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ABSTRACT
The development of fully autonomous arti�cial pancreas systems
(APS) that independently regulate the glucose levels of patients
with Type 1 diabetes has been a long-standing goal of diabetes
research. A signi�cant barrier to progress is the di�culty of testing
new control algorithms and safety features, since clinical trials are
time- and resource-intensive. To facilitate ease of validation, we
propose an open-source APS testbed that can integrate state-of-
the-art APS controllers and glucose simulators with a novel fault
injection engine. The testbed is used to reproduce the blood glucose
trajectories of real patients from a clinical trial conducted over six
months. We evaluate the performance of two closed-loop control
algorithms (OpenAPS and Basal Bolus) using the testbed and �nd
that these control algorithms are able to keep blood glucose in a
safe region 93.49% and 79.46% of the time on average, compared
with 66.18% of the time for the clinical trial. The fault injection
engine simulates the real recalls and adverse events reported to
the U.S. Food and Drug Administration (FDA) and demonstrates
the resilience of the controller in hazardous conditions. We use
the testbed to generate 2.5 years of synthetic data representing
20 di�erent patient pro�les with realistic adverse event scenarios,
which would have been expensive and risky to collect in a clinical
trial.
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1 INTRODUCTION
Medical cyber-physical systems (MCPS) apply computational al-
gorithms to regulate and control complex processes in the human
body. By nature, these are safety-critical systems that directly a�ect
the health of those who use them, so safety assurance is crucial.
Developing high-�delity simulators that can capture a variety of pa-
tient pro�les and physiological dynamics as well as react to changes
in environment and activity is very important, as it allows consid-
erable research on the safety assurance of MCPS to be performed
at an accelerated rate while avoiding unnecessary risks to patients.
Another essential need is the ability to simulate unexpected events
such as accidental faults, human errors, and attacks that lead to
adverse events. Such closed-loop testbeds can enable veri�cation
of control algorithms and safety features before the additional cost
of clinical trials and reduce the possibility of harm to patients.

Progress has been made in developing these closed-loop testbeds
in many vital areas of MCPS, such as a virtual heart model for pace-
maker veri�cation [73], simulation platforms for robot-assisted
surgery [21, 22], and joint simulation of the cardiovascular system
and pharmacokinetic interactions [8, 18]. Further, validation for not
just medical controllers but also medical protocols for treatment
such as cardiac arrest [37] has proven e�ective at verifying experi-
mental treatments before it ever reaches actual patients. However,
few closed-loop testbeds for arti�cial pancreas systems (APS) are
found in the literature [68, 69], not considering variety of patient
pro�les and adverse event scenarios.

The APS is a good example of a promising MCPS that the U.S.
Food and Drug Administration (FDA) approved through clinical
trials. Much work has been done in the literature to develop realistic
diabetes simulators [12, 42, 45], design advanced control algorithms
to maintain glucose concentration at healthy levels [4, 63], and con-
duct large-scale clinical trials [15, 32, 43]. However, to the best of
our knowledge, none of these works considered closed-loop inte-
gration of simulators, controllers, and safety mechanisms or the
simulation of adverse events. Control software must be tested in
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a broad spectrum of environments and with a variety of patient
pro�les and physiological dynamics in order to be fully veri�ed.
However, it is challenging to identify and tune simulator parameters
that characterize the patient pro�les and physiological dynamics
(e.g., meals and physical activity) and generate realistic and repre-
sentative adverse event scenarios.

To �ll this gap, this paper presents the design and validation
of an open-source, closed-loop testbed for APS that can integrate
state-of-the-art Type 1 diabetes glucose simulators (e.g., Glucosym
[66] or UVA-Padova [12]) and insulin delivery control software
(e.g., OpenAPS or Basal-Bolus) together with an adverse events
simulator that simulates the typical adverse events reported to the
FDA. We assess the validity of the proposed testbed by comparing
the simulator outputs, controller outputs, and closed-loop outcomes
with the data collected from a clinical trial. An optimization method
is also proposed to reconstruct the blood glucose (BG) traces from
a real-world clinical trial by estimating the patient pro�les.

Experimental results show that the integrated glucose simulators
can well reproduce the BG traces in the clinical trial, given the
exact insulin dosages in the trial, and the integrated (open-loop)
controllers keep a low mean squared error with the actual pump
outputs in the clinical trial. The closed-loop simulations can keep
blood glucose in a safe region 93.49% and 79.46% of the time on
average, compared with 66.18% of the time for the clinical trial.
Because the testbed aims to provide a platform to validate di�erent
control algorithms and safety features e�ciently, we provide an
easy-to-use fault injection implementation for both simulators and
detail how the simulated faults compare to real fault scenarios in
the device recalls and adverse events reported to the FDA.

The main contributions of the paper are as follows:

• Proposing an open-source closed-loop platform by integrating
classical arti�cial pancreas (AP) controllers (OpenAPS and Basal-
Bolus) and glucose simulators (Glucosym andUVA-Padova), which
(1) enables experimental evaluation of di�erent controllers, pre-
diction algorithms, and pump functionalities, or other studies on
APS that do not have access to clinical patients; (2) integrates a
fault injection engine to simulate potential safety and security
issues and adverse events in APS caused by accidental software
and hardware faults, human errors, or malicious attacks.

• Developing an optimization method to estimate patient pro�les
and reconstruct BG trajectories from clinical studies in simula-
tion, which extends the number of virtual patients in the testbed
and enables the assessment of di�erent algorithms and adverse
event scenarios using existing patient datasets without the need
for doing new clinical trials for each algorithm.

• Simulating example adverse event scenarios involving APS based
on the data reported to the FDA, resulting in the generation of
2.5 years of synthetic data with di�erent adverse event scenarios
for 20 di�erent patient pro�les, which would have been very
expensive and risky to collect from real patients or clinical trials.

• Assessing the validity of the APS testbed based on a publicly-
available clinical trial dataset that includes six months of data for
168 diabetic patients. The results show that the APS simulators
and controllers can reasonably approximate the actual glucose
monitor and insulin pump functionalities with an average mean
squared error of 3.97G10�3. Also, the closed-loop simulations

Figure 1: Arti�cial Pancreas System

show that the integrated OpenAPS and Basal-Bolus controllers
can keep the blood glucose in the target range for at least 11.28%
longer time than the controllers used in clinical trials.

