.
Because the testbed aims to provide a platform to validate different
control algorithms and safety features efficiently, we provide an
easy-to-use fault injection implementation for both simulators and
detail how the simulated faults compare to real fault scenarios in
the device recalls and adverse events reported to the FDA.

The main contributions of the paper are as follows:

e Proposing an open-source closed-loop platform by integrating
classical artificial pancreas (AP) controllers (OpenAPS and Basal-
Bolus) and glucose simulators (Glucosym and UVA-Padova), which
(1) enables experimental evaluation of different controllers, pre-
diction algorithms, and pump functionalities, or other studies on
APS that do not have access to clinical patients; (2) integrates a
fault injection engine to simulate potential safety and security
issues and adverse events in APS caused by accidental software
and hardware faults, human errors, or malicious attacks.

o Developing an optimization method to estimate patient profiles
and reconstruct BG trajectories from clinical studies in simula-
tion, which extends the number of virtual patients in the testbed
and enables the assessment of different algorithms and adverse
event scenarios using existing patient datasets without the need
for doing new clinical trials for each algorithm.

o Simulating example adverse event scenarios involving APS based
on the data reported to the FDA, resulting in the generation of
2.5 years of synthetic data with different adverse event scenarios
for 20 different patient profiles, which would have been very
expensive and risky to collect from real patients or clinical trials.

o Assessing the validity of the APS testbed based on a publicly-
available clinical trial dataset that includes six months of data for
168 diabetic patients. The results show that the APS simulators
and controllers can reasonably approximate the actual glucose
monitor and insulin pump functionalities with an average mean
squared error of 3.97x1073. Also, the closed-loop simulations
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Figure 1: Artificial Pancreas System

show that the integrated OpenAPS and Basal-Bolus controllers
can keep the blood glucose in the target range for at least 11.28%
longer time than the controllers used in clinical trials.

2 BACKGROUND

Artificial Pancreas System (APS): APS is a medical control sys-
tem that regulates the glucose levels of people with Type 1 diabetes
[3], who cannot regulate their own glucose levels because their
pancreas does not produce insulin on its own. An APS is responsi-
ble for regulating Blood Glucose (BG) dynamics by monitoring BG
concentration in the patient’s body through sensor data collected
from a Continuous Glucose Monitor (CGM) and by providing in-
sulin at the correct rate to the patient through an insulin pump. The
control software estimates the current patient status (e.g., glucose
value, insulin on board (IOB)) and calculates the next recommended
insulin rate value to be delivered to the patient. The typical APS is
shown in Fig. 1.

The development of a fully autonomous artificial pancreas sys-
tem has been a long-standing goal of research into Type 1 diabetes.
A milestone was reached when the first commercially available
closed-loop APS that automated basal insulin delivery was approved
by the FDA in 2017 [67]. Nevertheless, it still required user input
to indicate insulin boluses. An ideal controller must be able to ac-
count for unannounced meals and variety of physical activities.
While there are existing algorithms for the detection of meals and
different activities [46], they have yet to be incorporated into APS
controllers.

APS Simulation: The APS controllers and glucose simulators
are fundamentally built on the patient models that reflect how the
body reacts to insulin dosage. Two main patient models available
in the literature that we use in this paper are Glucosym and UVA-
Padova. These simulators use systems of differential equations to
model the change of state variables important to glucose and insulin
kinetics. The equations have a large number of parameters, and
each patient, real or virtual, has a unique set of values for these
parameters, referred to as their patient profile.

The information flow of the APS simulation follows that of the
real APS (see Fig. 1 and Fig. 2). The patient model receives in-
sulin dosage from the controller through the insulin pump, and
the controller receives BG data through the CGM. Different con-
trol algorithms can be implemented without affecting the flow of
information to and from the patient model.

Improved control algorithms have driven recent advances in APS
performance. Traditional control algorithms such as proportional
integral derivative (PID) [60], model predictive control (MPC) [28],
and fuzzy logic [40] have given way to machine learning based tech-
niques such as deep neural networks [14, 38] and reinforcement
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Table 1: Recalls and Adverse Events of APS Devices (2012-2021)
No. Recalls | No. Products | No. Adverse Events
5.25 million 1.62 million

2.45 million

APS Component

Glucose Monitors | 48

1.11 million

Insulin Pumps 44

learning [6, 76], which offer more powerful insights into relation-
ships in sensor data. However, machine learning techniques are
far more intractable than traditional algorithms, so they must be
rigorously tested before deployment to ensure the ML controller
performs accurately in any possible scenario. This gives rise to a
particular need for comprehensive testbeds in APS.

Safety of APS: A shortcoming of current testbeds is a lack
of inclusion of adverse events that happen rarely and outside of
standard system behavior. Safety-critical medical devices such as
APS are often worn by or implanted in the patients, requiring
them to operate on wireless networks and within unpredictable
environments and activity settings, which naturally leads to safety
concerns. For example, a smartphone app was recently developed
for APS to remotely interface with CGM and insulin pump devices
[44]. Several past studies have shown that medical devices (e.g.,
patient monitors, infusion pumps, implantable pacemakers, and
tele-operated surgical robots) are vulnerable to accidental faults
or malicious attacks with potential adverse impacts on patients
[20, 23, 24, 49, 74, 75].

