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Abstract

Machine Learning (ML) technologies have been increasingly adopted in Medical Cyber-Physical Systems (MCPS) to enable
smart healthcare. Assuring the safety and effectiveness of learning-enabled MCPS is challenging, as such systems must
account for diverse patient profiles and physiological dynamics and handle operational uncertainties. In this paper, we develop
a safety assurance case for ML controllers in learning-enabled MCPS, with an emphasis on establishing confidence in the
ML-based predictions. We present the safety assurance case in detail for Artificial Pancreas Systems (APS) as a representative
application of learning-enabled MCPS, and provide a detailed analysis by implementing a deep neural network for the
prediction in APS. We check the sufficiency of the ML data and analyze the correctness of the ML-based prediction using
formal verification. Finally, we outline open research problems based on our experience in this paper.
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1. Introduction

Medical Cyber-Physical Systems (MCPS) integrate con-
nected software and hardware components with sensors
and actuators to monitor and control patient physiology.
Machine Learning (ML) technologies have been increas-
ingly used in MCPS, often deployed in the estimation
and prediction components, to make data-driven deci-
sions based on sensor or patient input and guide control
actions [1]. Ensuring the successful deployment of ML
within MCPS can be challenging, as the ML components
must be able to handle the intricacies of patient physiol-
ogy, time lags between the impact of a control action and
sensor measurements, uncertainties in the operational
environment that may affect the patient’s physiology,
and variability in patient profiles which may result in
differing impacts of the control actions. Moreover, due to
physiological complexities and the limited availability of
realistic patient profiles or datasets, ML techniques may
use synthetic data or virtual patient models for training.
The mismatch between the training data and the real-
world data seen in deployment may result in erroneous,
biased, or incomplete output predictions [2]. Failure of
the ML component due to any of the challenges noted
above could result in irreparable harm to patients. As
such, the use of ML within MCPS should be assured by
evidence that these components are safe and reliable [2].

Assurance cases (AC) are structured arguments, sup-
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ported by evidence, to justify claims for an application
in a given environment [3]. Recent efforts in safety anal-
ysis and assurance have confirmed that AC are valuable
for assessing and demonstrating trust [4]. For example,
AC have been deployed for unmanned aircraft systems
[5] and medical devices [6]. The U.S. FDA has also is-
sued a guideline [7] suggesting medical manufacturers
provide AC with pre-market submissions. Among the
standards published by various organizations (e.g., ISO
26262 [8], ISO/PAS 21448 [9], ANSI/UL 4600 [10], and
the FDA guideline for Artificial Pancreas Systems (APS)
[11]), ANSI/UL 4600 is the only one offering evaluations
of ML technology for the safety of autonomous vehicles.
Among more AC-centric studies, Hawkins et al. [12]
provide a guideline on the assurance of ML in au-
tonomous systems, including a safety case pattern for
each stage of the ML life cycle. Kaur et al. [13] proposed
a modular assurance case pattern based on assume/guar-
antee reasoning for ML-enabled CPS, where the safety of
the ML component and the rest of the system are assessed
separately. However, the ML lifecycle is not dealt with in
this pattern. A few studies have also developed AC for
concrete learning-enabled use cases in the automotive
domain [14, 15, 16]. Within the healthcare domain, [17]
is the only work that presents an assurance case pattern
to justify the use of ML. Even so, none of [12]-[17] in-
stantiate the process activities and generate evidence for
a concrete application in the medical domain. This paper
tackles this gap by presenting detailed AC to assure the
safety and effectiveness of a general framework of APS
[18], suitable for all types of APS. We select APS as a
representative of learning-enabled MCPS as it contains
a collection of typical components of many ML-enabled
MCPS, including data-driven estimation algorithms and
embedded controllers for insulin dosage calculation.
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Expanding on the patterns proposed in [12, 13], we
develop a safety assurance case for the ML-enabled con-
troller of MCPS, consisting of a controller algorithm
and an ML prediction algorithm, where our emphasis
is greatly on the ML-based prediction. By proving trust
in ML prediction, the safety of the controller algorithm
can be assessed in isolation. Considering the patient as
an essential element of the control loop, we discuss the
AC elements that should be instantiated based on an in-
dividual patient profile or a population of patients. The
instantiation is due to different physiologies of different
patients, which may affect control actions, the ML con-
troller’s expected behavior, and the claims satisfaction.
This is the first time that the patient profiles are included
in AC for ML controllers and MCPS. In support of claims
in AC for APS, we implement a deep neural network for
blood glucose prediction in APS. We then present an anal-
ysis characterizing the sufficiency of the training data
for the ML controller and the ML development process.
We also utilize APS domain knowledge to specify a set
of properties based on a patient’s metabolism (e.g., in-
sulin senstivity, carbohydrate absorption profile) and use
formal verification to check them against the ML predic-
tion component. We are unaware of any work verifying
the ML components in APS except [19], which unlike us,
compares the output ranges of two identical networks
given a slight change in their input ranges.
Contributions. The major contributions of this paper
are summarized as follows:

« We present preliminary results on developing a safety
assurance case template for ML controllers in MCPS,
which includes patient profiles in its element descrip-
tions.