2 BACKGROUND
Arti�cial Pancreas System (APS): APS is a medical control sys-
tem that regulates the glucose levels of people with Type 1 diabetes
[3], who cannot regulate their own glucose levels because their
pancreas does not produce insulin on its own. An APS is responsi-
ble for regulating Blood Glucose (BG) dynamics by monitoring BG
concentration in the patient’s body through sensor data collected
from a Continuous Glucose Monitor (CGM) and by providing in-
sulin at the correct rate to the patient through an insulin pump. The
control software estimates the current patient status (e.g., glucose
value, insulin on board (IOB)) and calculates the next recommended
insulin rate value to be delivered to the patient. The typical APS is
shown in Fig. 1.

The development of a fully autonomous arti�cial pancreas sys-
tem has been a long-standing goal of research into Type 1 diabetes.
A milestone was reached when the �rst commercially available
closed-loopAPS that automated basal insulin deliverywas approved
by the FDA in 2017 [67]. Nevertheless, it still required user input
to indicate insulin boluses. An ideal controller must be able to ac-
count for unannounced meals and variety of physical activities.
While there are existing algorithms for the detection of meals and
di�erent activities [46], they have yet to be incorporated into APS
controllers.

APS Simulation: The APS controllers and glucose simulators
are fundamentally built on the patient models that re�ect how the
body reacts to insulin dosage. Two main patient models available
in the literature that we use in this paper are Glucosym and UVA-
Padova. These simulators use systems of di�erential equations to
model the change of state variables important to glucose and insulin
kinetics. The equations have a large number of parameters, and
each patient, real or virtual, has a unique set of values for these
parameters, referred to as their patient pro�le.

The information �ow of the APS simulation follows that of the
real APS (see Fig. 1 and Fig. 2). The patient model receives in-
sulin dosage from the controller through the insulin pump, and
the controller receives BG data through the CGM. Di�erent con-
trol algorithms can be implemented without a�ecting the �ow of
information to and from the patient model.

Improved control algorithms have driven recent advances in APS
performance. Traditional control algorithms such as proportional
integral derivative (PID) [60], model predictive control (MPC) [28],
and fuzzy logic [40] have given way to machine learning based tech-
niques such as deep neural networks [14, 38] and reinforcement
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Table 1: Recalls and Adverse Events of APS Devices (2012�2021)
APS Component No. Recalls No. Products No. Adverse Events
Glucose Monitors 48 5.25 million 1.62 million
Insulin Pumps 44 2.45 million 1.11 million

learning [6, 76], which o�er more powerful insights into relation-
ships in sensor data. However, machine learning techniques are
far more intractable than traditional algorithms, so they must be
rigorously tested before deployment to ensure the ML controller
performs accurately in any possible scenario. This gives rise to a
particular need for comprehensive testbeds in APS.

Safety of APS: A shortcoming of current testbeds is a lack
of inclusion of adverse events that happen rarely and outside of
standard system behavior. Safety-critical medical devices such as
APS are often worn by or implanted in the patients, requiring
them to operate on wireless networks and within unpredictable
environments and activity settings, which naturally leads to safety
concerns. For example, a smartphone app was recently developed
for APS to remotely interface with CGM and insulin pump devices
[44]. Several past studies have shown that medical devices (e.g.,
patient monitors, infusion pumps, implantable pacemakers, and
tele-operated surgical robots) are vulnerable to accidental faults
or malicious attacks with potential adverse impacts on patients
[20, 23, 24, 49, 74, 75].

In APS, accidental faults or malicious attacks might happen in
any of the system components [13], including the CGM [9], insulin
pump [64], or the APS controller [34]. Since a variety of CGMs
and insulin pumps are currently available in commercial diabetes
management systems [39], large amounts of real-world data on
faults and security vulnerabilities that led to recalls and adverse
events are available from the public databases for analysis and sim-
ulation. We searched the FDA recalls [57] and manufacturer and
user facility device experience (MAUDE) databases [53] for safety
issues related to APS during the last ten years. As shown in Table 1,
over this period, millions of APS devices were recalled globally, and
millions of adverse events (involving device malfunctions, patient
injuries, or deaths) were reported by diabetic patients, healthcare
professionals, and device manufacturers. This indicates an urgent
need to investigate and improve the safety and dependability of APS
devices. Note that a single recall event corresponding to a software
or hardware defect might lead to the removal or upgrade/repair of
all the devices on the market with that software or hardware com-
ponent. Also, the root causes of adverse events cannot be concluded
solely based on the number of reports and the limited information
available in the public FDA databases [53].

Previous clinical trial studies have also shown the occurrence
of adverse events due to pump infusion set failures, characterized
by patterns of increasing glucose values despite increased insulin
infusion [31]. Examples of adverse events with the risk of harm
to patients are severe hypoglycemia, diabetic ketoacidosis (serum
glucose > 250 <6/3! [72]), serious events related to the device,
hyperglycemia or ketosis without diabetic ketoacidosis [43].

3 DESIGN OF CLOSED-LOOP APS TESTBED
The overall structure of the open-source closed-loop Arti�cial Pan-
creas System (APS) testbed is shown in Fig. 2. The APS testbed

Figure 2: Overall Structure of the Closed-loop APS Testbed

includes two state-of-the-art glucose simulators (Glucosym simula-
tor [66] and the UVA-Padova Type 1 Diabetes simulator [12]) and
two control software (OpenAPS and Basal-Bolus), together with
40 virtual patients. The simulator can run with the integrated vir-
tual patient library or by loading actual patient pro�les. Similarly,
the testbed also includes an extending interface to the controllers
that can load external control algorithms to help improve or eval-
uate the controllers in commercial insulin pumps. Note that only
one simulator and controller are selected to run the closed-loop
simulation. We also design an adverse event simulator that can
emulate common adverse events in APS, including hypoglycemic
events, hyperglycemic events, diabetic ketoacidosis, or other device
malfunctions (e.g., in CGM sensors, insulin pumps, or controllers),
by injecting faults into the input/output of the control software at
compile time.