In APS, accidental faults or malicious attacks might happen in
any of the system components [13], including the CGM [9], insulin
pump [64], or the APS controller [34]. Since a variety of CGMs
and insulin pumps are currently available in commercial diabetes
management systems [39], large amounts of real-world data on
faults and security vulnerabilities that led to recalls and adverse
events are available from the public databases for analysis and sim-
ulation. We searched the FDA recalls [57] and manufacturer and
user facility device experience (MAUDE) databases [53] for safety
issues related to APS during the last ten years. As shown in Table 1,
over this period, millions of APS devices were recalled globally, and
millions of adverse events (involving device malfunctions, patient
injuries, or deaths) were reported by diabetic patients, healthcare
professionals, and device manufacturers. This indicates an urgent
need to investigate and improve the safety and dependability of APS
devices. Note that a single recall event corresponding to a software
or hardware defect might lead to the removal or upgrade/repair of
all the devices on the market with that software or hardware com-
ponent. Also, the root causes of adverse events cannot be concluded
solely based on the number of reports and the limited information
available in the public FDA databases [53].

Previous clinical trial studies have also shown the occurrence
of adverse events due to pump infusion set failures, characterized
by patterns of increasing glucose values despite increased insulin
infusion [31]. Examples of adverse events with the risk of harm
to patients are severe hypoglycemia, diabetic ketoacidosis (serum
glucose > 250 mg/dL [72]), serious events related to the device,
hyperglycemia or ketosis without diabetic ketoacidosis [43].

3 DESIGN OF CLOSED-LOOP APS TESTBED

The overall structure of the open-source closed-loop Artificial Pan-
creas System (APS) testbed is shown in Fig. 2. The APS testbed
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Figure 2: Overall Structure of the Closed-loop APS Testbed

includes two state-of-the-art glucose simulators (Glucosym simula-
tor [66] and the UVA-Padova Type 1 Diabetes simulator [12]) and
two control software (OpenAPS and Basal-Bolus), together with
40 virtual patients. The simulator can run with the integrated vir-
tual patient library or by loading actual patient profiles. Similarly,
the testbed also includes an extending interface to the controllers
that can load external control algorithms to help improve or eval-
uate the controllers in commercial insulin pumps. Note that only
one simulator and controller are selected to run the closed-loop
simulation. We also design an adverse event simulator that can
emulate common adverse events in APS, including hypoglycemic
events, hyperglycemic events, diabetic ketoacidosis, or other device
malfunctions (e.g., in CGM sensors, insulin pumps, or controllers),
by injecting faults into the input/output of the control software at
compile time.

The proposed closed-loop APS testbed and generated data traces
are made publicly available to the research community!. The testbed
is implemented with Python programming language at the appli-
cation level, and can be installed on a Ubuntu operating system
(16.04 LTS at least) automatically with an auto-script. This testbed
offers a platform for other researchers to evaluate the performance
of different control algorithms, validate the efficiency or safety of
insulin delivery, develop the safety assurance or monitoring mecha-
nisms for APS, and investigate the application of machine learning
techniques in Type 1 diabetes treatment. The following subsections
present a detailed description of the different components in the
testbed.

3.1 Patient Glucose Simulators

Table 2 shows an overview of the dynamic models used by each
glucose simulator to emulate the effect of insulin dosage on the
body, along with the required parameters for characterizing the
patient profiles to run the simulators.

Glucosym Patient Simulator: The Glucosym simulator is an
open-source human body glucose simulator that was developed
to help build and test automatic insulin delivery systems. This
simulator contains patient models derived from data collected from
10 actual adult patients with Type I diabetes mellitus for 18 + 13.5
years aged 42.5 + 11.5 years, with their glucose dynamics predicted
using a Medtronic virtual patient (MVP) model [45].

!https://github.com/UVA-DSA/APS_TestBed
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Table 2: Summary of Patient Glucose Simulators

X. Zhou, M. Kouzel, H. Ren, H. Alemzadeh.

Table 3: Input Parameters of Glucosym Simulator.

" Cr=Insulin clearance (dL/min).

) 71, T2=Time constant associated with insulin movement between
the SC delivery site and plasma (min).

" Vg=Distribution volume in which glucose equilibrates (dL).

" pz=Delay in insulin action upon increase in plasma insulin (1/min).

" EGP=Endogenous glucose production rate that would be estimated
at zero insulin (mg/dL/min).

" GEZI=Effect of glucose per se to increase glucose uptake into cells
and lower endogenous glucose production at zero insulin (1/min).

" Sy=Baseline sensitivity factor (dl/micro Unit).

" Uj;=Insulin-independent glucose utilization.

" U,4=Insulin-dependent glucose utilization.

" ki1, ky=Rate parameters of glucose kinetics.

! Gpp=Initial amount of glucose in plasma.

The MVP model includes five components that describe the sub-
cutaneous insulin (Is¢) delivery, the plasma insulin concentration
(Ip), the insulin effect (IgpF) to lower blood glucose, the glucose
kinetics, and the glucose appearance following a meal (R4) (see
Eq. 1-5). A three-compartment model [36] was used to identify the
insulin activity after injection to the patient body (see Eq. 1-3). With
the value of glucose appearance given by the two-compartment
model shown in Eq. 5, the Bergman minimal model [1] and Sherwin
model [41] described in Eq.4 were finally used to derive an estima-
tion of the BG value at the next step. These five equations form the
basis of the MVP dynamic model used in the Glucosym simulator
for educating and training individuals with Type 1 diabetes [45]:

o) _ 1 L) - Ise (1) @
dt 72
% = —p2 - (Igrr(t) = Sp - Ip(1)) ®)
dBZ(f) = —(GEZI + Igpp(t)) - BG(t) + EGP + Ra(t)  (4)
Ra(t) = VEH—(I:Z e X

where, GEZI, EGP, S1, C1, p2, 71, 72 are patient-specific parame-
ters, with their explanation presented in Table 2. Other parameters,
such as the input information of insulin doses and sampling fre-
quency, are also needed for running the Glucosym simulator. The
full list of input parameters used in this simulator is listed in Table
3. An implementation of this simulator is publicly available at [66].