« We present a detailed safety assurance case for APS
that is supported by a thorough analysis of ML-based
glucose prediction module.

+ We define properties based on the body’s metabolism
and check them against the ML prediction component
using formal verification.

In the end, we discuss open research problems in devel-
oping safety assurance cases for learning-enabled MCPS.

2. Artificial Pancreas Systems

Type 1 Diabetes (T1D) is a chronic disease in which a
patient’s pancreas produces little to no insulin. Patients
with T1D must constantly monitor their blood glucose
(BG) levels and inject insulin to regulate their concentra-
tions of BG. Artificial Pancreas Systems (APS) are closed-
loop insulin delivery systems that relieve the burden of
T1D on patients by regulating a patientdAAZs BG level,
using input from various sensors such as continuous glu-
cose monitors (CGM). Figure 1 depicts the typical struc-
ture of APS, consisting of a CGM sensor to continuously
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Figure 1.: The structure of APS (modified from [20]). The
APS controller consists of a prediction algorithm to predict
the BG values and a controller algorithm to adjust the insulin
dosage.

monitor BG values, an APS controller that calculates the
correct insulin dosages based on the CGM and user input,
and an insulin pump that delivers insulin dosages.

The APS controller consists of a data-driven glucose
prediction algorithm to predict future BG values and a
control algorithm to adjust the insulin dosage based on
the predicted BG values. Recently, researchers have be-
gun exploring the use of neural networks [21, 22] and
reinforcement learning [23] for the design of the APS
controllers (e.g., use of machine learning for glucose pre-
diction). The primary objective of the controller is to
provide safe and efficient glycemic control by infusing
an appropriate amount of insulin to keep the patient’s
BG within the proper range (between 70 and 180 mg/dL)
and avoid hypoglycemias and hyperglcemias. To provide
such safe control, the controller needs to account for the
complexities of glucose metabolism and deal with un-
predicted meal intake, exercise, stress, or illness, rapid
changes in BG concentration, and time lags between BG
measurement and insulin impact.

As of the date of this writing, there are four commer-
cially available APS that have received FDA approval
and/or the Conformité Européenne (CE) mark: Medtronic
MiniMed 670/770/780G [24], Tandem Control-IQ [25],
Omnipod 5 [26], and CamAPS FX [27]. These systems
use some form of data-driven learning algorithm, i.e., Tan-
dem Control-IQ uses a simple linear regression algorithm
[28] to predict BG values 30 minutes in the future and
then a PID algorithm to adjust the insulin dosage based
on the predicted BG values. To ensure the adoption and
use of such systems, patients need to be confident in the
underlying ML technology embedded in the controllers.

3. Overall Safety Assurance Case

Typical CPS consist of embedded software and hardware
components controlling the plant through interconnected
sensors and actuators. MCPS are a distinct class of CPS
with the patient as the plant, aiming to monitor and con-
trol multiple aspects of the patient’s physiology. With the
patient in the control loop, the MCPS should either be tai-



lored for specific physiological parameters of the patient
or should cover a population of patients. This adaptation
is even more critical as a part of the design process in
learning-enabled MCPS that employ a learning-enabled
controller, a controller relying on machine learning to
perform perception or prediction tasks. So, in the regula-
tory process for checking the safety of MCPS, it would
make sense to instantiate the safety assurance case for
individual patient profiles or populations. To emphasize
this, we mark the context elements in safety assurance
cases with the uppercase letter P in a half circle to denote
the decision points where the context needs to be initial-
ized for an individual patient profile or the population.

The top-level goal in safety AC of learning-enabled
MCEPS is to ensure that "x as a case of learning-enabled
MCPS is safe and effective”. Confidence in this claim
is obtained by ensuring the safety and effectiveness of
all constituent components, including sensors, actuators,
and their interactions. For this paper, we discuss only the
safety and effectiveness of the learning-enabled controller,
assuming that the safety and effectiveness of other com-
ponents have been adequately examined. We first present
a safety assurance case template for a learning-enabled
controller in MCPS, shown in Figure 2. We then use APS
as an instance of MCPS and explain how instantiating
the template results in a general safety assurance case for
APS. We use goal structuring notation (GSN) [29], with
a slight of notation abuse, to show our AC.