The proposed closed-loop APS testbed and generated data traces
aremade publicly available to the research community1. The testbed
is implemented with Python programming language at the appli-
cation level, and can be installed on a Ubuntu operating system
(16.04 LTS at least) automatically with an auto-script. This testbed
o�ers a platform for other researchers to evaluate the performance
of di�erent control algorithms, validate the e�ciency or safety of
insulin delivery, develop the safety assurance or monitoring mecha-
nisms for APS, and investigate the application of machine learning
techniques in Type 1 diabetes treatment. The following subsections
present a detailed description of the di�erent components in the
testbed.

3.1 Patient Glucose Simulators
Table 2 shows an overview of the dynamic models used by each
glucose simulator to emulate the e�ect of insulin dosage on the
body, along with the required parameters for characterizing the
patient pro�les to run the simulators.

Glucosym Patient Simulator: The Glucosym simulator is an
open-source human body glucose simulator that was developed
to help build and test automatic insulin delivery systems. This
simulator contains patient models derived from data collected from
10 actual adult patients with Type I diabetes mellitus for 18 ± 13.5
years aged 42.5 ± 11.5 years, with their glucose dynamics predicted
using a Medtronic virtual patient (MVP) model [45].
1https://github.com/UVA-DSA/APS_TestBed
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Table 2: Summary of Patient Glucose Simulators

Simulator Dynamic Model Patient
Pro�les

Glucosym

Medtronic Virtual Patient (MVP) Model:
C� , g1,
g2, V⌧ ,
p2, ⇢⌧% ,
⌧⇢/� , S�

sub-cutaneous insulin delivery,
the plasma insulin concentration,
the insulin e�ect,
the glucose kinetics,
and the glucose appearance.

UVA-
Padova

Model of Kovatchev et al. [36]: ⇢⌧% ,
*88 ,*83 ,
:1, :2,
⌧?1

plasma concentration,
glucose �uxes,
and insulin �uxes.

* C�=Insulin clearance (dL/min).
* g1, g2=Time constant associated with insulin movement between
the SC delivery site and plasma (min).

* V⌧=Distribution volume in which glucose equilibrates (dL).
* p2=Delay in insulin action upon increase in plasma insulin (1/min).
* EGP=Endogenous glucose production rate that would be estimated
at zero insulin (mg/dL/min).

* GEZI=E�ect of glucose per se to increase glucose uptake into cells
and lower endogenous glucose production at zero insulin (1/min).

* S�=Baseline sensitivity factor (dl/micro Unit).
* *88=Insulin-independent glucose utilization.
* *83=Insulin-dependent glucose utilization.
* :1, :2=Rate parameters of glucose kinetics.
* ⌧?1=Initial amount of glucose in plasma.

The MVP model includes �ve components that describe the sub-
cutaneous insulin (�(⇠ ) delivery, the plasma insulin concentration
(�% ), the insulin e�ect (�⇢�� ) to lower blood glucose, the glucose
kinetics, and the glucose appearance following a meal ('�) (see
Eq. 1-5). A three-compartment model [36] was used to identify the
insulin activity after injection to the patient body (see Eq. 1-3). With
the value of glucose appearance given by the two-compartment
model shown in Eq. 5, the Bergman minimal model [1] and Sherwin
model [41] described in Eq.4 were �nally used to derive an estima-
tion of the BG value at the next step. These �ve equations form the
basis of the MVP dynamic model used in the Glucosym simulator
for educating and training individuals with Type 1 diabetes [45]:

3�(⇠ (C)
3C

= � 1
g1

·
✓
�(⇠ (C) �

�⇡ (C)
⇠�

◆
(1)

3�% (C)
3C

= � 1
g2

· (�% (C) � �(⇠ (C)) (2)

3�⇢�� (C)
3C

= �?2 · (�⇢�� (C) � (� · �% (C)) (3)

3⌫⌧ (C)
3C

= �(⌧⇢/� + �⇢�� (C)) · ⌫⌧ (C) + ⇢⌧% + '� (C) (4)

'� (C) =
⇠� (C)
+⌧ · g<2 · C · 4�

1
g< (5)

where, ⌧⇢/� , ⇢⌧%, (� ,⇠� , ?2, g1, g2 are patient-speci�c parame-
ters, with their explanation presented in Table 2. Other parameters,
such as the input information of insulin doses and sampling fre-
quency, are also needed for running the Glucosym simulator. The
full list of input parameters used in this simulator is listed in Table
3. An implementation of this simulator is publicly available at [66].

Table 3: Input Parameters of Glucosym Simulator.

Input Description

Insulin
Dose

Insulin dose in units given during the time-step. In the
case of a basal (insulin delivery) adjustment, we need to
calculate how much insulin will be given in the time-step
de�ned by "dt" (i.e. how many insulin units will be given
in 5 minutes by the set basal pro�le or temporary basal?).

dt Change in time each step in minutes.

Index Current index from the start of the simulation, starting
at 0.

Time Total simulation run-time in minutes.
Basal The delivery of insulin.

Events Events are set so that the simulator will consider them
during the run. The events were sent on-the-go.

UVA-Padova simulator: The other simulator we integrated
into the APS testbed is the UVA-Padova Type 1 Diabetes Simulator,
which FDA has approved for pre-clinical testing on animals. In
this simulator, the model of glucose kinetics is described using the
following equations [12]:

3⌧? (C)
3C

= ⇢⌧% �*88 � :1⌧? (C) + :2⌧C (C) , ⌧? (0) = ⌧?1 (6)

3⌧C (C)
3C

= *83 (C) + :1⌧? (C) � :2⌧C (C) , ⌧C (0) = ⌧?1
:1
:2

(7)

where⌧? (C) represents the amount of glucose in plasma, and⌧? (C)
describes the amount of glucose in the tissue. The blood glucose
level that the CGM samples is given by Equation 8:

⌧ (C) =
⌧? (C)
+6

(8)

The endogenous glucose production rate, ⇢⌧% , is modeled as a
function of glucose in plasma, ⌧? (C), and delayed insulin action in
the liver, -! (C), as shown in Equation 9.