Simulator | Dynamic Model E:(t)lf:lt ts Input | Description
Medtronic Virtual Patient (MVP) Model: Insulin dose in units given during the time-step. In the
sub-cutaneous insulin delivery, Cy, 1, Insulin | €25 of a basal (insulin delivery) adjustment, we need to
the plasma insulin concentration, 72, VG, D calculate how much insulin will be given in the time-step

Glucosym the insulin effect, p2, EGP, %€ | defined by "dt" (i.e. how many insulin units will be given
the glucose kinetics, GEZI, Sy in 5 minutes by the set basal profile or temporary basal?).
and the glucose appearance. dt Change in time each step in minutes.
Model of Kovatchev et al. [36]: EGP, Index Current index from the start of the simulation, starting

UVA- plasma concentration, Uii, Uiq, at 0.
Padova glucose fluxes, k1, k2, Time | Total simulation run-time in minutes.

and insulin fluxes. Gpb Basal | The delivery of insulin.

Events are set so that the simulator will consider them

Events .
during the run. The events were sent on-the-go.

UVA-Padova simulator: The other simulator we integrated
into the APS testbed is the UVA-Padova Type 1 Diabetes Simulator,
which FDA has approved for pre-clinical testing on animals. In
this simulator, the model of glucose kinetics is described using the
following equations [12]:

dG:;(t) = EGP - Uj; — k1Gp(t) + k2G¢(t) , Gp(0) = Gpb ©)
t
dG r

dt;(t) = Upg(t) + k1Gp(t) — koG (t) , G¢(0) :prk_; @)

where G (t) represents the amount of glucose in plasma, and G (t)
describes the amount of glucose in the tissue. The blood glucose
level that the CGM samples is given by Equation 8:

Gp(1)
S ®
9
The endogenous glucose production rate, EGP, is modeled as a
function of glucose in plasma, G, (), and delayed insulin action in

G(t) =

the liver, XL (t), as shown in Equation 9.

EGP = kp1 — kpz - Gp(t) — kps - XX (1) (9)

XL (t) is based on insulin concentration in plasma. The insulin

dose delivered to the patient by the pump, ID(?), factors into this

plasma insulin level via the insulin subsystem, which is split into

Ii.(t) and Isc(t). Isc(t) represents the subcutaneous insulin level,
and is impacted by insulin doses as follows:

Table 4: Input Parameters of UVA-Padova Simulator.

Input Description

Initial BG Starting value for patient’s blood glucose
Sensor Settings | Type of CGM sensor and associated settings
Pump Settings
Meals Sequence containing the time and size of each
meal during the simulation

Type of insulin pump and associated settings

Profile Unique parameters for the patient profile
Start Time Beginning time for the simulation
Seed Random number generator seed used for noise

in sensor readings, etc.
Insulin dose to give to the patient for each step

Insulin Dose
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Figure 3: Typical APS Control Structure (Left) and OpenAPS Architecture and Input/Output (Right).

d L

Xd_t(t) = k- (XL(t) — kil (1) - kbilsc(t)) (10)
dlsc(t)
T kscIse(t) +ID(t) (11)

Other variables in the above equations are constant rate param-
eters that are part of the patient profile. This model was improved
in 2013 by implementing the notion that insulin-dependent utiliza-
tion increases non-linearly when glucose decreases below a certain
threshold. Similar to the Glucosym simulator, the UVA-Padova sim-
ulator also uses the minimal glucose model to couple insulin action
on glucose utilization and production. Other parameters required
by the UVA-Padova simulator to run regularly are listed in Table 4.

The two glucose simulators integrated with the APS testbed
could also handle a single meal scenario for the virtual patient
(VP) population, which is challenging for regulating BG in Type
1 diabetes because of unexpected human activities (e.g., meals or
exercises) and patient variability (inter-patient and intra-patient).

3.2 APS Controllers

We integrate two typical control algorithms into the APS testbed: a
PID-based OpenAPS controller and a Basal-Bolus controller.

OpenAPS is an advanced open-source control software used in
the diabetes DIY community [63] that has comparable results with
more rigorously developed and tested AP systems for glycaemic
control [10] and is far safer than standard pump/CGM therapy with
no reports of severe hypo- or hyperglycemic events [62].

Table 5: Input Parameters of OpenAPS.

Input Description

Settings Various settings specific to the pump

BG targets High/low glucose targets set up in the pump
Insulin Sensitiv- | The expected decrease in BG as a result of one
ity unit of insulin

Basal profile The basal rates that are set up in the pump
Preferences User-defined preferences

Pump history Last 5 hours data directly from the pump
Clock Date and time that is set on the pump
Temp_basal Current insulin delivery rate set up in pump
Glucose Glucose level sensed by CGM

The OpenAPS adjusts the insulin delivery of an infusion pump
to automatically keep the BG level of the diabetic patient within a
safe range. The internal architecture and necessary input-output
connections of OpenAPS are shown in Fig. 3. The description of
input parameters is listed in Table 5. The shaded region indicates
the OpenAPS controller, and the "File Storage" section reflects the
behavior of the insulin pump. The functionality of OpenAPS can
be divided into three processes. The Get_profile process accepts
pump settings, target BG (BGT), insulin sensitivity, basal profile,
and preferences as inputs and creates a profile required to calculate
both IOB and recommended insulin delivery. The Calculate_iob
process gets profile, clock, and pump history as input and calculates
IOB. Finally, the Determine_basal process accepts the profile, IOB,
BG, and current insulin delivery (temp_basal) and calculates the
suggested insulin delivery to the patient.