3.1. Safety Assurance Case Template for
learning-enabled controllers in
MCPS

The root goal GO in Figure 2 asserts that the learning-
enabled controller c is safe and effective while the device
is used in treating the patient. The environment and the
system within which the learning-enabled controller is
used are described in context C0-1, and the requirements
assigned to the learning-enabled controller are explained
in context C0-2. We use assume/guarantee reasoning
to justify goal GO. This is because the learning-enabled
controller c is a combination of two main algorithms that
perform in sequence: an algorithm that performs the ML
tasks and delivers its output to the control algorithm, and
the control algorithm that selects the control action and
initiates it in the system. Assuming that the results pro-
vided by the ML tasks are correct, the control algorithm
should guarantee the safe and effective treatment of the
patient. Hereafter, we use the term controller to refer to
the control algorithm of the learning-enabled controller.
We consider a separate component for each algorithm.
As reflected in goal G1-2, the safety and effectiveness of
the ML component are justified in isolation. The con-
troller’s input is an interface with the ML component,
containing the results received from the ML component.

GO
{Learning-enabled controller ¢},
composed of ML, s safe and
effective in treating the patient.

Co-1

Component
description (l: —]

System safety requirements
allocated to {Learning- e

enabled controller ¢}

S0-1
Argument by Assume/Guarantee
reasoning

A0-1
ML _abs as an
abstraction of the
ML component is
safe

GI-1
{Controller ¢}, composed with
ML abs, is sufficiently safe and
effective in treating the patient

GI2
The ML (prediction/perception)
component is sufficiently safe
and effective

Figure 2.: A safety assurance case template for a learning-
enabled controller in MCPS.

This interface shows an abstraction of the ML compo-
nent, denoted as M L_abs in goal G1-1. Assuming the
outputs of the ML component are safe, as presented in
assumption A0-1, goal G1-1 claims that the controller
component combined with M L_abs is safe and effective.

3.2. Instantiating Learning-Enabled
Controller Assurance Case for APS

Regardless of the system type and the technology under-
lying the APS, the main components of APS remain the
same, i.e., they all consist of a learning-enabled controller.
Additionally, APS should satisfy a set of safety and per-
formance properties common and desirable to regulatory
agencies. For instance, requirements specified by the FDA
[11] include high accuracy of CGM readings, safe insulin
dosages, usable design, and so on. The most significant
requirement is that APS must not increase the incidence
and severity of hypoglycemic and hyperglycemic events.
These reasons induce a general safety assurance case to
be developed for all APS, like [30] which presents AC
for a generic infusion pump device. Thus, the proposed
template in Figure 2 can be employed for APS, where
goals G1-1 and G1-2 are modified as follows.

«+ G1-1: Assuming that the BG predictions are accurate,
the insulin dosage management component is sufficiently
safe and effective for treating patients.

» G1-2: The ML glucose prediction component is suffi-
ciently safe and effective.

Context Elements. Context C0-1 describes inputs to
the APS controller (i.e., history of the CGM values and
insulin injected and prediction horizon), outputs of the
controller (i.e., the amount of insulin to be injected), the
component’s role in the system, and the environmental
phenomena (i.e., uncertain meal intake, daily activity).

Context C0-2 includes all requirements of the learning-
enabled controller. Table 1 shows a set of these require-
ments, which we have extracted from the diabetes treat-
ment literature (e.g., [31]). The main requirement in
Table 1 is RQ.C.1, which is further refined into its follow-
ing requirements. Although this is not an extensive list
of requirements, it represents some of the most impor-



Table 1.

Requirements for the learning-enabled APS controller

RQ.C.1 Accurately calculate dose of basal and bolus insulin
RQ.C.1.1 Determine the output every T minutes (e.g., T=5 in MiniMed)
RQ.C.1.2 Stop dosing if a maximum amount has been delivered by the pump
RQ.C.1.3 Suspend dosing if the actual or predicted CGM readings fall below a threshold
RQ.C.1.4 Interrupt in a safe way if trustworthy control is not guaranteed
RQ.C.1.5 BG should not remain below 10th-percentile threshold for more than vy minutes
RQ.C.1.6 BG should not remain above 90th-percentile threshold for more than cca minutes following a bolus injection
RQ.C.1.7 BG should not remain above 90th-percentile threshold for more than acs minutes
RQ.C.1.8 The BG value is always greater than 70 and less than 180
RQ.C.1.9 The controller infuses additional insulin while the blood glucose level is below a target level
RQ.C.1.10 | The morning wake up blood glucose level can not exceed 3
Table 2.
Performance and robustness requirements (that are independent of ML technology) for the ML glucose prediction component
[ Performance ]
ML-RQ1 Accurately predict the BG values T" minutes in the future
ML-RQ1.1 BG’s rate of change has to be bound by established physiological norms
ML-RQ1.2 Meal intake has a direct effect on the BG value
ML-RQ1.3 Exercise has an inverse effect on the BG value
ML-RQ1.4 Within ¢ minutes of a bolus, there should be an accompanying change in BG of more than o
ML-RQ1.5 The glucose level starts to rise at a specific time after a meal’s onset
ML-RQ1.6 There is a delay between the injection of insulin and the disposal of glucose
ML-RQ1.7 The blood concentration of insulin reaches its maximum after a particular time
ML-RQ1.8 Insulin has an inverse effect on the BG value
[ Robustness
ML-RQ2 Perform as required for different patients of different ages/sexes
ML-RQ3 Perform as required in the presence of external factors such as meals and exercises.