⇢⌧% = :?1 � :?2 ·⌧? (C) � :?3 · -! (C) (9)
-! (C) is based on insulin concentration in plasma. The insulin

dose delivered to the patient by the pump, �⇡ (C), factors into this
plasma insulin level via the insulin subsystem, which is split into
�: (C) and �B2 (C). �B2 (C) represents the subcutaneous insulin level,
and is impacted by insulin doses as follows:

Table 4: Input Parameters of UVA-Padova Simulator.

Input Description
Initial BG Starting value for patient’s blood glucose
Sensor Settings Type of CGM sensor and associated settings
Pump Settings Type of insulin pump and associated settings
Meals Sequence containing the time and size of each

meal during the simulation
Pro�le Unique parameters for the patient pro�le
Start Time Beginning time for the simulation
Seed Random number generator seed used for noise

in sensor readings, etc.
Insulin Dose Insulin dose to give to the patient for each step
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Figure 3: Typical APS Control Structure (Left) and OpenAPS Architecture and Input/Output (Right).

3-! (C)
3C

= �:8 ·
⇣
-! (C) � :08 �: (C) � :18 �B2 (C)

⌘
(10)

3�B2 (C)
3C

= :B2 �B2 (C) + �⇡ (C) (11)

Other variables in the above equations are constant rate param-
eters that are part of the patient pro�le. This model was improved
in 2013 by implementing the notion that insulin-dependent utiliza-
tion increases non-linearly when glucose decreases below a certain
threshold. Similar to the Glucosym simulator, the UVA-Padova sim-
ulator also uses the minimal glucose model to couple insulin action
on glucose utilization and production. Other parameters required
by the UVA-Padova simulator to run regularly are listed in Table 4.

The two glucose simulators integrated with the APS testbed
could also handle a single meal scenario for the virtual patient
(VP) population, which is challenging for regulating BG in Type
1 diabetes because of unexpected human activities (e.g., meals or
exercises) and patient variability (inter-patient and intra-patient).

3.2 APS Controllers
We integrate two typical control algorithms into the APS testbed: a
PID-based OpenAPS controller and a Basal-Bolus controller.

OpenAPS is an advanced open-source control software used in
the diabetes DIY community [63] that has comparable results with
more rigorously developed and tested AP systems for glycaemic
control [10] and is far safer than standard pump/CGM therapy with
no reports of severe hypo- or hyperglycemic events [62].

Table 5: Input Parameters of OpenAPS.

Input Description
Settings Various settings speci�c to the pump
BG targets High/low glucose targets set up in the pump
Insulin Sensitiv-
ity

The expected decrease in BG as a result of one
unit of insulin

Basal pro�le The basal rates that are set up in the pump
Preferences User-de�ned preferences
Pump history Last 5 hours data directly from the pump
Clock Date and time that is set on the pump
Temp_basal Current insulin delivery rate set up in pump
Glucose Glucose level sensed by CGM

The OpenAPS adjusts the insulin delivery of an infusion pump
to automatically keep the BG level of the diabetic patient within a
safe range. The internal architecture and necessary input-output
connections of OpenAPS are shown in Fig. 3. The description of
input parameters is listed in Table 5. The shaded region indicates
the OpenAPS controller, and the "File Storage" section re�ects the
behavior of the insulin pump. The functionality of OpenAPS can
be divided into three processes. The Get_pro�le process accepts
pump settings, target BG (BGT), insulin sensitivity, basal pro�le,
and preferences as inputs and creates a pro�le required to calculate
both IOB and recommended insulin delivery. The Calculate_iob
process gets pro�le, clock, and pump history as input and calculates
IOB. Finally, the Determine_basal process accepts the pro�le, IOB,
BG, and current insulin delivery (temp_basal) and calculates the
suggested insulin delivery to the patient.

More speci�cally, OpenAPS collects the previously delivered
insulin amount, combined with the duration of the activity, and it
calculates the net IOB. Using the glucose sensor readings, OpenAPS
then calculates the eventual BG using the following equation [5]:

4E4=CD0;⌫⌧ = ⇠DAA4=C⌫⌧ � �(� ⇤ �$⌫ + 34E80C8>= (12)

Algorithm 1: OpenAPS Algorithms
1 if BG is rising, but 4E4=CD0;⌫⌧ < ⌫⌧_)0A64C then
2 cancel any temp basal;
3 else if BG is falling, but 4E4=CD0;⌫⌧ > ⌫⌧_)0A64C then
4 cancel any temp basal;
5 else if 4E4=CD0;⌫⌧ > ⌫⌧_)0A64C then
6 cancel 30min temp basal;
7 if recommended temp>existing basal then
8 issue the new high temp basal;
9 else if recommended temp<existing basal then
10 issue the new high temp basal;
11 else if 0 temp for >30m is required then
12 extend zero temp by 30 min;
13 end
14 end
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Table 6: Input Parameters of Basal-Bolus Controller.

Input Description
CGM Continuous glucose monitor sensor reading
CHO Grams of carbohydrates consumed by patient

(if meal occurred at current step)
BW Patient’s body weight
D2BB Steady state insulin rate per kilogram
CR Insulin to carbs ratio
CF (ISF) Insulin correlation (sensitivity) factor[27]

where ⇠DAA4=C⌫⌧ is the current BG, �(� is the Insulin Sensi-
tivity Factor, and ⇢E4=CD0;⌫⌧ is the estimated BG by the end of
current insulin delivery. A deviation term is also added, which is
the di�erence in BG prediction based on purely insulin activity.

While the current BG is below a threshold value, OpenAPS con-
tinues to issue a temporary zero insulin delivery until the BG rises.
Otherwise, OpenAPS determines whether the glucose values rise
or fall more than expected. In that case, it performs the course of
actions shown in Algorithm 1 [5].

Basal-Bolus regimens are widely used in insulin pumps [16,
17, 43]. Basal provides a constant supply of insulin to bring down
high resting blood glucose levels. Bolus insulin, on the other hand,
has a much more powerful but shorter-lived e�ect on blood sugar,
making it an ideal supplement for people with diabetes to take after
meals and in moments of extremely high blood sugar.