More specifically, OpenAPS collects the previously delivered
insulin amount, combined with the duration of the activity, and it
calculates the net IOB. Using the glucose sensor readings, OpenAPS
then calculates the eventual BG using the following equation [5]:

eventual BG = CurrentBG — ISF * IOB + deviation ~ (12)

Algorithm 1: OpenAPS Algorithms

1 if BG is rising, but eventual BG < BG_Target then

2 ‘ cancel any temp basal;

3 else if BG is falling, but eventual BG > BG_Target then
4 ‘ cancel any temp basal;

5 else if eventualBG > BG_Target then

6 cancel 30min temp basal;
7 if recommended temp>existing basal then
8 ‘ issue the new high temp basal;
9 else if recommended temp<existing basal then
10 ‘ issue the new high temp basal;
1 else if 0 temp for >30m is required then
12 ‘ extend zero temp by 30 min;
13 end
14 end
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Table 6: Input Parameters of Basal-Bolus Controller.

Input Description

CGM Continuous glucose monitor sensor reading
CHO Grams of carbohydrates consumed by patient
(if meal occurred at current step)

BW Patient’s body weight
Uoss Steady state insulin rate per kilogram
CR Insulin to carbs ratio

CF (ISF) | Insulin correlation (sensitivity) factor[27]

where CurrentBG is the current BG, ISF is the Insulin Sensi-
tivity Factor, and Eventual BG is the estimated BG by the end of
current insulin delivery. A deviation term is also added, which is
the difference in BG prediction based on purely insulin activity.

While the current BG is below a threshold value, OpenAPS con-
tinues to issue a temporary zero insulin delivery until the BG rises.
Otherwise, OpenAPS determines whether the glucose values rise
or fall more than expected. In that case, it performs the course of
actions shown in Algorithm 1 [5].

Basal-Bolus regimens are widely used in insulin pumps [16,
17, 43]. Basal provides a constant supply of insulin to bring down
high resting blood glucose levels. Bolus insulin, on the other hand,
has a much more powerful but shorter-lived effect on blood sugar,
making it an ideal supplement for people with diabetes to take after
meals and in moments of extremely high blood sugar.

In the Basal-Bolus (BB) Controller, the constant supply of basal
insulin is determined as shown in Equation 13 [70]:
usss - BW
— (13)

6000
where uygs is the patient’s steady-state insulin rate per kg and BW
is body weight (kg), meaning basal insulin is in units of insulin per
minute. Bolus insulin is determined by Equation 14 when a meal
has occurred (otherwise, no bolus is given) [70]:

Ipasal =

cHo if BG < 150

Tpotus = (14)
CHO , BG - BGT .
CR + —CF if BG > 150

where CHO is the meal’s size in grams of carbohydrates, BG is the
CGM sensor reading, BGT is the target blood glucose of 120, CR is

X. Zhou, M. Kouzel, H. Ren, H. Alemzadeh.

the insulin to carbs ratio, and CF is the correlation factor. The list of
input parameters of the Basal-Bolus controller is also summarized
in Table 6. This bolus is the units of insulin to be delivered, so it
is divided by the length of a simulation step to become units of
insulin per minute.

3.3 Closed Loop Simulation

Fig. 3 shows an example of the closed-loop simulation process by
integrating the Glucosym simulator and OpenAPS control software.
At each control loop, the estimated glucose value is updated and
reported to the APS controller, based on which the controller calcu-
lates the recommended insulin dosage and sends it to the glucose
simulator. The insulin amount is divided by 60 to convert the units
from Unit/hour to Unit/minute to make OpenAPS and Glucosym
work appropriately in a closed loop. The glucose value updates
every five minutes (this is the value normally set by CGM [19]),
and so does the control action.

In the UVA-Padova simulation, the CGM sensor is simulated by
looking up the subcutaneous glucose state variable in the patient
model, applying noise, and clipping it to be within the range of
values an actual CGM sensor can return. Similarly, the simulated
pump receives a basal and a bolus input from the controller, converts
the values into the appropriate units (pmol/min), and clips the
inputs to be within the real range of the insulin pump before sending
the values to the patient model. These calls occur once per minute
(5 times per environment step).

The Basal-Bolus controller uses additional patient-specific pa-
rameters to calculate insulin doses. For the basal insulin, it requires
the patient’s body weight and steady-state insulin rate. For the
bolus dose, it uses the patient’s insulin to carbs ratio (CR) and corre-
lation factor (CF). Both CR and CF can be calculated from the Total
Daily Dose (TDD) of insulin needed, which in turn is calculated
from body weight, as shown in the following equations [12, 61]:

TDD = 0.55 - BW (15)
CR = 450/TDD (16)
CF = 1700/TDD 17)

Table 7: Example Recall Event Reports That Involved Device and Software Malfunctions.