tant requirements for such a system. A few examples of
peripheral requirements are related to the controller’s
platform, such as security, reliability, and usability. For
example, the smartphone used in some of the APS is a
platform. The goal G1-1 is also defined in the same con-
text as C0-2 since it claims the safety and effectiveness of
the APS controller when BG predictions are reliable. We
assume that the controller requirements are adequately
examined in consultation with domain experts and medi-
cal professionals and do not discuss them in this paper.

Patient or Population. The contexts C0-1 and C0-2
can be defined based on an individual patient profile or a
population of patients. A clear example of this decision
is that different patients have varying insulin sensitivity
levels, and their physiologies may be affected differently
by meal volume or activity. In addition to the training
datasets and the control algorithms themselves, other
components such as thresholds and target values that
affect the requirements, can be defined differently based
on individual patients or a population of patients.

In the next section, we develop a general argument
for goal G1-2, claiming that the ML glucose prediction
component is sufficiently safe and effective.
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The ML glucose prediction
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and effective
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ted to ML glucose
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Figure 3.: A general safety assurance case for the ML glucose
prediction component of APS.

4. Safety Assurance Case for the
Glucose Prediction Component

Different parts of the safety assurance case developed for
the glucose prediction component are shown in Figures 3,
4, and 5. We describe each part in a separate section and
provide concrete pieces of evidence in Section 5.

4.1. Sufficiency of the ML Development

The argument to justify claim G1-2 is shown in Figure 3.
This claim is supported by contexts C1-1 and C1-2. Con-
text C1-1 describes the ML prediction component, its ex-
pected inputs and outputs (e.g., CGM, insulin, and meal



values), along with their possible sources and targets (e.g.,
various CGM or pump devices). Besides, it is necessary
to determine whether the component is specialized based
on a patient profile or a population of patients.

We categorize the requirements allocated to the ML
glucose prediction component into performance and ro-
bustness requirements and enumerate them in Table 2.
These requirements are independent of ML technology
and are defined in context C1-2. ML-RQ1 is the primary
performance requirement refined into ML-RQ1.1 through
ML-RQ1.8 based on the patient’s physiology. Prediction
results are accurate when the learning component has
learned the physiological dynamics of the patients, and
hence ML-RQ1.1 to ML-RQ1.8 are satisfied. Although
we have extracted these requirements from the APS lit-
erature, based on our knowledge, it is the first time that
physiologically-inspired requirements are assigned to an
ML component. The thresholds and target values in these
requirements depend on the patient’s or population’s
profiles. Robustness requirements ML-RQ2 and ML-RQ3
refer to variations in the input space of the component.
For instance, ML-RQ2 ensures a variety of patient profiles
are considered in a population-based setting.

To justify claim G1-2, the approach of [12] splits the ar-
gument based on the development and deployment of the
ML component. Goal G2-1 claims that the development of
the ML model predicting the BG values is sufficiently safe
and effective, and goal G2-2 claims that the integration
of the ML component into the system is sufficiently safe
and effective. The G2-2 justification involves techniques
such as runtime assessment that are beyond the scope of
this paper. We leave G2-2 undeveloped and emphasize
G2-1. The first step to support claim G2-1 is to develop
ML requirements using the concepts amenable to the ML
implementation. The performance requirement ML-RQ1
in Table 2 can be measured by the accuracy or mean
prediction error of the ML algorithm. Thus, ML-RQ1 is
defined as “ ML component should predict the glucose
value with the mean prediction error of less than thres
mg/dL”, where thres is determined by human experts or
compared to the most reliable existing method for BG
prediction. ML-RQ1.1 to ML-RQ1.8 are meaningful to the
ML model when defined over inputs and outputs of the
ML model. We specify these requirements in Section 5.
These ML requirements are expressed in context C2-1.