In the Basal-Bolus (BB) Controller, the constant supply of basal
insulin is determined as shown in Equation 13 [70]:

�10B0; =
D2BB · ⌫,

6000
(13)

where D2BB is the patient’s steady-state insulin rate per kg and ⌫,
is body weight (kg), meaning basal insulin is in units of insulin per
minute. Bolus insulin is determined by Equation 14 when a meal
has occurred (otherwise, no bolus is given) [70]:

�1>;DB =

8>><
>>:
⇠�$
⇠' if ⌫⌧  150

⇠�$
⇠' + ⌫⌧ � ⌫⌧)

⇠� if ⌫⌧ > 150
(14)

where ⇠�$ is the meal’s size in grams of carbohydrates, ⌫⌧ is the
CGM sensor reading, ⌫⌧) is the target blood glucose of 120, ⇠' is

the insulin to carbs ratio, and⇠� is the correlation factor. The list of
input parameters of the Basal-Bolus controller is also summarized
in Table 6. This bolus is the units of insulin to be delivered, so it
is divided by the length of a simulation step to become units of
insulin per minute.

3.3 Closed Loop Simulation
Fig. 3 shows an example of the closed-loop simulation process by
integrating the Glucosym simulator and OpenAPS control software.
At each control loop, the estimated glucose value is updated and
reported to the APS controller, based on which the controller calcu-
lates the recommended insulin dosage and sends it to the glucose
simulator. The insulin amount is divided by 60 to convert the units
from*=8C/⌘>DA to*=8C/<8=DC4 to make OpenAPS and Glucosym
work appropriately in a closed loop. The glucose value updates
every �ve minutes (this is the value normally set by CGM [19]),
and so does the control action.

In the UVA-Padova simulation, the CGM sensor is simulated by
looking up the subcutaneous glucose state variable in the patient
model, applying noise, and clipping it to be within the range of
values an actual CGM sensor can return. Similarly, the simulated
pump receives a basal and a bolus input from the controller, converts
the values into the appropriate units (?<>;/<8=), and clips the
inputs to bewithin the real range of the insulin pump before sending
the values to the patient model. These calls occur once per minute
(5 times per environment step).

The Basal-Bolus controller uses additional patient-speci�c pa-
rameters to calculate insulin doses. For the basal insulin, it requires
the patient’s body weight and steady-state insulin rate. For the
bolus dose, it uses the patient’s insulin to carbs ratio (CR) and corre-
lation factor (CF). Both CR and CF can be calculated from the Total
Daily Dose (TDD) of insulin needed, which in turn is calculated
from body weight, as shown in the following equations [12, 61]:

)⇡⇡ = 0.55 · ⌫, (15)
⇠' = 450/)⇡⇡ (16)
⇠� = 1700/)⇡⇡ (17)

Table 7: Example Recall Event Reports That Involved Device and Software Malfunctions.
Recall ID Summary Recall Description FDA Determined

Cause
A�ected
Device

Z-1074-2013 The blood glucose meter will shut o� and revert to set up mode at glucose values above 1023 instead of displaying
EXTREME HIGH GLUCOSE.

Software Design Glucose
Monitor

Z-1034-2015 Calibration factors in the pump are overwritten during a programming step. The force sensor could send a lower signal
value to the pump processor.

Software Design Insulin
Pump

Z-1734-2015 If the user does not act upon the E6 and E10 error messages appropriately, insulin delivery will be stopped and, if
unnoticed, may lead to severe hyperglycemia.

Device Design Insulin
Pump

Z-1359-2012 An error was discovered in the blood glucose meter software so that the meter turns itself o� when a user attempts to
view results in the "Results Log" when the log has 256 or a multiple of 256 items to display.

Software Design Glucose
Monitor

Z-0929-2020 The mobile receiver can become stuck on the initialization screen when powering on. This will cause patients not to
be able to receive glucose values or alerts

Software Design Glucose
Monitor

Z-1562-2020 The company identi�ed potential interference from hydroxyurea. Patient use of the anti-neoplastic drug may falsely
elevate glucose readings on the CGM.

Under Investigation Gluocse
Monitor

Z-2165-2020 After the device has been in use for about two months, data processing in the PDM can be slowed such that the Bolus
Calculator fails to accurately subtract the correct amount of IOB before suggesting a bolus amount.

Device Design Insulin
Pump

Z-1772-2021 Under certain conditions, a software fault is detected when a large bolus delivery at a quick bolus speed completes. If
the user is unaware of the amount of active insulin and delivers an additional bolus, there is a risk of insulin over
delivery.

Software Design Insulin
Pump
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Table 8: Simulated Fault and Adverse Event Scenarios

Fault Type Fault Injection Approach Representative FDA Recalls No. Records Possible Adverse Events

Truncate Change output variables to zero value [64][13] Z-1074-2013, Z-1034-2015,
Z-1734-20151 8 Device Malfunction/

Hypoglycemia/
Hyperglycemia/
Injury/
Death

Hold Stop refreshing selected input/output variables [7][13] Z-1359-2012, Z-0929-2020,
Z-1376-2012 7

Add/
Sub

Add or subtract an arbitrary or particular value
to a targeted variable [7][47]

Z-1562-2020, Z-2165-2020,
Z-1772-2021 15

1 Recall IDs assigned by FDA which are also listed in Table 7.

3.4 Adverse Event Simulator
After a medical device, such as a CGM, insulin pump, or APS, is
distributed in the market, the FDA monitors reports of adverse
events and other problems with the device and, when necessary,
alerts health professionals and the public to ensure proper use of
the device and safety of patients [24, 52]. A recall is a voluntary
action that a device manufacturer takes to correct or remove from
the market any medical devices that violate the laws administrated
by the FDA [51]. Recalls are initiated to protect public health and
well-being from devices that are defective or that present health
risks such as disease, injury, or death. In rare cases, if the company
fails to recall a device that presents a health risk voluntarily, the
FDA might issue a recall order to the manufacturer.

FDA regulations also require manufacturers to notify the FDA
of the adverse events, including device malfunctions [54], serious
injuries [55], and deaths [56] associated with medical devices. Not
all reported adverse events lead to recalls. The device manufacturers
and the FDA regularly monitor the adverse event reports to detect
and correct problems in a timely manner.