Recall ID Summary Recall Description FDA Determined | Affected
Cause Device
Z-1074-2013 | The blood glucose meter will shut off and revert to set up mode at glucose values above 1023 instead of displaying | Software Design Glucose
EXTREME HIGH GLUCOSE. Monitor
Z-1034-2015 | Calibration factors in the pump are overwritten during a programming step. The force sensor could send a lower signal | Software Design Insulin
value to the pump processor. Pump
7-1734-2015 | If the user does not act upon the E6 and E10 error messages appropriately, insulin delivery will be stopped and, if | Device Design Insulin
unnoticed, may lead to severe hyperglycemia. Pump
Z-1359-2012 | An error was discovered in the blood glucose meter software so that the meter turns itself off when a user attempts to | Software Design Glucose
view results in the "Results Log" when the log has 256 or a multiple of 256 items to display. Monitor
7-0929-2020 | The mobile receiver can become stuck on the initialization screen when powering on. This will cause patients not to | Software Design Glucose
be able to receive glucose values or alerts Monitor
Z-1562-2020 | The company identified potential interference from hydroxyurea. Patient use of the anti-neoplastic drug may falsely | Under Investigation | Gluocse
elevate glucose readings on the CGM. Monitor
7-2165-2020 | After the device has been in use for about two months, data processing in the PDM can be slowed such that the Bolus | Device Design Insulin
Calculator fails to accurately subtract the correct amount of IOB before suggesting a bolus amount. Pump
Z-1772-2021 | Under certain conditions, a software fault is detected when a large bolus delivery at a quick bolus speed completes. If | Software Design Insulin
the user is unaware of the amount of active insulin and delivers an additional bolus, there is a risk of insulin over Pump
delivery.
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Fault Type | Fault Injection Approach Representative FDA Recalls | No. Records | Possible Adverse Events
Z-1074-2013, Z-1034-2015
Truncate Change output variables to zero value [64][13] 71734-201 5’1 ’ 8 Device Malfunction/
Hypoglycemia/
Z-1359-2012, Z-0929-2020
Hold Stop refreshing selected input/output variables [7][13] 71376-201 2’ ’ 7 Hyperglycemia/
I
Add/ Add or subtract an arbitrary or particular value Z-1562-2020, Z-2165-2020, 15 ];2;:1}1//
Sub to a targeted variable [7][47] Z-1772-2021

1 Recall IDs assigned by FDA which are also listed in Table 7.

3.4 Adverse Event Simulator

After a medical device, such as a CGM, insulin pump, or APS, is
distributed in the market, the FDA monitors reports of adverse
events and other problems with the device and, when necessary,
alerts health professionals and the public to ensure proper use of
the device and safety of patients [24, 52]. A recall is a voluntary
action that a device manufacturer takes to correct or remove from
the market any medical devices that violate the laws administrated
by the FDA [51]. Recalls are initiated to protect public health and
well-being from devices that are defective or that present health
risks such as disease, injury, or death. In rare cases, if the company
fails to recall a device that presents a health risk voluntarily, the
FDA might issue a recall order to the manufacturer.

FDA regulations also require manufacturers to notify the FDA
of the adverse events, including device malfunctions [54], serious
injuries [55], and deaths [56] associated with medical devices. Not
all reported adverse events lead to recalls. The device manufacturers
and the FDA regularly monitor the adverse event reports to detect
and correct problems in a timely manner.

Table 7 shows example recall events from the FDA database
where malfunctions of the commercially available APS devices
or software were reported. The analysis and simulation of past
recalls and typical adverse event scenarios can help with improv-
ing the design and test of the APS control algorithms and safety
mechanisms and assessing their effectiveness in preventing similar
adverse events [22, 24, 49]. However, it is too expensive and risky
to simulate the adverse event scenarios with the actual patients and
human operators in the loop due to the unacceptable consequences
of adverse events and potential harm to patients.

To better evaluate the resilience of APS control algorithms against
such safety issues, we design an adverse events simulator inte-
grated with the closed-loop simulation. Specifically, we design a
software-implemented fault injection (SWFI) engine (see Fig. 2) that
can automatically select a set of target locations within the APS
software (e.g., variables representing the CGM sensor values and
insulin dose commands) to inject faults (e.g., a zero value (Truncate),
a previous value (Hold), or an arbitrary error value (Add/Sub)) and
activate them under pre-defined trigger conditions and durations to
mimic the typical adverse events listed in Table 8, including hyper-
glycemic (diabetic ketoacidosis) and hypoglycemic events, device
malfunctions, and patient injuries. The adverse event simulator is
an independent module and can be enabled or disabled manually.

4 VALIDITY ASSESSMENT

Fig. 4 summarizes the overall framework for the validity assessment
of the APS testbed. We assess the validity of our testbed using the
publicly-available international diabetes closed-loop trial dataset

(DCLP3 [43]). This dataset is collected from a clinical trial of a
closed-loop system (t:slim X2 with Control-IQ Technology) [43]
for the six-month treatment of 168 diabetic patients aged 14 to
71 years old, 112 and 56 of which were, respectively, assigned to
the closed-loop group (CLC) and the control group that used a
sensor-augmented pump (SAP).

To be a valid simulator, the generated data should satisfy the
requirements of relevance, completeness, and balance with respect
to real-world data [59]. We ensure relevance and completeness by
generating similar patient profiles to those in the real clinical trials
(with diverse ages, weights, genders, and medical characteristics)
and representative fault/adverse event scenarios that led to FDA
recalls. We measure balance by comparing the percentage of the
time the simulated and real trajectories are within the range or
contain adverse events.