The development of the ML component refers to the
process of designing and training the ML model. So,
claim G2-1 is supported by sub-claims G3-1 and G3-2
through strategy S2-1. Goal G3-1 claims that the ML
model satisfies the ML requirements. A complete argu-
mentation must demonstrate that the ML requirements
are a valid development of the APS requirements allo-
cated to the glucose prediction component, as expressed
in claim G3-2. In our case, there is an exact mapping be-
tween requirements of Table 2 and the ML requirements

ML data m

argument —

C31 G3-1
ML glucose J | ML slucose pedicton model
prediction model G satisfies the ML requirements
ML learning

argument

S3-1
Argument over satisfaction of
ML safety requirements

G4-1

ML performance requirements
are satisfied.

ML Robustness requirements are
satisfied.

Figure 4.: Argument to ensure the sufficiency of the ML glu-
cose prediction model.

(Section 5), so G3-2 is justified. The G3-1 justification is
described in the next section.

4.2. Sufficiency of the ML Model

The argument to ensure the sufficiency of the ML glu-
cose prediction model is shown in Figure 4. The claim
G3-1 is made in context C3-1 of the ML model created
and context C3-2 of the ML data, respectively. ML data
can include data from only an individual patient or a
population of patients, and the ML model and its hyper-
parameters are tuned based on collected data. The goal
G3-1 is supported by goals G4-1 and G4-2 claiming that
the ML model satisfies the performance and robustness
requirements. Further assurance is also needed regarding
the ML process and ML data used for development. The
ML learning and ML data arguments provide arguments
and evidence for the safety and effectiveness of the ML
process and ML data. We provide an assurance case for
the sufficiency of ML data in Section 4.3 and concrete evi-
dence for both arguments in Section 5. The links with the
ML learning and data arguments are established using
assurance claim points [12] (black squares), representing
the points at which further assurance is required.

4.3. Sufficiency of the ML Data

The argument to ensure the sufficiency of the ML data
is shown in Figure 5. Claim G4-3 justifies that the data
collected meet desiderata, including relevance, complete-
ness, balance, and accuracy [12], thus, the assurance that
the model trained on such data satisfies ML requirements
increases. The first step to check the data against the
desiderata is to provide a list of ML data requirements
for each desideratum. The sub-claim G5-1 assures that
the list has sufficient ML data requirements, and the sub-
claim G5-2 checks whether the data meet the ML data re-
quirements. We enumerate the ML data requirements in
Table 3. Section 5 provides concrete evidence to support
G5-2. In the following, we describe data requirements
and their effects on the satisfaction of the performance
and robustness requirements in support of G5-1.

The requirements DR.R1 and DR.R2 concern the po-
sition of the CGM sensor on the patient’s body and the
format of the data captured by the sensor, respectively. A
CGM sensor is worn on specific body areas. It should be



Table 3.
Data Requirements in the ML lifecycle of an APS.

[ Relevance
DR.R1 Each data sample shall assume sensor positioning which is representative of that used on the patients
DR.R2 The format of each data sample shall be representative of that captured using sensors deployed on the body
DR.R3 The type of each data sample (insulin) shall be representative of that used
DR.R4 Each data sample shall represent the diabetes type for which the system is developed
DR.R5 Each data sample shall represent the sex, age, and ethnicity of the persons for which the system is developed
Completeness
DR.C1 The data samples shall include examples with a sufficient range of meal carbs, different intraday meal intakes, and exercise
DR.C2 The data samples shall include examples with different sensor positioning
DR.C3 The data samples shall include examples with different ages and weights within the allowed ranges
DR.C4 The data samples shall include patients with frequent hypoglycemic, hyperglycemic, and ketoacidosis problems
DR.C5 The data samples shall include the profile of patients during the day and night and illness
Accuracy
DR.A1 Each data sample shall assume sensor positioning which is representative of that used on the patients
DR.A2 CGM sensor readings and pump infusions must be correctly recorded
DR.A3 The total insulin delivered must be within the limit in each data sample
Balance
DR.B1 [ The datasets shall have a comparable number of samples for features

G4-3

C4-1
Development/verificat
ion/test dataset G

The ML clinical /synthetic data is
sufficient.

S4-1
Argument over satisfaction of
ML safety requirements

ML data requirements
over the clinical/synthetic
datasets

G5-1

ML data requirements are sufficient to
ensure it is possible to develop a glucose
prediction model that satisfies the ML
requirements.

ML data satisfies the ML
data requirements.