Table 7 shows example recall events from the FDA database
where malfunctions of the commercially available APS devices
or software were reported. The analysis and simulation of past
recalls and typical adverse event scenarios can help with improv-
ing the design and test of the APS control algorithms and safety
mechanisms and assessing their e�ectiveness in preventing similar
adverse events [22, 24, 49]. However, it is too expensive and risky
to simulate the adverse event scenarios with the actual patients and
human operators in the loop due to the unacceptable consequences
of adverse events and potential harm to patients.

To better evaluate the resilience of APS control algorithms against
such safety issues, we design an adverse events simulator inte-
grated with the closed-loop simulation. Speci�cally, we design a
software-implemented fault injection (SWFI) engine (see Fig. 2) that
can automatically select a set of target locations within the APS
software (e.g., variables representing the CGM sensor values and
insulin dose commands) to inject faults (e.g., a zero value (Truncate),
a previous value (Hold), or an arbitrary error value (Add/Sub)) and
activate them under pre-de�ned trigger conditions and durations to
mimic the typical adverse events listed in Table 8, including hyper-
glycemic (diabetic ketoacidosis) and hypoglycemic events, device
malfunctions, and patient injuries. The adverse event simulator is
an independent module and can be enabled or disabled manually.

4 VALIDITY ASSESSMENT
Fig. 4 summarizes the overall framework for the validity assessment
of the APS testbed. We assess the validity of our testbed using the
publicly-available international diabetes closed-loop trial dataset

(DCLP3 [43]). This dataset is collected from a clinical trial of a
closed-loop system (t:slim X2 with Control-IQ Technology) [43]
for the six-month treatment of 168 diabetic patients aged 14 to
71 years old, 112 and 56 of which were, respectively, assigned to
the closed-loop group (CLC) and the control group that used a
sensor-augmented pump (SAP).

To be a valid simulator, the generated data should satisfy the
requirements of relevance, completeness, and balance with respect
to real-world data [59]. We ensure relevance and completeness by
generating similar patient pro�les to those in the real clinical trials
(with diverse ages, weights, genders, and medical characteristics)
and representative fault/adverse event scenarios that led to FDA
recalls. We measure balance by comparing the percentage of the
time the simulated and real trajectories are within the range or
contain adverse events.

4.1 Glucose Simulation
To assess the validity of the glucose simulators, we randomly choose
�ve patients’ data (each six-month long) from the DCLP3 dataset
and compare their BG trajectories during the clinical trial with the
simulated BG traces generated using the same insulin inputs from
the clinical records at each time step of the simulation. At each
simulation time step, the insulin rate is set to the corresponding
insulin rate at the same time step in the DCLP3 trial dataset. This
means that any di�erences between the BG traces calculated during
the simulation and the BG traces measured during the DCLP3 trial
are only due to the di�erences between the simulator’s patient
model and the actual dynamics of the patient’s body.

However, one challenge in reconstructing each patient’s BG
trajectory is that some parameters for characterizing the patient
pro�les in the simulators are not available from the DCLP3 dataset.
To solve this problem, we adopt a system identi�cation method
to estimate the patient model parameters (patient pro�les) from
data. We model this problem as the following optimization problem
that minimizes the di�erence between the BG value trajectory

Clinical Trial 
Dataset

Open-loop Cottrol Algorithm 
Validation

Glucose 
Records

APS 
Controller Validation Adverse Event Simulation

Closed-loop Simulation

Patient 
Simulators

Glucose Simulation Validation

Patient 
Profiles

Dynamic 
Model

Linear Regression

Blood Glucose 
Reconstruction

Validation APS 
Controllers

Outcome 
Assessment

Adverse 
Event 

Analysis

Fault 
Injection 
Engine

Synthetic 
Data 

Generation

Pump 
History Parameter Estimation

Figure 4: Overall Framework for Validation of the APS Testbed.
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Figure 5: BG Trajectories of a Clinical Trial and a Simulation Trace.

reconstructed using the derived parameters and the BG trajectory
in the DCLP3 dataset:

?0A0<. = 0A6<8=?0A0<.

’
D

(⌫⌧(8<D;0C>A � ⌫⌧⇡⇠!%3) (18)

B .C .8C 2 D
�⇡ (C)(8<D;0C>A = �⇡ (C)⇡⇠!%3 (19)
⌫⌧(8<D;0C>A (C) = 5?0A0<. (�⇡ (C � 1)) (20)

where 5 (·) represents the patient model shown in Table 2, �⇡ (C) is
the insulin delivery at time step C , andD is the dataset for parameter
estimation. We use the linear regression method for parameter
estimation and learning based on ten days of data for each patient
and the remaining 170 days of data is used to evaluate the validity
of the patient simulators. To reduce the number of parameters
that need to be estimated, we also use known metabolic models
to directly calculate some unknown parameters from data. For
example, the insulin sensitivity factor can be solved by the 1700
rule [12] using the following equation:

�(� = 1700/)⇡⇡ (21)

An example of the BG trajectory using the estimated patient
pro�le and the insulin sequence recorded in the dataset is shown
in Fig. 5. We see that the reconstructed BG trajectory could ap-
proximate the BG values in the clinical trial well in the �rst 360
minutes but departs from the original trajectory in the last 360
minutes of simulation due to the unpredictable human activity and
carbohydrate input.

We also present the distribution of BG values reconstructed for
all the patient pro�les by both the Glucosym simulator and the UVA-
Padova simulator in comparison to the baseline BG distribution

Figure 6: Distribution of BG Values: Clinical Trial Data vs. Recon-
structed Data by Each Simulator.

Figure 7: Mean Squared Error of BG values between the Clinical Trial
and Each Simulator.

collected in the DCLP3 dataset in Fig. 6. We see that the Glucosym
simulator reconstructs the BG distribution that approximates the
baseline BG distribution from the clinical trial in both the target
range ([70-180] mg/dL) and the high/low BG ranges. On the other
hand, the UVA-Padova simulator with the estimated patient pro�les
generates a BG distribution that is more concentrated between
[100-300] mg/dL and does not simulate the extra high/low BG
ranges well. We observe similar results when measuring the mean
squared error of the BG values estimated for each patient pro�le
using the simulators, as shown in Fig. 7. This might be because the
UVA-Padova uses a more complex dynamic model, and it is more
challenging to estimate the patient pro�les.