4.1 Glucose Simulation

To assess the validity of the glucose simulators, we randomly choose
five patients’ data (each six-month long) from the DCLP3 dataset
and compare their BG trajectories during the clinical trial with the
simulated BG traces generated using the same insulin inputs from
the clinical records at each time step of the simulation. At each
simulation time step, the insulin rate is set to the corresponding
insulin rate at the same time step in the DCLP3 trial dataset. This
means that any differences between the BG traces calculated during
the simulation and the BG traces measured during the DCLP3 trial
are only due to the differences between the simulator’s patient
model and the actual dynamics of the patient’s body.

However, one challenge in reconstructing each patient’s BG
trajectory is that some parameters for characterizing the patient
profiles in the simulators are not available from the DCLP3 dataset.
To solve this problem, we adopt a system identification method
to estimate the patient model parameters (patient profiles) from
data. We model this problem as the following optimization problem
that minimizes the difference between the BG value trajectory

Glucose Simulation Validation Closed-loop Simulation

Patient Dynamic Blood Glucose Patient QOutcome
Profiles Model Reconstruction | | Simulators Assessment
; ; I .
---DI Linear Regression | | Validation | APS Synthetic
Data
R Controllers Generation

Clinical Trial Open-loop Cottrol Algorithm
Dataset Validation 4

| glucc:se NS Validation

Adverse Event Simulation

Adverse Fault
Pump | L | Event Injection
Histor Parameter Estimation Analysis a—

Figure 4: Overall Framework for Validation of the APS Testbed.
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Figure 5: BG Trajectories of a Clinical Trial and a Simulation Trace.

reconstructed using the derived parameters and the BG trajectory
in the DCLP3 dataset:

param. = argminparam. Z(BGSimulator - BGpcrps)  (18)
D

s.t¥te D
ID(t)Simulator = ID(t)pcLp3 (19)
BGSimulator(t) = f[‘Jaram.(ID(t - l)) (20)

where f(-) represents the patient model shown in Table 2, ID(t) is
the insulin delivery at time step ¢, and D is the dataset for parameter
estimation. We use the linear regression method for parameter
estimation and learning based on ten days of data for each patient
and the remaining 170 days of data is used to evaluate the validity
of the patient simulators. To reduce the number of parameters
that need to be estimated, we also use known metabolic models
to directly calculate some unknown parameters from data. For
example, the insulin sensitivity factor can be solved by the 1700
rule [12] using the following equation:

ISF = 1700/TDD (21)

An example of the BG trajectory using the estimated patient
profile and the insulin sequence recorded in the dataset is shown
in Fig. 5. We see that the reconstructed BG trajectory could ap-
proximate the BG values in the clinical trial well in the first 360
minutes but departs from the original trajectory in the last 360
minutes of simulation due to the unpredictable human activity and
carbohydrate input.

We also present the distribution of BG values reconstructed for
all the patient profiles by both the Glucosym simulator and the UVA-
Padova simulator in comparison to the baseline BG distribution

0-020 Clinical Trial

0.008 - UVA—Padova'SlmuIator
> Glucosym Simulator
7 0.006
C
]
0O 0.004 4

0.002 A

100 200 300 400 500
BG (mg/dL)

Figure 6: Distribution of BG Values: Clinical Trial Data vs. Recon-
structed Data by Each Simulator.

X. Zhou, M. Kouzel, H. Ren, H. Alemzadeh.
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Figure 7: Mean Squared Error of BG values between the Clinical Trial
and Each Simulator.

collected in the DCLP3 dataset in Fig. 6. We see that the Glucosym
simulator reconstructs the BG distribution that approximates the
baseline BG distribution from the clinical trial in both the target
range ([70-180] mg/dL) and the high/low BG ranges. On the other
hand, the UVA-Padova simulator with the estimated patient profiles
generates a BG distribution that is more concentrated between
[100-300] mg/dL and does not simulate the extra high/low BG
ranges well. We observe similar results when measuring the mean
squared error of the BG values estimated for each patient profile
using the simulators, as shown in Fig. 7. This might be because the
UVA-Padova uses a more complex dynamic model, and it is more
challenging to estimate the patient profiles.

Our preliminary results indicate that with well-tuned patient
parameters, the integrated simulators could reproduce similar BG
traces from the clinical trial if undergoing the same experimental
scenario (i.e., same carbohydrate amount, insulin boluses, and basal
pattern, given at the same time). The validity of both simulators
is also attested to by other researchers who have access to actual
patient profiles [12, 45], and the fact that the UVA-Padova simulator
has been approved by FDA for pre-clinical testing on animals.

4.2 APS Control

To assess the validity of the two controllers in the testbed, we feed
the BG values from the clinical trial dataset with the same sampling
frequency to the different controllers in the testbed, running in an
open-loop mode, and compare the output insulin doses calculated
by the controllers against the actual pump outputs from the clinical
trial. We test the validity of both the OpenAPS controller and the
Basal-Bolus controller on the closed-loop group (CLC, 112 patients)
and the group that used a sensor-augmented pump (SAP group, 56
patients) for six months.

As shown in Table 9, we calculate the Mean Squared Error (MSE)
between the simulated controller and the actual pump outputs. We
see that the Basal-Bolus produced a much smaller MSE in the SAP
group than the OpenAPS controller and maintained a lower MSE
in the CLC group. The OpenAPS controller uses a different control
algorithm from the pump used in the clinical trial.