Figure 5.: Argument to ensure the sufficiency of the ML data.

placed around a fattier area of the body;, i.e., the upper arm
or abdomen for the adult and the abdomen or buttocks
for kids. DR.R1 also relates to the accuracy desideratum
(DR.A1), as the sensor position affects the accuracy of the
sensor readings and, consequently, the accuracy of the
BG prediction. The requirement DR.R3 refers to the type
of insulin, i.e., rapid-acting, regular-acting, intermediate-
acting, or long-acting, and even the brand of insulin. The
APS controller may support a specific type of insulin,
as different types have different absorption mechanisms.
The APS designed for adults may not be allowed to be
used for kids or vice versa. As DR.R4 explains, a similar
argument can be expressed for other characteristics such
as gender, insulin type, etc., and relates to the relevance
desideratum. Sex, age, and insulin type may affect the
satisfaction of physiological and robustness properties.
The APS controller should be able to safely adjust the
insulin dosage in the face of uncertain events such as
intraday meal intakes, exercise, and different values of
meal carbohydrates. To support this, as explained by
DR.C1, the datasets should include a sufficient range of
examples in which the appropriate features refer to the
mentioned events. If the system is supposed to work

for different positions of CGM sensor installments, as
explained by DR.C2, sufficient examples regarding each
position should be presented in the datasets. A similar
requirement can be specified for weight and age. For
instance, consider that the system is designed to work
for people aged 14 to 60 who weigh between 20 and
120 pounds. The datasets should not only include suf-
ficient samples with all allowed ages and weights, but
also include samples with the combination of these fea-
tures (DR.C3). DR.C4 is specified to ensure that the data
samples include patients with frequent hypoglycemic,
hyperglycemic, and ketoacidosis events. As specified
by DR.C5, the data samples shall include the profile of
patients during the day and night and even in sickness.
Nighttime sleep and sickness impact metabolic regula-
tion and endocrine release by the pancreas. Considering
all the requirements above is crucial to satisfying physio-
logical properties and ensuring robustness.

From the accuracy perspective, the CGM readings and
the pump infusions not affected by a system failure must
be correctly recorded, and the total amount of insulin de-
livered for each person be within the limit, as explained
by DR.A2 and DR.A3, respectively. The only data re-
quirement regarding the balance desideratum is that the
number of samples for features should be comparable
(DR.B1). For instance, the number of samples represent-
ing kids and adults should be comparable if the system is
supposed to work for both categories of kids and adults.
Notably, the dataset should include data from patients
of different ages, sexes, weights, etc., if the context is de-
fined for a population of patients. Hence, context C4-2 is
annotated with P. Similarly, the size of the development,
test, and verification datasets change according to the
data collected and the model learned, which should be
reflected in C4-1. So, C4-1 is also annotated with P.



Table 4.

ML Performance requirements. We use BG;, In;, and M; to denote BG, insulin, and meal intake, where T! =12and T° = 6.
The superscript I indicates the input and O indicates the output of the network. We use A, 81, B2, B3, B4, Bs, p1, p2, & to

denote the thresholds in requirements. = denotes implication.

[ ML Performance Properties ]

ML-RQI1 AL 2 IBGL,, — BGI| < A= N2 ?|BGY,, — BG?| < A

ML-RQ1.2 V?:IO_l M > B = V?:OO_l BGY > p

ML-RQ1.3 No available data

ML-RQ1.4 In} > B = VI, ' |BG? — BGY| > a

ML-RQ1.5 VIS M > Bs = VIO |BG2 — BGY| >0

ML-RQ1.6 In{ > s =70 < BGY, | <180 A N=T7"3(BGY < 70V BGY > 180)
ML-RQ1.7 In{ > B4 =70 < BGY, | <180A /\5250—2(30;? <70V BGY > 180)
MRS | VIt Ind > g = VIS, BGY < po

5. Concrete Evidence

In this section, we provide concrete evidence in support
of ML learning argument, and claims G4-1, G4-2, and
G5-2. We used the Simglucose simulator [32, 33] to gen-
erate synthetic data for T1D patients and trained a Feed-
Forward Neural Network (FFNN) to predict BG values.
The model, contexts, and all properties in our experi-
ments are based on a population of patients. We per-
formed our experiments on Ubuntu 20.04 with Intel Core
i7, CPU 3.60GHz AU 8, and 15.6 GiB memory.

ML Data (Context C3-2). Simglucose is a Python imple-
mentation of the FDA-approved UVA-Padova Simulator
that employs a glucose-insulin meal model to simulate
30 virtual patients (ten adolescents, ten adults, and ten
children). Using Simglucose, we emulated all patients
for 40 days and nights, where the BG and insulin values
are provided every 5 minutes. Simglucose implements a
basic basal-bolus controller and generates random meals
for each patient, where the amount and the time of each
meal are random numbers from pre-specified intervals.
Each patient’s data includes 11,521 entries, and each en-
try includes a set of features from which we use only BG,
insulin, and meal data. We removed data of 4 adolescents,
1 adult, and 5 children from the dataset, since their data
included negative BG values.

ML Model (Context C3-1). Our FFNN has three dense
layers with 8, 8, and 6 neurons in each layer, respectively.
It has 36 inputs, including BG, insulin, and meal intake of
the patient for an hour (12 timesteps with 5 min intervals)
and predicts BG values 30 minutes into the future (6
timesteps). We scale the inputs between 0 and 1. More
details on the model are available at [34].