Our preliminary results indicate that with well-tuned patient
parameters, the integrated simulators could reproduce similar BG
traces from the clinical trial if undergoing the same experimental
scenario (i.e., same carbohydrate amount, insulin boluses, and basal
pattern, given at the same time). The validity of both simulators
is also attested to by other researchers who have access to actual
patient pro�les [12, 45], and the fact that the UVA-Padova simulator
has been approved by FDA for pre-clinical testing on animals.

4.2 APS Control
To assess the validity of the two controllers in the testbed, we feed
the BG values from the clinical trial dataset with the same sampling
frequency to the di�erent controllers in the testbed, running in an
open-loop mode, and compare the output insulin doses calculated
by the controllers against the actual pump outputs from the clinical
trial. We test the validity of both the OpenAPS controller and the
Basal-Bolus controller on the closed-loop group (CLC, 112 patients)
and the group that used a sensor-augmented pump (SAP group, 56
patients) for six months.

As shown in Table 9, we calculate the Mean Squared Error (MSE)
between the simulated controller and the actual pump outputs. We
see that the Basal-Bolus produced a much smaller MSE in the SAP
group than the OpenAPS controller and maintained a lower MSE
in the CLC group. The OpenAPS controller uses a di�erent control
algorithm from the pump used in the clinical trial.

Table 9: Insulin Output Comparison Among Each Controller
Metric Group No. Patients Clinical Trial OpenAPS Basal-Bolus

Avg±Std
CLC 112 0.067 ± 0.061 0.067 ± 0.043 0.049 ± 0.004
SAP 64 0.049 ± 0.004 0.072 ± 0.045 0.049 ± 0.004
Avg 168 0.061 ± 0.051 0.069 ± 0.044 0.049 ± 0.004

MSE
CLC 112 - 4.67E-03 4.01E-03
SAP 64 - 2.51E-03 4.74E-06
Avg 168 - 3.97E-03 2.70E-03
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Table 10: Comparison of the Outcomes between Closed-loop Simulation and the Clinical Trial

Outcome Clinical Trial Closed-loop11 Closed-loop22

Pct. of time with BG in target range of 70 to 180 mg/dL 66.18±25.56 93.49±10.67 79.46 ± 16.68
Pct. of time with BG>180 mgl/dL 32.07±25.83 3.95±7.34 20.16 ± 16.08
Pct. of time with BG<70 mgl/dL 1.75±4.67 2.56±7.06 0.05 ± 0.24
Pct. of time with BG<54 mgl/dL 0.33±1.67 0.12±1.63 0.02 ± 0.14
1 Glucosym simulator with OpenAPS control software.
2 UVA-Padova simulator with Basal-Bolus controller.

An example of the insulin output comparison of both the Ope-
nAPS controller and the Basal-Bolus controller to the control al-
gorithm used by the pump in the clinical trial is shown in Fig. 8.
We observe that the Basal-Bolus controller can well reproduce the
control actions made by the insulin pump used in the clinical trial,
demonstrating the validity of the integrated controller in match-
ing actual insulin pump control actions. On the other hand, the
OpenAPS controller makes di�erent decisions when the predicted
BG is going outside of the target range of 70 t o180 mg/dL or a
risk of hyperglycemia or hypoglycemia is anticipated. It should
be noted that the OpenAPS controller uses the exact control soft-
ware used by actual diabetic patients. This is consistent with the
observation from previous studies that showed OpenAPS has better
performance than some of the existing commercial pumps [10, 62].

4.3 Closed-loop Simulation
Finally, we run the controllers and simulators together in a closed-
loop mode to assess their performance when automatically regulat-
ing the blood glucose of diabetic patients. For this kind of assess-
ment, we cannot compare the BG readings or the insulin outputs
step by step between the simulation and the clinical trial, as a di�er-
ing control action changes the subsequent BG values. Instead, we
adopt a metric that evaluates the primary and secondary outcomes
in diabetes treatment [43] by measuring the percentage of time
that the BG value is inside or outside the target range of 70 to 180
mg/dL.

We randomly select �ve patients to estimate their pro�les and
run both simulators with OpenAPS and Basal-Bolus control soft-
ware, respectively, in a closed-loop using the patient pro�les and
other required parameters estimated in Section 4.1-4.2.

Experiment results in Table 10 show that both simulated closed-
loop APS maintain a higher percentage of time with BG inside the

Figure 8: An Example of the Insulin Outputs among Each Controller
Given the Same Glucose Readings.

target range than the baseline control system used in the clinical
trial, though the closed-loop system with UVA-Padova simulator
and Basal-Bolus controller has a closer outcome with the clinical
trial as they use a similar control algorithm. We also observe that
the closed-loop system with the Glucosym simulator and OpenAPS
controller software keeps the BG in the target range for 93.49% of
the time on average, demonstrating the advance of this PID-based
control algorithm in diabetes treatment over the regular insulin
therapy with Basal-Bolus control algorithm.

The primary outcomes of each closed-loop APS and the actual
control system in the clinical trial across six months are shown in
Fig. 9. We see that the mean percentage of time with glucose values
within the target range remained at a similar level during the six
months in the clinical trial and both closed-loop simulations.

The closed-loop simulation o�ers a platform to evaluate or im-
prove di�erent pump algorithms with various patient pro�les. For
example, Fig. 10 shows the di�erent decisions made by each control
algorithm at each time step during 12.5 hours of treatment/simulation.
We see that the actual pump from the clinical trial used a �xed basal
rate and thus failed to keep the BGwithin the target range, resulting
in adverse hyperglycemia. In comparison, the OpenAPS kept the
BG value safe by increasing the insulin infusion when the BG is
predicted to increase quickly and keeping a low insulin dose when
the insulin on board is still at a high level after a large amount
of previous insulin injection. Similarly, the Basal-Bolus controller
with the UVA-Padova simulator issued a higher basal rate to avoid
the BG value increasing too fast. Through such simulation and
comparison, the proposed testbed can help to improve di�erent
control algorithms used in commercial insulin pumps and reduce
patient harm or complaints.