Table 9: Insulin Output Comparison Among Each Controller

Metric | Group | No. Patients | Clinical Trial | OpenAPS | Basal-Bolus
CLC 112 0.067 £ 0.061 | 0.067 + 0.043 | 0.049 + 0.004
Avg+Std SAP 64 0.049 + 0.004 | 0.072 £ 0.045 | 0.049 = 0.004
Avg 168 0.061 £ 0.051 | 0.069 + 0.044 | 0.049 + 0.004
CLC 112 - 4.67E-03 4.01E-03
MSE SAP 64 - 2.51E-03 4.74E-06
Avg 168 - 3.97E-03 2.70E-03
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Table 10: Comparison of the Outcomes between Closed-loop Simulation and the Clinical Trial

Outcome Clinical Trial | Closed-loop1' | Closed-loop2®
Pct. of time with BG in target range of 70 to 180 mg/dL | 66.18+25.56 93.49+10.67 79.46 £ 16.68
Pct. of time with BG>180 mgl/dL 32.07+25.83 3.95+7.34 20.16 £ 16.08
Pct. of time with BG<70 mgl/dL 1.75+4.67 2.56+7.06 0.05 + 0.24

Pct. of time with BG<54 mgl/dL 0.33+1.67 0.12+1.63 0.02 +0.14

! Glucosym simulator with OpenAPS control software.

2 UVA-Padova simulator with Basal-Bolus controller.

An example of the insulin output comparison of both the Ope-
nAPS controller and the Basal-Bolus controller to the control al-
gorithm used by the pump in the clinical trial is shown in Fig. 8.
We observe that the Basal-Bolus controller can well reproduce the
control actions made by the insulin pump used in the clinical trial,
demonstrating the validity of the integrated controller in match-
ing actual insulin pump control actions. On the other hand, the
OpenAPS controller makes different decisions when the predicted
BG is going outside of the target range of 70 t 0180 mg/dL or a
risk of hyperglycemia or hypoglycemia is anticipated. It should
be noted that the OpenAPS controller uses the exact control soft-
ware used by actual diabetic patients. This is consistent with the
observation from previous studies that showed OpenAPS has better
performance than some of the existing commercial pumps [10, 62].

4.3 Closed-loop Simulation

Finally, we run the controllers and simulators together in a closed-
loop mode to assess their performance when automatically regulat-
ing the blood glucose of diabetic patients. For this kind of assess-
ment, we cannot compare the BG readings or the insulin outputs
step by step between the simulation and the clinical trial, as a differ-
ing control action changes the subsequent BG values. Instead, we
adopt a metric that evaluates the primary and secondary outcomes
in diabetes treatment [43] by measuring the percentage of time
that the BG value is inside or outside the target range of 70 to 180
mg/dL.

We randomly select five patients to estimate their profiles and
run both simulators with OpenAPS and Basal-Bolus control soft-
ware, respectively, in a closed-loop using the patient profiles and
other required parameters estimated in Section 4.1-4.2.

Experiment results in Table 10 show that both simulated closed-
loop APS maintain a higher percentage of time with BG inside the
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£ 140 014 o
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0 120 240 360 480 600 720
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Figure 8: An Example of the Insulin Outputs among Each Controller
Given the Same Glucose Readings.

target range than the baseline control system used in the clinical
trial, though the closed-loop system with UVA-Padova simulator
and Basal-Bolus controller has a closer outcome with the clinical
trial as they use a similar control algorithm. We also observe that
the closed-loop system with the Glucosym simulator and OpenAPS
controller software keeps the BG in the target range for 93.49% of
the time on average, demonstrating the advance of this PID-based
control algorithm in diabetes treatment over the regular insulin
therapy with Basal-Bolus control algorithm.

The primary outcomes of each closed-loop APS and the actual
control system in the clinical trial across six months are shown in
Fig. 9. We see that the mean percentage of time with glucose values
within the target range remained at a similar level during the six
months in the clinical trial and both closed-loop simulations.

The closed-loop simulation offers a platform to evaluate or im-
prove different pump algorithms with various patient profiles. For
example, Fig. 10 shows the different decisions made by each control
algorithm at each time step during 12.5 hours of treatment/simulation.
We see that the actual pump from the clinical trial used a fixed basal
rate and thus failed to keep the BG within the target range, resulting
in adverse hyperglycemia. In comparison, the OpenAPS kept the
BG value safe by increasing the insulin infusion when the BG is
predicted to increase quickly and keeping a low insulin dose when
the insulin on board is still at a high level after a large amount
of previous insulin injection. Similarly, the Basal-Bolus controller
with the UVA-Padova simulator issued a higher basal rate to avoid
the BG value increasing too fast. Through such simulation and
comparison, the proposed testbed can help to improve different
control algorithms used in commercial insulin pumps and reduce
patient harm or complaints.

4.4 Adverse Event Simulation

From Table 1 and Table 10, we see that adverse events naturally
happen during clinical trials or home treatment of diabetic patients
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Figure 9: Percentage of Time with BG in the Target Range of 70 to
180 mg/dL for Clinical Train and Two Closed-loop APS.
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Figure 10: Comparison of BG and Insulin Rate between a Clinical Trial and the Closed-loop Simulation.

with APS due to device malfunctions or control software defects.
However, it is expensive or risky for the manufacturers to test
and improve the control algorithms through experiments on actual
patients within realistic environments. The proposed closed-loop
simulation offers an alternative way to evaluate the effectiveness
of different control algorithms with actual patient profiles. How-
ever, the rate of adverse events in the closed-loop simulation is
too low to evaluate the resilience of the target control algorithm
comprehensively. Therefore, the adverse event simulator proposed
in Section 3.4 was used to simulate the following scenarios: hy-
perglycemic adverse events (diabetic ketoacidosis), hypoglycemic
events, malfunction of the device, and injury of patients.