Evidence for ML Learning Argument. This argu-
ment grounds on the sufficiency of the iterative process
to design and train the model. This process selects the
model structure and appropriate values for the model
parameters. We used the same number of neurons pro-
posed in [21, 19]. We tested the network with different
neurons in each hidden layer and compared them using

the root mean squared error (RMSE), which was very
similar for those networks. We chose eight neurons in
the first and second layers of the network, as network
size affects verification complexity. To make sure that the
model does not overfit on data, we plotted training loss
versus validation loss. We observed that validation loss
decreases over the increasing number of epochs but, like
training loss, becomes nearly fixed after a few epochs.

Evidence for G4-1 and G4-2. We need to ensure
that the ML model meets each ML performance and ro-
bustness requirement. We used test-based verification
to check ML-RQ1. We split the data into training and
test data with a proportion of 80% to 20%, respectively
(context C4-1), and calculated RMSE. We consider ML-
RQL1 is satisfied if RMSE is less than a threshold (i.e., 12
mg/dL [21]). The RMSE in our experiments is 3.03 mg/dL.
We also used formal verification to check ML-RQ1.1 to
ML-RQ1.8. We employed the DNNV framework [35],
using which we compared the performance of different
NN verifiers and selected Nnenum [36]. The properties
are specified using inputs and outputs of the network
by constraining their ranges of values. Table 4 shows
the mapping between the performance requirements al-
located to the ML component (Table 2) and the require-
ments amenable to the ML implementation. We describe
ML-RQ1.1 and ML-RQ1.2 as an example. In ML-RQ1.1,
the difference between two consecutive BG values in the
input and output is limited by A. In ML-RQ1.2, we as-
sume that if meal intake is larger than a value (1), BG
will be greater than a value (p1). We use an OR condition
to indicate the timestep in which the meal is consumed
is not relevant. The meal intake should be sufficiently
large to assure us about its effect on the BG value.

To verify the properties, we first determined ranges
of values based on the minimum and maximum values
of the corresponding variables in the dataset. We also
chose the thresholds based on our knowledge of the lit-
erature (e.g., we set A, the constraint for max glucose
rise/drop over 5 min, to 40 based on [19]). As a result,
all properties were violated. This confirms that learning



Table 5.

The properties checked on the FFNN of the glucose prediction.

The third and forth columns indicate whether the property is

satisfied over networks with 8,8,6 and 128,64,6 neurons. We use BG;, In;, and M; to denote BG, insulin, and meal intake,
where i € [1,12], « = 0.006525, and 3 = [0, 1]. The superscript I indicates the input and O indicates the output. * denotes
that the property was satisfied using another verifier (Marabou) as Nnenum raised error, and  shows that the property was
satisfied after 16 days (using Marabou). The verification time for other requirements was fast enough.

Property Constraints (8,8,6) (128,64,8)
ML-RQ1.1 BGT € 130,180], Inf € 3, MI € B, A =20 Satisfied| Nnenum Error*
ML-RQ1.1 BGT €109,180], Inf € 3, MI € B, A =20 Satisfied| Nnenum Error T
ML-RQ1.8 (Inl =5 = BGY < 230) BGT € [212,230],In!,, = a,M] =0 Violated | Satisfied
ML-RQ1.8 (Inf, = 5 = BGY < 230) BGT € [211,220],Inl,,, = a, M} = Satisfied| Satisfied
ML-RQ1.8 (Inl, =5 = BG§ < 220) | BGT € [212,222],Inl,,, = a,M] =0 Satisfied| Violated
ML-RQ1.2 ( M], =20 = BGY > 210) | BGT € [180,180],Inf = a, ML,,, =0 Violated | Satisfied
ML-RQ1.2 (M], =20 = BGY > 200) | BGT €[180,180],In! = o, M],,, =0 Satisfied| Satisfied
ML-RQ1.2 (M], = 20 = BGJ > 200) | BGT € [180,183[,In] = o, M., =0 Violated | Satisfied