4.4 Adverse Event Simulation
From Table 1 and Table 10, we see that adverse events naturally
happen during clinical trials or home treatment of diabetic patients

Figure 9: Percentage of Time with BG in the Target Range of 70 to
180 mg/dL for Clinical Train and Two Closed-loop APS.
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Figure 10: Comparison of BG and Insulin Rate between a Clinical Trial and the Closed-loop Simulation.

with APS due to device malfunctions or control software defects.
However, it is expensive or risky for the manufacturers to test
and improve the control algorithms through experiments on actual
patients within realistic environments. The proposed closed-loop
simulation o�ers an alternative way to evaluate the e�ectiveness
of di�erent control algorithms with actual patient pro�les. How-
ever, the rate of adverse events in the closed-loop simulation is
too low to evaluate the resilience of the target control algorithm
comprehensively. Therefore, the adverse event simulator proposed
in Section 3.4 was used to simulate the following scenarios: hy-
perglycemic adverse events (diabetic ketoacidosis), hypoglycemic
events, malfunction of the device, and injury of patients.

We run 882 simulations (14 fault scenarios, as Add/Sub includes
multiple sub-scenarios, times 9 random start times and durations
times 7 initial BG values), and each simulation includes 12.5 hours
of sensor data and insulin outputs after a meal with di�erent car-
bohydrate inputs. An example of the BG trajectory with a fault
injected starting at 400 minutes to simulate a CGM sensor read-
ing malfunction is shown in Fig. 11. We see that the controller
increased the insulin injection signi�cantly based on the erroneous
CGM readings while the BG value was not high, which further
decreased the BG value under 50 mg/dL and resulted in a severe
hypoglycemic event (marked by the red region in Fig. 11).

Our simulation generates two and a half years of data for 20 dia-
betes patients with di�erent types of adverse events. The percentage

Figure 11: An Example of Simulated Hypoglycemic Adverse Event
due to Fault Injection.

of adverse events in the Glucosym simulator and UVA-Padova sim-
ulator are 33.9% and 39.3%, respectively (see Fig. 12). The generated
synthetic dataset is available on Github [https://github.com/UVA-
DSA/APS_TestBed].

5 RELATEDWORK
MCPS Testbeds: Testbeds are used in place of time- and resource-
intensive clinical trials, so development has gravitated towards
systems that a�ect the most critical organs. For instance, heart
testbeds have been constructed for pacemaker validation [73] and
cardiovascular interventions [71]. Robotic surgery testbeds have
also been made for MRI-guided biopsy [65], endovascular surgery
[29], and reconstructive surgeries in the hand [26]. In-silico trials
of an insulin control algorithm are developed recently to facilitate
research on APS [68, 68]. To the best of our knowledge, this paper
is the �rst to develop an open-source closed-loop testbed for APS
with real-world controllers, physical simulators of an extended set
of patient pro�les, and a realistic adverse event simulator.

Glucose Simulators: The use of simulators is vital in the devel-
opment of APS. A glucose minimum model, a simple mathematical
model for glucose levels, was �rst proposed in 1970 [36]. The UVA-
Padova simulator [11] was the �rst APS simulator to be approved
by the FDA in 2008 as a substitute for animal testing. A second sim-
ulation developed by a group at Cambridge University was released
soon after in 2010, speci�cally targeted toward closed-loop APS
simulation and virtual patient modeling [33]. The UVA-Padova was
updated in 2014 [12] to improve the glucose kinetics model during
hypoglycemia as well as incorporate glucagon kinetics and was
accepted by the FDA as a substitute for certain preclinical trials.
Glucosym, an open-source APS simulator, was released in 2017 to

Figure 12: Success Rate of the Fault Injection Experiments in Simu-
lating Low BG Hazard (H1) and High BG Hazard (H2), which may
Result in Hypoglycemic or Hyperglycemic Adverse Event.
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widen the availability of closed-loop APS simulation and testing
[66]. In 2019, a group at the Oregon Health and Science University
(OHSU) published an APS simulator based on a similar glucoregu-
latory model as the Cambridge simulator but with di�erent insulin
kinetics [35]. Our work di�erentiates from these previous works
by integrating two advanced control software with the state-of-
the-art simulators into a closed-loop APS testbed and proposing
an optimization method to estimate real patient pro�les for the
closed-loop simulation.

Safety Evaluation of APS: Many previous works have also
focused on evaluating the safety of APS control software, such
as safety and e�ectiveness evaluation of insulin pump therapy in
children and adolescents with Type 1 diabetes [2, 30], safety and
e�cacy review of commercial and emerging hybrid closed-loop
systems [25, 58], generic safety requirements for developing safe
insulin pump software [50] and insulin pump software certi�cation
[48], or safety evaluation of do-it-yourself APS [69]. However, most
of these works relied on high-risk clinical tests or were not able to
assess the resilience of tested insulin pumps against adverse events.
In this paper, we integrate an adverse simulator into the closed-loop
APS testbed, which could help with the evaluation of di�erent APS
control algorithms and safety mechanisms in preventing adverse
events while avoiding actual harm to the patients.

6 CONCLUSION
Using two state-of-the-art glucose simulators, we develop a testbed
for evaluating the performance of the control algorithms and safety
features in APS. We assess the validity of the simulator by reverse-
engineering the pro�les of patients in a real clinical trial and demon-
strating that the BG traces generated by each simulator are func-
tionally the same as the BG traces from the trial. We also show the
testbed’s utility for closed-loop simulation by implementing two
control algorithms to regulate the glucose levels of virtual patients.
To push the APS to its limit, we embed a novel fault injection engine
based on real FDA recalls into the testbed so performance can be
evaluated in even the most hostile scenarios.

As research turns toward adopting more advanced data-driven
methods like machine learning for the design of control algorithms,
the proposed testbed and other in silico testing strategies will be
essential for both �nal product evaluation and sourcing large quan-
tities of high-quality data. This testbed can also be used to further
develop personalized treatments by tailoring control algorithms
to individual or similar patient pro�les and to help diabetic pa-
tients understand their treatments by modeling their physiological
dynamics. In future work, our testbed could be improved by devel-
oping more accurate estimation methods for patient pro�les and
incorporating meal and activity models and simulators.
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