We run 882 simulations (14 fault scenarios, as Add/Sub includes
multiple sub-scenarios, times 9 random start times and durations
times 7 initial BG values), and each simulation includes 12.5 hours
of sensor data and insulin outputs after a meal with different car-
bohydrate inputs. An example of the BG trajectory with a fault
injected starting at 400 minutes to simulate a CGM sensor read-
ing malfunction is shown in Fig. 11. We see that the controller
increased the insulin injection significantly based on the erroneous
CGM readings while the BG value was not high, which further
decreased the BG value under 50 mg/dL and resulted in a severe
hypoglycemic event (marked by the red region in Fig. 11).

Our simulation generates two and a half years of data for 20 dia-
betes patients with different types of adverse events. The percentage

200 = 5 =~
—i— BG Insulin_rate £
g
3 150 108 b1 3
3 2
D ()]
£ 100 - o €
=~ =
C
50 -12
0 200 400 600 800 1000
1.5
Fault injection
104 _X_ Hazards
0.5 A
0.0 + - :
0 200 400 600 800 1000

Time (minute)

Figure 11: An Example of Simulated Hypoglycemic Adverse Event
due to Fault Injection.

10

10

of adverse events in the Glucosym simulator and UVA-Padova sim-
ulator are 33.9% and 39.3%, respectively (see Fig. 12). The generated
synthetic dataset is available on Github [https://github.com/UVA-
DSA/APS_TestBed].

5 RELATED WORK

MCPS Testbeds: Testbeds are used in place of time- and resource-
intensive clinical trials, so development has gravitated towards
systems that affect the most critical organs. For instance, heart
testbeds have been constructed for pacemaker validation [73] and
cardiovascular interventions [71]. Robotic surgery testbeds have
also been made for MRI-guided biopsy [65], endovascular surgery
[29], and reconstructive surgeries in the hand [26]. In-silico trials
of an insulin control algorithm are developed recently to facilitate
research on APS [68, 68]. To the best of our knowledge, this paper
is the first to develop an open-source closed-loop testbed for APS
with real-world controllers, physical simulators of an extended set
of patient profiles, and a realistic adverse event simulator.
Glucose Simulators: The use of simulators is vital in the devel-
opment of APS. A glucose minimum model, a simple mathematical
model for glucose levels, was first proposed in 1970 [36]. The UVA-
Padova simulator [11] was the first APS simulator to be approved
by the FDA in 2008 as a substitute for animal testing. A second sim-
ulation developed by a group at Cambridge University was released
soon after in 2010, specifically targeted toward closed-loop APS
simulation and virtual patient modeling [33]. The UVA-Padova was
updated in 2014 [12] to improve the glucose kinetics model during
hypoglycemia as well as incorporate glucagon kinetics and was
accepted by the FDA as a substitute for certain preclinical trials.
Glucosym, an open-source APS simulator, was released in 2017 to

UVA-Padova 0.2%
Glucosym 0.1%
0.0% 10.0% 20.0% 30.0% 40.0% 50.0%

B H1 ® H2 W H1&H2

Figure 12: Success Rate of the Fault Injection Experiments in Simu-
lating Low BG Hazard (H1) and High BG Hazard (H2), which may
Result in Hypoglycemic or Hyperglycemic Adverse Event.
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widen the availability of closed-loop APS simulation and testing
[66]. In 2019, a group at the Oregon Health and Science University
(OHSU) published an APS simulator based on a similar glucoregu-
latory model as the Cambridge simulator but with different insulin
kinetics [35]. Our work differentiates from these previous works
by integrating two advanced control software with the state-of-
the-art simulators into a closed-loop APS testbed and proposing
an optimization method to estimate real patient profiles for the
closed-loop simulation.

Safety Evaluation of APS: Many previous works have also
focused on evaluating the safety of APS control software, such
as safety and effectiveness evaluation of insulin pump therapy in
children and adolescents with Type 1 diabetes [2, 30], safety and
efficacy review of commercial and emerging hybrid closed-loop
systems [25, 58], generic safety requirements for developing safe
insulin pump software [50] and insulin pump software certification
[48], or safety evaluation of do-it-yourself APS [69]. However, most
of these works relied on high-risk clinical tests or were not able to
assess the resilience of tested insulin pumps against adverse events.
In this paper, we integrate an adverse simulator into the closed-loop
APS testbed, which could help with the evaluation of different APS
control algorithms and safety mechanisms in preventing adverse
events while avoiding actual harm to the patients.

6 CONCLUSION

Using two state-of-the-art glucose simulators, we develop a testbed
for evaluating the performance of the control algorithms and safety
features in APS. We assess the validity of the simulator by reverse-
engineering the profiles of patients in a real clinical trial and demon-
strating that the BG traces generated by each simulator are func-
tionally the same as the BG traces from the trial. We also show the
testbed’s utility for closed-loop simulation by implementing two
control algorithms to regulate the glucose levels of virtual patients.
To push the APS to its limit, we embed a novel fault injection engine
based on real FDA recalls into the testbed so performance can be
evaluated in even the most hostile scenarios.

As research turns toward adopting more advanced data-driven
methods like machine learning for the design of control algorithms,
the proposed testbed and other in silico testing strategies will be
essential for both final product evaluation and sourcing large quan-
tities of high-quality data. This testbed can also be used to further
develop personalized treatments by tailoring control algorithms
to individual or similar patient profiles and to help diabetic pa-
tients understand their treatments by modeling their physiological
dynamics. In future work, our testbed could be improved by devel-
oping more accurate estimation methods for patient profiles and
incorporating meal and activity models and simulators.
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