complex body physiology in the presence of uncertain
meal intake is difficult, and having high precision does
not necessarily show the algorithm’s correctness. Select-
ing the thresholds also needs consulting with physicians
and domain experts. So, we considered specific forms of
the properties and selected the thresholds with try and
test. We tried to increase the likelihood of property satis-
faction by tightening ranges and thresholds. A part of our
experiments are shown in Table 5. Besides, we checked
the properties on a network with 128 and 64 neurons in
layers one and two. We observed that a property satisfied
on the first network is not necessarily satisfied on the
other, and vice versa. These experiments confirm the
need to instantiate AC according to the patient profiles
or the population. Because the network structure as well
as the thresholds and ranges of values may change based
on data available for a patient or a population of patients.
The robustness can be checked by measuring RMSE,
given data of a virtual patient as the test data. The data
does not include the exercise information (ML-RQ3).
Evidence for G5-2. Since we use synthetic data, the
requirements DRR1 (DR.A1), DRR3, and DR.C2 in Ta-
ble 3 are not applied to our dataset. Synthetic data gen-
eration was conducted via the Dexcom sensor, and this
can serve as evidence to support DR.R2. Simglucose is a
simulator to generate data of virtual patients with T1D,
so DR.R4 is met. If the controller is used for all diabetic
patients, DR.R5 and DR.C3 are violated since the data is
generated for three subject groups of patients, exclud-
ing the elderly group and patients weighing more than
118 kg. We are also uncertain about sex and ethnicity.
Simglucose generates random intraday meal intake. Thus,
DR.C1 is partially met because the data does not include
exercise information. Over the whole data, 0.14% of the
data samples are hyperglycemic, 0.11% are hypoglycemic,
and 99.75% are in the glycemic range. Thus, DR.C4 is
met, but the data balance, DR.B1, is violated. We are not
certain about DR.C5. This requirement is met if the data
generation model considers illness. Although the data is
generated by the simulator, DR.A2 is satisfied because

the simulator models both the sensor and pump. There
are not equal numbers for three subject groups in the
dataset, which is another reason for the DR.B1 violation.

6. Open Research Problems

Herein, based on our experience in developing safety
assurance cases for learning-enabled MCPS, we outline
several interesting open research problems.
+ We observed that the network structure influences the
satisfaction or violation of a property. Undoubtedly, the
training data, using which the weights in the network
are calculated, also has an impact. How we can trace the
violation of a property back to its origin?
« The difficulty of learning the patient’s physiology
solely from the training data may explain why several
physiologically-based properties are violated. How can
we enforce the ML model to satisfy the properties while
it develops over the data?
+ RNN is a very commonly used network for time series
data. However, we are unaware of any RNN verifiers
that can assess a broad range of properties (not just ro-
bustness) and are not specialized for specific applications.
Also, the current FFNN verifiers do not support properties
with complex structures like ours. How can we develop
an RNN verifier functional for various properties?

In addition, addressing the following questions can
improve the assurance case.
» How to develop adaptive safety AC for online learning
models, e.g., where the datasets and consequently the
learned model change during the system operation?
» How to develop quantitative measures to evaluate the
confidence in a dynamic assurance case, via aggregating
the uncertainty introduced by different evidence (e.g.,
from model training, testing, and verification) and rea-
soning about the sufficiency for assurance?
» How to build automated tool support for the develop-
ment and review of safety AC for ML-enabled MCPS?



7. Conclusion

In this paper, we presented a safety assurance case tem-
plate for APS as a representative of learning-enabled
MCPS. We focused on ensuring the safety and effective-
ness of the ML-based APS controller. We first extracted
the primary performance and robustness requirements
allocated to the APS controller. Then we enumerated the
requirements on the dataset and provided concrete evi-
dence regarding ML and data requirements. In the future,
we plan to continue this line of research and investigate
the open problems listed in Section 6.
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Table 6.
Root Mean Squared Error (RMSE) for different combinations
of neurons in layers one and two

Neurons in layer 1 and 2 | RMSE
(8,9) 3.03
(8,10) 3.09
(8,20) 311
(8,64) 313

(8,128) 327
(8,200) 3.19
(10,8) 3.11
(20,8) 3.14
(64,8) 3.19
(128,8) 3.19
(200,8) 3.15

A. Appendix

A.1. Glucose Prediction Model

we denote the structure of our FFNN along with its inputs
and outputs in Figure 6. We use timesteps to indicate
the order in which the values are organized in the input
and output sequences. The ¢ min in the input denotes ¢
minutes into the past, and ¢ min in the output indicates ¢
minutes into the future. We use MinMaxScalar to scale
the inputs before feeding them to the network. We use
the relu activation function and the adam optimizer to
compile the model.

We show the training loss versus validation loss for our
FFNN of the glucose prediction in Figure 7(a). The test
data are compared with the predicted data in Figure 7(b).
Our FENN includes 8 and 8 neurons in the first and sec-
ond layers, respectively. We provide RMSE for different
combinations of neurons in two layers in Table 6.
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Figure 6.: The structure of our FENN for glucose prediction with its inputs and outputs. The timesteps indicate the order in
which the values are organized in the input and output sequences. The ¢ min in the input denotes ¢ minutes into the past, and
t min in the output denotes ¢ minutes into the future. In denotes the insulin and M denotes the meal.
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Figure 7.: (a) Training loss versus validation loss for the FFNN with 8, 8, and 6 neurons in the first, second, and third layer,
respectively, (b) The original and predicted BG values
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